
1

Synchronization
(with a focus on J2SE)

Dave Dice - 2005.10.18

2

Overview

• Preliminaries: Parallelism & synchronization
• Java synchronization implementations
• Uncontended synchronization
• Contended synchronization
• Futures – where are we headed

3

Parallelism – Varieties (1)
• Distributed parallelism

– Communicate over a network (clusters, etc)
– High communication latency
– Code typically failure-aware
– Message-based : send-recv – OS IPC primitives

• SMP parallelism with explicit threads
– Communicate through shared memory –

LD,ST,Atomics
– Low(er) communication latency
– Code not designed failure tolerant

• Common theme but different philosophies
Thread Level Parallelism (TLP)

4

Parallelism – Varieties (2)

• SIMD – SSE
• Instruction Level Parallelism (ILP) – Multi-Issue

– Execution time: Out-of-Order
• Recognize and extract ||ism from independent ops in

serial instruction stream
• Intel P4 and P6

– Execution time: HW scout threads
– Compile-time auto-parallelize:

Transform ILP TLP (hard)
– VLIW: IA64 compiler expresses ||ism to CPU

5

Parallelism – Dogma

• Explicit Parallelism is NOT a feature – it’s a remedy
with undesirable side effects

• Pick one: 1x4Ghz system or 4x1Ghz system?
– Ideal -- Assume IPC = 1.0
– 1X is the clear winner
– Not all problems decompose (can be made ||)
– Threads awkward and error-prone

• Pull your sled
– 4 dogs – 2x2 Opteron
– 32 Cats - (p.s., we’re the cat trainers)

6

Processor Design Trends (1)
• These trends affect threading and synchronization
• Classic Strategy: Improve single-CPU performance by

increasing core clock frequency
• Diminishing returns – memory wall

– Physical constraints on frequency (+ thermal, too)
– RAM is 100s cycles away from CPU
– Cache miss results in many wasted CPU cycles
– RAM bandwidth & capacity keep pace with clock

but latency is slower to improve (disks,too)
• Compensate for processor:RAM gap with Latency

Hiding …

7

Processors: Latency Hiding (2)
• Bigger caches – restricted benefit

– Itanium2 L3$ consumes >50% die area
– Deeper hierarchy – L4

• Speculative Execution – prefetch memory needed in future
– Constrained – can’t accurately speculate very far ahead

• ILP: try to do more in one cycle: IPC > 1
– Deep pipelines
– Superscalar and Out-of-Order Execution (OoO)
– Allow parallel execution while pending miss
– Limited ILP in most instructions streams - dependencies

• Double die area dedicated to extracting ILP < 1.2x better
• RESULT: Can’t keep CPU fed – most cycles @ 4GHz are idle,

waiting memory
• 1T speed effectively capped for near future

8

Processor Design Trends (3)
• Trend: wide parallelism instead of GHz
• Laptops & embedded (2 4) servers (32 256)
• Aggregate system throughput vs single-threaded speed

(Sun Speak = Throughput computing)
• Impact on Software

– wanted speed; got parallelism
– Can we use 256 cores?
– Previously: regular CPU speed improvements covered up

software bloat
– Future: The free lunch is over (Herb Sutter)
– Amdahl’s law – hard to realize benefit from ||ism

• Even small critical sections dominate as the # of CPUs increases
– Effort required to exploit parallelism
– Near term: explicit threads & synchronization

9

Classic SMP Parallelism
• Model: set of threads that cooperate
• Coordinate threads/CPUs by synchronization

Communicate through coherent shared memory
• Definition: synchronization is a mechanism prevent,

avoid or recover from inopportune interleavings
• Control when
• Locking (mutual exclusion) is a special case of

synchronization
• Social tax – cycles spent in synchronization don’t

contribute to productive work. Precautionary
• True parallelism vs preemption

– Absurdity: OS on UP virtualizes MP system, forces
synchronization tax

10

SMP Parallelism (2)

• Coordination costs:
Synchronization +
cache-coherent
communication

• Coherency bus speed
slower than CPU speed

• Most apps don’t scale
perfectly with CPUs

• Beware the classic
pathology for over-
parallel apps …

0

2

4

6

8

10

0 5 10

Processors

Th
ru

pu
t

X

C>PP>C

Ideal

Amdahl

Actual

11

SMP Parallelism (3)
• Amdahl’s speedup law – parallel corollary:

– Access to shared state must be serialized
– Serial portion of operation limits ultimate parallel

speedup
– Theoretical limit = 1/s

• Amdahl’s law say curve should have flattened –
asymptotic

• Why did performance Drop?
• In practice communication costs overwhelmed

parallelism benefit
• Amdahl’s law doesn’t cover communication costs!
• Too many cooks spoil the broth

12

Fundamental Economics

• The following drive our performance-related design
decisions:
– Instruction latency – LD/ST/CAS/Barrier
– CPU-Local Reordering & store-buffer

• Program order vs visibility (memory) order
– Coherence and communication costs

• Caches and cache coherency
• SMP sharing costs
• Interconnect: Latency and bandwidth

– Bandwidth overall scalability : throughput

– Operating system context switching

13

Fundamental Economics (2)

• CAS local latency – 100-500+ cycles on OoO
• MEMBAR is expensive, but typically << CAS

– IBM Power5 – existence proof that fences
can be fast. 3x cycle improvement over
Power4

• CAS and MEMBAR are typically CPU-Local
operations

• CAS trend might be reversing – Intel Core2
– Improved CAS and MFENCE
– MFENCE must faster than CAS

14

Fundamental Economics (3)

• Context switching and blocking are expensive
– 10k-80k cycles
– Voluntary (park) vs involuntary (preemption)
– Cache-Reload Transient (CRT) after the thread is

dispatched (ONPROC)
– Repopulate $ and TLBs
– Lots of memory bandwidth consumed (reads)
– Can impede other threads on SMP - scalability
– Impact depends on system topology:

Memory:Bus:$:CPU relationship

15

Fundamental Economics (3)

• Context switching continued …
– Long quantum is usually better:

• Reduces involuntary context switching rate
• Dispadmin tables
• On Solaris lower priority longer quantum

– Thread migration
• Migration is generally bad
• OS tries to schedule for affinity
• Solaris rechoose interval

16

(ASIDE) Solaris Scheduler (1)
• Kernel schedules LWPs (LWP = Kernel thread)
• Process agnostic
• Scheduling classes: IA,TS, RT, FX, Fair-share

– Priocntl and priocntl()
• Per CPU (die) ready queues (runq, dispatch queue)
• Avoid imbalance:

– Pull : Stealing when idle
– Push: Dealing when saturated

• Decentralized – no global lists, no global decision making
– Except for RT

• Goals of scheduling policy
– Saturate CPUs – maximize utilization
– Affinity preserving – minimize migration
– Disperse over cores
– Power

17

(ASIDE) Solaris Scheduler (2)

• Local scheduling decisions collectively result
in achieving the desired global scheduling
policy

• Thus no gang scheduling
• Historical: libthread “T1” performed

preemptive user-land scheduling
– Multiplexed M user threads on N LWPs

18

Coherency and Consistency
• Cache coherence

– Replicate locally for speed – reduce communication costs
– … but avoid stale values on MP systems
– Coherence is a property of a single location

• Memory Consistency (Memory Model)
– Property of 2 or more locations
– Program order vs Visibility (memory) order
– A memory consistency model defines observable orderings of

memory operations between CPUs
– E.G., SPARC TSO, Sequential Consistency (SC)
– A processor is always Self-Consistent
– Weaker or relaxed model admits more reorderings but

allows faster implementation (?)
– Control with barriers or fence instructions

19

(Re)ordering

• Both HW and SW can reorder …
• Source-code order as described by programmer
• Instruction order – compiler reorderings (SW)

– AKA program order
• Execution order – OoO execution (HW)
• Storage order – store buffers, bus etc (HW)

– AKA: visibility order, memory order
– Hardware reordering is typically a processor-local

phenomena

20

Reorderings
• Reordering Program order and visibility (memory)

order differ
• How do reordering arise?

– Compiler/JIT reorders code – volatile
– Platform reorders operations – fences

• CPU-local
– OoO execution or speculation
– Store buffer (!!!)

• Inter-CPU: bus
• Trade speed (maybe) for software complexity

– Dekker Algorithms
– Double-checked locking

21

Spectrum of HW Memory Models
• Sequentially Consistent (SC)

– “Strongest”, no HW reorderings allowed
– IBM z-series, 370, etc
– All UP are SC. No need for barriers!

• SPARC TSO: ST A; LD B
– Store can languish in store buffer – invisible to other CPUs –

while LD executes. LD appears on bus before ST
– ST appears to bypass LD
– Prevent with MEMBAR #storeload

• IA32+AMD64: PO and SPO
– Fairly close to SPARC TSO
– Prevent with fence or any serializing instruction

• Weak memory models
– SPARC RMO, PPC, IA64

22

Memory Model

• Defines how memory read and writes may be
performed by a process relative to their
program order
– IE, Defines how memory order may differ

from program order
• Define how writes by one processor may

become visible to reads by other processors

23

Coherence costs: Communication
• Communicating between CPUs via shared memory
• Cache coherency protocols

– MESI/MOESI snoop protocol
• Only one CPU can have line in M-State (dirty)
• Think RW locks – only one writer allowed at any one itme
• All CPUs snoop the shared bus - broadcast
• Scalability limit ~~ 16-24 CPUs
• Most common protocol

– Directory
• Allows Point-to-point
• Each $ line has a “home node”
• Each $ line has pointer to node with live copy

– Hybrid snoop + directory

24

Coherence costs: Niagara-1

• L2$ is coherency fabric – on-chip
• Coherence Miss latency ≈ L2$ miss
• Coherency latency is short and bandwidth

plentiful
• Sharing & communication are low-cost
• 32x threads RMW to single word – 4-5x

slowdown compared to 1x
– Not bad considering 4 strands/core!

25

Coherence costs: 96X StarCat
• Classic SMP
• Coherency interconnect – fixed bandwidth (bus contention)
• Snoop on 4x board – directory inter-board
• Sharing is expensive
• Inter-CPU ST-to-LD latency is +100s of cycles

(visibility latency)
• 96x threads RMW or W to single word – >1000x slowdown
• 88MHz interconnect and memory bus
• Concurrent access to $Line:

– Mixed RW or W is slow
– Only RO is fast

• False sharing: accidentally collocated on same $line

26

SMP Coordination Primitives
• ST+MEMBAR+LD

– Mutual exclusion with Dekker or Peterson
– Dekker duality:

• Thread1: STA; MEMBAR; LDB
• Thread2: STB; MEMBAR; LDA

– Needs MEMBAR(FENCE) for relaxed memory model
• Serializing instruction on IA32
• SPARC TSO allows ST;LD visibility to reorder
• Drain CPU store buffer
• Atomics are typically barrier-equivalent

– Word-tearing may be barrier-equivalent STB;LDW (bad)
• Atomics

– Usually implemented via cache coherency protocol

27

Atomic Zoo - RMW
• Fetch-And-Add, Test-and-set, xchg, CAS
• IA32 LOCK prefix – LOCK: add [m],r
• LL-SC (ppc,Power,mips) – one word txn
• Can emulate CAS with LL-SC but not (easily) vice-versa
• Bounded HW Transactional Memory

– TMn (TM1 == LL-SC)
• Unbounded HTM – research topic (google TCC)
• Hybrid HW/SW TM – HW failover to SW
• CASn - many distinct locations -- CASn ≈ TMn
• CASX – wide form – adjacent (cmpxchg8b, 16b)
• CASv – verifies add’l operand(s)
• A-B-A problem:

– LL-SC, TM immune
– Simple CAS vulnerable

28

Concept: Lock-Freedom
• Locks – pessimistic

– Prevent races
– If owner stalls other threads impeded
– Analogy: token-ring

• Lock-free - optimistic
– LD … CAS – single-word transaction – j.u.random
– Detect and recover (retry) from potential interference
– Analogy: CSMA-CD + progress
– Analogy: HotSpot source code putback process
– Improved progress
– Increased use in 1.6 native C++ code
– Progress guarantees for aggregate system, but not individual

threads

29

Concept: Lock-Freedom (2)
• Excellent throughput under contention
• Immune to deadlock
• No convoys, priority inversion …
• Somebody always makes progress

(CAS fails somebody else made progress)
• Composable abstraction -- more so than locks
• Shorter txn more likely to complete -- minimize LD…CAS

distance
• Always better than locking? No – consider contrived case where

failed LF attempt is more expensive than a context-switch
• But harder to get right – Locks conceptually easier
• RT needs wait-free -- LF lets a given thread fail repeatedly

30

Locking Tension
• lock coverage – performance vs correctess

– Too little - undersynchronized admit races, bugs
– Too much - oversynchronized Serialize execution and

reduced ||ism
• Data Parallelism vs Lock Parallelism
• Example: Hashtable locks – Lock break-up

– Lock Table: coarse-grain
– Lock Bucket: compromise
– Lock Entry: fine-grain but lots of lock-unlock ops

• Complexity
– Tricky locking & sync schemes admit more parallelism
– but difficult to get correct
– Requires domain expertise
– More atomics increase latency

31

Coarse|Fine-Grain parallelism
• Coarse-Grain vs fine-grain parallelism
• Balance communication costs vs parallel utilization
• Potential parallelism dictated by the problem (matmul)
• Not all problems decompose conveniently
• Sometimes the designer gets to decide:

– consider GC work-strealing and the “size” of work units
• Fine-grain

– Higher communication costs to coordinate threads
– Maximize CPU utilization - ||ism
– Reduced sensitivity to scheduling

• Coarse-grain
– Reduced communication costs
– Extreme case: specjbb – embarrassingly ||, little inter-

thread communication. Contrived.

32

Java Synchronization

• Thread Models
• Requirements
• Various implementations
• Terminology
• Performance

– Uncontended
– Contended

33

Thread Model in 1.6
• Kernel controls [Ready Run] transitions
• JVM moderates [Run Blocked] and [Blocked Ready] transitions

(Except for blocking page faults or implicit blocking)
• JVM manages explicit per-monitor EntryList and WaitSet lists
• 1:1:1 model (Java:Libthread:LWP)
• Alternate thread models

– Green threads – M:1:1
• Often better but lack true ||ism
• No CAS needed for pure Green M:1:1 model
• Control over scheduling decisions + cheap context switch
• Must provide preemption

– IBM Jikes/RVM experience – M:N:N
– Raw hypervisors – M:P:P
– JNI problems – mixing internal model with real world
– Don’t recreate libthread T1 !

34

HotSpot Thread Scheduling

• Thread abstraction layering …
• JVM maps java threads to user-level threads

(1:1)
• Libthread maps user-level threads to kernel-

LWPs (1:1)
• Kernel maps LWPs to logical CPUs (strands)
• Silicon maps logical CPUs onto cores (CMT)

35

Java Synchronization
• Threads - explicitly describe parallelism
• Monitors

– Explicitly proscribe parallelism
– Conceptually: condvar + mutex + aux fields
– Typically implemented via mutual exclusion
– Source code: Synchronized (lock-unlock), wait(), notify()
– Bytecode: ACC_SYNCHRONIZED, monitorenter, monitorexit

• Better than C/pthreads, but still nightmarish user bugs
• java.util.concurrent operators appeared 1.5.0 (j.u.c)

– JSR166 based on Doug Lea’s package
– Many impls lock-free

36

Typical Java Sync Usage
• Generalities -- Identify common cases we need to optimize
• Critical sections are usually short
• Locking is frequent in time but very localized in space
• Locking operations happen frequently – 1:30 lock ops per heap

references in specjbb2k
• Few objects are ever locked during their lifetime
• Fewer yet are shared

– Shared ever locked by more than 1 thread
– Most locks are monogamous
– Inter-thread sharing and locking is infrequent

• Even fewer yet ever see contention
– But more ||ism more contention and sharing
– When contention occurs it persists – modality
– Usually restricted to just a few hot objects

37

Typical Java Sync Usage (2)

• Locking is almost always provably balanced
• Nested locking of same object is rare in app

code but happens in libraries
• It’s rare for any thread to every hold >= 2

distinct locks
• hashCode assignment & access more frequent

than synchronization
• Hashed ∩ synchronized-on is tiny
• Behavior highly correlated with obj type and

allocation site

38

Typical Java Sync Usage (3)

• Synchronized java code
– Oversynchronized ?
– Library code is extremely conservative

• “Easy” fix for pure reader accessors
• Use scheme akin to Linux SeqLocks

• CAS is mostly precautionary -- wasted cycles
to avoid a race that probably won’t happen

• Latency impacts app performance
• ~20% of specjbb2k cycles – unproductive

work

39

Aside – why use threads ?
• True parallelism – requires MP system

– Threads are mechanism we use to exploit
parallelism

– T >> C doesn’t make sense, except …
• 1:1 IO binding - thread-per-socket idiom

– Artifact of flawed library IO abstraction
– Volano is classic example – IO funnel
– Rewrite with NIO would reduce from 100s of

threads to C …
– Which would then reduce sync costs
– Partition 1 thread per room would result in 0 sync

costs

40

Requirements - Correctness

• Safety: mutual exclusion – property always
holds. At most one thread in critical section
at any given time.

• Progress: liveness – property eventually holds
(avoid stranding)

• JLS/JVM required exceptions – ownership
checks

• JSR133 Memory Model requirements

41

JSR133 – Java Memory Model

• JSR133 integrated into JLS 3E, CH 17 – clarification
• Volatile, synchronized, final
• Key clarification: Write-unlock-to-lock-read visibility

for same lock
• Describes relaxed form of lazy release consistency
• Admits important optimizations: 1-0 locking, Biased

Locking, TM
• Beware of HotSpot’s volatile membar elision

– Volatile accesses that abut enter or exit
• See Doug Lea’s “cookbook”

42

Balanced Monitor Operations
• Balance: unlock always specifies most-recently locked

object
• Synchronized methods always balanced - by defn
• JVM spec doesn’t require monitorenter/monitorexit

balance
• Verifier doesn’t check balance -

{aload; monitoreter; return } verifiable
• Javac:

– Always emits balanced enter-exit bytecodes
– Covers enter-exit pairs with try-finally blocks –

cleanup – prevent escape without exit
• jni_monitorenter-exit – mixed-mode operations

proscribed, but not checked

43

Balance (2)
• C1/C2 prove balance for a method

– Balanced -> enable stack-locks
– !Balanced -> forever banished to interpreter

• HotSpot Interpreter
– Extensible per-frame list of held locks
– Lock: add to current frame’s list
– Unlock list at return-time
– Throw at monitorexit if object not in frame’s list

• IBM, EVM, HotSpot very different
– latitude in spec
– relaxed in 2.0

44

Performance Requirements (1)
• Make synchronization fast at run-time

– Uncontended Latency
Dominated by Atomics and MEMBARs

– Contended Scalability and throughput
• spin to avoid context switching
• Improve or preserve affinity

• Space-efficient
– header words & heap consumption
– # extant objectmonitors

• Get the space-time tradeoffs right
• Citizenship – share the system
• Predictable – consistent

– Don’t violate the principle of least astonishment

45

Performance Requirements (2)

• Throughput
– Maximize aggregate useful work completed

in unit time
– Maximize overall IPC (I = Useful

instructions)
• How, specifically?

– Minimize context-switch rate
– Maximize affinity – reduce memory and

coherency traffic

46

Fairness vs Throughput Balance
• HotSpot favors Throughput
• Succession policy – who gets the lock next

– Competitive vs handoff
– Queue discipline: prepend / append / mixed
– Favor recently-run threads

• Maximize aggregate tput by minimizing $ and TLB misses and coherency
traffic

• Lock metadata and data stay resident on owner’s CPU
• Threads can dominate a lock for long periods
• Trade-off: individual thread latency vs overall system tput
• Remember: fairness is defined over some interval!
• Highly skewed distribution of lock-acquire times
• Good for commercial JVM, bad for RTJ
• Use JSR166 j.u.c primitives if fairness required
• It’s easier to implement fair in terms of fast than vice-versa

47

Non-Requirements

• Implementation latitude
– Not legislated
– Simply a matter of implementation quality

• Yield() - strictly advisory
– Green threads relic – non-preemptive thread model
– Expect to see it made into a no-op

• Thread priorities – strictly advisory
– See the 1.5 web page for the sad history

• Fairness and succession order

48

Use Naïve Monitor Construct ?
• Somebody always asks why we don’t …
• Map Java monitor 1:1 to a native condvar-mutex pair

with Owner, recursion counter, fields
• Yes, it works but …
• JVM contended & uncontended performance better

than native “C” Solaris T2, Linux NPTL
• Space: always inflated on 1st lock operation
• Space: lifecycle – use finalizer to disassociate
• Time: can’t inline fast path
• Time: cross PLT to call native library
• At mercy of the native implementation
• Thread.interrupt() requirements (signals!)

49

Safety and Progress

• CAS in monitorenter provides for exclusion
(safety)

• CAS or MEMBAR in monitorexit provides for
progress (liveness)
– Exiting thread must wake successor, if any
– Avoid missed wakeups
– CAS closes race between fast-path exit

and slow-path contended enter
– C.F. unbounded spin locks – ST instead of

CAS

50

Taxonomy: 1-1, 1-0, 0-0

• Describes latency of uncontended enter-exit
path

• 1-1: enter-exit pair requires CAS+CAS or
CAS+MEMBAR

• 1-0: enter-exit pair requires CAS-LDST
• 0-0: enter-exit pair requires 0 atomics

– AKA: QRL, Biased Locking, 0-0 Locking
• Consider MEMBAR or FENCE ≈ Atomic

because of similar latency

51

Terminology – Fast/Slow path
• Front-end (Fast path)

– uncontended operations for biased, inflated & stack-locked
– usually emitted inline into method by JIT Compiler
- Fast-path triages operation, calls slow-path if needed
- Also in interpreter(s) – but no performance benefit
- Degenerate form of slow-path code (hot cases)

• Back-end (Slow-path)
- Contention present – block threads or make threads ready
- JNI sync operations
- Calling back-end usually results in inflation
– Wait() notify()

52

Object states in HotSpot 1.6

• Mark:
– Word in object header – 1 of 2
– Low-order bits encode sync state
– Multiplexed: hashCode, sync, GC-Age

• Identity hashCode assigned on-demand
• State determines locking flavor
• Mark encoding defined in markOop.hpp
• HotSpot uses pointer-based encoding

– Tagged pointers
– IBM & BEA use value-based thin-locks

53

Mark Word Encodings (1)

• Neutral: Unlocked
• Stack-Locked: Locked – displaced mark
• Biased: Locked & Unlocked
• Inflated: Locked & Unlocked – displaced mark
• Inflation-in-progress – transient 0 value

54

Mark Word Encodings (2)

• Neutral: Unlocked
• Biased:

– Locked or Unlocked and unshared
• Monogamous lock
• Very common in real applications

– Optional optimization
– Avoid CAS latency in common case
– Tantamount to deferring unlock until

contention
– 2nd thread must then revoke bias from 1st

55

Mark Word Encodings (3)
• Stack-locked

– Locked + shared but uncontended
– Mark points to displaced header value on Owner’s stack (BasicLock)

• Inflated
– Locked|Unlocked + shared + contended
– Threads are blocked in monitorenter or wait()
– Mark points to heavy-weight objectMonitor native structure
– Conceptually, objectMonitor extends object with extra metadata

sync fields
– Original header value is displaced into objectMonitor
– Inflate on-demand – associate object with unique objectmonitor
– Deflate by scavenging at stop-the-world time
– At any given time …
– An object can be assoc with at most one objectMonitor
– An objectMonitor can be assoc with at most one object

56

Terminology - Inflation
• Inflated -> markword points to objectMonitor
• objectMonitor = optional extension to object

– Native structure (today)
– Owner, WaitSet, EntryList, recursion count, displaced

markword
– Normally not needed – most objs never inflated

• Inflate on demand -- wait(), contention, etc
• Object associated with at most one monitor at any one time
• Monitor associated with at most one object at any one time
• Deflate at STW-time with scavenger
• Could instead deflate at unlock-time

– Awkward: hashCode & sync code depends on mark
objectmonitor stability between safepoints

• Issue: # objectMonitors in circulation
– Space and scavenge-time

57

HotSpot 2-tier locking scheme

• Two-tier: stack-locks and inflated
• Stack-locks for simple uncontended case

– Inlined fast-path is 1-1
• Revert to inflated on contention, wait(), JNI

– Inlined inflated fast-path is 1-0

58

HotSpot Stack-Locks (1)
• Uncontended operations only
• JIT maps monitorenter-exit instruction BCI in

method to BasicLock offset on frame
• Terms: Box, BasicLock location in frame
• Lock()

– Neutral Stack-locked
– Save mark into on-frame box, CAS &box into mark

• Unlock()
– stack-locked neutral
– Validate, then CAS displaced header in box over

&box in mark
• Lock-unlock inlined by JIT : 1-1

59

Stack-Locks (2)

• When locked:
– Mark points to BasicLock in stack frame
– Displaced header word value saved in box
– Mark value provides access to displaced

header word
– Mark value establishes identity of owner

• Unique to HotSpot – other JVMs use thin-lock
or always inflate

• Requires provably balanced locking

60

Monitor Implementations
• EVM – MetaLock (1-1) and Relaxed Locks

– inflate at lock, deflate at unlock
– No scavenging or STW assist required
– Singular representation of “LOCKED”
– Relaxed Locks used in Mono (CLR)

• IBM – Bacon/Tasuki (1-1 originally, now 1-0
– Thin Encoding = (ThreadID,recursions,tag)
– Revert to inflation as needed
– Usually requires extra header word
– Distinct hashCode & sync words
– Now used by BEA, too

61

Digression – Source Map for 1.6
• Mark-word encoding

– markOop.hpp
• Platform independent back-end

– synchronizer.cpp
• Platform-specific park() and unpark()

– os_<Platform>.cpp and .hpp
• C2 fast-path emission – FastLock node

– SPARC: assembler_sparc.cpp
compiler_lock_object()

– Others: <CPU>.ad
• C1 fast-path emission
• Template interpreters fast-path

– Revisit this decision!

62

More CAS economics
• CAS has high local latency -- 100s of clocks
• Empirical: worse on deeply OoO CPUs
• CAS accomplished in local D$ if line already in M-state.
• IA32 LOCK prefix previously drove #LOCK. No more.
• Scales on MP system – unrelated CAS/MEMBAR operations don’t

interfere or impede progress of other CPUs
• CAS coherency traffic no different than ST - $Probes
• Aside: Lock changes ownership often D$ coherency miss.

Cost of CAS + cost of miss
• ST-before-CAS penalty – drain store buffer
• CAS and MEMBAR are typically CPU-Local operations
• $line upgrade penalty: LD then ST or CAS

– 2 bus txns : RTS then RTO
– PrefetchW? Fujitsu!

63

Uncontended Performance

• Reduce sync costs for apps that aren’t actually
synchronizing (communicating) between threads

• eliminate CAS when there’s no real communication
• Compile-time optimizations – Pessimistic/conservative

– Lock coarsening – hoist locks in loops
• Tom in 1.6

– Lock elision via escape analysis
• Seems to have restricted benefit

• Run-time optimizations – optimistic/aggressive
– 0-0 or 1-0 locks – Detect and recover

64

Eliminate CAS from Exit (1-0)
• Eliminate CAS or MEMBAR from fast-exit

– Admits race - vulnerable to progress failure.
– Thread in fast-exit can race thread in slow-enter
– Classic missed wakeup – thread in slow-enter becomes stranded

• Not fatal – can detect and recover with timed waits or helper thread
• 1.6 inflated path is 1-0 with timers
• Trade MEMBAR/CAS in hot fast-exit for infrequent but expensive

timer-based recovery action in slow-enter
• Low traffic locks odds of race low
• High traffic locks next unlock will detect standee
• Optimization: Only need one thread on EntryList on timed wait
• Downside:

– Worst-case stranding time – bounded
– Platform timer scalability
– Context switching to poll for stranding

• IBM and BEA both have 1-0 fast-path

65

Biased Locking
• Eliminate CAS from enter under certain

circumstances
• Morally equivalent to leaving object locked after

initial acquisition
• Subsequent lock/unlock is no-op for original thread
• Single bias holding thread has preferential access –

lock/unlock without CAS
• Defer unlock until 1st occurrence of contention -

Revoke
• Optimistic -- Assume object is never shared. If so,

detect and recover at run-time
• Bias encoding can’t coexist with hashCode
• Also know as: 0-0, QRL

66

Biased Locking (2)

• In the common case
…T locks object O frequently
.. And no other thread ever locked O
… Then Bias O toward T

• At most one bias-holding-thread (BHT) T for an
object O at any one time

• T can then lock and unlock O without atomics
• BHT has preferential access
• S attempts to lock O need to revoke bias from T
• Then revert to CAS based locking (or rebias to S)

67

Biased Locking (3)
• Improves single-thread latency – eliminated CAS
• Doesn’t improve scalability
• Assumes lock is typically dominated by one thread

– Bets against true sharing – bet on single accessor
thread

• Revoke may be expensive (STW or STT)
• Trade CAS/MEMBAR in fast-path enter exit for

expensive revocation operation in slow-enter
– Shifted expense to less-frequently used path

• Profitability – 0-0 benefit vs revoke cost – costs &
frequencies

68

Biased Locking (4)

• Revoke Policy: rebias or revert to CAS-based locking
• Policy: When to bias :

– Object allocation time – toward allocating thread
– 1st Lock operation
– 1st Unlock operation -- better
– Later – after N lock-unlock pairs

• Represent BIASED state by encoding aligned thread
pointer in mark word + 3 low-order bits

• Can’t encoded hashed + BIASED

69

Biased Locking (5)
• Revocation storms
• Disable or make ineligible to avoid revocation:

globally, by-thread, by-type, by-allocation-site
• Ken’s variant:

– Stop-the-world, sweep the heap, unbias by type,
– Optionally adjust allocation sites of offending type

to subseq create ineligible objects,
– No STs at lock-unlock. “Lockness” derived from

stack-walk
• Detlefs: bulk revocation by changing class-specific

“epoch” value at STW-time (avoids sweep)

70

Biased Locking (6)
• Compared to sync elision via escape analysis

– optimistic instead of conservative – better
eligibility

– Run-time instead of compile-time
– Detect and recover instead of prevent or prove

impossible
• Less useful on bigger SMP systems

– Simplistic model: revoke rate proportional to
#CPUs

– Parallelism Sharing revocation
– Real MT apps communicate between threads &

share
– Good for SPECjbb’

71

Biased Locking - Revocation
• Revoker and Revokee must coordinate access to mark
• Unilateral exclusion: revoker acts on BHT

– Stop-the-thread, stop-the-world safepoints
• Scalability impediment – loss of parallelism

– Signals
– Suspension

• Cooperative – based on Dekker-like mechanism
– MEMBAR if sufficiently cheap
– Passive: Delay for maximum ST latency
– External serialization – revoker serializes BHT

• X-call, signals
• Scheduling displacement – force/wait OFFPROC
• Mprotect() – TLB access is sequentially consistent

72

Biased Locking - Improvements

• Cost model to drive policies
• Reduce revocation cost

– Avoid current STW (STT?)
• Reduce revocation rate

– Limit # of objects biased
– Feedback: make object ineligible

• By Type, By Thread, By allocation site
– Bulk
– Batching
– Rebias policies

73

Recap – fast-path forms

• 0-0 locks
+ fast uncontended operations
- revocation costs

• 1-0 locks
+ no revocation – predictable and scalable
+ all objects always eligible
- theoretical stranding window - bounded
- still have one CAS in fast-path
+ no heuristics

74

Contended Locking – new in 1.6

• Inflated fast-path now 1-0
• Based on park-unpark – platform-specific primitives
• Reduce context switching rates – futile wakeups
• In exit: if a previous exit woke a successor (made it

ready) but the successor hasn’t yet run, don’t bother
waking another

• Notify() moves thread from WaitSet to EntryList
• Lock-free EntryList operations – List operations

shouldn’t become bottleneck or serialization point
• Adaptive spinning

75

Contended Locking (2)
• Classic Lock implementation

– Inner lock = protects thread lists – monitor metadata
– Outer lock = mutex itself – critical section data
– double contention! – Outer + Inner

• We use partially Lock-free queues
– paradox - impl blocking sync with lock-free operations
– Avoids double contention

• Minimize effective critical section length
• Amdahl : don’t artificially extend CS
• Wake >> unlock to avoid lock jams
• Don’t wake thread at exit time if successor exists
• Two queues: contention queue drains into EntryList

76

Park-Unpark primitives
• Per-thread restricted-range semaphore
• Scenario:

– T1 calls park() – blocks itself
– T2 calls unpark(T1) – T1 made ready - resumes

• Scenario:
– T2 calls unpark(T1)
– T1 calls park() – returns immediately

• “Event” structure in type-stable memory - Immortal
• Implies explicit threads lists – queues
• Simple usage model: park-unpark can both be

implemented as no-ops. Upper level code simply
degenerates to spinning

77

Spinning

• Spinning is stupid and wasteful …
• unless the thread can find and perform useful

alternate work (marking?)
• Spinning = caching in the time domain

– Stay on the CPU …
– So the TLBs and D$ stay warm …
– So future execution will be faster
– Trade time for space for time

78

Adaptive Spinning (1)
• Goal – avoid context switch
• Context switch penalty

– High latency - 10k-80k cycles
– Cache Reload Transient – D$, TLBs – amortized penalty
– CRT hits immediately after lock acquisition – effectively

lengthens critical section. Amdahl’s law impedes
scalability

• If context switch were cheap/free we’d never spin : Green
threads

• Thought experiment – system saturation
– Always spin : better tput under light load
– Always block: better tput under heavy load

• Spin limit ~ context switch round trip time

79

Adaptive Spinning (2)
• Spin for duration D – Vary D based on recent

success/failure rate for that monitor
• Spin when spinning is profitable – rational cost model
• Adapts to app modality, parallelism, system load,

critical section length
• OK to bet if you know the odds
• Damps load transients – prevents phase transition to

all-blocking mode
– Blocking state is sticky. Once system starts

blocking it continues to block until contention
abates

– Helps overcome short periods of high intensity
contention – Surge capacity

80

Adaptive Spinning – Classic SMP
• CPU cycles are a local resource – coherency shared and scarce
• Context switch

– disrupts local $ and TLBs
– usually local latency penalty

• Spinning
– Waste local CPU cycles
– Bet we can avoid context switch
– Back-off to conserve global coherency bus bandwidth

• Aggressive spinning - impolite
– Minimizes Lock-Transfer-Time
– Increases coherency bus traffic
– Can actually increase release latency as unlocking thread

must contend to get line into M-State
• Polite: exponential back-off to reduce coherency/mem bus

traffic

81

Adaptive Spinning - Niagara
• Niagara or HT Xeon - Inverted
• CPU cycles shared – coherency plentiful
• Context switch disruptive to other strands
• Spinning impedes other running strands on same core!
• Spinning:

– Try to conserve CPU cycles
– Short or no back-off

• Use WRASI or MEMBAR to stall
• Other CPUs – Polite spinning

– Intel HT – PAUSE
– SSE3 - MWAIT
– Power5 – drop strand priority while spinning

82

Adaptive Spinning (5)

• Find something useful to do – beware polluting D$ +
TLBs
– Morally equivalent to a context switch – Cache

Reload Transient
• Don’t spin on uniprocessors
• Back-off for high-order SMP systems

– Avoid coherency bus traffic from constant polling
• Cancel spin if owner is not in_java (Excludes JNI)
• Cancel spin if pending safepoint
• Avoid transitive spinning

83

Contended Locking – Futures (1)

• Critical section path length reduction (JIT
optimization?)
– Amdahl’s parallel speedup law
– Move code outside CS
– Improves HTM feasibility

• Use priority for queue ordering
• Spinner: power-state on windows
• Spinner: loadavg()
• Spinner: cancel spin if owner is OFFPROC

– Schedctl

84

Contended Locking – Futures (2)
• Minimize Lock Migration

– Wakeup locality – succession
• Pick a recently-run that thread shares affinity with the

exiting thread
• JVM Need to understand topology – shared $s
• Schedctl provides fast access to cpuid

– Pull affinity – artificially set affy of cold wakee
• Move the thread to data instead of vice-versa

• YieldTo() – Solaris loadable kernel driver
– Contender donates quantum to Owner
– Owner READY (preempted) helps
– Owner BLOCKED (pagefault) useless

85

Contended Locking – Futures (3)
• Set schedctl nopreempt, poll preemptpending

– Use as quantum expiry warning
– Reduce context switch rate – avoid preemption during spinning

followed by park()
• Polite spinning: MWAIT-MONITOR, WRASI, Fujitsu OPL SLEEP, etc
• Just plain strange:

– Transient priority demotion of wakee (FX)
– Deferred unpark
– Restrict parallelism – clamp # runnable threads

• Variation on 1:1:1 threading model
• Gate at state transitions

– Allow thread to run, or
– Place thread on process standby list

• Helps with highly contended apps
• Puts us in the scheduling business

86

Futures (1)
• HTM – juc, native, java
• PrefetchW before LD … CAS : RTS RTO upgrades
• Native C++ sync infrastructure badly broken
• Escape analysis & lock elision
• 1st class j.u.c support for spinning
• Interim step: convert 1-1 stacklocks to 1-0

– Eliminate CAS from exit – replace with ST
– Admits orphan monitors and hashCode hazards
– Fix: Idempotent hashCode
– Fix: Timers – detect and recover
– Works but is ugly

87

Futures (2)

• Convert front-end to Java ?
– BEA 1.5
– j.l.O.Enter(obj, Self)
– Use unsafe operators to operate on mark
– CAS, MEMBAR, etc
– Park-Unpark
– ObjectMonitor becomes 1st-class Java

object - Collected normally

06.09.13 88

Dave Dice – Java Core Technology

2005.05.09

Synchronization TOI

89

Memory Model [OPTIONAL]

• Defines how memory read and writes may be
performed by a process relative to their
program order
– IE, Defines how memory order may differ

from program order
• Define how writes by one processor may

become visible to reads by other processors

	Synchronization�(with a focus on J2SE)
	Overview
	Parallelism – Varieties (1)
	Parallelism – Varieties (2)
	Parallelism – Dogma
	Processor Design Trends (1)
	Processors: Latency Hiding (2)
	Processor Design Trends (3)
	Classic SMP Parallelism
	SMP Parallelism (2)
	SMP Parallelism (3)
	Fundamental Economics
	Fundamental Economics (2)
	Fundamental Economics (3)
	Fundamental Economics (3)
	(ASIDE) Solaris Scheduler (1)
	(ASIDE) Solaris Scheduler (2)
	Coherency and Consistency
	(Re)ordering
	Reorderings
	Spectrum of HW Memory Models
	Memory Model
	Coherence costs: Communication
	Coherence costs: Niagara-1
	Coherence costs: 96X StarCat
	SMP Coordination Primitives
	Atomic Zoo - RMW
	Concept: Lock-Freedom
	Concept: Lock-Freedom (2)
	Locking Tension
	Coarse|Fine-Grain parallelism
	Java Synchronization
	Thread Model in 1.6
	HotSpot Thread Scheduling
	Java Synchronization
	Typical Java Sync Usage
	Typical Java Sync Usage (2)
	Typical Java Sync Usage (3)
	Aside – why use threads ?
	Requirements - Correctness
	JSR133 – Java Memory Model
	Balanced Monitor Operations
	Balance (2)
	Performance Requirements (1)
	Performance Requirements (2)
	Fairness vs Throughput Balance
	Non-Requirements
	Use Naïve Monitor Construct ?
	Safety and Progress
	Taxonomy: 1-1, 1-0, 0-0
	Terminology – Fast/Slow path
	Object states in HotSpot 1.6
	Mark Word Encodings (1)
	Mark Word Encodings (2)
	Mark Word Encodings (3)
	Terminology - Inflation
	HotSpot 2-tier locking scheme
	HotSpot Stack-Locks (1)
	Stack-Locks (2)
	Monitor Implementations
	Digression – Source Map for 1.6
	More CAS economics
	Uncontended Performance
	Eliminate CAS from Exit (1-0)
	Biased Locking
	Biased Locking (2)
	Biased Locking (3)
	Biased Locking (4)
	Biased Locking (5)
	Biased Locking (6)
	Biased Locking - Revocation
	Biased Locking - Improvements
	Recap – fast-path forms
	Contended Locking – new in 1.6
	Contended Locking (2)
	Park-Unpark primitives
	Spinning
	Adaptive Spinning (1)
	Adaptive Spinning (2)
	Adaptive Spinning – Classic SMP
	Adaptive Spinning - Niagara
	Adaptive Spinning (5)
	Contended Locking – Futures (1)
	Contended Locking – Futures (2)
	Contended Locking – Futures (3)
	Futures (1)
	Futures (2)
	Memory Model [OPTIONAL]

