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1 Introduction

The hydrocode is a computational tool for modeling the behavior of con-
tinuous media. In its purest sense, a hydrocode is a computer code for
modeling fluid flow at all speeds. It can, however, be adapted to treat ma-
terial strength and a range of rheological models for material behaviour. In
essence, the code considers the effect of external and internal forces on a
predefined “mesh” of cells, which represent the system being studied. It
assumes that, over a short period of time, these forces are constant and uses
them to adjust the geometry of the mesh accordingly. The forces are the
recalculated and the process repeats until the required solution is found.

This booklet has been compiled to equip the reader with enough insight
to understand the important details and limitations of using a hydrocode;
and to introduce the interested reader to a particularly tractable hydrocode:
SALES 2. The first part of the report is a general introduction to hydrocode
modeling. It discusses the motivation for modeling of this kind, the philos-
ophy of hydrocode modeling and introduces issues relevant to hydrocode
modeling in general, such as discretization, accuracy and stability. Accom-
panying this introduction is the full documentation for SALES 2; a versatile
and tractable hydrocode available for download at:

http://www.lpl.arizona.edu/tekton/sales 2.html

Before discussing the details of hydrocode modeling, it is worth recall-
ing the reasons for such tools. Natural processes range in complexity: some
processes, such as the behavior of a mass on a spring, may be described com-
pletely by a mathematical equation. Other processes, such as the impact of
an asteroid on a planet, are complex enough that an analytical solution is
not possible. In such cases, observational methods and numerical techniques,
using computers, provide the only amenable ways to approach a solution.
If the scale of the problem is beyond the range of laboratory or field exper-
iments, or the conditions for the investigation are too extreme, numerical
modeling becomes the only way of studying a particular phenomenon.

Hydrocode modeling offers a powerful way to study natural phenomena:
from a certain point of view, it can be considered the best instrumented
experiment. However, as a tool, hydrocodes are not without their weaknesses
and limitations. Care should be taken when choosing a hydrocode, defining
the problem and analyzing the results. A broad, but by no means exhaustive,
list of things to bear in mind when considering hydrocode modeling is:

• Is hydrocode modeling required? Analytical solutions are by far
the most powerful descriptions of a process. If a steady-state solution is
required (one that does not depend on time), other, simpler, numerical
techniques may offer a faster means for deriving a solution. Hydrocode
modeling is most applicable to time-dependent, non-linear problems.
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• What is the important physics? All numerical modeling tech-
niques work on the premise that things should be made as simple
as possible (but not any simpler!). In general, the more straightfor-
ward the algorithm for solving a problem, the faster the solution will
be resolved. It is important, therefore, to strike a balance between
considering the physics important to the solution of a problem, and
ignoring aspects of the process that are less, or not, important. For
example, the physics of impact cratering is dominated by different
fundamental principles during different stages of the process. The
early part of the impact is controlled mainly by the thermodynamics
of shock-compression, whereas the latter stages are controlled almost
exclusively by the competition between gravity and the post-shock
strength of the target. Thus, to simulate just crater collapse, it is
important to develop a rigorous rheological model for the target; but
the thermal effects of the collapse process can be justifiably ignored.

• What is the expected result? It is also very helpful to have some
idea of the expected solution. For example, how long the problem will
need to run for, or how large the problem space needs to be.

• Is the result testable? Code verification is an often overlooked
aspect of hydrocode modeling. After a solution is found, how can its
validity be tested? For problems where no analytic solution exists with
which to test the model, there is no short answer to this question. The
best advice is to try to find a similar, less complicated problem, where
an analytic solution does exist. For example, in the case of complex
crater collapse calculations, the simple test problem of the collapse
of a hemispherical cavity in a fluid half-space may be used. As will
be discussed later, it is also important to ensure that the solution is
independent of the resolution used for the problem, in both space and
time. If a solution changes its character for different time steps, for
example, it is probably being affected by numerical artifacts.

• Is the problem solvable given the hardware available and time
constraints? This problem is, again, difficult to answer a priori. The
hardware available will limit the size of the problem space, or the
maximum resolution possible. The amount of time available, and the
processor speed will also limit the number of time steps available.

• What kind of hydrocode is appropriate? There is no such thing
as a universal code. Every hydrocode built, has been written with one
subset of problems in mind. It is important to know which type of
hydrocode is best suited to the problem in hand. The various kinds of
hydrocode, plus their strengths and weaknesses will be discussed later.
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2 A Brief Overview of Hydrocode Modeling

The essence of hydrocode modeling is summarized in the flow chart in fig-
ure 1.

Define the problem:
Equation of state
Constitutive model
Boundary conditions
Mesh geometry
Eulerian or Lagrangian?
Choose material properties

Calculate the forces due to:
External forces
Pressure forces
Constitutive model
Boundary conditions
Artificial stability forces

Update the mesh by moving 
vertices or fluxing material 
between cells

Advance time

Is solution reached?

No

Yes Stop

Figure 1: Flow chart summarizing the general scheme of a hydrocode

Hydrocode modeling rests on three pillars, which are used to determine
the forces acting on the mesh each time step. These are: the Newtonian
laws of motion; the equation of state; and the constitutive model.

The modeling of incompressible, inviscid fluid flow may be described
by the Newtonian laws of motion alone, as a set of differential equations
established through the principles of conservation of momentum, mass and
energy from a macroscopic point of view. These equations are of the form:

Conservation of Momentum
Dvi

Dt
= fi +

1
ρ

∂σji

∂xj
(1)

Conservation of Mass
Dρ

Dt
+ ρ

∂vi

∂xi
= 0 (2)

Conservation of Energy
DI

Dt
= −p

ρ

∂vi

∂xi
+

1
ρ
Πij ε̇

′
ij (3)

where ρ is the material density, vi is the velocity, I is the specific internal
energy, σij is the stress tensor, which is composed of a hydrostatic part, the
pressure p, and a deviatoric part, Πij. fi is the external body forces per
unit mass, and ε̇′ij is the deviatoric strainrate. The subscripts represent the
standard tensorial notation, and summation is implied by repeated indices.

The equation of state relates pressure to the density and internal energy.
It thereby accounts for compressibility effects; that is, changes in density
and irreversible thermodynamic processes such as shock heating.

Equation of State p = p(ρ, I) (4)

The constitutive model, relates the stress to a combination of strain εij ,
strain rate effects ε̇ij, internal energy I, and damage D. These describe the
effect of deformation (change in shape or strength properties).
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Constitutive Model σij = g(εij , ε̇ij , I,D) (5)

Analytical solutions to Equations 1–5 above are only obtainable for cir-
cumstances where certain simplifying assumptions may be invoked, reducing
the number of variables to be considered (Anderson, 1987). In cases of prac-
tical interest, where the variables are numerous and the problem is complex,
the equations must be solved simultaneously. Numerical techniques, using
digital computers, provide the only amenable method to achieve the number
of mathematical operations required for the solution.

All hydrocodes utilize some form of the conservation equations; however,
the usefulness of the hydrocode depends on the sophistication of the equation
of state and constitutive model. A more detailed discussion of these two
pillars of hydrocode modeling, including details of their implementation in
SALES 2, is discussed in the SALES 2 manual, which accompanies this
introduction.

3 The Fundamentals of Hydrocode Modeling

A computer has a finite memory allocation and, therefore, can only repre-
sent a continuous media by dividing it into distinct pieces; a process known
as discretization. Thus, the approach adopted by a hydrocode is to define a
“mesh” to approximate the geometry of interest, which is divided into man-
ageable divisions, known as cells. Scalar quantities within the continuum are
assigned to each cell and are constant within the cell. In two dimensions, the
cell is usually defined by three or four vertices connected by straight lines to
form a triangle or quadrilateral respectively. Vector quantities like velocity
are assigned to each vertex. Boundary conditions are also required to con-
trol the behavior of the exterior vertices. Mesh generation and boundary
conditions are discussed in section 3.1.

The differential equations that describe the kinematic deformation of a
continuum can, likewise, only be approximated by operations on a computer.
Three fundamental techniques exist for discretizing the differential equa-
tions: finite-element schemes, finite-difference schemes and Smooth Particle
Hydrodynamic (SPH) techniques. Essentially the three schemes offer differ-
ent algorithms for solving the same problem; however, each has its benefits
and weaknesses, which are discussed in section 3.2.

The conservation equations at the heart of a hydrocode may be written
with respect to the material; that is, they describe the motion (displace-
ment, velocity and acceleration) from the reference frame of the continuous
media itself. This type of description is known as a Lagrangian (or material)
description. The equations may also be written down with respect to a fixed
reference frame; a formulation termed an Eulerian (or spatial) description.
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A hydrocode may employ either type of formulation to describe the situa-
tion of interest. The choice of either mode of description depends on the
problem under consideration. The relative merits of these formulations is
discussed in section 3.3.

3.1 Mesh generation and boundary conditions

Generating a mesh to represent the geometry of interest, assigning appropri-
ate initial material parameters, and choosing appropriate boundary condi-
tions are the basic inputs for a hydrocode. Certain types of hydrocodes are
designed for particular geometries or boundary conditions, again emphasiz-
ing the importance of choosing an appropriate hydrocode for a particular
problem. 1, 2 and 3D-hydrocodes exist; however, because memory require-
ments scale with the number of cells, 3D hydrocodes have only recently
come into mainstream usage. Frequently, simplifying assumptions are used
to reduce the spatial degrees of freedom. For example, assuming a vertical
impact allows impact cratering studies to use a 2D cylindrical-coordinate hy-
drocode in place of a 3D hydrocode. The computing mesh used in SALES 2
consists of a two-dimensional grid of quadrilateral cells for either cylindri-
cal or plane coordinates. Thus, SALES 2 can only solve problems that are
inherently two-dimensional, or have a symmetry about an axis.

3.1.1 Mesh Generation

Mesh generation is hydrocode specific (see section 3.2); however, it invari-
ably involves modifying the source code. In SALES 2 the default mesh is a
rectangular grid. To modify the form of this mesh, the user must replace
the mesh generation algorithm with one of their own. Historically this has
been a time-consuming task, particularly for complex problem-specific ge-
ometries. However, mesh generation algorithms are now quite sophisticated:
a typical approach for a finite-difference hydrocode would be as follows:

1. Generate a rectangular mesh.

2. Redefine, by hand, the vertex positions for the exterior points of the
mesh.

3. The interior vertices are then repositioned using an interpolation scheme
(for example, Amsden, 1973). The interpolation algorithm moves each
vertex to the average position of its eight surrounding vertices. The
boundary vertices are fixed; they are not moved during the interpola-
tion.

4. After several sweeps over all the vertices the interpolation finishes. The
result is a mesh where all cells are (approximately) regular quadrilat-
erals, for which the finite difference approximations are accurate.
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3.1.2 Boundary Conditions

The types of boundary conditions implemented in a hydrocode also vary
between specific codes. Common boundary conditions fall into the following
categories:

• Free surface This is the simplest type of boundary condition, which
applies no constraints on the motion of the vertex.

• Free slip For a symmetry boundary or a free-slip wall, the normal
wall velocities must be kept at zero throughout the calculation. If
such a boundary is parallel to the coordinate axes implemented in
the hydrocode, this is a simple matter of setting one of the velocity
component to zero. If the wall is slanted or curved both velocity
components must be adjusted.

• No slip For this boundary condition both velocity components are set
to zero, regardless of mesh geometry.

• Specified outflow or inflow For this type of boundary condition the
velocities at the boundary are specified externally. This condition is
complicated, however, by the need to set not just velocities but other,
cell-centered quantities such as density and internal energy.

• Continuative outflow or inflow Similar to the specified flow bound-
ary condition, the typical treatment of such conditions is to set the in-
flow or outflow velocities, densities, energies, etc. equal to the adjacent
cell within the mesh.

• Forcing This form of boundary condition applies a stress along or
across the boundary. The form of this stress may be constant or time-
dependent.

3.2 Discretization

3.2.1 Finite Difference Method

In the finite difference method the spatial derivatives in the differential equa-
tions are replaced by difference equations. For example, for some function
F the partial derivative ∂F/∂x becomes ∆F/∆x where the differences are
computed at grid points. The first derivative of F at xn can be represented
by a variety of difference formulae:
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which correspond to forward, backward and central difference equations,
respectively. SALES 2 is a finite-difference hydrocode, which uses a central
differencing scheme.

The finite-difference method is well-founded and simple to implement.
However, it does require (mainly for convenience) that the grid is struc-
tured (cells arranged in rows and columns). Consequently, clever coordinate-
mapping techniques or adaptive meshing algorithms must be applied in order
to solve problems involving complicated geometries. Furthermore, there is
no straight-forward way to test the accuracy of a solution, and the scheme
is prone to certain types of numerical instability, which require artificial cor-
rections. In general, the accuracy of the solution increases with decreasing
cell size; however, limits on the time step mean that small cell sizes imply
small time steps, leading to long run times. Accuracy and instability in
finite difference algorithms is discussed in more detail later.

3.2.2 Finite Element Method

The finite element method was initially developed on a physical basis for the
analysis of problems in structural mechanics; however, it was soon recognized
that the method can be applied to a variety of problems (Bathe and Wilson,
1976).

Whereas the finite difference method is a pointwise discretization of the
problem space, finite element methodology divides the problem space into
elements. The elements can be rectilinear or curved and, unlike the finite
difference method, need not be arranged in a structured grid. Hence, compli-
cated problem geometries are handled better with a finite element approach.

Interpolation functions (typically a polynomial) are used to represent
the variation of a variable over the element. Each element is associated with
a set of nodes, whose initial locations are known. The displacement of these
nodes are the basic unknowns of the problem. The equations governing the
displacements of these nodes are calculated on an element-to-element basis
and then combined. A consequence of this fact is that finite element codes
may be parallelised as a way to reduce run time.

Once combined, the system of equations relating the forces and dis-
placements at each node is solved by inverting the “stiffness matrix,” which
represents the constitutive relationship between stress and strain. One ad-
vantage of this method is that when the displacements have been derived,
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they can be substituted back into the original equations to check for con-
sistency. Any inconsistency is a direct measure for the inaccuracy of the
solution and can be corrected for during the simulation.

3.2.3 Smooth Particle Hydrodynamics

Smoothed particle hydrodynamics (SPH) was invented to simulate problems
in astrophysics involving fluid masses moving arbitrarily in three dimensions
in the absence of boundaries (Monaghan, 1988). A typical example is the
numerical simulation of the fission of a rapidly rotating star.

SPH involves the motion of a set of points. At any time, the velocity and
thermal energy are known at these points. A mass is also assigned to each
point and, for this reason, the points are referred to as particles. In order to
move the particles correctly during a time step it is necessary to construct
forces which an element of fluid would experience. These forces are basi-
cally constructed using sophisticated interpolation techniques to determine
properties such as density at a given point.

SPH codes offer an attractive alternative to the more well-founded tech-
niques of finite-difference and finite-element, due to the simplicity of the
algorithm: most users tend to write their own SPH code. The method
is inherently Lagrangian (see below), and therefore, possesses most of the
benefits of this formalism; however, SPH does not break down when large
displacements are involved, because the particles are not connected.

Although currently in-vogue, and in an ever advancing state of devel-
opment, SPH codes do suffer from several major short-comings. Currently,
there are no robust methods for describing complicated material rheologies
such as strength, elasticity, etc. Moreover, by their very nature, SPH codes
do not handle certain types of boundary conditions well, further limiting
their potential use. Lastly, in problems such as impact calculations where
the density varies dramatically (from very dense target rock to low density
vapor), SPH suffers because the low density material is represented by too
few particles to simulate the problem well.

SPH codes are good for fluid flow problems involving relatively small
density differences and primarily inflow or outflow boundary conditions. In
particular, they are good for problems involving self-gravity, such as the
formation of planets and stars.

3.2.4 Time Integration

Most hydrocodes use explicit time integration to advance the solution in
time; that is, functions at the new time step are determined from the known
functions at a previous time step. For example, the change in velocity ∆u
of a certain vertex during one time step dt, due to an external acceleration
a, is given as: ∆u = adt. At the next time step the time is advanced, the
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old scalar and vertex quantities are replaced by the new ones and the cycle
repeats.

3.3 Lagrangian and Eulerian Descriptions

Intuitively, these two alternative descriptions for the behavior of a continu-
ous media may be understood by the analogue of an observer watching the
flow of a stream, who decides to add some dye to the water to monitor the
flow of particles. If the observer follows the path of the dyed particles in
the water, the Lagrangian description applies; if the observer remains at a
certain point along the river bank and notes which particles pass with time,
the Eulerian description applies.

A hydrocode may employ either type of formulation to describe the sit-
uation of interest. To obtain a Lagrangian description the computational
mesh is defined to represent the geometry of the problem; points within the
mesh (vertices) are attached to the material and move with the material. As
time progresses, all the variables of interest are computed for each discrete
point in the continuum. Cells defined by adjacent vertices become deformed
in shape and size due to the forces acting on them and the constitutive re-
lations between force and deformation. From a mathematical point of view
the vertices follow the particle paths of the material. Mass, momentum and
energy are transported by material flow. Mass within a cell is invariant;
changes in density are exclusively due to changes in a cell’s volume.

In contrast, the Eulerian description relies on material flowing through
the mesh. In this case the mesh defines the entire space of interest. As time
progresses, the variables of interest are calculated at the fixed points of the
grid. Thus, mass, momentum and energy must flow across cell boundaries.
The amount of flow between cells is used to compute the new variables within
each cell. In this formulation it is the volume of the cell that is invariant
and changes in density are due to changes in the mass of a particular cell.

The choice of either mode of description depends on the problem under
consideration. To illustrate the differences between Lagrangian and Eulerian
material descriptions, as well as the inherent advantages and disadvantages
of each, an example inspired by lecture notes from a short course on Impact
Modeling by H. J. Melosh is presented. Consider the case of a dinosaur
plunging to its demise from a “K/T diving board” Figure 2. Either the
Lagrangian or the Eulerian description may be employed to model this sit-
uation with a computer.

In the Lagrangian formulation (Figure 3a) the dinosaur is divided into
cells, which should be as close as possible to regular quadrilaterals to ensure
accuracy from the finite difference approximations used. The cells that make
up the dinosaur experience external stresses (gravity) and internal stresses
(via the constitutive model) that translate them and deform them. As a
consequence, the dinosaur falls, lands and is crushed. The surface of the
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Figure 2: Illustration of the a dinosaur diving from the K/T diving board

dinosaur is defined by the edges of the cells, thus the resolution of the sur-
face is a function of the number and size of the cells used. The more cells
the better resolved the free-surface. Furthermore, if the problem involves
multiple materials, the boundaries between different materials can be accu-
rately defined by cell boundaries. A significant advantage of the Lagrangian
description is its ability to follow the history of the material within any cell.
Thus, a material whose properties depend upon its previous history can be
modeled; for example, strain hardening or plastic work. Furthermore, it is
straightforward to model time-dependent phenomena not included in the
solution algorithm implicitly; for example, the temporal decay of acoustic
vibrations.

The major weakness with the Lagrangian description comes with ex-
treme deformation. As has just been discussed, the cell quantities of vol-
ume, pressure, and so on, are approximated by finite difference relations.
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Figure 3: Lagrangian (a) and Eulerian (b) description of the dinosaur diving
from the K/T diving board.

These expressions become inaccurate when the form of the cell deviates sig-
nificantly from a regular quadrilateral. Thus, in cells where deformation is
severe (for example in the head of the dinosaur) the calculation will at best
produce spurious results and at worst become unstable and stop.

In the Eulerian formulation (Figure 3b) the mesh must define the entire
space in which the dinosaur’s movement is contained. During the calcula-
tion the dinosaur will occupy certain cells completely, other cells partially
and other cells not at all. This is illustrated by the shading in Figure 3b;
cells containing a greater concentration of dinosaur mass are shaded darker.
Consequently, to achieve the same spatial resolution over the dinosaur as the
Lagrangian description, the number of cells required is significantly greater.
Another disadvantage of the Eulerian description is that as the dinosaur
moves through the mesh it will only partially occupy some cells; a problem
exists of how to represent cells that are a percentage dinosaur and a percent-
age space. Hence, unlike the Lagrangian description, where the free surface
is precisely defined, the free surface is not tracked exactly in the Eulerian
description. In other words, the ability to model the free surface in the Eu-
lerian description is a much more sensitive function of the resolution of the
mesh than in the Lagrangian description. Furthermore, some cell quantities
like viscosity pose a problem in the Eulerian description. Representing a cell
that is partially space and partially dinosaur in terms of mass is relatively
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straight forward. However, defining this cell’s viscosity is less intuitive.
A particularly tractable hydrocode, SALE, was developed by Amsden

et al. (1980) to study fluid flow at all speeds. SALE stands for Simplified
Arbitrary Lagrangian Eulerian (Hirt et al., 1974); meaning that it is ca-
pable of solving fluid-flow problems using either, or a combination, of the
two descriptions. It achieves this by solving a Lagrangian set of differen-
tial conservation equations and then, if the Eulerian description is desired,
remapping the cell and vertex quantities back onto the original grid.

3.4 Accuracy and Stability

It is important to understand the limitations and caveats associated with
hydrocode modeling. These issues deal with the accuracy of representing
a continuum problem on a computer with a finite memory allocation, and
numerical instabilities inherent in the finite difference approximations.

3.4.1 Accuracy

Two types of errors occur which impair the accuracy of a finite difference
scheme: round-off errors and truncation errors. Round-off errors are associ-
ated with the precision of the computer. These errors are introduced after a
repetitive number of calculations in which the computer is constantly round-
ing the numbers to some significant figure and can be minimized by using
high precision. Truncation errors, on the other hand, are a function of the
difference scheme used, not the hardware on which the code is run. The
essence of this error arises from representing a continuous variable with a
discrete number of points, and the magnitude of the errors depends on the
mesh intervals in time and space.

The useful accuracy of a given numerical solution may be difficult to
determine analytically (Hirt , 1968). In any case, it is usually insightful to
adopt a “brute force” approach and use a spectrum of computer runs with
different meshes and time steps to determine if a calculated effect is physical
or simply a numerical artifice. In general, the cell size and time step must
be fine enough to resolve all spatial and temporal variations of interest. If a
solution exhibits large variations over distances comparable to a cell width,
or over times comparable to the time step, it is probably not very reliable.

3.4.2 Resolution

The choice of resolution in space and time is an important issue when using
hydrocodes. A simulation should be conducted with a high enough resolu-
tion to resolve all the important flow variations in space and time. However,
these needs must be balanced by the specifications of available hardware and
the time available to run the simulation. The amount of memory required
for a given simulation is roughly proportional to the number of cells in the
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mesh and the duration of the calculation is dependent on the processor speed
and, more importantly, the size of the time step.

The choice of cell size is both hardware and problem specific and is left
to the user to decide. A good rule of thumb, however, is to use a time step
that is as large as possible given the appropriate restrictions. In many cases,
the largest appropriate time step size is limited by the Courant condition on
sound signal propagation. This time step dtcou is the minimum time taken
for sound to cross a cell:

dtcou < min
(

dx

c
,
dy

c

)
, (7)

where dx and dy are the cell dimensions and c is the speed of sound in the
material modeled. The minimum implies that every cell in the mesh must
be considered to ensure that dtcou satisfies the most restrictive case.

3.4.3 Stability

In addition to concerns over accuracy and resolution, hydrocodes suffer from
inherent instabilities arising from the difference schemes used. Numerical
methods may give solutions that develop large, high-frequency oscillations
in space or time (Amsden et al., 1980); if the physical problem being mod-
eled is known not to exhibit such behaviour, the source may be numerical
instability.

Many numerical devices have been developed to mitigate against insta-
bility. For example, there are well documented limits placed on the size
of the time step to ensure that information cannot travel across a full cell
width in a single time step. Three such restrictions relevant to the calcula-
tions described in this report are discussed here.

Firstly, all hydrocode calculations should require that the Courant con-
dition (equation 7) on sound signal propagation is not violated. Secondly,
the time step should be restricted by the very well-verified condition that
fluid cannot be moved more than approximately one cell-width per time
step; that is,

dt < min
(

dx

|u| ,
dy

|v|
)

, (8)

which is known as the Cauchy, or convective flux limit. The minimum in the
above equations implies that every cell in the mesh must be considered to
ensure that the dt satisfies the most restrictive case. Amsden et al. (1980)
recommend that the time step should never exceed one-fifth of the minimum
cell transit time, or the minimum sound propagation time.

The final restriction on time step due to numerical stability relates to
the stress tensor. When viscous effects are included, the crucial condition
to be satisfied in every cell is that
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dt <

[
2(λ + 2η)

ρ

(
1

dx2
+

1
dy2

)]−1

=
ρdx2dy2

2(λ + 2η)(dx2 + dy2)
, (9)

which roughly states that momentum must diffuse less than one cell-width
per time step. λ and η correspond to the bulk and shear viscosities respec-
tively.

Another numerical consideration is mesh stability. In a Lagrangian cal-
culation of fluid flow using quadrilateral mesh cells, there are certain mesh
deformations that do not result in net pressure changes; that is, there is
change in cell shape but no change in cell volume. Such nonphysical motion
of vertices is sometimes termed “vertex coasting”. To prevent such defor-
mations from slowly degrading the solution, alternate mesh nodes can be
coupled with a small artificial restoring force. This “alternate-node cou-
pling” is discussed in detail in the SALE manual.

3.4.4 Treating Shock Waves

The mathematical idealization of a shock wave is an instantaneous jump in
pressure, velocity, density and internal energy. The shock is actually broad-
ened by rate-dependent physical mechanisms such as viscosity, damage and
pore collapse (Melosh et al., 1992). Nevertheless, rapid changes that occur
over shorter distances than the smallest possible cell size are problematic for
any numerical treatment using a finite difference representation. A special
approach must be adopted, therefore, when modeling the passage of a shock
wave with a hydrocode.

One approach for problems involving shock waves, is to apply an artifi-
cial viscosity (von Neumann and Richtmyer , 1950), which serves to spread
the shock over several cell-widths while preserving the character of the jump
in material properties. Without such dissipation, spurious velocity oscilla-
tions develop behind the shock, which can mask or swamp the true solution
(Anderson, 1987). A widely cited form for the artificial viscosity term is a
pressure addition, q given by:

q = Aρ∇2.v ∇.v < 0,
q = 0 ∇.v ≥ 0,

(Richtmyer and Morton, 1967), which states that q is proportional to the
square of the velocity divergence ∇.v, when ∇.v < 0; that is, in compression
only.

4 Summary: an introduction to SALES 2

This introduction has described, briefly, the fundamental aspects of hy-
drocode modeling. The important things to take away are:
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• Hydrocode modeling is a powerful technique for studying complex nat-
ural processes.

• Hydrocode modeling rests on three fundamental pillars, which provide
the foundation for the solution algorithm.

• There are different types of hydrocode, which use different methods of
discretization and different forms for the governing equations. These
methods have advantages and disadvantages; these will determine the
suitability of certain hydrocodes to a given problem.

• There is no universal code: the usefulness of a hydrocode relates to
the sophistication of the equation of state and the constitutive model
implemented.

• All hydrocodes suffer from issues of accuracy and instability. Hence,
some form of code verification is essential.

Following this introduction are two documents, which together describe,
in detail, the SALES 2 hydrocode. This hydrocode is a relative of an ear-
lier, simpler code SALE. The first document is the original SALE manual.
It describes only a very simple equation of state and constitutive model,
capable of simulating only Newtonian fluid flow. To adequately model more
complex problems SALE has been extensively modified to include sophisti-
cated methods for modeling material response to stress (for example Melosh
et al., 1992; Ivanov et al., 1997). SALES 2 retains all the functionality of
SALE as well as being capable of modeling elasticity, plasticity, multiple
materials and rheologies, and strength degradation via fragmentation. The
documentation for SALES 2, which is designed to complement the original
SALE manual, is the second document included after this report.
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