

Profiling Runtime Generated and
Interpreted Code using the VTune™
Performance Analyzer

User Guide

Copyright © 1998–2008 Intel Corporation

All Rights Reserved

Document Number: 319806-003US

World Wide Web: http://www.intel.com

Document Number: 319806-003US

Profiling Runtime Generated and Interpreted Code using the VTune™ Performance Analyzer

Disclaimer and Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL

OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND

CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED

WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A

PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN

WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or

characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no

responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without

notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from

published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-

548-4725, or by visiting Intel's Web Site.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across

different processor families. See http://www.intel.com/products/processor_number for details.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Atom Inside, Centrino Inside, Centrino logo, Core Inside, FlashFile, i960,

InstantIP, Intel, Intel logo, Intel386, Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside, Intel Inside

logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel

StrataFlash, Intel Viiv, Intel vPro, Intel XScale, Itanium, Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium Inside, skoool,

Sound Mark, The Journey Inside, Viiv Inside, vPro Inside, VTune, Xeon, and Xeon Inside are trademarks of Intel Corporation in the U.S. and other

countries.

* Other names and brands may be claimed as the property of others.

Copyright (C) 1998-2008, Intel Corporation. All rights reserved.

Revision History

Document
Number

Revision
Number

Description Revision Date

319806-
001US

0.6 Initial Release 04 2008

319806-
001US

0.74 •

•

Tables are added in API descriptions

Intel Copyright notice added to the sample source code

06 2008

319806-
003US

0.75 •

•

Updated the API section

Intel Copyright notice added to the sample source code

06 2008

2 Document Number: 319806-003US

http://www.intel.com/

Introduction

Contents

1 Introduction ...4

2 Adding VTune™ Performance Analyzer JIT Profiling Support5
2.1 Instructions to include JIT Profiling Support5
2.2 Time and Event Based Sampling...6
2.3 Call Graph Analysis ...6
2.4 Special Virtual Machine Events ..6

3 API Description...7
iJIT_NotifyEvent...7
iJIT_ GetNewMethodID ...9
iJIT_RegisterCallbackEx..11
iJIT_IsProfilingActive..12
FinalizeThread...12
FinalizeProcess ...13

4 Usage Example...14
4.1 Sample Code ...14
4.2 Call Graph Analysis of the Sample Code14

User Guide 3

Profiling Runtime Generated and Interpreted Code using the VTune™ Performance Analyzer

1 Introduction
The VTune™ Performance Analyzer’s JIT (Just-In-Time) Profiling API provides
functionality to profile runtime generated code. This API allows analysis of runtime
generated code with both sampling and call graph profilers which are already available
with VTune™ Performance Analyzer.

JIT Profiling API can also be used to analyze the virtual machines (VM) which interpret
code. Analyzing a VM with sampling or call graph methods provides valuable
performance data on how the VM functions and performs.

The VM (or any code that is generating code during runtime) can communicate with a
profiler object through a statically linked library (Figure 1). The static library and the
profiler object is part of the standard VTune™ analyzer installation. During runtime, the
VM notifies the static library of specific events and provides the static library with the
necessary data. The static library dynamically loads the profiler object (dll) and sends
the data to the VTune analyzer, via the profiler object, to be formatted and displayed. If
the VTune analyzer is not installed, profiling is disabled.

Virtual Machine
(VM)

JIT Profiling
Static Library

Profiler
Object

Profiled Process

VTune™
Performance

Analyzer

VTune™ Performance
Analyzer Process

Figure 1: JIT Profiling Components

4 Document Number: 319806-003US

Adding VTune™ Performance Analyzer JIT Profiling Support

2 Adding VTune™ Performance Analyzer
JIT Profiling Support

2.1 Instructions to include JIT Profiling Support
1. Include JITProfiling.h file located under “C:\Program

Files\Intel\VTune\Analyzer\include” directory for Microsoft* operating systems and
under /opt/intel/vtune/analyzer/include for Linux* operating systems. This header
file provides all API function prototypes and type definitions.

2. Link the Virtual Machine (or any code using these APIs) with JITProfiling.lib
located under “C:\Program Files\Intel\VTune\Analyzer\lib” on Windows*, and with
JITProfiling.a located under “/opt/intel/vtune/analyzer/bin” on Linux*
operating systems. On Linux* please link with the standard libraries libdl.so and
libpthread.so. Note: JITProfiling.a which comes with VTune analyzer is compiled
with g++ and not with gcc, therefore either compile your code with g++ or compile
with gcc and link with -lstdc++ library.

In order to function properly, a VM that uses the JITProfiling API should implement a
mode-change callback function and register it using iJIT_RegisterCallbackEx. The
callback function is executed every time the profiling mode changes. This ensures that
the VM issues appropriate notifications when mode changes happen.

To enable JIT profiling support, set the environment variable
ENABLE_JITPROFILING=1.

On Windows:

set ENABLE_JITPROFILING=1

On Linux:

export ENABLE_JITPROFILING=1

On Linux JIT profiling can only be used with the command line interface (vtl) and
jitprofiling option needs to be used.

For call graph analysis:
 vtl activity jitcg -c callgraph -o jitprofiling -app
./jitprof run

For sampling analysis:

User Guide 5

Profiling Runtime Generated and Interpreted Code using the VTune™ Performance Analyzer

 vtl activity jitsamp -c sampling -o jitprofiling -app
./jitprof run

If you wish to perform JIT profiling on a remote Linux OS system, define the
BISTRO_COLLECTORS_DO_JIT_PROFILING environment variable in the shell
where vtserver executes.

export BISTRO_COLLECTORS_DO_JIT_PROFILING=1

2.2 Time and Event Based Sampling
In order to profile run-time generated code with the sampling profiler,
iJIT_NotifyEvent API function needs to be used in order to send the
iJVM_EVENT_TYPE_METHOD_LOAD_FINISHED notification. This function needs
to be called after JIT compilation and before the first entry into the JIT compiled
method.

2.3 Call Graph Analysis
To profile run-time generated code with the call graph profiler, use:

iJVM_EVENT_TYPE_ENTER_NIDS notification upon function entry, •

•

•

iJVM_EVENT_TYPE_LEAVE_NIDS notification upon function exit,

iJVM_EVENT_TYPE_METHOD_LOAD_FINISHED notification upon function JIT
compilation.

When an exception occurs, the VTune analyzer expects method leave events for each
method that is unwound. When an exception occurs in the VM-code, the VTune analyzer
expects the VM to issue the LEAVE callback when it “unwinds” the stack frame of the
executing method. Otherwise, the generated call-graph will be incorrect.

Call FinalizeThread when a thread you are profiling exits. Call FinalizeProcess when
a process you are profiling is about to exit. The JIT Profiling API automatically identifies
new threads and handles thread related initialization.

Note: mixed mode call graph of VM functions and native IA-32, IA-32 with Intel® 64, or
IA-64 architecture functions is not supported.

2.4 Special Virtual Machine Events
Use the iJVM_EVENT_TYPE_SHUTDOWN to terminate profiling, both for sampling
and for call graph.

6 Document Number: 319806-003US

API Description

3 API Description
This section describes JIT Profiling API functions, their prototypes, and the data types
associated with them.

iJIT_NotifyEvent
Sends an event notification to the VTune analyzer.

int iJIT_NotifyEvent(

iJIT_JVM_EVENT event_type,

void *EventSpecificData

);

Description:
The iJIT_NotifyEvent function sends a notification of event_type with the data pointed
by EventSpecificData to the VTune analyzer.

Parameters:

Parameter Description
iJIT_JVM_EVENT event_type Notification code to send to the VTune

analyzer. See a complete list of event
types below.

void *EventSpecificData Pointer to event specific data.

Return Values:
The return values are dependent on the particular iJIT_JVM_EVENT.

Event Types
The following values are allowed for event_type:

Event Description
iJVM_EVENT_TYPE_METHOD_LOAD_FINISHED Send this notification after a JITted method

has been loaded into memory,
and possibly JIT compiled. Use the
iJIT_Method_Load structure for
EventSpecificData. The return value of
iJIT_NotifyEvent is undefined.

iJVM_EVENT_TYPE_ENTER_NIDS Send this notification at the entry point of
a method, JITted or not. This notification

User Guide 7

Profiling Runtime Generated and Interpreted Code using the VTune™ Performance Analyzer

is only used for call graph profiling. Use
the iJIT_Method_NIDS structure for
EventSpecificData. iJIT_NotifyEvent
returns 0 on failure.

iJVM_EVENT_TYPE_LEAVE_NIDS Send this notificaton at the exit point of a
method, JITted or not. This notification is
only used for call graph profiling. Use the
iJIT_Method_NIDS structure for
EventSpecificData. iJIT_NotifyEvent
returns 0 on failure.

iJVM_EVENT_TYPE_SHUTDOWN Send this notification to terminate
profiling. Use NULL for EventSpecificData.
iJIT_NotifyEvent returns 1 on success.

iJIT_Method_Load Structure
The iJIT_Method_Load structure has the following fields:

Field Description
unsigned int method_id Unique method ID. Method ID’s may not be smaller than

0x100000. Either you use the API function
iJIT_GetNewMethodID to get a valid and unique method ID, or
you take care of ID uniqueness and correct range by yourself.

char *method_name The name of the method, optionally prefixed with its class
name and appended with its complete signature. This
argument cannot be set to NULL.

void
*method_load_address

The base address of the method code. Can be NULL if the
method is not JITted.

unsigned int
method_size

The code size of the method. Can be 0 if the method is not
JITted.

unsigned int
line_number_size

The number of entries in the line number table.

pLineNumberInfo
line_number_table

Pointer to the line numbers info array. Can be NULL if
line_number_size is 0. See LineNumberInfo Structure for a
description of a single entry in the line number info array.

unsigned int class_id Unique class ID. Can be 0.

char *class_name Class name. Can be NULL.

char *source_file_name Source file name. Can be NULL.

void *user_data This field is obsolete.

unsigned int
user_data_size

This field is obsolete.

iJDEnvironmentType env This field is obsolete.

8 Document Number: 319806-003US

API Description

LineNumberInfo Structure
The LineNumberInfo structure has the following fields:

Field Description
unsigned int Offset Opcode byte offset from the beginning of the method.

unsigned int
LineNumber

Matching source line number offset (from beginning of source
file).

iJIT_Method_NIDS Structure
The iJIT_Method_NIDS structure has the following fields:

Field Description
unsigned int method_id The method ID.

unsigned int stack_id This field is ignored and filled automatically.

char *method_name The name of the method, optionally prefixed with its class
name and appended with its complete signature (see Method
Signature section below for details). This field can be NULL

Method Signature
The signature of a method is composed of its return value and the arguments it accepts
in the following structure:

(<return value>(<param 1>, <param 2> ...))

 The complete method_name argument structure is:

<class-name>.<method-name><signature>.

iJIT_ GetNewMethodID
Generates new method ID upon each call.

unsigned int iJIT_GetNewMethodID(void);

Description:
The iJIT_ GetNewMethodID function generates new method ID upon each call. You
must use this function to assign unique and valid method IDs to methods reported to the
VTune analyzer.

Parameters

None

User Guide 9

Profiling Runtime Generated and Interpreted Code using the VTune™ Performance Analyzer

Return Value:
A new unique method ID. When out of unique method IDs, this API function returns 0.

10 Document Number: 319806-003US

API Description

iJIT_RegisterCallbackEx
Registers a call back function.

void iJIT_RegisterCallbackEx(

 void *userdata,

 iJIT_ModeChangedEx NewModeCallBackFuncEx

);

Description:
The iJIT_RegisterCallbackEx function registers NewModeCallBackFuncEx as a call
back function. When the profiling mode changes, the callback function is called.

Parameters:

Parameter Description
void *userdata Pointer to user data to be passed to callback

function

iJIT_ModeChangedEX
NewModeCallBackFuncEx

Pointer to callback function (see
iJIT_ModeChangedEx prototype).

Return Values:
None

iJIT_ModeChangedEx Prototype
iJIT_ModeChangedEx has the following prototype:

void (void *UserData, iJIT_ModeFlags Flags)

void *UserData

The user data pointer passed to iJIT_RegisterCallbackEx

iJIT_ModeFlags Flags

Indicates what mode the VTune analyzer is in. It can have any of the following values
OR’d together:

Value Description
iJIT_NO_NOTIFICATIONS The VTune analyzer is not running.

iJIT_BE_NOTIFY_ON_LOAD Call iJIT_NotifyEvent with
iJVM_EVENT_TYPE_METHOD_LOAD_FINISHED for
every method that is loaded.

iJIT_BE_NOTIFY_ON_METHOD_ENTRY Call iJIT_NotifyEvent with
iJVM_EVENT_TYPE_ENTER_NIDS on entry of every

User Guide 11

Profiling Runtime Generated and Interpreted Code using the VTune™ Performance Analyzer

method.

iJIT_BE_NOTIFY_ON_METHOD_EXIT Call iJIT_NotifyEvent with
iJVM_EVENT_TYPE_LEAVE_NIDS on exit of every
method.

iJIT_IsProfilingActive
Returns the current mode of the profiler.

iJIT_IsProfilingActiveFlags iJIT_IsProfilingActive(

void

);

Description:
Returns the current mode of the profiler: off, sampling, or call graph using the
iJIT_IsProfilingActiveFlags enumeration.

Parameters:
 None

Return Values:

Value Description
iJIT_NOTHING_RUNNING No profiler is running. Currently not used.

iJIT_SAMPLING_ON Sampling is running. This is the default return value.

iJIT_CALLGRAPH_ON Call graph is running.

FinalizeThread
Call this when the thread exits. Required for call graph only.

void FinalizeThread(

 void

);

Parameters:

 None

12 Document Number: 319806-003US

API Description

Return Values:

 None

FinalizeProcess
Call this after the process ends. Use this function only under call graph profiling.

void FinalizeProcess(

 void

);

Parameters:

 None

Return Values:

 None

Remarks:

User Guide 13

Profiling Runtime Generated and Interpreted Code using the VTune™ Performance Analyzer

4 Usage Example

4.1 Sample Code
The sample code can be found under the C:\Program Files\Intel\VTune\Examples
directory for Windows and under /opt/intel/vtune/samples directory for Linux*.

4.2 Call Graph Analysis of the Sample Code
Create a new VTune analyzer project.

Select what kind of profiling you want to do and check “Enable JIT Profiling” option.
Please note that “Enable JIT-Profiling” option won't appear unless
ENABLE_JITPROFILING environment variable is enabled.

14 Document Number: 319806-003US

Usage Example

After following the wizard, the sample test code generates the following results.

User Guide 15

Profiling Runtime Generated and Interpreted Code using the VTune™ Performance Analyzer

16 Document Number: 319806-003US

	1 Introduction
	Disclaimer and Legal Information
	2 Adding VTune™ Performance Analyzer JIT Profiling Support
	2.1 Instructions to include JIT Profiling Support
	2.2 Time and Event Based Sampling
	2.3 Call Graph Analysis
	2.4 Special Virtual Machine Events

	3 API Description
	4 Usage Example
	4.1 Sample Code
	4.2 Call Graph Analysis of the Sample Code

