
Functional Mockup Interface – Overview

Martin Otter (DLR-RM)
Torsten Blochwitz (ITI)Torsten Blochwitz (ITI)

Hilding Elmqvist (Dassault Systèmes – Dynasim)

Andreas Junghanns (QTronic)

Jakob Mauss (QTronic)

Hans Olsson (Dassault Systèmes – Dynasim)

Contents

1. Functional Mockup Interface – Goals

2. FMI - Distribution of Model

3. FMI - Model Description Schema

4. FMI - Model Interface

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 2

4. FMI - Model Interface

5. Tool Support for FMI

6. Comparison with SIMULINK S-Function Interface

7. Outlook

8. Acknowledgements

1. Functional Mockup Interface (FMI) – Goals

Overall goal of FMI in MODELISAR

... for (alphabetically ordered)
Concrete goal of FMI in MODELISAR

Software/Model/Hardware-in-the-Loop,
of physical models and
of AUTOSAR controller models
from different vendors for
automotive applications with
different levels of detail.

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 3

... for (alphabetically ordered)
AMESim (Modelica, hydraulic)
Dymola (Modelica)
EXITE (co-simulation environment)
Silver (co-simulation environment)
SIMPACK (multi-body)
SimulationX (Modelica)
SIMULINK (no resources yet planned)

Open Standard

Task is complex since the different parts are complex by themselves:

Model Exchange (ODE/DAE components without integrators)

Co-Simulation (ODE/DAE components with integrators)

Co-Simulation with PDE solver (MpCCI)

AUTOSAR (discrete components with complex communication)

Simulation Backplane

"Model Exchange" is most reliable due to central step-size control.

Extension for co-simulation under development (Uni Halle, ITI, Fraunhofer)

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 4

2. FMI - Distribution of Model

A model is distributed as one zip-file with extension ".fmu". Content:

modelDescription.xml // Description of model (required file)
model.png // Optional image file of model icon
documentation // Optional directory containing the model
documentation

_main.html // Entry point of the documentation
<other documentation files>

sources // Optional directory containing all C-sources
// all needed C-sources and C-header files to compile and link the model
// with exception of: fmiModelTypes.h and fmiModelFunctions.h

binaries // Optional directory containing the binaries

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 5

binaries // Optional directory containing the binaries
win32 // Optional binaries for 32-bit Windows

<modelIdentifier>.dll // DLL of the model interface implementation
VisualStudio8 // Microsoft Visual Studio 8 (2005)
<modelIdentifier>.lib // Binary libraries

gcc3.1 // Binaries for gcc 3.1.
win64 // Optional binaries for 64-bit Windows

...
linux32 // Optional binaries for 32-bit Linux

...
resources // Optional resources needed by the model

< data in model specific files which will be read during initialization >

3. FMI - Model Description Schema

All model information not needed for execution is stored in one xml-file
(modelVariables.xml in zip-file)

Advantage:
Complex data structures give still simple interface, and tool can use its favorite
programming language for reading (e.g., C++, C#, Java).

Definition of display units

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 6

Variable names and attributes

Definition of type defaults

Model attributes. Most important

modelIndentifier is a C-name that is
used as prefix for the C-functions
(model interface)

guid is a globally unique identifier
("fingerprint" of all releveant information
in the xml file) that is also stored in the
C-functions to gurantee consisteny

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 7

Number of continuous states and
of event indicators; numbers are fixed
(meaning of states can change dynamically
during simulation)

data types

ModelVariables

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 8

ordered set of scalar variables
(arrays, records, etc. must be
mapped to scalars when
generating code).

Attributes of ModelVariables

unique name

handle to identify
variable in C-functions

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 9

...

Data types allow to store all (relevant) Modelica attributes.
Defaults from TypeDefinitions

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 10

Example <?xml version="1.0" encoding="UTF8"?>
<fmiModelDescription

fmiVersion="1.0"
modelName="Modelica.Mechanics.Rotational.Examples.Friction"
modelIdentifier="Modelica_Mechanics_Rotational_Examples_Friction"
guid="{8c4e810f-3df3-4a00-8276-176fa3c9f9e0}"
...
numberOfContinuousStates="6"
numberOfEventIndicators="34"/>
<UnitDefinitions>

<BaseUnit unit="rad">
<DisplayUnitDefinition displayUnit="deg" gain="57.2957795130823"/>

</BaseUnit>
</UnitDefinitions>
<TypeDefinitions>

<Type name="Modelica.SIunits.AngularVelocity">
<RealType quantity="AngularVelocity" unit="rad/s"/>

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 11

<RealType quantity="AngularVelocity" unit="rad/s"/>
</Type>

</TypeDefinitions>
<ModelVariables>

<ScalarVariable
name="inertia1.J"
valueReference="16777217"
description="Moment of inertia"
variability="parameter">
<Real declaredType="Modelica.SIunits.Torque" start="1"/>

</ScalarVariable>
...

</ModelVariables>
</fmiModelDescription>

4. FMI - Model Interface

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 12

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 13

// Set input arguments
fmiSetTime(m, time);
fmiSetReal(m, id_u1, u1, nu1);
fmiSetContinuousStates(m, x, nx);

// Get results
fmiGetContinuousStates(m, derx, nx);
fmiGetEventIndicators (m, z, nz);

Example:

Caching for efficient model evaluation

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 14

5. Tool Support For FMI

Export of any Modelica model as FMU (Functional Mock-up Unit)

Import of a FMU into Dymola
(Modelica model can be translated once-and-for-all to DLL and then reused
in a Modelica model as compiled input/output block;
afterwards code-generation and translation will be much faster for the
Modelica models where the DLL is used. Example:
Large vehicle model and design work is on a controller).

Import of a Simulink model as FMU into Dymola

In Dymola 7.4

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 15

Import of a Simulink model as FMU into Dymola
(based on model code generated by Real-Time Workshop).

SimulationX (export and import of FMUs)

Silver 2.0 (import of FMUs)

SIMPACK (import of FMUs, i.e.,
Modelica models as force elements in high-end multi-body program)

FMI support planned for the first half year of 2010

Silver 2.0 (March 2010)

Import of FMUs

Connecting FMUs in Silver (is treated as DAE)

SimulationX

Export of FMUs (March 2010)

Export for FMI-for-Co-Simulation (April 2010)

Import of FMUs (June 2010)

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 16

Together will all other Silver features, e.g., submodels can be provided in
other formats:

Software of Electronic Control Units

Models of other tools (Dymola 6.x, 7.x, SimulationX,)

Configurable GUI to control inputs and outputs.

Automatic tests

Silver

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 17

courtesy: QTronic

S-function DLL is simulator-specific:
Since model data structure is a "secret" of the simulation environment. E.g.
for 3 simulation environments → 3 DLLs of the same model
DLL needs to be newly generated for every new version of the S-Function
header file (every SIMULINK version).

FMI: Model DLL is specific to modeling environment, i.e., the same DLL
can be used for all simulators on the same platform.

S-function not suited for embedded systems, due to large memory overhead
since all information of a model is stored in the Model DLL (therefore
separate code generation for embedded systems via Realtime Workshop)

FMI: Only the minimum necessary part is stored in C source code or in

6. Comparison with SIMULINK S-Function Interface

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 18

FMI: Only the minimum necessary part is stored in C source code or in
Model DLL. All information not needed for execution, is provided in an XML
file (which is needed on host, but not on target microprocessor)

S-function has very complex definition (> 100 C-functions/macros)
Generating S-function is fine. However, there is no simulator that can import
all S-function models (with exception of SIMULINK).

FMI: Simple definition (20 C-functions, no macros, XML schema file)

S-function proprietary format, gives legal problems if used in other simulators
FMI: Wikipedia license for specification, BSD license for schema/header

Reliable state event handling

Event iteration over simulation model (not only component model)

Request from submodel to reduce step-size
(for non-linear equations in model that do not converge)

Dynamic selection of states

Alias variables (FMI: alias variables are marked; need to be stored only
once, not several times).

Technical issues that are missing in S-Function interface and are available in FMI:

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 19

Caching of computed results
(FMI: more efficient solution)

7. Outlook

"FMI for Model Exchange" shall be released this week
(technical specification finalized; some discussion about precise license text)

"FMI for Co-Simulation" in a good stage. Will be released in first half year.
(support for: extrapolation/interpolation of interface variables,
variable communication step-size, re-doing a step
→ step-size control possible).

"FMI for Model Exchange" will be further developer. A lot of requirements
available, such as:

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 20

available, such as:

Sparse Jacobian

Direct support for arrays and records in xml schema

Improved sample time definition (for embedded systems)

Online changeable parameters

Saving/restoring model state

...

8. Acknowledgments

FMI initiated : Volker May (Daimler AG)
Head of FMI development : Dietmar Neumerkel (Daimler AG)
Head of FMI-for-Model-Exchange: Martin Otter (DLR-RM)

FMI-for-Model-Exchange Torsten Blochwitz (ITI)
Core-Design by: Hilding Elmqvist (Dassault Systèmes -Dynasim)

Andreas Junghanns (QTronic)
Jakob Mauss (QTronic)
Hans Olsson (Dassault Systèmes -Dynasim)
Martin Otter (DLR-RM)

Other MODELISAR contributors: Ingrid Bausch-Gall, Bausch-Gall GmbH
Alex Eichberger, SIMPACK AG
Rainer Keppler, SIMPACK AG
Gerd Kurzbach, ITI GmbH

Prototypes for FMI evaluation:
Dymola by Peter Nilsson, Sven Erik Mattsson,

Carl Fredrik Abelson, Dan Henriksson
(Dassault Systèmes, Dynasim)

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 21

Gerd Kurzbach, ITI GmbH
Carsten Kübler, TWT
Johannes Mezger, TWT
Thomas Neidhold, ITI GmbH
Dietmar Neumerkel, Daimler AG
Peter Nilsson, Dassault Systèmes-Dynasim
Antoine Viel, LMS International
Daniel Weil, Dassault Systèmes

Other contributors: Johan Akesson, Lund University
Joel Andersson, KU Leuven
Roberto Parrotto, Politecnico di Milano

Partially funded by: BMBF, VINNOVA, DGCIS, organized by ITEA2

(Dassault Systèmes, Dynasim)
JModelica.org by Tove Bergdahl (Modelon)
Silver by Andreas Junghanns, Jakob Mauss

(QTronic)

