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Abstract
A review of the basic theory of hitches and knots used to determine whether a given hitch will hold

or slip. The topology of the knot, along with the coe�cients of friction, determine the constraints that
must be satis�ed in order for a hitch or knot to withstand an arbitrarily strong pull.

1 Introduction
For millennia humans have been using knots and hitches for all sorts of tasks, from sailing and building to
hanging clothes and tying things onto tops of cars. However, only within the last few decades have knots
and hitches been analyzed mathematically to see precisely under what conditions a knot will hold. Whereas
before one just had an intuition that an extra loop around a pole could make things more secure, know one
can understand the reasons why.

This paper will explain the basic method, �rst proposed by Bayman [1], by which hitches and knots can
be modeled mathematically, and how these models are used to predict under what conditions a knot or hitch
will hold. To understand knots we must �rst examine hitches, so that model will be shown �rst along with
some example analyses of hitches. The extension of the theory to knots will then be presented.

2 Composition of a Hitch
A hitch is basically a rope wrapped around a pole such that one end of the rope is tucked under one or more
turns of the rope around the pole. A successful hitch is one that can resist a strong force applied to the
other end of the rope without slipping. This is determined in large part by the friction of the rope against
the pole and the topology of the hitch.

When a rope lays across a pole, the frictional force between them is proportional to the surface area of
the contact, thus the more wraps around a pole, the stronger the frictional force. Figure 1 shows a simple
case where a rope has two tensions on it, T1and T2. Let µbe the coe�cient of friction between the rope
and the pole. The pole can apply a tangential force on the force such that the rope will not slip when one
tension is greater than the other. For example, if T2 > T1, then the rope will not slip as long as the following
inequality holds:

T2 ≤ T1eµθ (T2 > T1). (1)

Figure 1: Friction between the pole and the rope allow for a di�erence between tensions T1and T2.
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Figure 2: Upper segment with tension T pinches rope below it, splitting it into two segments with tensions
T1and T2.

Here θis the angle (in radians) subtended at the axis of the pole by the arc along which the rope and pole
are in contact. Since θis a multiple of 2π, (1) can be rewritten as

T2 ≤ T1ε
n, (2)

where n is the number of turns around the pole and ε = e2πµ .
Figure 2 shows the situation where a segment of rope T crosses over another one and squeezes the lower

segment against the pole. The frictional forces involved here allow for a di�erence in tensions on either side
of the crossing. The maximum value of this di�erence is proportional to the force exerted by T on the lower
segment perpendicular to the surface of the pole, which in turn is proportional to the tension in T:

T2 ≤ T1 + ηFT (T2 > T1). (3)

The constant η depends on the coe�cients of friction between the rope and pole and between the rope
segments as well as upon the ratio of the diameters of the rope and pole. It is important to note the
following assumptions have been made here: 1) the diameter of the rope is much smaller than the diameter
of the pole, 2) the friction between the rope segments is much less than the friction between the rope and
pole. These two assumptions lead to the third assumption that tension does not change in a segment when
it crosses over another one.

We can now use this model to analyze a simple but commonly used hitch.

3 The Clove Hitch
Figure 3 shows a clove hitch. Let the tensions increase as we follow the rope around the hitch such that
t0 ≤ t1 ≤ t2 ≤ t3 ≤ t4. Using the above equations yield the following conditions that must be met for the
hitch not to slip:

t1 ≤ t0 + ηt2 (4)
t2 ≤ εt1 (5)
t3 ≤ εt2 (6)
t4 ≤ t3 + ηt2 ≤ (ε + η)t2 (7)

Combining these inequalities we obtain
t2(1− ηε) ≤ εt0. (8)

We now have two cases corresponding to low friction (ηε < 1)and high friction (ηε > 1). When there is low
friction the value on the left-hand side of (8) is positive, so we can combine (8) and (7), resulting in

t4 ≤ ε(ε + η)
1− ηε

t0. (9)
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Figure 3: The clove hitch.

Thus the hitch will hold as long as t4is not greater than t0by the factor given in (9). When there is high
friction in the hitch, the left-hand side of (8) is negative, making (8) valid for any non-negative tensions in
t0and t2. Thus, in this situation, the clove hitch will hold against any arbitrarily strong pull on one end
while the other end remains loose.

4 The General Case for a Hitch
4.1 Method
The general case for a hitch is best resolved using matrices based on the system of inequalities describing
the various tensions in a hitch. The method is as follows:

(a) The hitch is split into segments starting at the free end (the 0th segment). The �rst segment begins
where the free end passes under one of the turns in the hitch. It continues until it passes under another
turn, marking the end of the �rst segment and the beginning of the second. The hitch continues to be split
in this manner, where each segment begins where the rope passes under one of the turns of the hitch. Let
Ti be the tension in the rope at the beginning of the ith segment. The �nal segment, which has the highest
tension, shall be denoted segment q.

(b) Let ni be the number of turns around the pole made by the ith segment. The tension at the end of
the ith segment is therefore εniTi.

(c) De�ne bias the number of the segment under which the ith segment begins.
(d) Let mi be the number of turns from the start of segment bi to the place where it passes over the ith

segment. The tension at the beginning of segment bi is Tbi , thus the tension where it passes over the ith
segment is εmiTbi . Therefore, from (2), we get

Ti ≤ εni−1Ti−1 + ηεmiTbi (Ti−1 ≤ Ti) (10)

for i = 2, 3, ..., q. See Figure 4. If T0is the tension of the free end of the rope (just before the �rst segment),
then we can rewrite the above inequality

q∑

j=1

AijTj ≤ δi,1T0 (Ti−1 ≤ Ti) (11)
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Figure 4: Conditions at the ith segment of rope.

where the matrix A is de�ned by

Aij ≡ Bij − ηCij , (12)
Bij ≡ δij − εnj δi−1,j , (13)
Cij ≡ εmiδbij . (14)

The Kronecker delta, δij , is de�ned as δij = 1 when i = j and δij = 0 if i 6= j.
We can now �nd the determinant of A, set it equal to zero and solve for what conditions must be met

for the hitch to hold. Let ηc be the value of η which causes the determinant to be zero. In other words

detA > 0 if 0 ≤ η < ηc (15)
detA = 0 if η = ηc (16)
detA < 0 if 0 ≤ ηc < η (17)

It is shown in <citation> that if the determinant is greater than zero, the hitch will only hold for certain
values of η and if T0 > 0. If the determinant is less than zero than the hitch will hold against an arbitrary
force.

4.2 Ground-line Hitch Example
The ground-line hitch (Fig. 5) is very similar to the clove hitch and will be analyzed using the above general
method. The A matrix for this hitch is

A =
[

1 −ηε1

−ε1 − ηε0 1

]
, (18)

so
detA = 1− ηε(η + ε). (19)

Therefore, the ground-line hitch holds when ηε(η + ε) ≥ 1. Compared to the clove hitch, there is a range of
η

1
ε(η + ε)

< η <
1
ε

(20)

where the ground-hitch will hold fast whereas the clove hitch will slip. Thus this analysis shows that the
ground-line hitch is superior to the clove hitch.
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Figure 5: The gound-line hitch.

5 Application to Knots
Maddocks and Keller [2] show that many of the principles that apply to knots are the same as those that
apply to hitches. As with hitches, the tensions of the segments of a knot must increase from the loose end to
the loaded end in order for the hitch to hold. This variance in tension is caused by the friction between two
segments of the same rope as well as the friction between two di�erent pieces of rope (assuming the knot is
used to tie two pieces of rope together). In essence, when applying the above model to knots, one treats the
piece of rope being wrapped around as a pole. We know analyze the square knot (Fig. 6), most often used
to tie two pieces of rope together.

Figure 6: The Square Knot.

Assume the tension jumps from zero to T1just left of the crossover at point A. Let N be the normal force
that keeps the two ropes together at point A. Then Coulomb's law gives us

T1 ≤ 2µN. (21)

The factor 2 comes from the fact that the segment of rope being analyzed is in contact with two other pieces
of rope at point A. The normal force N is essentially the tension in the vertical rope at A. To �nd N we
assume the tension in the segment increases from T1by the factor eµπ at point B, which is analogous to the
rope being wrapped with a half turn around a cylinder (i.e. along an arc which turns through πradians).
Therefore

N = T1eµπ, (22)
which combined with (21) and solved for µgives

µ ≥ 1
2
eπµ.
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This is the condition on µfor the square knot to hold. Since a square knot is symmetrical, the same condition
is found when analyzing the jump between T2and T3.

6 Conclusion
The models in this paper serve to give a �rst-order understanding of how knots and hitches work. They take
into account the largest factors such as friction created by turns and crossings but gloss over various details.
To make a more accurate model, one could take into account the ratio of the diameters between pole and
rope, the weight of the rope, the change in tension in the top segment of a cross-over, non-cylindrical poles,
and many other subtleties. In [2] after the basic analysis of knots the authors go on to make models of the
�rst three assumptions mentioned. Work continues to be performed on perfecting our models of this very
important tool.
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