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Overview

• Preliminaries: Parallelism & synchronization
• Java synchronization implementations
• Uncontended synchronization
• Contended synchronization
• Futures – where are we headed



3

Parallelism – Varieties (1)
• Distributed parallelism

– Communicate over a network (clusters, etc)
– High communication latency 
– Code typically failure-aware
– Message-based : send-recv – OS IPC primitives

• SMP parallelism with explicit threads
– Communicate through shared memory –

LD,ST,Atomics
– Low(er) communication latency
– Code not designed failure tolerant

• Common theme but different philosophies 
Thread Level Parallelism (TLP)
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Parallelism – Varieties (2)

• SIMD – SSE
• Instruction Level Parallelism (ILP) – Multi-Issue

– Execution time: Out-of-Order 
• Recognize and extract ||ism from independent ops in 

serial instruction stream
• Intel P4 and P6

– Execution time: HW scout threads
– Compile-time auto-parallelize: 

Transform ILP TLP (hard)
– VLIW: IA64 compiler expresses ||ism to CPU
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Parallelism – Dogma

• Explicit Parallelism is NOT a feature – it’s a remedy 
with undesirable side effects

• Pick one: 1x4Ghz system or 4x1Ghz system?
– Ideal -- Assume IPC = 1.0
– 1X is the clear winner
– Not all problems decompose (can be made ||)
– Threads awkward and error-prone

• Pull your sled
– 4 dogs – 2x2 Opteron
– 32 Cats - (p.s., we’re the cat trainers)
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Processor Design Trends  (1)
• These trends affect threading and synchronization
• Classic Strategy: Improve single-CPU performance by 

increasing core clock frequency
• Diminishing returns – memory wall

– Physical constraints on frequency (+ thermal, too)
– RAM is 100s cycles away from CPU
– Cache miss results in many wasted CPU cycles
– RAM bandwidth & capacity keep pace with clock 

but latency is slower to improve (disks,too)
• Compensate for processor:RAM gap with Latency 

Hiding …
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Processors: Latency Hiding (2)
• Bigger caches – restricted benefit 

– Itanium2 L3$ consumes >50% die area
– Deeper hierarchy – L4

• Speculative Execution – prefetch memory needed in future
– Constrained – can’t accurately speculate very far ahead 

• ILP: try to do more in one cycle: IPC > 1
– Deep pipelines
– Superscalar and Out-of-Order Execution (OoO)
– Allow parallel execution while pending miss
– Limited ILP in most instructions streams - dependencies

• Double die area dedicated to extracting ILP < 1.2x better
• RESULT: Can’t keep CPU fed – most cycles @ 4GHz are idle, 

waiting memory
• 1T speed effectively capped for near future
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Processor Design Trends (3)
• Trend: wide parallelism instead of GHz
• Laptops & embedded (2 4) servers (32 256)
• Aggregate system throughput vs single-threaded speed

(Sun Speak = Throughput computing)
• Impact on Software

– wanted speed; got parallelism
– Can we use 256 cores?
– Previously: regular CPU speed improvements covered up 

software bloat
– Future: The free lunch is over (Herb Sutter)
– Amdahl’s law – hard to realize benefit from ||ism

• Even small critical sections dominate as the # of CPUs increases
– Effort required to exploit parallelism
– Near term: explicit threads & synchronization
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Classic SMP Parallelism
• Model: set of threads that cooperate
• Coordinate threads/CPUs by synchronization

Communicate through coherent shared memory
• Definition: synchronization is a mechanism prevent, 

avoid or recover from inopportune interleavings
• Control when
• Locking (mutual exclusion) is a special case of 

synchronization
• Social tax – cycles spent in synchronization don’t 

contribute to productive work.  Precautionary
• True parallelism vs preemption

– Absurdity: OS on UP virtualizes MP system, forces 
synchronization tax
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SMP Parallelism (2)

• Coordination costs: 
Synchronization + 
cache-coherent 
communication

• Coherency bus speed 
slower than CPU speed

• Most apps don’t scale 
perfectly with CPUs

• Beware the classic 
pathology for over-
parallel apps …
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SMP Parallelism (3)
• Amdahl’s speedup law – parallel corollary:

– Access to shared state must be serialized
– Serial portion of operation limits ultimate parallel 

speedup
– Theoretical limit = 1/s

• Amdahl’s law say curve should have flattened –
asymptotic 

• Why did performance Drop? 
• In practice communication costs overwhelmed 

parallelism benefit 
• Amdahl’s law doesn’t cover communication costs!
• Too many cooks spoil the broth



12

Fundamental Economics

• The following drive our performance-related design 
decisions:
– Instruction latency – LD/ST/CAS/Barrier
– CPU-Local Reordering & store-buffer

• Program order vs visibility (memory) order
– Coherence and communication costs

• Caches and cache coherency
• SMP sharing costs
• Interconnect: Latency and bandwidth

– Bandwidth overall scalability : throughput 

– Operating system context switching
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Fundamental Economics (2)

• CAS local latency – 100-500+ cycles on OoO
• MEMBAR is expensive, but typically << CAS

– IBM Power5 – existence proof that fences 
can be fast.   3x cycle improvement over 
Power4

• CAS and MEMBAR are typically CPU-Local
operations

• CAS trend might be reversing – Intel Core2
– Improved CAS and MFENCE
– MFENCE must faster than CAS
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Fundamental Economics (3)

• Context switching and blocking are expensive
– 10k-80k cycles
– Voluntary (park) vs involuntary (preemption)
– Cache-Reload Transient (CRT) after the thread is 

dispatched (ONPROC)
– Repopulate $ and TLBs
– Lots of memory bandwidth consumed (reads)
– Can impede other threads on SMP - scalability
– Impact depends on system topology: 

Memory:Bus:$:CPU relationship
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Fundamental Economics (3)

• Context switching continued …
– Long quantum is usually better:

• Reduces involuntary context switching rate
• Dispadmin tables
• On Solaris lower priority longer quantum

– Thread migration 
• Migration is generally bad
• OS tries to schedule for affinity
• Solaris rechoose interval



16

(ASIDE) Solaris Scheduler (1)
• Kernel schedules LWPs (LWP = Kernel thread)
• Process agnostic
• Scheduling classes:  IA,TS, RT, FX, Fair-share

– Priocntl and priocntl()
• Per CPU (die) ready queues (runq, dispatch queue)
• Avoid imbalance:

– Pull : Stealing when idle
– Push: Dealing when saturated

• Decentralized – no global lists, no global decision making
– Except for RT

• Goals of scheduling policy
– Saturate CPUs – maximize utilization
– Affinity preserving – minimize migration
– Disperse over cores
– Power
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(ASIDE) Solaris Scheduler (2)

• Local scheduling decisions collectively result 
in achieving the desired global scheduling 
policy

• Thus no gang scheduling
• Historical: libthread “T1” performed 

preemptive user-land scheduling
– Multiplexed M user threads on N LWPs
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Coherency and Consistency
• Cache coherence

– Replicate locally for speed – reduce communication costs
– … but avoid stale values on MP systems
– Coherence is a property of a single location

• Memory Consistency (Memory Model)
– Property of 2 or more locations
– Program order vs Visibility (memory) order
– A memory consistency model defines observable orderings of 

memory operations between CPUs
– E.G., SPARC TSO, Sequential Consistency (SC)
– A processor is always Self-Consistent
– Weaker or relaxed model admits more reorderings but 

allows faster implementation (?)
– Control with barriers or fence instructions
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(Re)ordering

• Both HW and SW can reorder …
• Source-code order as described by programmer
• Instruction order – compiler reorderings (SW)

– AKA program order
• Execution order – OoO execution  (HW)
• Storage order – store buffers, bus etc (HW)

– AKA: visibility order, memory order
– Hardware reordering is typically a processor-local 

phenomena
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Reorderings
• Reordering Program order and visibility (memory) 

order differ
• How do reordering arise?

– Compiler/JIT reorders code – volatile
– Platform reorders operations – fences

• CPU-local 
– OoO execution or speculation
– Store buffer (!!!)

• Inter-CPU: bus 
• Trade speed (maybe) for software complexity

– Dekker Algorithms
– Double-checked locking
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Spectrum of HW Memory Models
• Sequentially Consistent (SC)

– “Strongest”, no HW reorderings allowed
– IBM z-series, 370, etc
– All UP are SC.  No need for barriers!  

• SPARC TSO: ST A; LD B 
– Store can languish in store buffer – invisible to other CPUs –

while LD executes.  LD appears on bus before ST
– ST appears to bypass LD
– Prevent with MEMBAR #storeload

• IA32+AMD64: PO and SPO
– Fairly close to SPARC TSO
– Prevent with fence or any serializing instruction

• Weak memory models
– SPARC RMO, PPC, IA64
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Memory Model 

• Defines how memory read and writes may be 
performed by a process relative to their 
program order
– IE, Defines how memory order may differ 

from program order
• Define how writes by one processor may 

become visible to reads by other processors
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Coherence costs: Communication
• Communicating between CPUs via shared memory
• Cache coherency protocols

– MESI/MOESI snoop protocol
• Only one CPU can have line in M-State (dirty)
• Think RW locks – only one writer allowed at any one itme
• All CPUs snoop the shared bus - broadcast
• Scalability limit ~~ 16-24 CPUs 
• Most common protocol

– Directory
• Allows Point-to-point
• Each $ line has a “home node”
• Each $ line has pointer to node with live copy

– Hybrid snoop + directory
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Coherence costs: Niagara-1

• L2$ is coherency fabric – on-chip
• Coherence Miss latency ≈ L2$ miss
• Coherency latency is short and bandwidth 

plentiful
• Sharing & communication are low-cost
• 32x threads RMW to single word – 4-5x 

slowdown compared to 1x
– Not bad considering 4 strands/core!
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Coherence costs: 96X StarCat
• Classic SMP
• Coherency interconnect – fixed bandwidth (bus contention)
• Snoop on 4x board – directory inter-board
• Sharing is expensive
• Inter-CPU ST-to-LD latency is +100s of cycles

(visibility latency)
• 96x threads RMW or W to single word – >1000x slowdown
• 88MHz interconnect and memory bus
• Concurrent access to $Line:

– Mixed RW or W is slow
– Only RO is fast 

• False sharing: accidentally collocated on same $line
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SMP Coordination Primitives
• ST+MEMBAR+LD

– Mutual exclusion with Dekker or Peterson
– Dekker duality:

• Thread1: STA; MEMBAR; LDB
• Thread2: STB; MEMBAR; LDA

– Needs MEMBAR(FENCE) for relaxed memory model
• Serializing instruction on IA32
• SPARC TSO allows ST;LD visibility to reorder
• Drain CPU store buffer
• Atomics are typically barrier-equivalent

– Word-tearing may be barrier-equivalent STB;LDW (bad)
• Atomics

– Usually implemented via cache coherency protocol
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Atomic Zoo - RMW
• Fetch-And-Add, Test-and-set, xchg, CAS
• IA32 LOCK prefix – LOCK: add [m],r
• LL-SC (ppc,Power,mips) – one word txn
• Can emulate CAS with LL-SC but not (easily) vice-versa
• Bounded HW Transactional Memory

– TMn (TM1 == LL-SC)
• Unbounded HTM – research topic (google TCC)
• Hybrid HW/SW TM – HW failover to SW
• CASn - many distinct locations -- CASn ≈ TMn
• CASX – wide form – adjacent (cmpxchg8b, 16b)
• CASv – verifies add’l operand(s)
• A-B-A problem:

– LL-SC, TM immune
– Simple CAS vulnerable
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Concept: Lock-Freedom
• Locks – pessimistic

– Prevent races
– If owner stalls other threads impeded
– Analogy: token-ring

• Lock-free - optimistic
– LD … CAS – single-word transaction – j.u.random
– Detect and recover (retry) from potential interference
– Analogy: CSMA-CD + progress 
– Analogy: HotSpot source code putback process
– Improved progress
– Increased use in 1.6 native C++ code
– Progress guarantees for aggregate system, but not individual 

threads
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Concept: Lock-Freedom (2)
• Excellent throughput under contention
• Immune to deadlock
• No convoys, priority inversion …
• Somebody always makes progress

(CAS fails somebody else made progress)
• Composable abstraction -- more so than locks
• Shorter txn more likely to complete -- minimize LD…CAS 

distance
• Always better than locking?  No – consider contrived case where 

failed LF attempt is more expensive than a context-switch
• But harder to get right – Locks conceptually easier
• RT needs wait-free -- LF lets a given thread fail repeatedly
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Locking Tension
• lock coverage – performance vs correctess

– Too little - undersynchronized admit races, bugs 
– Too much - oversynchronized Serialize execution and 

reduced ||ism 
• Data Parallelism vs Lock Parallelism
• Example: Hashtable locks – Lock break-up

– Lock Table: coarse-grain
– Lock Bucket: compromise
– Lock Entry:  fine-grain but lots of lock-unlock ops

• Complexity
– Tricky locking & sync schemes admit more parallelism
– but difficult to get correct
– Requires domain expertise
– More atomics increase latency
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Coarse|Fine-Grain parallelism
• Coarse-Grain vs fine-grain parallelism
• Balance communication costs vs parallel utilization
• Potential parallelism dictated by the problem (matmul)
• Not all problems decompose conveniently
• Sometimes the designer gets to decide:

– consider GC work-strealing and the “size” of work units
• Fine-grain

– Higher communication costs to coordinate threads
– Maximize CPU utilization - ||ism
– Reduced sensitivity to scheduling

• Coarse-grain
– Reduced communication costs
– Extreme case: specjbb – embarrassingly ||, little inter-

thread communication.  Contrived.  
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Java Synchronization

• Thread Models
• Requirements
• Various implementations
• Terminology
• Performance

– Uncontended 
– Contended
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Thread Model in 1.6
• Kernel controls [Ready Run] transitions 
• JVM moderates [Run Blocked] and [Blocked Ready] transitions

(Except for blocking page faults or implicit blocking)
• JVM manages explicit per-monitor EntryList and WaitSet lists
• 1:1:1 model (Java:Libthread:LWP)
• Alternate thread models 

– Green threads – M:1:1
• Often better but lack true ||ism
• No CAS needed for pure Green M:1:1 model
• Control over scheduling decisions + cheap context switch
• Must provide preemption

– IBM Jikes/RVM experience – M:N:N
– Raw hypervisors – M:P:P
– JNI problems – mixing internal model with real world
– Don’t recreate libthread T1 !
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HotSpot Thread Scheduling

• Thread abstraction layering …
• JVM maps java threads to user-level threads 

(1:1)
• Libthread maps user-level threads to kernel-

LWPs (1:1)
• Kernel maps LWPs to logical CPUs (strands)
• Silicon maps logical CPUs onto cores (CMT)
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Java Synchronization
• Threads - explicitly describe parallelism
• Monitors 

– Explicitly proscribe parallelism
– Conceptually: condvar + mutex + aux fields
– Typically implemented via mutual exclusion
– Source code: Synchronized (lock-unlock), wait(), notify()
– Bytecode: ACC_SYNCHRONIZED, monitorenter, monitorexit

• Better than C/pthreads, but still nightmarish user bugs
• java.util.concurrent operators appeared 1.5.0 (j.u.c)

– JSR166 based on Doug Lea’s package
– Many impls lock-free
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Typical Java Sync Usage
• Generalities -- Identify common cases we need to optimize 
• Critical sections are usually short
• Locking is frequent in time but very localized in space
• Locking operations happen frequently – 1:30 lock ops per heap 

references in specjbb2k
• Few objects are ever locked during their lifetime
• Fewer yet are shared 

– Shared ever locked by more than 1 thread
– Most locks are monogamous
– Inter-thread sharing and locking is infrequent

• Even fewer yet ever see contention
– But more ||ism more contention and sharing
– When contention occurs it persists – modality
– Usually restricted to just a few hot objects
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Typical Java Sync Usage (2)

• Locking is almost always provably balanced
• Nested locking of same object is rare in app 

code but happens in libraries
• It’s rare for any thread to every hold >= 2 

distinct locks
• hashCode assignment & access more frequent 

than synchronization
• Hashed ∩ synchronized-on is tiny
• Behavior highly correlated with obj type and 

allocation site
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Typical Java Sync Usage (3)

• Synchronized java code
– Oversynchronized ? 
– Library code is extremely conservative 

• “Easy” fix for pure reader accessors
• Use scheme akin to Linux SeqLocks

• CAS is mostly precautionary -- wasted cycles 
to avoid a race that probably won’t happen

• Latency impacts app performance 
• ~20% of specjbb2k cycles – unproductive 

work
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Aside – why use threads ?
• True parallelism – requires MP system

– Threads are mechanism we use to exploit 
parallelism

– T >> C doesn’t make sense, except …
• 1:1 IO binding  - thread-per-socket idiom

– Artifact of flawed library IO abstraction
– Volano is classic example – IO funnel
– Rewrite with NIO would reduce from 100s of 

threads to C … 
– Which would then reduce sync costs 
– Partition 1 thread per room would result in 0 sync 

costs 
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Requirements - Correctness

• Safety: mutual exclusion – property always 
holds.  At most one thread in critical section 
at any given time.  

• Progress: liveness – property eventually holds
(avoid stranding)

• JLS/JVM required exceptions – ownership 
checks

• JSR133 Memory Model requirements
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JSR133 – Java Memory Model

• JSR133 integrated into JLS 3E, CH 17 – clarification 
• Volatile, synchronized, final
• Key clarification: Write-unlock-to-lock-read visibility 

for same lock
• Describes relaxed form of lazy release consistency
• Admits important optimizations: 1-0 locking, Biased 

Locking, TM
• Beware of HotSpot’s volatile membar elision 

– Volatile accesses that abut enter or exit
• See Doug Lea’s “cookbook”
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Balanced Monitor Operations
• Balance: unlock always specifies most-recently locked 

object
• Synchronized methods always balanced - by defn
• JVM spec doesn’t require monitorenter/monitorexit 

balance
• Verifier doesn’t check balance -

{aload; monitoreter; return } verifiable 
• Javac:

– Always emits balanced enter-exit bytecodes
– Covers enter-exit pairs with try-finally blocks –

cleanup – prevent escape without exit
• jni_monitorenter-exit – mixed-mode operations 

proscribed, but not checked
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Balance (2)
• C1/C2 prove balance for a method

– Balanced -> enable stack-locks
– !Balanced -> forever banished to interpreter

• HotSpot Interpreter
– Extensible per-frame list of held locks
– Lock: add to current frame’s list
– Unlock list at return-time
– Throw at monitorexit if object not in frame’s list

• IBM, EVM, HotSpot very different 
– latitude in spec
– relaxed in 2.0
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Performance Requirements (1)
• Make synchronization fast at run-time

– Uncontended Latency 
Dominated by Atomics and MEMBARs

– Contended Scalability and throughput
• spin to avoid context switching
• Improve or preserve affinity

• Space-efficient
– header words & heap consumption
– # extant objectmonitors

• Get the space-time tradeoffs right
• Citizenship – share the system
• Predictable – consistent

– Don’t violate the principle of least astonishment



45

Performance Requirements (2)

• Throughput
– Maximize aggregate useful work completed 

in unit time
– Maximize overall IPC (I = Useful 

instructions)
• How, specifically?

– Minimize context-switch rate
– Maximize affinity – reduce memory and 

coherency traffic
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Fairness vs Throughput Balance
• HotSpot favors Throughput
• Succession policy – who gets the lock next

– Competitive vs handoff
– Queue discipline: prepend / append / mixed
– Favor recently-run threads

• Maximize aggregate tput by minimizing $ and TLB misses and coherency 
traffic

• Lock metadata and data stay resident on owner’s CPU
• Threads can dominate a lock for long periods 
• Trade-off:  individual thread latency vs overall system tput
• Remember: fairness is defined over some interval!
• Highly skewed distribution of lock-acquire times
• Good for commercial JVM, bad for RTJ
• Use JSR166 j.u.c primitives if fairness required
• It’s easier to implement fair in terms of fast than vice-versa
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Non-Requirements

• Implementation latitude 
– Not legislated
– Simply a matter of implementation quality

• Yield() - strictly advisory
– Green threads relic – non-preemptive thread model
– Expect to see it made into a no-op

• Thread priorities – strictly advisory
– See the 1.5 web page for the sad history

• Fairness and succession order
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Use Naïve Monitor Construct ?
• Somebody always asks why we don’t …
• Map Java monitor 1:1 to a native condvar-mutex pair 

with Owner, recursion counter, fields
• Yes, it works but …
• JVM contended & uncontended performance better

than native “C” Solaris T2, Linux NPTL
• Space: always inflated on  1st lock operation
• Space: lifecycle – use finalizer to disassociate
• Time: can’t inline fast path
• Time: cross PLT to call native library 
• At mercy of the native implementation
• Thread.interrupt() requirements (signals!)
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Safety and Progress

• CAS in monitorenter provides for exclusion 
(safety)

• CAS or MEMBAR in monitorexit provides for 
progress (liveness)
– Exiting thread must wake successor, if any
– Avoid missed wakeups
– CAS closes race between fast-path exit 

and slow-path contended enter
– C.F. unbounded spin locks – ST instead of 

CAS
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Taxonomy: 1-1, 1-0, 0-0

• Describes latency of uncontended enter-exit 
path

• 1-1: enter-exit pair requires CAS+CAS or 
CAS+MEMBAR 

• 1-0: enter-exit pair requires CAS-LDST 
• 0-0: enter-exit pair requires 0 atomics 

– AKA: QRL, Biased Locking, 0-0 Locking
• Consider MEMBAR or FENCE ≈ Atomic 

because of similar latency
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Terminology – Fast/Slow path
• Front-end (Fast path)

– uncontended operations for biased, inflated & stack-locked
– usually emitted inline into method by JIT Compiler
- Fast-path triages operation, calls slow-path if needed
- Also in interpreter(s) – but no performance benefit
- Degenerate form of slow-path code (hot cases)

• Back-end (Slow-path)
- Contention present – block threads or make threads ready
- JNI sync operations
- Calling back-end usually results in inflation
– Wait() notify()
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Object states in HotSpot 1.6

• Mark:
– Word in object header – 1 of 2
– Low-order bits encode sync state
– Multiplexed: hashCode, sync, GC-Age

• Identity hashCode assigned on-demand
• State determines locking flavor
• Mark encoding defined in markOop.hpp
• HotSpot uses pointer-based encoding

– Tagged pointers
– IBM & BEA use value-based thin-locks
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Mark Word Encodings (1)

• Neutral: Unlocked
• Stack-Locked: Locked – displaced mark
• Biased: Locked & Unlocked
• Inflated: Locked & Unlocked – displaced mark
• Inflation-in-progress – transient 0 value
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Mark Word Encodings (2)

• Neutral: Unlocked
• Biased:

– Locked or Unlocked and unshared
• Monogamous lock
• Very common in real applications

– Optional optimization
– Avoid CAS latency in common case
– Tantamount to deferring unlock until 

contention
– 2nd thread must then revoke bias from 1st
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Mark Word Encodings (3)
• Stack-locked

– Locked + shared but uncontended
– Mark points to displaced header value on Owner’s stack (BasicLock)

• Inflated
– Locked|Unlocked + shared + contended
– Threads are blocked in monitorenter or wait()
– Mark points to heavy-weight objectMonitor native structure
– Conceptually, objectMonitor extends object with extra metadata 

sync fields
– Original header value is displaced into objectMonitor
– Inflate on-demand – associate object with unique objectmonitor
– Deflate by scavenging at stop-the-world time
– At any given time …
– An object can be assoc with at most one objectMonitor
– An objectMonitor can be assoc with at most one object
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Terminology - Inflation
• Inflated -> markword points to objectMonitor
• objectMonitor = optional extension to object

– Native structure (today)
– Owner, WaitSet, EntryList, recursion count, displaced 

markword
– Normally not needed – most objs never inflated

• Inflate on demand -- wait(), contention, etc
• Object associated with at most one monitor at any one time
• Monitor associated with at most one object at any one time
• Deflate at STW-time with scavenger 
• Could instead deflate at unlock-time

– Awkward: hashCode & sync code depends on mark 
objectmonitor stability between safepoints

• Issue: # objectMonitors in circulation
– Space and scavenge-time
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HotSpot 2-tier locking scheme

• Two-tier: stack-locks and inflated 
• Stack-locks for simple uncontended case 

– Inlined fast-path is 1-1
• Revert to inflated on contention, wait(), JNI

– Inlined inflated fast-path is 1-0
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HotSpot Stack-Locks (1)
• Uncontended operations only
• JIT maps monitorenter-exit instruction BCI in 

method to BasicLock offset on frame
• Terms: Box, BasicLock location in frame
• Lock()

– Neutral  Stack-locked
– Save mark into on-frame box, CAS &box into mark

• Unlock()
– stack-locked neutral
– Validate, then CAS displaced header in box over 

&box in mark
• Lock-unlock inlined by JIT : 1-1
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Stack-Locks (2)

• When locked:
– Mark points to BasicLock in stack frame
– Displaced header word value saved in box
– Mark value provides access to displaced 

header word
– Mark value establishes identity of owner

• Unique to HotSpot – other JVMs use thin-lock 
or always inflate

• Requires provably balanced locking
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Monitor Implementations
• EVM – MetaLock (1-1) and Relaxed Locks

– inflate at lock, deflate at unlock
– No scavenging or STW assist required
– Singular representation of “LOCKED”
– Relaxed Locks used in Mono (CLR)

• IBM – Bacon/Tasuki (1-1 originally, now 1-0
– Thin Encoding = (ThreadID,recursions,tag)
– Revert to inflation as needed
– Usually requires extra header word
– Distinct hashCode & sync words
– Now used by BEA, too
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Digression – Source Map for 1.6
• Mark-word encoding

– markOop.hpp
• Platform independent back-end

– synchronizer.cpp
• Platform-specific park() and unpark()

– os_<Platform>.cpp and .hpp
• C2 fast-path emission – FastLock node

– SPARC: assembler_sparc.cpp
compiler_lock_object()

– Others: <CPU>.ad
• C1 fast-path emission
• Template interpreters fast-path

– Revisit this decision!
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More CAS economics
• CAS has high local latency -- 100s of clocks
• Empirical: worse on deeply OoO CPUs
• CAS accomplished in local D$ if line already in M-state.
• IA32 LOCK prefix previously drove #LOCK.  No more.  
• Scales on MP system – unrelated CAS/MEMBAR operations don’t 

interfere or impede progress of other CPUs
• CAS coherency traffic no different than ST - $Probes
• Aside: Lock changes ownership often D$ coherency miss.  

Cost of CAS + cost of miss
• ST-before-CAS penalty – drain store buffer
• CAS and MEMBAR are typically CPU-Local operations
• $line upgrade penalty: LD then ST or CAS

– 2 bus txns : RTS then RTO
– PrefetchW?  Fujitsu!
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Uncontended Performance 

• Reduce sync costs for apps that aren’t actually 
synchronizing (communicating) between threads 

• eliminate CAS when there’s no real communication
• Compile-time optimizations – Pessimistic/conservative 

– Lock coarsening – hoist locks in loops
• Tom in 1.6

– Lock elision via escape analysis
• Seems to have restricted benefit

• Run-time optimizations – optimistic/aggressive
– 0-0 or 1-0 locks – Detect and recover
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Eliminate CAS from Exit (1-0)
• Eliminate CAS or MEMBAR from fast-exit

– Admits race - vulnerable to progress failure.   
– Thread in fast-exit can race thread in slow-enter
– Classic missed wakeup – thread in slow-enter becomes stranded

• Not fatal – can detect and recover with timed waits or helper thread
• 1.6 inflated path is 1-0 with timers
• Trade MEMBAR/CAS in hot fast-exit for infrequent but expensive 

timer-based recovery action in slow-enter
• Low traffic locks odds of race low
• High traffic locks next unlock will detect standee 
• Optimization: Only need one thread on EntryList on timed wait
• Downside:

– Worst-case stranding time – bounded
– Platform timer scalability
– Context switching to poll for stranding

• IBM and BEA both have 1-0 fast-path
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Biased Locking
• Eliminate CAS from enter under certain 

circumstances
• Morally equivalent to leaving object locked after 

initial acquisition
• Subsequent lock/unlock is no-op for original thread 
• Single bias holding thread has preferential access –

lock/unlock without CAS
• Defer unlock until 1st occurrence of contention -

Revoke
• Optimistic -- Assume object is never shared.  If so, 

detect and recover at run-time
• Bias encoding can’t coexist with hashCode
• Also know as: 0-0, QRL
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Biased Locking (2)

• In the common case 
…T locks object O frequently
.. And no other thread ever locked O
… Then Bias O toward T 

• At most one bias-holding-thread (BHT) T for an 
object O at any one time

• T can then lock and unlock O without atomics
• BHT has preferential access
• S attempts to lock O need to revoke bias from T
• Then revert to CAS based locking (or rebias to S)
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Biased Locking (3)
• Improves single-thread latency – eliminated CAS
• Doesn’t improve scalability
• Assumes lock is typically dominated by one thread

– Bets against true sharing – bet on single accessor 
thread

• Revoke may be expensive (STW or STT)
• Trade CAS/MEMBAR in fast-path enter exit for 

expensive revocation operation in slow-enter
– Shifted expense to less-frequently used path

• Profitability – 0-0 benefit vs revoke cost – costs & 
frequencies
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Biased Locking (4)

• Revoke Policy: rebias or revert to CAS-based locking
• Policy: When to bias :

– Object allocation time – toward allocating thread
– 1st Lock operation
– 1st Unlock operation -- better
– Later – after N lock-unlock pairs 

• Represent BIASED state by encoding aligned thread 
pointer in mark word + 3 low-order bits

• Can’t encoded hashed + BIASED
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Biased Locking (5)
• Revocation storms
• Disable or make ineligible to avoid revocation:

globally, by-thread, by-type, by-allocation-site
• Ken’s variant: 

– Stop-the-world, sweep the heap, unbias by type, 
– Optionally adjust allocation sites of offending type 

to subseq create ineligible objects,
– No STs at lock-unlock.  “Lockness” derived from 

stack-walk
• Detlefs: bulk revocation by changing class-specific 

“epoch” value at STW-time (avoids sweep)
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Biased Locking (6)
• Compared to sync elision via escape analysis

– optimistic instead of conservative – better 
eligibility

– Run-time instead of compile-time
– Detect and recover instead of prevent or prove 

impossible
• Less useful on bigger SMP systems

– Simplistic model: revoke rate proportional to 
#CPUs

– Parallelism Sharing revocation 
– Real MT apps communicate between threads & 

share
– Good for SPECjbb’
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Biased Locking - Revocation
• Revoker and Revokee must coordinate access to mark
• Unilateral exclusion: revoker acts on BHT

– Stop-the-thread, stop-the-world safepoints
• Scalability impediment – loss of parallelism

– Signals
– Suspension

• Cooperative – based on Dekker-like mechanism
– MEMBAR if sufficiently cheap
– Passive: Delay for maximum ST latency
– External serialization – revoker serializes BHT

• X-call, signals
• Scheduling displacement – force/wait OFFPROC
• Mprotect() – TLB access is sequentially consistent



72

Biased Locking - Improvements

• Cost model to drive policies
• Reduce revocation cost

– Avoid current STW (STT?)
• Reduce revocation rate

– Limit # of objects biased
– Feedback: make object ineligible 

• By Type, By Thread, By allocation site
– Bulk
– Batching
– Rebias policies
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Recap – fast-path forms

• 0-0 locks
+ fast uncontended operations
- revocation costs

• 1-0 locks
+ no revocation – predictable and scalable
+ all objects always eligible
- theoretical stranding window - bounded
- still have one CAS in fast-path
+ no heuristics
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Contended Locking – new in 1.6

• Inflated fast-path now 1-0
• Based on park-unpark – platform-specific primitives
• Reduce context switching rates – futile wakeups
• In exit: if a previous exit woke a successor (made it 

ready) but the successor hasn’t yet run, don’t bother 
waking another

• Notify() moves thread from WaitSet to EntryList
• Lock-free EntryList operations – List operations 

shouldn’t become bottleneck or serialization point
• Adaptive spinning
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Contended Locking (2)
• Classic Lock implementation

– Inner lock = protects thread lists – monitor metadata
– Outer lock = mutex itself – critical section data
– double contention! – Outer + Inner

• We use partially Lock-free queues
– paradox - impl blocking sync with lock-free operations
– Avoids double contention

• Minimize effective critical section length
• Amdahl : don’t artificially extend CS
• Wake >> unlock to avoid lock jams
• Don’t wake thread at exit time if successor exists
• Two queues: contention queue drains into EntryList
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Park-Unpark primitives
• Per-thread restricted-range semaphore
• Scenario:

– T1 calls park() – blocks itself
– T2 calls unpark(T1) – T1 made ready - resumes

• Scenario:
– T2 calls unpark(T1) 
– T1 calls park() – returns immediately

• “Event” structure in type-stable memory - Immortal
• Implies explicit threads lists – queues
• Simple usage model: park-unpark can both be 

implemented as no-ops.  Upper level code simply 
degenerates to spinning
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Spinning

• Spinning is stupid and wasteful …
• unless the thread can find and perform useful 

alternate work (marking?)
• Spinning = caching in the time domain

– Stay on the CPU …
– So the TLBs and D$ stay warm …
– So future execution will be faster
– Trade time for space for time
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Adaptive Spinning (1)
• Goal – avoid context switch
• Context switch penalty

– High latency  - 10k-80k cycles
– Cache Reload Transient – D$, TLBs – amortized penalty
– CRT hits immediately after lock acquisition – effectively 

lengthens critical section.   Amdahl’s law impedes 
scalability

• If context switch were cheap/free we’d never spin : Green 
threads

• Thought experiment – system saturation
– Always spin : better tput under light load
– Always block: better tput under heavy load

• Spin limit ~ context switch round trip time
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Adaptive Spinning (2)
• Spin for duration D – Vary D based on recent 

success/failure rate for that monitor
• Spin when spinning is profitable – rational cost model
• Adapts to app modality, parallelism, system load, 

critical section length
• OK to bet if you know the odds
• Damps load transients – prevents phase transition to 

all-blocking mode
– Blocking state is sticky.  Once system starts 

blocking it continues to block until contention 
abates

– Helps overcome short periods of high intensity 
contention – Surge capacity
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Adaptive Spinning – Classic SMP
• CPU cycles are a local resource – coherency shared and scarce
• Context switch 

– disrupts local $ and TLBs
– usually local latency penalty

• Spinning
– Waste local CPU cycles
– Bet we can avoid context switch
– Back-off to conserve global coherency bus bandwidth

• Aggressive spinning - impolite
– Minimizes Lock-Transfer-Time
– Increases coherency bus traffic
– Can actually increase release latency as unlocking thread 

must contend to get line into M-State
• Polite: exponential back-off to reduce coherency/mem bus 

traffic
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Adaptive Spinning - Niagara
• Niagara or HT Xeon - Inverted
• CPU cycles shared – coherency plentiful
• Context switch disruptive to other strands
• Spinning impedes other running strands on same core!
• Spinning:

– Try to conserve CPU cycles
– Short or no back-off

• Use WRASI or MEMBAR to stall
• Other CPUs – Polite spinning

– Intel HT – PAUSE
– SSE3 - MWAIT
– Power5 – drop strand priority while spinning
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Adaptive Spinning (5)

• Find something useful to do – beware polluting D$ + 
TLBs
– Morally equivalent to a context switch – Cache 

Reload Transient
• Don’t spin on uniprocessors
• Back-off for high-order SMP systems

– Avoid coherency bus traffic from constant polling
• Cancel spin if owner is not in_java (Excludes JNI)
• Cancel spin if pending safepoint
• Avoid transitive spinning
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Contended Locking – Futures (1)

• Critical section path length reduction (JIT 
optimization?)
– Amdahl’s parallel speedup law
– Move code outside CS
– Improves HTM feasibility

• Use priority for queue ordering
• Spinner: power-state on windows
• Spinner: loadavg()
• Spinner: cancel spin if owner is OFFPROC

– Schedctl
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Contended Locking – Futures (2)
• Minimize Lock Migration

– Wakeup locality – succession
• Pick a recently-run that thread shares affinity with the 

exiting thread 
• JVM Need to understand topology – shared $s
• Schedctl provides fast access to cpuid

– Pull affinity – artificially set affy of cold wakee
• Move the thread to data instead of vice-versa

• YieldTo() – Solaris loadable kernel driver
– Contender donates quantum to Owner
– Owner READY (preempted) helps
– Owner BLOCKED (pagefault) useless
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Contended Locking – Futures (3)
• Set schedctl nopreempt, poll preemptpending

– Use as quantum expiry warning
– Reduce context switch rate – avoid preemption during spinning 

followed by park()
• Polite spinning: MWAIT-MONITOR, WRASI, Fujitsu OPL SLEEP, etc
• Just plain strange:

– Transient priority demotion of wakee (FX)
– Deferred unpark
– Restrict parallelism – clamp # runnable threads

• Variation on 1:1:1 threading model
• Gate at state transitions

– Allow thread to run, or
– Place thread on process standby list

• Helps with highly contended apps
• Puts us in the scheduling business
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Futures (1)
• HTM – juc, native, java
• PrefetchW before LD … CAS : RTS RTO upgrades
• Native C++ sync infrastructure badly broken
• Escape analysis & lock elision
• 1st class j.u.c support for spinning
• Interim step: convert 1-1 stacklocks to 1-0

– Eliminate CAS from exit – replace with ST
– Admits orphan monitors and hashCode hazards
– Fix: Idempotent hashCode
– Fix: Timers – detect and recover
– Works but is ugly
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Futures (2)

• Convert front-end to Java ?
– BEA 1.5
– j.l.O.Enter(obj, Self)
– Use unsafe operators to operate on mark
– CAS, MEMBAR, etc
– Park-Unpark
– ObjectMonitor becomes 1st-class Java 

object - Collected normally
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Memory Model  [OPTIONAL] 

• Defines how memory read and writes may be 
performed by a process relative to their 
program order
– IE, Defines how memory order may differ 

from program order
• Define how writes by one processor may 

become visible to reads by other processors
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