
UHF Gen 2 System Overview

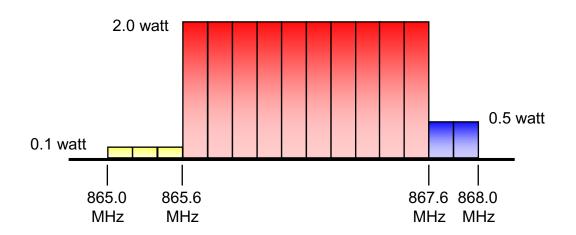
JAG. Mar 2005

JAG. Mar 2005

Principles of Operation

- i At UHF frequencies, longer reading distances are achievable.
- i Data-rates are much higher
- i Signals don't pass through materials as well as lower frequencies.
- i Reflections can extend the read range, but make the reading zone less well defined. (Ghost readings from labels thought to be out-of-range)

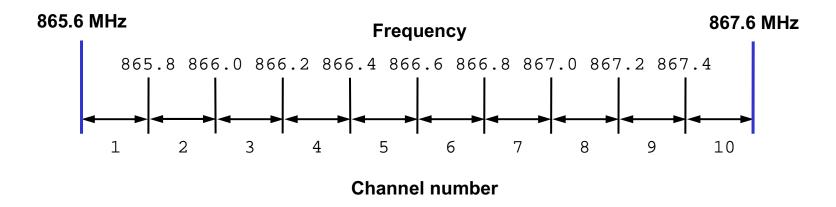
To operate worldwide, a UHF Tag must be capable of replying to different frequencies to meet all regulations.


	North America	Europe	Japan	Korea	Australia	Argentina, Brasil, Peru	New Zealand	
Band (MHz)	902~928	866~868	952~954	908.5~914	918~928	902~928	864~929	
Power	4W EIRP	2W ERP	4W EIRP	2W ERP	4W EIRP	4W EIRP	0.5~4W EIRP	
Number of Channels	50	10	TBD	20	16	50	Varies	
Spurious Limits	-50 dBc	-63 dBc	-61 dBc	-36 dBc	-50 dBc	?	?	

JAG. Mar 2005

Europe

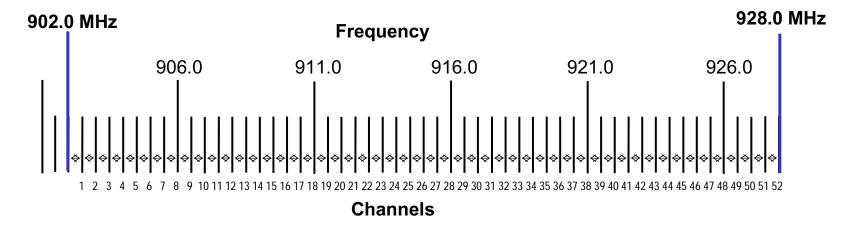
- The new ETSI 302 208 regulations define 3 sub-bands
 - Band 1: 865.0 ~ 865.6 MHz, 0.1 watt ERP, LBT* level -83 dBm
 - Band 2: 865.6 ~ 867.6 MHz, 2.0 watt ERP, LBT level -96 dBm
 - Band 3: 867.6 ~ 868.0 MHz, 0.5 watt ERP, LBT level -90 dBm



^{*} LBT = Listen Before Talk

Europe

- Supply chain Tags will mostly operate in the band 2:
 - 865.6 ~ 867.6 MHz (ETSI EN 302 208 regulations)
 - Comes into effect when published in EU Journal (May 05?)



■ 10 channels of 200 kHz @ 2W ERP (3.2W EIRP)

North America

Tags are approved to operate in the following band:

- 902 ~ 928 MHz (FCC Part 15.247 regulations)
- Frequency Hopping 52 channels × 500 kHz @ 4W EIRP

Reader Operating Environments

Listen Before Talk (LBT)

Part of the European regulations, is Listen Before Talk. If a reader detects a signal in its environment, on the channel it intends transmitting, it must switch to another free channel. After 4 seconds it must turn its transmitter off for 0.1 seconds to allow other readers access to that channel.

Operating Environment

This is defined are the zone within which the reader's RF signal is greater than -90 dB (a radius of approximately 1 Km).

Single Reader Environment

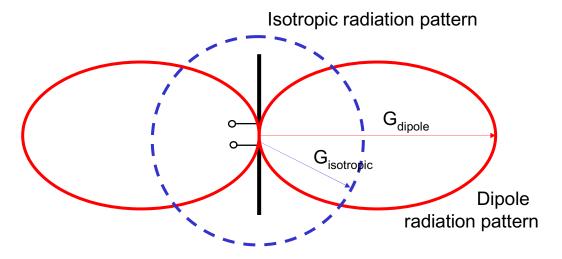
When only a single reader is operating in an Environment.

Multiple reader Environment

In such an Environment, the number of simultaneously operating readers, will be less than the available number of channels.

Reader Operating Environments

Dense Reader Mode


- When the number of readers operating is large when compared to the number of available channels, then this is defined as a Dense Reader Environment, e.g. 20 readers operating in 20 available channels.
- In such an environment, certified readers must incorporate the schemes defined in the Gen 2 Specification to minimise mutual interference.
 - With the time synchronized technique, the readers all transmit together, then, while maintaining their CW, listen for the tag responses.
 - In the frequency separated method, Readers transmit on even numbered channels, while tags respond on odd numbered channels.
 - » In this method the powerful reader signals (100dB greater than the backscattered signal) do not mask the tag signals
 - Tags have no frequency selection but respond to the strongest signal

Texas Instruments

ERP and **EIRP** compared

Regulations expressed in EIRP (equivalent isotropic radiated power) are based on the spherical radiation pattern of an isotropic emitter

Real antennas such as dipoles, do not radiate uniformly in all directions (e.g. no power is radiated along the axis).

ERP power levels relate to the dipole antenna, and the relationship between the gain of an isotropic and a dipole antenna is given by:

$$P_{EIRP} = P_{ERP} \times 1.64$$

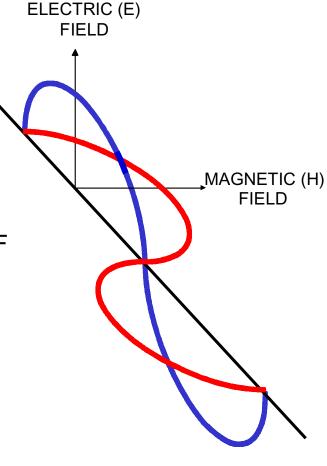
Thus the European limit of 2 W EIRP is equivalent to 3.28 W ERP (USA = 4 W ERP)

Global Comparison

US and European regulations are roughly similar

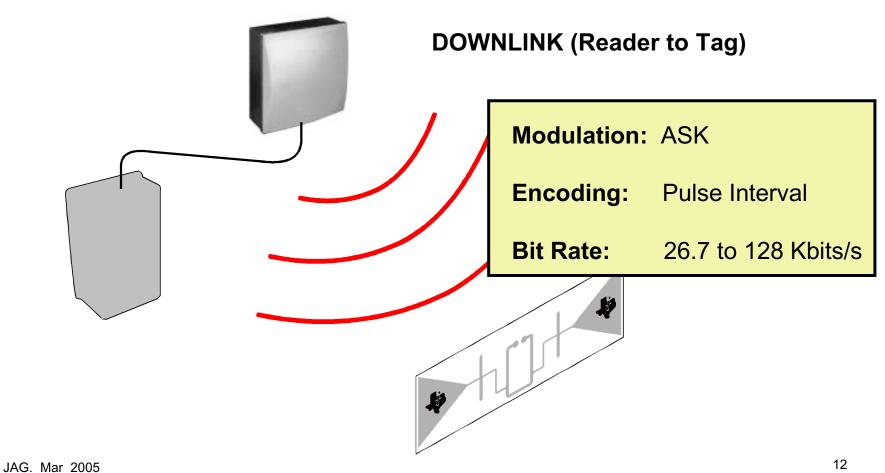
- 2 W ERP is equivalent to 3.28 W EIRP and if you also compensate for the increased efficiency at 868 MHz, the two levels in Europe and North America are roughly the same.
- Unfortunately in Japan there is only 2 MHz and in Europe only 3 MHz of spectrum available, whereas in the USA it is 26 MHz.
 - This means the data rate between readers and Tags is much less in Europe.
 - The spectral mask imposed by the EU, limits data transfer rates to 30% of those possible in North America. (500 vs. 1500 reads/sec)
 - This may limit the speed of pallet loads on fork lifts passing through dock doors

TEXAS INSTRUMENTS


System Overview

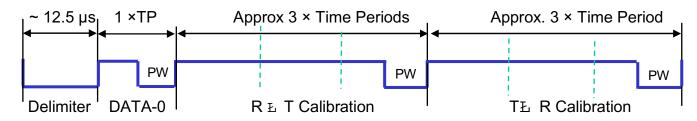
Power Transfer

 Radio signals are electromagnetic waves, having a magnetic component (H-Field) and an electric component (E-Field)

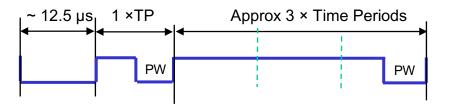

 UHF systems use the Electric field and transfer power by capacitive coupling, achieving greater reading ranges than LF & HF Tags which use the magnetic field

 The Electric field results from the voltage changes occurring in the antenna and is measured in V/m or more commonly dBµV/m

Communication between Reader and Tag


Reader Ł Tag Modulation

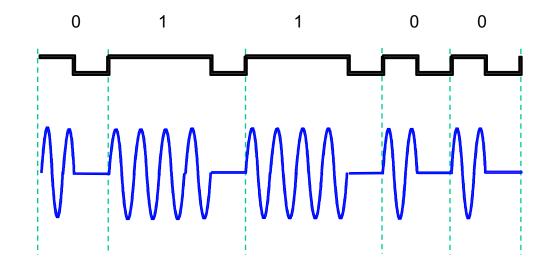
Pulse Interval Encoding (PIE)


 Data is passed to the Tag by pulsing the carrier wave (CW) at different time intervals to indicate the 1 & 0 bits.

All Reader to Tag communication must start with a Preamble:

Subsequent commands can use a Frame-Synch:

Note

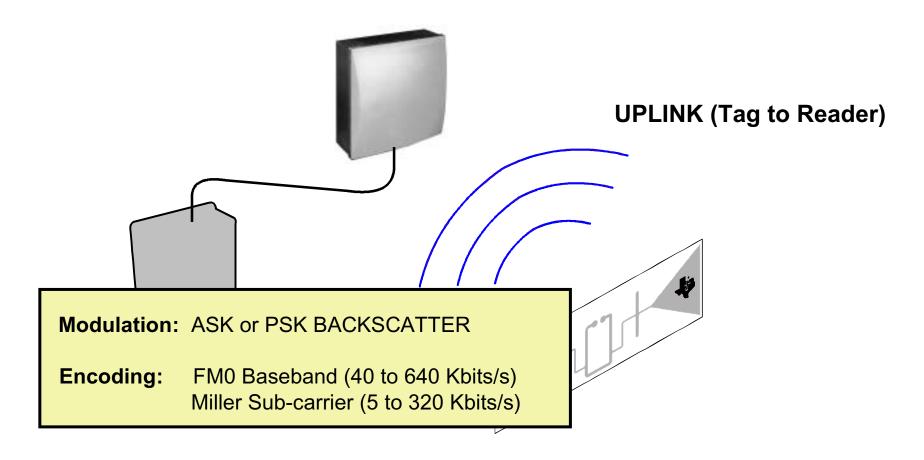

No EOF is necessary

Reader to Tag Modulation

PIE bits (Pulse Interval Encoding)

ASK Modulation (Amplitude Shift Keying)

14


JAG. Mar 2005

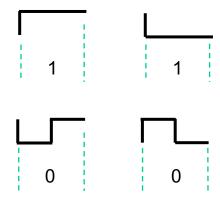
JAG. Mar 2005

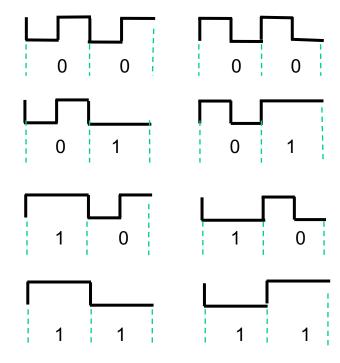
Principles of Operation

Communication between Tag and Reader

Backscatter

Tag to Reader Modulation

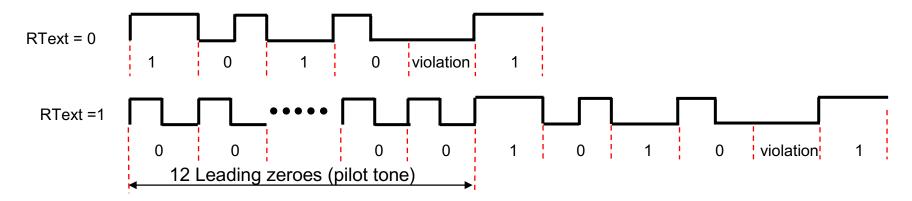

- The Tag uses Backscatter modulation to respond to a reader. It does this by switching the reflection coefficient of its antenna (using a shunt circuit) from a matched load where the maximum reflected signal is created, to a short at the antenna terminals, which reduces the reflection.
- The reader instructs the Tag which method of data encoding to use when sending its data back:
 - Miller Sub-carrier encoding
 - FM0 Baseband encoding
- The Tag can use either of two modulation formats the Tag manufacturer selects:
 - ASK (Amplitude Shift Keyed)
 - PSK (Phase Shift Keyed)

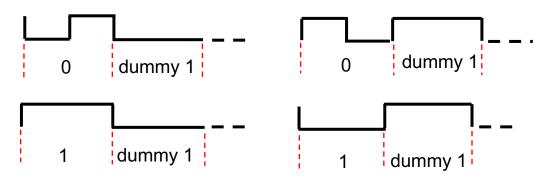

Principles of Operation - Uplink

Tag to Reader - FM0 Encoding

- In FM0 encoding, a transition has to occur at the end of each bit period, but for a zero bit, an addition transition in the middle is required.
 - FM0 Symbols

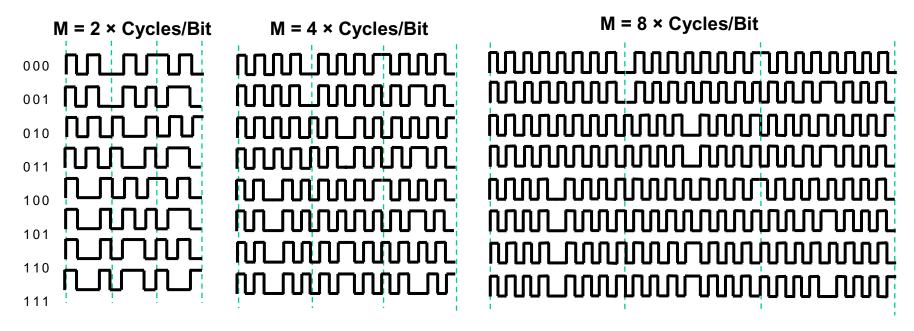
■ FM0 2-bit Sequences




Principles of Operation - Uplink

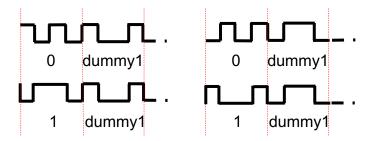
FM0 Bit Encoding

A FM0 message begins with one of these Tag to reader pre-ambles.

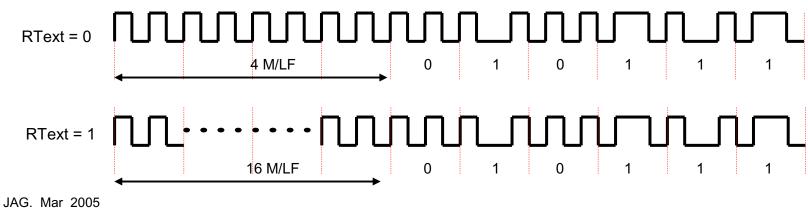

and ends with one of these terminating sequences

Tag to Reader - Miller Encoding

In Miller sub-carrier encoding, a transition occurs between two data-0s in sequence and also in the middle of a data-1. A Miller sequence can contain 2, 4 or 8 sub-carrier cycles/bit



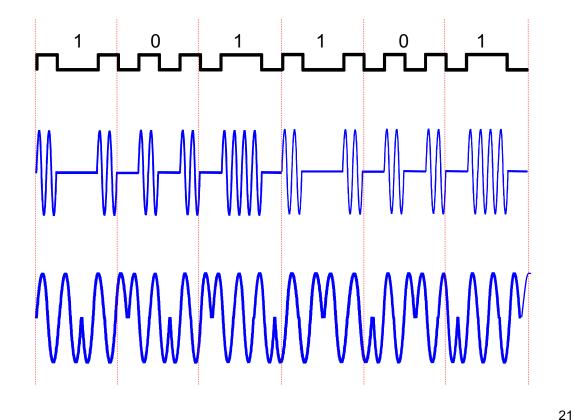
Note 'M' is a parameter in the Query command



Miller Encoding – Preambles and endings

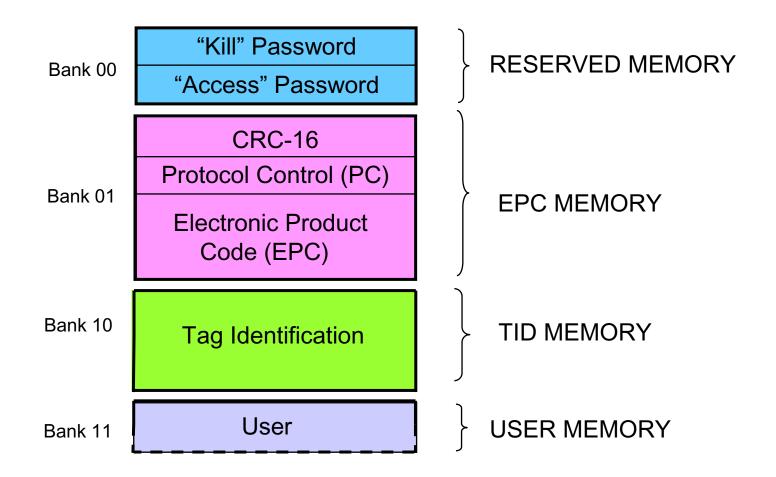
 A Miller sequence terminates with a dummy 1 (only 2 cycles/bit are shown in the examples on this page)

There are 2 Miller Sub-carrier preambles. The Query command tells the Tag which to use.


Tag to Reader Modulation

 The Tag uses either ASK or PSK modulation to return its data: (Miller encoding shown in example)

Miller Bits (2 Sub carrier cycles)


ASK Modulation (Amplitude Shift Keyed)

PSK Modulation (Phase Shift Keyed)

Tags can have 4 banks of non-volatile memory

TEXAS INSTRUMENTS

Reserved Memory

- This area of memory holds the tag's passwords:
 - A 32-bit "Kill" password that allows a Tag to be permanently silenced.
 - The default Kill password value is zero
 - The Kill command will only execute if the password has been set,
 i.e. is non-zero
 - A 32-bit "Access" password that allows the Tag to transition to the Secured state
 - A Tag in the Secured state can execute all Access commands, including writing to locked blocks.
 - Reserved memory can be read-locked.

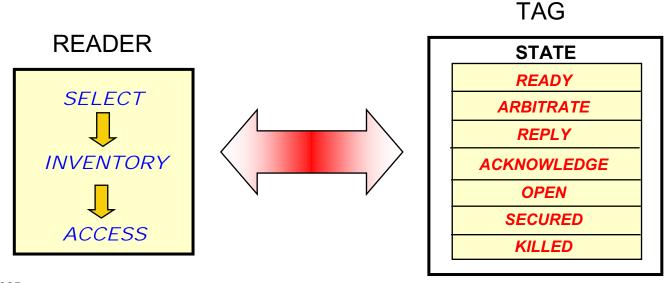
EPC Memory

- This memory area contains:
 - A 16-bit CRC calculated on the PC and EPC
 - The actual data is the 1's complement of the published CRC-16 definition.
 - A 16-bit Protocol Control (PC):
 - 5-bits giving the length of the PC + EPC
 - 2-bits RFU (00₂)
 - 9-bits for a Numbering System Id (NSI)
 - » Which may contain an EPCglobal™ header
 - » or an AFI as defined in ISO 15961
 - An EPC
 - The electronic product code of the object to which the Tag is attached

TID Memory

- This area of memory contains:
 - An 8-bit ISO 15963 allocation class identifier
 - For EPCglobal Tags it is 0xE2
 - A 12-bit Tag mask-designer ID
 - A 12-bit Tag model number.
 - Manufacturers can also include other information if required e.g.
 Tag serial number

User Memory


- This optional area of memory contains user specific data:
 - The memory organization is user defined.

UHF Gen 2 Commands

Three basic operations manage Tag populations

- Select is used to determine which groups of Tags will respond.
- Inventory is used to identify (singulate) individual Tags from a group
- Access is used once Tags have been singulated and individual commands can now be addressed to them

Select Command

Tag Selection

- All Tags support four sessions (S0, S1, S2 and S3).
 - A session is the inventory process between the reader and a population of tags. The reader chooses one session and inventories the Tags associated with that session.
 - Two or more readers can use sessions, to independently inventory a common Tag population.
 - For each of the four possible time-interleaved inventory sessions, Tags maintain an independent inventoried flag to keep track of their status.
 - Each of the four Inventoried flags has two values (A or B).
 - Sessions take place in sequence NOT simultaneously

Select Command

Select

- This command allows the reader to select those Tags that will take part in the next **Inventory** round:
- Included in the Select command string are the following parameters:
 - Target The SL or Inventoried flag to select and if Inventoried which of the four sessions [S0, S1, S2 and S3] to choose
 - Action How matching Tags set [e.g. A Ł B] the flags
 - Mask A bit string that the Tag compares to a memory location
 - MemBank .. The memory bank that Mask refers too [EPC, TID, User]
 - Pointer A memory start location for Mask
 - Length The number of bits of memory for Mask
 - Truncate Instructs Tag to return whole EPC or part following Mask
- If 'Length' is zero, all Tags are considered matching
- By building up multiple Select commands the reader can define the exact Tag population that is to take part in the Inventory

Select Command

Select

 Tags must maintain inventoried and SL flag values (persistence times) even when power is lost, as shown in the table below:

Flag	Tag energised	Tag not energised					
S0 inventoried flag S1 inventoried flag S2 inventoried flag S3 inventoried flag Selected (SL) flag	500ms < persistence < 5s indefinite	none 500ms <persistence 2s="" 5s="" <="" persistence="" persistence<="" td=""></persistence>					

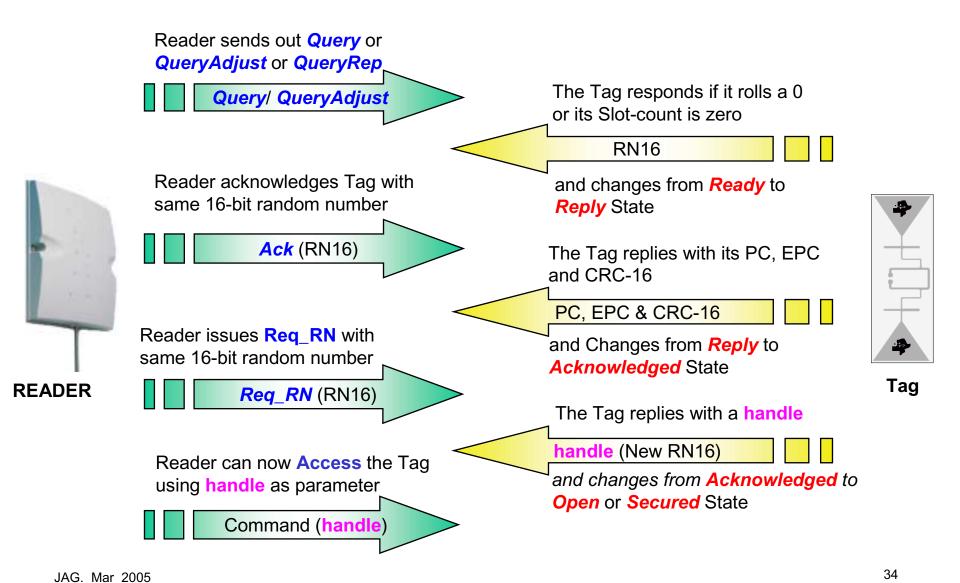
- A reader can choose to inventory Tags with SL set or not set (SL or ~SL) or ignore it.
- A Select command uses Frame-Synch
- Tags don't reply to Select commands

Inventory

- The **Inventory** process uses a slotted random anti-collision algorithm to determine which Tags are present and its command set includes Query, QueryAdjust, QueryRep, Ack and Nak.
 - Query is used to select Tags for the interrogation process and contains a slot-counter value (Q = 0 to 15)
 - QueryAdjust is used to decrement the Tag's slot-counter without changing any other parameters.
 - QueryRep is used to repeat the last Query. This is shorter (quicker) that issuing another complete Query command.
 - Ack is used to acknowledge a Tag response.
 - Nak is used to force a change of state back to Arbitrate

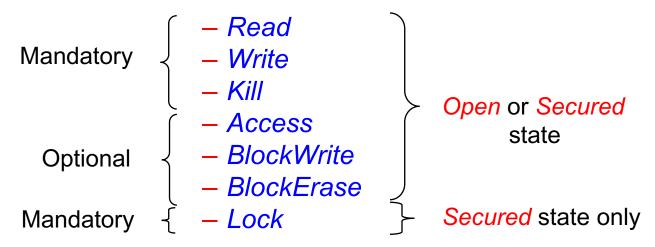
Query

- This Inventory command specifies and initiates the singulation process. It has the following parameters.
 - DR (Divide Ratio) Sets the Tag to Reader frequency
 - M Sets the Tag to Reader data rate and modulation format.
 - TRext . Determines whether or not, the Tag send the 'pilot tone'
 - Sel Chooses which Tags are to acknowledge a Tag response.
 - This command must send the encoding preamble, subsequent commands (*QueryAdjust, QueryRep, Ack, Nak*) use the frame delimiter


The Tag is a **State** machine.

- Once in an RF field, it will change to the *Ready* state, and on receiving a *Query* command will:
- Verify it is in the selected group and if so, roll a 2^Q -1 sided die.
 (Q is an integer in the range 0 ~ 15 passed with Query)
- If a '0' is rolled, the Tag will immediately transition to the Reply state, backscattering a 16-bit (RN16) random number.
- The reader acknowledges with an *Ack* (containing the same 16-bit random number).
- This Tag now changes state to *Acknowledged* and backscatters its PC, EPC and the 16-bit CRC.
- A reader now sends a QueryAdjust causing the identified Tag to invert its Inventoried flag (AŁ B, or B A) and to transition to Ready state.

- If a non-zero value is rolled, the Tag will store that number in its slot-counter and change its state to Arbitrate and await further commands
- If more than one Tag responds, unless the reader can resolve the collision and send a valid Ack, each Tag will return to Arbitrate. These un-acknowledged Tags will again roll their dice and store the result.
- The reader now issues a QueryAdjust command which causes each unresolved Tag to decrement its slot counter
- Tags will reply when their slot counters get to zero
- At any point the reader can issue a Nak which forces all Tags back to Arbitrate.



Access

- Before Access commands can be used, a Req_RN (request random number) command is sent, to cause the Tag to transition from Acknowledge to Open (or Secured if its password is zero)
- The Tag will return a new authorizing random number (RN16) called the handle. The handle is a required part of the command string for the following *Access* commands.

Access commands Write, Kill and Access use encrypted data

TEXAS INSTRUMENTS

Read

- This Access command allows the reader to access part or all of a Tag's Reserved, EPC, TID and User memory
- Included in the *Read* command string is the Tag's handle and:
 - MemBank Memory type (Reserved, EPC, TID, User)
 - WordPtr The starting address
 - WordCount The number of words to read
 - CRC-16 Checksum
- The Tag will indicate success, errors or failure (timeout) in its response

Write

JAG. Mar 2005

- This Access command allows Tag memory locations to be changed. This command accesses Reserved, EPC, TID and User memory.
- As well as handle, included in the Write command string are
 - MemBank Specifying the memory to access
 - WordPtr The address to be accessed
 - Data The 16-bit word to write
 - CRC-16 Checksum
- A new handle has to be requested for each Write command
- Data is sent encrypted (link cover coding)
- The Tag's response will indicate success, error or failure

Kill

JAG. Mar 2005

- This Access command will permanently disable a Tag.
- This is a multi-stage process; two Kill commands are sent:
 - 1. Containing the encrypted 16-MSBs of the kill password
 - 2. Containing the encrypted 16-LSBs of the kill password
- Before each Kill command a new handle is requested
- In response to the command, the Tag backscatters its handle and then never responds again.
- No response indicates the command failed
- If the Kill password is zero, the Tag cannot be 'Killed'

Lock

- This **Access** command allows a reader to:
 - Lock individual passwords, preventing subsequent reads or writes.
 - Lock individual memory banks, preventing subsequent writes.
 - Permalock (permanently lock) the lock status of passwords or memory banks
- Permalock bits, once set, cannot be changed
- The lock bits cannot be read directly but inferred by other memory operations
- The Tag will indicate success, error or failure (timeout)

Lock

- As well as handle, the command has the following parameters:
 - A 20-bit Payload comprising Mask and Action bits
 - » MASK Which memory areas to select
 - » Action What action to perform on the selected memory

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
KII	KILL ACCESS		ESS	EPC		TID USER		SER	KI	KILL ACCESS		EPC		TID		USER			
	MASK-BITS						ACTION-BITS												

- A CRC-16 checksum
- The Tag has to be in Secured state for the command to be accepted

Access

- This optional command will allow a reader to transition a Tag with a non-zero access password, from an *Open* to a *Secured* state.
- This is a multi-stage process; two Access commands are sent:
 - 1. Containing the encrypted 16-MSBs of the access password
 - 2. Containing the encrypted 16-LSBs of the access password
- In response to the command, the Tag will indicate success, error or failure (timeout)

BlockWrite

- This optional command will allow a reader to write multiple blocks to a Tag's Reserved, EPC, TID or User memory.
- As well as handle, included in the BlockWrite command are
 - MemBank Specifying the memory to access
 - WordPtr The address to be accessed
 - WordCount ... The number of 16-bit words to write
 - Data The 16-bit words to write
 - CRC-16 Checksum
- Data is **Not** sent encrypted
- The tag's response will indicate success, error or failure

BlockErase

- This optional command will allow a reader to erase multiple blocks to a Tag's Reserved, EPC, TID or User memory.
- As well as handle, included in the BlockErase command are
 - MemBank Specifying the memory to access
 - WordPtr The address to be accessed
 - WordCount ... The number of 16-bit words to erase
 - CRC-16 Checksum
- The tag's response will indicate success, error or failure

TEXAS INSTRUMENTS

Security Features

Security

- A number of features work together to enhance the security of EPC Gen 2 tags
 - An Access password, is required before the tag can be transitioned to the Secured State. Only in this state can the Lock command be activated
 - The Lock command allows passwords and data to be Read and Re-Write protected
 - <u>Link Cover-coding</u> is used to scramble the data passed to the tag with the Kill, Write and Access Commands.