
Synchronization in Java SE 6
(HotSpot)
Dave Dice
dice@sun.com
HotSpot JVM Core Engineering

Copyright 2006 Sun Microsystems, Inc. All Rights Reserved.
Java SE 6

Synchronization Performance
• Contended costs (scalability + latency)

> Context switching is extremely expensive
> Unbounded spinning is unacceptable
> Address via adaptive spinning

• Uncontended costs (latency)
> Atomic CAS has high local latency
> 100s-1000s of cycles
> Address via

> Biased Locking
> Lock Coarsening
> Lock Elision through Escape Analysis

Copyright 2006 Sun Microsystems, Inc. All Rights Reserved.
Java SE 6

HotSpot Locking Fundamentals
• Object header - metadata

> Mark word
> Class pointer
> ... followed by constituent fields

• Mark word multiplexed
> Identity hashCode
> GC Age bits
> Synchronization information
> Displaced mark word

Copyright 2006 Sun Microsystems, Inc. All Rights Reserved.
Java SE 6

Object States – Encoded in Mark Word
• Neutral: Unlocked
• Biased: Locked|Unlocked + Unshared

> Tantamount to deferring unlock until contention
> Avoids CAS atomic latency in common case
> 2nd thread must revoke bias from 1st

• Stack-Locked: Locked + Shared but uncontended
> Mark points to displaced header on owner’s stack

• Inflated: Locked|Unlocked + Shared and contended
> threads are blocked: enter or wait
> Mark points to heavy-weight objectmonitor structure

Copyright 2006 Sun Microsystems, Inc. All Rights Reserved.
Java SE 6

Key Observations
• Most objects are never locked
• If an object is locked it is usually locked by at most

one thread during its lifetime
> Very few objects are locked by more than one thread

• Even fewer objects encounter contention
• Object type and allocation site correlate strongly

with future synchronization behavior

Copyright 2006 Sun Microsystems, Inc. All Rights Reserved.
Java SE 6

Biased Locking
• Leverages the observation that most objects are

locked by at most one thread in their lifetime
• Bias object O toward Thread T1
• T1 can then preferentially lock and unlock O without

expensive atomic instructions (CAS)
• If T2 attempts to lock O we revoke bias from T1

> Either rebias to T2 or revert to normal locking and make
O ineligible for further biased locking

Copyright 2006 Sun Microsystems, Inc. All Rights Reserved.
Java SE 6

Adaptive Spinning
• Spin-then-block strategy

> Try to avoid context switch by spinning on MP systems
• Spin duration

> Maintained per-monitor
> varies based on recent history of spin success/failure

ratio
• Adapts to system load, parallelism, application

modality
• MP-polite spinning
• Avoid spinning in futile conditions (owner is blocked)

Copyright 2006 Sun Microsystems, Inc. All Rights Reserved.
Java SE 6

HotSpot Locking Fundamentals (2)
• Fast-path cases inlined by JIT at synchronization

site
• Revert to slow-path (native C code) when we need

to park or unpark thread
• Platform-specific park-unpark to block and wake

threads
• Slow-path monitor code is platform-independent
• Much faster than native mutex constructs for

contended & uncontended cases (T2, windows)

Copyright 2006 Sun Microsystems, Inc. All Rights Reserved.
Java SE 6

Detecting Contention
• IDEs, Profilers or 3rd party tools
• Mpstat on Solaris – vctx rate
• If suspected, sample process with pstack

> Look near top of stack for threads blocked in
monitorenter operations

• JVMStat (jstat) counters
> jstat -J-Djstat.showUnsupported=true -snap <pid> | grep _sync_

Copyright 2006 Sun Microsystems, Inc. All Rights Reserved.
Java SE 6

Detecting Contention (2)
• Dtrace:

> kernel “sched” provider
> hotspot-specific probes (Recommended!)

• Identify hot locks and break up into finer-grained
locking

• Beware: adding more threads can sometimes
reduce performance – application specific
> Particularly on Niagara
> Amdahl’s speedup law – parallel corallary
> Communication overhead can overwhelm parallelism

benefit

Copyright 2006 Sun Microsystems, Inc. All Rights Reserved.
Java SE 6

New in 1.6
• No atomic/fence in common-case inline inflated exit

path
• Code restructuring:

> Platform independent monitor code calls ...
> Platform-specific park-unpark

• Reduce futile wakeups
> Don’t wake a thread in exit if thread woken in prior exit

hasn’t yet run
• Lock-free EntryList
• Adaptive spinning

Copyright 2006 Sun Microsystems, Inc. All Rights Reserved.
Java SE 6

New in 1.6 (2)
• Notify() moves thread from WaitSet to EntryList

> Previous versions actually woke notifyee
> Notifyee would simply jam on lock held by notifier

• Fairness vs throughput
> Optimized for system-wide throughput at the expensive

of short-term thread-specific fairness
> Succession policy: try to wake recently run threads
> Improved $ and TLB utilization

• Better JSR166 (java.util.concurrent) support

Copyright 2006 Sun Microsystems, Inc. All Rights Reserved.
Java SE 6

New in 1.6 (3)
• Small changes to comply with JSR133

> Java Memory Model (JMM)
> JLS 3e, Chapter 17
> -XX:-UseBiasedLocking

• Biased Locking on by default
• Lock Coarsening on by default

> -XX:-EliminateLocks
• Lock Elision via Escape Analysis

> -XX:+DoEscapeAnalysis

Copyright 2006 Sun Microsystems, Inc. All Rights Reserved.
Java SE 6

1.6 Source Roadmap
• Slow-path native

> Platform-independent : Synchronizer.cpp
> Platform-specific park-unpark : os_<plaf>.cpp + .hpp

• Fast-path inlined
> Degenerate form of slow-path code
> C2 FastLock node

> assembler_sparc.cpp compiler_lock_object()
> <cpu>.ad for other architectures

> C1 c1_CodeStubs_<cpu>.cpp
> Template interpreter

Copyright 2006 Sun Microsystems, Inc. All Rights Reserved.
Java SE 6

Additional Information
• http://blogs.sun.com/dave

http://blogs.sun.com/dave

