Predictable processes: properties

- A predictable process H(t) is adapted to the filtration \mathcal{F}_t
- If H(t) is left continuous adapted process then H(t) is a predictable process
- A measurable deterministic process is predictable
- H(t) is a predictable process if and only if H(t) is \mathcal{F}_{t-} measurable

Integral process: properties

•
$$\int_0^t H(s,\omega) dB(s,\omega) = \lambda \int_0^t H(s,\omega) dA(s,\omega)$$
 if $B(s) = \lambda A(s)$ and $\lambda \ge 0$

•
$$\int_{0}^{t} H(s,\omega) dB(s,\omega) = \int_{0}^{t} H(s,\omega) dA_{1}(s,\omega) + \int_{0}^{t} H(s,\omega) dA_{2}(s,\omega)$$

if $B(s) = A_{1}(s) + A_{2}(s)$

•
$$t \mapsto \int_0^t H(s,\omega) \, dA(s,\omega)$$
 is CADLAG

- $t \mapsto \int_0^t H(s,\omega) \, dA(s,\omega)$ is continuous if $t \mapsto A(t,\omega)$ is continuous
- $\int_0^t H(s) \, dA(s)$ is adapted to the filtration \mathcal{F}_t
- $\int_0^t H(s) dA(s)$ is predictable if A(t) is predictable

Martingale theory

Doob-Meyer: X(t) is a submartingale

- There exists a unique nondecreasing predictable process A(t)
- Under an integrability condition: M(t) = X(t) A(t) is a martingale and heuristic $E(dM(t)|\mathcal{F}_{t-}) = 0$ and $dA(t) = E(dX(t)|\mathcal{F}_{t-})$

H(t) is a predictable process and X(t) is a nondecreasing process

- Doob-Meyer: M(t) = X(t) A(t) is a martingale (under an integrability condition)
- $\mathbf{E}\left(\int_{0}^{t} |H(s)| \, dA(s)\right) < \infty$: $\int_{0}^{t} H(s) \, dM(s)$ is a martingale

•
$$\mathbf{E}\left(\int_{s}^{t} H(u) \, dX(u) \Big| \mathcal{F}_{s}\right) = \mathbf{E}\left(\int_{s}^{t} H(u) \, dA(u) \Big| \mathcal{F}_{s}\right)$$

(A general formula of Thm 6.1 and 8.1 in CMM)

Square integrable martingale

M(t) square integrable martingale and a FV-process:

- Doob-Meyer: there exists a predictable nondecreasing process $\langle M \rangle(t)$
- Under some integrability condition: $M^2(t) \langle M \rangle(t)$ is a martingale and $d\langle M \rangle(t) = \operatorname{var}(dM(t)|\mathcal{F}_{t-})$

H(t) is a predictable process such that $\mathbf{E}\left(\int_0^t H^2(s) d\langle M \rangle(s)\right) < \infty$:

•
$$\langle \int_0^t H(s) \, dM(s) \rangle(t) = \int_0^t H^2(s) \, d\langle M \rangle(s)$$

•
$$\left(\int_0^t H(s) \, dM(s)\right)^2 - \int_0^t H^2(s) \, d\langle M \rangle(s)$$
 is a martingale

Counting process

 $(N(t))_{t>0}$ is a (one-dimensional) counting process if

- N(t) is \mathcal{F}_t -adapted
- N(0) = 0 and $t \mapsto N(t, \omega)$ is nondecreasing, right continuous and takes integer values
- $\Delta N(t) = N(t) N(t-)$ is either 0 or 1 for all $t \ge 0$

 $N(t) = (N_1(t), \dots, N_k(t))$ is a k-dimensional counting process if

• $N_h(t)$ is a counting process for $h = 1, \dots, k$

•
$$\sum_{i \neq j} \Delta N_i(t) \Delta N_j(t) = 0$$
 for all t

Construction of predictable compensator

According to a result for the Doob-Meyer composition if

$$\sum_{i=1}^{l2^{k-n}} \mathbf{E}\left(N\left(i2^{-k}\right) - N\left((i-1)2^{-k}\right) \middle| \mathcal{F}_{(i-1)2^{-k}}\right)$$

has a limit in L^1 for $l,n\geq 1$ for $k\to\infty$

and the constructed process satisfies

• nondecreasing

• predictable

then it is a predictable compensator for the counting process