
Conditional generative adversarial nets for convolutional face generation

Jon Gauthier
Symbolic Systems Program, Natural Language Processing Group

Stanford University
jgauthie@stanford.edu

Abstract

We apply an extension of generative adversarial networks
(GANs) [8] to a conditional setting. In the GAN framework, a

“generator” network is tasked with fooling a “discriminator”
network into believing that its own samples are real data.
We add the capability for each network to condition on some
arbitrary external data which describes the image being
generated or discriminated.

By varying the conditional information provided to this
extended GAN, we can use the resulting generative model
to generate faces with specific attributes from nothing but
random noise. We evaluate the likelihood of real-world faces
under the generative model, and examine how to determinis-
tically control face attributes by modifying the conditional
information provided to the model.

1. Introduction

Deep learning has been proven in recent years to be an
extremely useful tool for discriminative tasks. Through lay-
ers of linear transforms combined with nonlinearities, these
systems learn to transform their input into an ideal represen-
tation across which we can draw clear decision boundaries.
Systems with discriminative deep-learning models at their
core now yield state-of-the-art results in image classification,
speech recognition, and many other popular tasks of modern
artificial intelligence.

It remains to be seen how this success might play out in
the field of generative models. Popular generative models
like the Restricted Boltzmann Machine and its many variants
[4, 13, 19] have been used successfully in confined settings
such as layer-wise pretraining and some applied tasks. But
the overall development of generative models as standalone
tools has been largely stunted, due to generally intractable
problems which arise during maximum-likelihood estima-
tion (e.g. a very expensive normalization / partition term).

Generative adversarial networks [8] are a recently intro-

Code available at github.com/hans/adversarial.

duced method for training generative models with neural
networks. This approach sidesteps some of the common
problems among generative models and adopts a simple
SGD training regime. The generative model yielded by a
learned GAN can easily serve as a density model of the
training data. Sampling is simple and efficient: the network
accepts some noise as input and outputs new samples of data
in line with the observed training data.

A conditional generative adversarial network (hereafter
cGAN; proposed with preliminary experiments in [17]) is a
simple extension of the basic GAN model which allows the
model to condition on external information. This makes it
possible to engage the learned generative model in different
“modes” by providing it with different contextual informa-
tion.

In this paper we further develop the conditional genera-
tive adversarial network on a face image dataset. We show
positive results in using the incorporated conditional data to
deterministically control particular attributes of faces sam-
pled from the model. We estimate log-likelihood under the
conditional generative model of a test set and find that it
achieves roughly the same probability as a vanilla generative
model.

2. Related work
There is a long line of work in generative models for deep

learning. The basis for much recent work comes from Hinton
and Salakhutdinov [13], who learned compressed codes for
images using a stack of Restricted Boltzmann Machines.
RBMs, used as generative models in a layer-wise pretraining
routine [12], led to substantial success in many deep learning
tasks. They have fallen out of favor in recent years due to
difficulties in training and likelihood estimation.

More recent work has focused on autoencoders and their
capacity as generative models. Vincent et al. [21] established
the denoising autoencoder (DAE) model, which learns to
reconstruct empirical data X from noised inputs X̃ . Later
theoretical results [1, 3, 5] explored procedures for sampling
from learned denoising autoencoders. At a high level, the
sampling process follows a Markov chain, where we alter-

1

https://github.com/hans/adversarial


nate between sampling reconstructed values P (X | X̃) and
noiseC(X̃ | X). The Markov chain has a stationary distribu-
tion which matches the empirical density model established
by the training data.

This work has been further developed under the label of
generative stochastic networks [3, 18], where the process of
noising C(X̃ | X) is generalized to one of decoding into a
hidden state using observed data. A related recent idea is the
variational autoencoder [15], which uses neural networks
to map between observed and hidden state (latent variables)
during EM as a variational approximation of an expensive
posterior.

As an alternative to these autoencoder models, Goodfel-
low et al. [8] proposed a different approach known as the
generative adversarial net (GAN). The model in this paper
is a straightforward extension of the generative adversarial
net, and we describe this prior work in much detail below in
Section 3. There is a clear contrast between autoencoders as
generative models and the GAN approach in sampling new
data. Whereas autoencoders require a special Markov chain
sampling procedure, drawing new data from a learned GAN
requires only real-valued noise input.

Mirza and Osindero [17] implemented a conditional ex-
tension to generative adversarial nets and demonstrated some
preliminary experiments on MNIST, along with an applica-
tion to image tagging. This paper builds alongside their work
in a complementary way. We examine more formally how
conditional information might be incorporated into the GAN
model and look further into the process of GAN training and
sampling.

3. Approach
We construct an extension of the generative adversarial

net to a conditional setting. We begin by briefly summarizing
the GAN concept, first introduced in [8], and proceed to
formalize the conditional GAN model.

The GAN framework establishes two distinct players, a
generator and discriminator, and poses the two in an adver-
sarial game. The discriminator is tasked with distinguish-
ing between samples from the model and samples from the
training data; at the same time, the generator is tasked with
maximally confusing the discriminator. We can state the
objective here using a minimax value function [8]:

min
G

max
D

(
Ex∼pdata(x) [logD(x)]

+Ez∼pz(z) [log(1−D(G(z)))]
)
. (1)

We will define the relevant random variables and distribu-
tions in the Equation (1) shortly. For the moment we explain
the two terms of the equation in prose:

1. Train the discriminator to maximize the probability of
the training data.

2. Train the discriminator to minimize the probability of
the data sampled from the generator. At the same time,
train the generator on the opposite objective (i.e., max-
imize the probability that the discriminator assigns to
its own samples).

The two players, when modeled as MLPs, can be trained in
alternation by simple stochastic gradient descent.

The contribution of this paper is to add a conditioning
ability to this framework. We can establish some arbitrary
condition y for generation, which restricts both the generator
in its output and the discriminator in its expected input. We
might think of this condition y as engaging both the genera-
tor and discriminator in a particular mode of generation or
prediction.

We now formalize the GAN concept and the conditional
extension. We first define the following input and output
spaces, each with an associated probability distribution:

• Z is a noise space used to seed the generative model.
Z = RdZ , where dZ is a hyperparameter. Values z ∈ Z
are sampled from a noise distribution pz(z). In our
experiments pz is a simple Gaussian noise model.

• Y is an embedding space used to condition the genera-
tive model on some external information, drawn from
the training data. Y = RdY , where dY is a hyperpa-
rameter. Using condition information provided in the
training data, we can define a density model py(y).

• X is the data space which represents an image output
from the generator or input to the discriminator. Values
are normalized pixel values: X = [0, 1]W × [0, 1]H ×
C, where W,H represents the resolution of the input
images, and C is the set of distinct color channels in
the input images. Using the images in the training data
and their associated conditional data, we can define
a density model pdata(x,y) of face images. This is
exactly the density model we wish to replicate with the
overall model in this paper.

We now define two functions:

• G : (Z × Y ) → X is the generative model (or gener-
ator), which accepts noise data z ∈ Z along with an
embedding y ∈ Y and produces an image x ∈ X .

• D : (X × Y )→ [0, 1] is the discriminative model (or
discriminator), which accepts an image x and condition
y and predicts the probability under condition y that x
came from the empirical data distribution rather than
from the generative model.

The generator G implicitly defines a conditional density
model pg(x | y). 1 We can combine this density model

1As we will see later, it is nontrivial to derive likelihoods for this implicit
distribution. Sampling, however, is fast and direct through our parametric
function G.

2



with our existing conditional density py(y) to yield the joint
model pg(x,y). Our precise task is to parameterize G such
that it replicates the empirical density model pdata(x,y).

As in Equation (1), G and D play a minimax game. The
value function is now derived from expectations over three
previously described distributions pdata, py, and pz. We
combine loss on images sampled from the training data (first
term) with loss on images sampled from the generator under
conditions y ∼ py(y) (second term):

min
G

max
D

(
Ex,y∼pdata(x,y) [logD(x,y)]

+Ey∼py, z∼pz(z) [log(1−D(G(z,y),y))]
)
.

(2)

In contrast with Equation (1), both terms of the above
value function involve some conditional data y sampled from
either the training data or an independent distribution. Note
that the second term is an expectation over two independent
random variables: the noise z and the conditional data y. We
detail in Section 3.1.1 how y is sampled in the second case.

We rephrase Equation (2) in terms of cost functions for
clarity. Suppose we have a batch {(xi,yi)}ni=1 of training
images xi paired with conditional data yi, and let zi ∼
pz(z) be noise data sampled from the noise distribution
pz. The cost equation for the discriminator D is a simple
logistic cost expression. We wish the discriminator to assign
a positive label to true examples (xi,yi), and a negative
label to generated examples G(zi,yi):

JD = − 1

2n

(
n∑

i=1

logD(xi,yi)

+

n∑
i=1

log (1−D(G(zi,yi),yi))

)
. (3)

The cost function for G is similar, but only relates to
the second term of Equations (2) and (3). Here we want to
maximize the probability assigned by the discriminator to
samples which come from G:

JG = − 1

n

n∑
i=1

logD(G(zi,yi)). (4)

3.1. Training

An ideal training process for the above model would be
as follows:

1. The generator outputs random RGB noise by default.

2. The discriminator learns basic convolutional filters in
order to distinguish between face images and random
noise.

3. The generator learns the correct bias (skin tone) and
basic filters to confuse the discriminator.

4. The discriminator becomes more attuned to real fa-
cial features in order to distinguish between the simple
“trick” images from the generator and real face images.
Furthermore, the discriminator learns to use signals in
the conditional data y to look for particular triggers in
the image.

This process continues ad infinitum, until the discrimina-
tor is maximally confused. Since the discriminator outputs
the probability that an input image was sampled from the
training data, we would expect a “maximally confused” dis-
criminator to consistently output a probability of 0.5 for
inputs both from the training data and from the generator.

Note that the conditional data y plays a key role in this
learning process. We would expect the discriminator to first
acquire a use for the data y, in that some image attributes
specified in y will help to minimize loss further than a vanilla
(non-conditional) GAN might achieve. The generator would
then follow up by taking advantage of the y data soon after
the discriminator learns the proper weights for accepting y.

If both G and D are MLPs, we can train the framework
by alternating between performing gradient-based updates
on G and D. Goodfellow et al. [8] suggest training with
SGD on D for k iterations (where k is small, perhaps 1) and
then training with SGD on G for one iteration. We refer the
reader to [8] for full detail on the alternating SGD algorithm,
which is used without modification in this paper.

Figure 6 shows an ideal set of loss curves observed while
training on data for this experiment, where the discriminator
loss trends toward a theoretically maximal confusion.

3.1.1 Condition sampling

We need to sample images from the generator at training
time in order to evaluate the two players (see the second
term of Equation (2)). This sampling requires both noise
z and conditional data y as inputs. We can easily sample
random noise, but need to be more careful about generating
conditional data. A first solution might be to simply provide
the generator with conditional data vectors found in the
training data. If we drew these directly from the training
examples, however, the generator might be able to reach
some spurious optimum where it learns to reproduce each
training image based on the conditional data input.

To avoid this unfortunate optimum, we randomize con-
ditional data sampling during training. We build a kernel
density estimate py(y) (also known as a Parzen window esti-
mate) using the conditional values {yi}ni=1 drawn from the
training data. We use a Gaussian kernel, and cross-validate
the kernel width σ using a held-out validation set. Samples
from this nonparametric density model are used as the inputs
to the generator during training.

3



GENERATOR DISCRIMINATOR

Noise and conditional 
data are combined to 

create a dense code of 
the output image.

The dense code is 
“upsampled” via 

deconvolution into 
image space.

Images are 
transformed via 

convolution into a 
dense code.

Dense code and 
conditional data are 
combined to yield a 

prediction.

Figure 1: Broad graphical overview of the conditional generative adversarial network (cGAN) framework presented in this
paper. Section 3 provides an in-depth detail of the approach, and Section 3.2 in particular details the neural network framework
used in the following experiments.

3.2. Model architecture

Figure 1 gives a broad overview of the structure of the
cGAN model. We expand on the contents of each model
component below.

The generator G is a deconvolutional neural network
[7, 22], which runs filters over its inputs and expands rather
than contracts the inputs into a new representation of higher
spatial dimension. We show a visualization of a deconvo-
lution in Figure 2. In this figure our 3D input space (of
dimension 2 × 1 × 4) is deconvolved into an output space
of dimension 8× 3× 1. Each of the four available kernels
are of the size 5× 3. We deconvolve with a kernel stride of
3. Note that the spatial dimension expands from 2 × 1 to
8× 3; meanwhile, the depth dimension contracts from 4 to 1
(perhaps a grayscale image).

Each of the 4-dimensional slices (horizontal chains of
black and white blocks at left) describes a linear combination
of kernels (top left) which yield an output region (right). The
closer slice has a strong (white) activation for kernel #1 (blue
kernel), and the output space onto which this slice maps is
blue. The further slice has a strong activation for kernel #2
(red kernel), and the output space onto which this slice maps
is red. Note that because the kernel stride is smaller than the
kernel shape, the two output regions overlap.

This deconvolution architecture was successfully used
by Goodfellow et al. [8] to reconstruct CIFAR-10 images.
The deconvolution is exactly the inverse of the convolution
operation. The deconvolutional forward pass is calculated
just as is the backward pass of a convolutional layer, where
a column of a 3D input describes the coefficients for a linear
combination of the available filters. The linear combination
of the filters forms a single patch, and patches from each
such linear combination are overlaid spatially to form the

Filter size Number of filters Pool shape Output volume

— — — 32× 32
8× 8 64 (×2) 4× 4 16× 16
8× 8 64 (×2) 4× 4 7× 7
5× 5 192 (×2) 2× 2 5× 5

Table 1: Convolutional layer structure within the discrim-
inator D. These are maxout convolutions; the number of
pieces for each filter is given in parentheses in the above
table. Convolution is performed solely on the input image,
without using the conditional input y. Padding not shown.

resulting image.
We run just a single deconvolution in this model. Future

work might attempt a sequence of deconvolutions with some
form of upsampling (or “unpooling” as in [7]) in between
deconvolutional layers. In these experiments, the limited
depth of the generator evidently helps to prevent overfitting
the training data.

The discriminator D is a familiar convolutional neural
network, similar to any recent model used in discriminative
vision tasks such as image classification. Each convolutional
layer has maxout activations [9]. Table 1 gives a full spec-
ification of the convolutional section of the discriminator.
We treat the final output of the convolutions as a dense code
describing the input image.

A crucial design decision is exactly where to insert the
conditional information y. As described earlier, we wish to
have the input y engage both the discriminator and generator
in different modes of operation. We consider the “founda-
tional” information of each actor — the information it uses
to make important choices about generation, or to establish a

4



Activates 
kernel #1

Activates 
kernel #2

Fills 
region #1

Fills 
region #2

Region #1

Region #2

Kernel #1 Kernel #2 ...

Figure 2: Visualization of a simple deconvolution operation. See Section 3.2 for an explanation of this figure.

decision boundary in discrimination — to be the dense code
which appears at the start of the generator process and at the
end of the discriminator process. With this in mind, we pro-
vide the conditional information y as input in combination
with the dense code at the start of the generator feedforward
(before deconvolution) and at the end of the discriminator
feedforward (after convolution). See the cylinders labeled
with y in Figure 1 for a visualization.

One could easily imagine different architectures which in-
corporate the conditional information y. A simple and likely
beneficial extension would be to allow for more interaction
between the dense codes and the conditional information
by adding more hidden layers before deconvolution (in the
generator) or before decision (in the discriminator). Because
of computational limitations, we restrict this work to the
simplest case and leave deeper architectures for future work.

4. Experiment
We apply the model described above to a task of face

generation. In the following experiments we use a noise
space of dimensionality dZ = 100.

4.1. Data

The Labeled Faces in the Wild dataset [14] consists of
about 13,000 color images of about 5,700 unique subjects in
uncontrolled settings. Though originally created for the task
of face identification, the data has proven useful in a large
number of vision tasks.

Each image has confidence values for a large number of
facial expression attributes and related features, detailed in
[16], which we will exploit as conditional data y in these ex-
periments. For example, these attributes include: race (Asian,
Indian, black, white), age (baby, child, senior), and emotion
(frowning, smiling). There are 73 different attributes in total.

The Labeled Faces in the Wild images have a diverse
range of backgrounds, which can range from distracting to

(a) (b) (c) (d) (e) (f)

Figure 3: Random samples from the Labeled Faces in the
Wild dataset [14] ((a), (b), and (c)) and their equivalents (d),
(e), and (f) in the LFWcrop [20] dataset.

severely harmful for our purpose of learning how to generate
faces. We avoid this noisy background data by using an
automatically cropped version of the dataset from Sanderson
and Lovell [20], known as LFWcrop. Figure 3 shows sample
images drawn from the Labeled Faces in the Wild dataset
and their equivalent cropped forms.

Concretely, we draw from Labeled Faces in the Wild
training examples {(xi,yi)}ni=1. Here xi is a 32 × 32 × 3
RGB image, and y ∈ RdY is a real-valued vector describing
facial attributes as outlined above. We experiment with
different subsets of attributes, and our final settings for y are
detailed in Section 4.3.

We randomly split the dataset into training, validation,
and test splits. The validation set is used for hyperparameter
selection and monitoring during training, and the test set is
used for final evaluation.

4.2. Vanilla GAN

We first train a generative adversarial net as in [8], omit-
ting the conditional information y. The rest of the model
architecture remains exactly the same. Figure 4 visualizes
the evolution of the generator in this model. We sampled four
arbitrary noise values z before training. After each training
epoch we sampled images using these four noise values and
saved the output images. The figure shows notable check-
points in the learning of the process of the generator. Before

5



0 34 53 64 78 88 131

Figure 4: Output of the generator G as it trains on cropped
face images. We fix four noise samples z (one per row)
and repeatedly sample from the generator using these noise
values as training progresses. The numbers below each
column show the time (epoch) at which the sample was
made.

any training the generator outputs RGB noise. After a small
number of epochs it learns to reproduce skin color; soon after
it learns the positions of basic facial features and textures.

There are several items which are worth noting to better
understand how a typical image GAN learns:

There is a clear “mosaic” pattern in the early images.
The generator deconvolution has a stride of three pixels,
while each deconvolutional kernel is a 5× 5 map. The
generator clearly struggles in coordinating these kernels
in regions in which they overlap. We can see this
struggle in the grid-lines of discoloration in the early
samples of Figure 4. Future work on deconvolution
might explore new forms of regularization or parameter
sharing in order to better coordinate the work done by
the independent deconvolutional kernels.

This GAN consistently underfits its training data.
The sampled output from the learned GAN in this exper-
iment (and others) mostly depict white males, and fails
to represent many other axes of variation in the training
data. This is most likely the result of the model taking
advantage of a skew in the training examples. We could
probably resolve most of our underfitting problems in
this case by increasing the generator capacity (i.e., num-
ber of deconvolutional kernels). Our experiments are
limited here due to computational restrictions.

Recent theoretical work [10] suggests, however, that
GAN models may systematically underfit their train-
ing data. The performance ceiling established by the
analysis in [10] is unclear.

Figure 5: Samples from a learned cGAN generator. See
Section 4.3 for details.

0 200 400 600 800 1,000

2

4

6

G

Epoch

G
en

er
at

or
co

st

0 200 400 600 800 1,000

0

0.2

0.4

0.6
D

D
is

cr
im

in
at

or
co

st

Figure 6: cGAN cost curves on a face image validation set.
D (solid red) trends toward maximal confusion (dashed red
asymptote) while G cost (blue) continually improves.

4.3. Conditional GAN

We next train the extended cGAN model on the face
image dataset, now using both the image data x and the
face attribute data y. In all of the following experiments we
use a particular subset of the original face attributes. We
eliminate attributes which do not have clear visual effects in
the cropped images in our dataset. These attributes would
likely be treated as noise by the model (or would be used to
overfit the training data) if we retained them. Of an available
73 attributes, we retain dY = 36 attributes.

Figure 5 shows samples from a cGAN learned on this
data. In each row we begin with a conditional data value y
sampled from the empirical distribution py. In each column
we apply random shifts to that value y, and sample an output
image. The shifts cause noticeable differences in facial
features, though it is evident that the slightly shifted values
of y still lead to similar-looking faces. The outlined face
images at the far right show the nearest neighbor in the
training data to the sampled image in the second-to-last
column; this demonstrates that the generator has not learned
to simply overfit the training data.

Figure 6 shows the typical learning process for a cGAN

6



on the Labeled Faces in the Wild dataset. The cost curves
in the figure are calculated on a held-out validation set. The
system stalls for an initial ∼ 25 epochs,2 until eventually
the adversarial game begins. The discriminator cost (red
line) trends toward a theoretical limit of ln

(
1
2

)
, while the

generator cost (blue line) continually improves. Perhaps
unsurprisingly, we find a correlation between strong positive
increases in G performance and decreases in D performance
(and vice versa).

4.3.1 Exploring condition space

We are interested in how the conditional data y might be used
to deterministically specify or modify the faces generated by
the model. Since in these experiments our conditional data
consists of facial attributes, we should be able to tweak axes
corresponding to particular attributes and see reasonable
changes in the output faces.

Figure 7 shows the result of incremental shifts along par-
ticular axes in the condition space Y . We begin by sampling
conditional data vectors y ∼ py. The axes of this condi-
tional data y are specified in the training data as confidences
for particular facial attributes.3 We concentrate on two axes
in Figure 7: axis 5 (SENIOR) and axis 22 (MOUTHOPEN).

The first row of Figure 7 shows samples from the model
with no modifications to the original condition data y. In the
second row, we add a constant shift to axis 5 (SENIOR) of
each condition data vector y and sample new images. In the
third row, we add a constant shift to axis 22 (MOUTHOPEN)
of each vector y and sample once more. The noise data z is
randomly sampled for each column, but is held fixed across
rows. This means that all differences in output visible in
Figure 7 are due to the shifts in y.

These axes clearly have some deterministic effect on the
output image. Many of the samples in Figure 7 become
visibly older in the second row, and open their mouths or
smile in the third row. Unfortunately, we did not achieve
this clear control over image output in many of the other 36
axes of the condition data y. We suspect that the model was
unable to take advantage of many of these failed axes, either
because they did not have as clear physical manifestations
or because they were strongly correlated with the values of
other axes.

4.4. Quantitative evaluation

As mentioned earlier in Section 3, while it is quick and
simple to sample from a learned GAN / cGAN model, deter-
mining the likelihood of a dataset under the learned generator
is nontrivial. We follow [8] and establish a Parzen window

2We were not able to avoid this stalling, even after extensive hyperpa-
rameter tuning. The source of this stall and methods for escaping it are
interesting questions worth future research.

3To be clear, these are listed as explicit attributes in the training data.
We did not find these axes by chance while experimenting with the model.

Model Test set neg. log-likelihood

Vanilla GAN [8] 3024± 22
Conditional GAN 2934± 22

Table 2: Log-likelihood (higher is better) of a held-out face
image test set under the generative models trained in this pa-
per. These likelihood numbers are computed using a Parzen
window method described in Section 4.4. Standard error
numbers are also provided.

density estimate using images sampled from the generative
model of a learned cGAN. The kernel function of the Parzen
estimate is Gaussian, with a width σ which we select using a
validation set. We then calculate the negative log-likelihood
of a held-out test set under the learned nonparametric density
function. Table 2 shows the resulting likelihood values for a
standard GAN and the conditional GAN developed in this
paper.

Table 2 shows that the likelihood of the test set under the
two generative models is roughly the same. Unfortunately,
the cGAN does not appear to take advantage of conditional
data in order to produce more likely training samples (at
least as estimated by the Parzen window method).

5. Conclusion

In this paper we developed an extension of the generative
adversarial net framework. We added the ability to condition
on arbitrary external information to both the generator and
discriminator components. We evaluated the model on the
Labeled Faces in the Wild dataset, and demonstrated that
the conditional information y could be used as a determin-
istic control to deterministically control the output of the
generator.

The development of a deterministic control slot in the
GAN model opens up exciting possibilities for new models
and applications. For example, a cGAN could easily accept a
multimodal embedding as conditional input y. This y could
be produced by a neural language model, allowing us to
generate images from spoken or written descriptions of their
content.

Acknowledgements

We owe much credit to Goodfellow et al. [8] for intro-
ducing the GAN model and releasing its source code on
GitHub. Many thanks are due as well to the developers of
Pylearn2 [11] and Theano [2, 6], whose contributions are
certain to greatly accelerate the progress of the machine
learning research community.

7



Figure 7: Results of constant additive shifts along particular axes of the conditional data y. (Full details of this shift are given
in Section 4.3.1.) Row 1: randomly sampled images from the generator. Row 2: constant additive shift along the SENIOR axis;
faces visibly age in the resulting samples. Row 3: constant additive shift along the MOUTHOPEN axis; faces open mouths /
smile.

References

[1] G. Alain and Y. Bengio. What Regularized Auto-
Encoders Learn from the Data Generating Distribution.
arXiv:1211.4246 [cs, stat], Nov. 2012. arXiv: 1211.4246.

[2] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Good-
fellow, A. Bergeron, N. Bouchard, and Y. Bengio. Theano:
new features and speed improvements. 2012. Published:
Deep Learning and Unsupervised Feature Learning NIPS
2012 Workshop.

[3] Y. Bengio, E. Laufer, G. Alain, and J. Yosinski. Deep Gen-
erative Stochastic Networks Trainable by Backprop. In Pro-
ceedings of the 31st International Conference on Machine
Learning (ICML-14), pages 226–234, 2014.

[4] Y. Bengio, G. Mesnil, Y. Dauphin, and S. Rifai. Better Mixing
via Deep Representations. arXiv:1207.4404 [cs], July 2012.
arXiv: 1207.4404.

[5] Y. Bengio, L. Yao, G. Alain, and P. Vincent. Generalized
Denoising Auto-Encoders as Generative Models. In Advances
in Neural Information Processing Systems, pages 899–907,
2013.

[6] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu,
G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio.
Theano: a CPU and GPU Math Expression Compiler. In Pro-
ceedings of the Python for Scientific Computing Conference
(SciPy), Austin, TX, June 2010. Oral Presentation.

[7] A. Dosovitskiy, J. T. Springenberg, and T. Brox. Learn-
ing to Generate Chairs with Convolutional Neural Networks.
arXiv:1411.5928 [cs], Nov. 2014. arXiv: 1411.5928.

[8] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio. Generative
Adversarial Nets. In Advances in Neural Information Process-
ing Systems 27, pages 2672–2680. Curran Associates, Inc.,
2014.

[9] I. Goodfellow, D. Warde-farley, M. Mirza, A. Courville, and
Y. Bengio. Maxout Networks. In Proceedings of the 30th
International Conference on Machine Learning (ICML-13),
pages 1319–1327, 2013.

[10] I. J. Goodfellow. On distinguishability criteria for estimating
generative models. arXiv:1412.6515 [stat], Dec. 2014. arXiv:
1412.6515.

[11] I. J. Goodfellow, D. Warde-Farley, P. Lamblin, V. Dumoulin,
M. Mirza, R. Pascanu, J. Bergstra, F. Bastien, and Y. Bengio.
Pylearn2: a machine learning research library. arXiv preprint
arXiv:1308.4214, 2013.

[12] G. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algo-
rithm for deep belief nets. Neural computation, 18(7):1527–
1554, 2006.

[13] G. E. Hinton and R. R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science,
313(5786):504–507, 2006.

[14] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller.
Labeled faces in the wild: A database for studying face recog-
nition in unconstrained environments. Technical report, Tech-
nical Report 07-49, University of Massachusetts, Amherst,
2007.

[15] D. P. Kingma and M. Welling. Auto-Encoding Variational
Bayes. arXiv:1312.6114 [cs, stat], Dec. 2013. arXiv:
1312.6114.

[16] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar.
Attribute and Simile Classifiers for Face Verification. In IEEE
International Conference on Computer Vision (ICCV), Oct.
2009.

[17] M. Mirza and S. Osindero. Conditional Generative Adver-
sarial Nets. arXiv:1411.1784 [cs, stat], Nov. 2014. arXiv:
1411.1784.

[18] S. Ozair, L. Yao, and Y. Bengio. Multimodal Transitions
for Generative Stochastic Networks. Dec. 2013. arXiv:
1312.5578.

[19] R. Salakhutdinov and G. E. Hinton. Deep Boltzmann ma-
chines. In International Conference on Artificial Intelligence
and Statistics, pages 448–455, 2009.

[20] C. Sanderson and B. C. Lovell. Multi-Region Probabilistic
Histograms for Robust and Scalable Identity Inference. In Pro-
ceedings of the Third International Conference on Advances
in Biometrics, ICB ’09, pages 199–208, Berlin, Heidelberg,
2009. Springer-Verlag.

8



[21] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol.
Extracting and Composing Robust Features with Denoising
Autoencoders. In Proceedings of the 25th International Con-
ference on Machine Learning, ICML ’08, pages 1096–1103,
New York, NY, USA, 2008. ACM.

[22] M. D. Zeiler and R. Fergus. Visualizing and Understanding
Convolutional Networks. arXiv:1311.2901 [cs], Nov. 2013.
arXiv: 1311.2901.

9


