Applying user modelling to human-computer interaction design
David Benyon® and Dianne Murray*

ABSTRACT

Since the early 1980’s, intelligent and adaptive systems have appeared and
have been written about in a variety of guises. Although there are many
differences between such systems as adaptive user interfaces, intelligent help
systems and explanation systems, there are many similarities as well. The
most notable of these is that they all require user models to be maintained
and exploited as part of their designs. Furthermore, they share the same high
level architecture. This paper discusses the use of user models in human-
computer interaction design and offers a common architecture for these
adaptive systems. A methodology for the development of these systems is
presented.

keywords: adaptive systems, intelligent interfaces, user models, domain
models, , adaptive system architecture, development methodology

1. INTRODUCTION

Both experience and research tell us that computer systems can be difficult to
learn and once learnt, may be easily forgotten. Even when practised users
learn one system well, the software industry’s predilection for development
of new features means much interface functionality is continually changing
through regular use. There is an additional problem of users changing their
perception of and proficiency with different software systems. The range of
skills, knowledge and preferences of system users means that any computer
system which offers a fixed interface will be better suited to some users than
to others.

One of the most common ways to discriminate between users is to focus on
their experience and frequency of computer use. Carroll (1991) argues that an
effective way of dealing with system complexity for the novice user is to
provide a functionally simple system. Intermittent or discretionary computer
users have to master different application packages as the need arises, and
seldom have any real choice in the purchase, selection or use conditions of
the software which their management decides upon. Discretionary users are a
particularly important class as they often have to be encouraged to make use
of a system and will generally benefit from easy-to-use, intuitive and
functionally simple interfaces. Another familiar class of user is the
committed or so-called ‘expert’ user who may choose to employ different
packages for different activities.

* Computing Department, Open University, Milton Keynes, MK7 6AA, UK

*+ Social and Computer Sciences Research Group, Dept. of Sociology, University of Surrey,
Guildford, UK

page 1

The difficulties involved in designing an interface which will deal effectively
with individual preferences and experience, whilst minimising user
frustration, learning effort and transfer errors is widely recognised as a
stubborn HCI problem. However, many systems could potentially have a
range of different features to match the diversity of user populations.
Moreover, it is possible to provide these different features automatically by
exploiting artificial intelligence and user modelling techniques to build
intelligent or adaptive capabilities into the interface. Systems known as
‘adaptive systems' or 'intelligent (user) interfaces' seek to do just this.

In this paper, we describe how user models can be exploited in order to
enhance human-computer interaction. We present an overview of the types
of system which have exploited a user modelling approach, provide a
unifying architecture for these systems and outline a methodology for
adaptive system development. Before this, however, we briefly look at the
potential problems of adaptive interfaces.

2 ARE ADAPTIVE INTERFACES DESIRABLE?

There are, of course, many systems which cater for different physical
environments and tasks and which attempt to match individual
requirements in a number of ways. The simplest approach is to build
completely different systems for different markets. An example is the variety
of word processors which are used by populations so diverse such as school-
children, business professionals, authors and typesetters.

Another design solution is to allow individualisation by means of
‘customising’ facilities to amend and shape major parts of system behaviour
and responses. Users can define personal command sets, change or determine
interface characteristics and write their own 'macros'. These facilities are
present in many of the computer systems we now use but the drawback is
that, in order to adequately exploit customisation, the user must learn yet
another set of activities and functions which imposes additional mental load
or which may interfere with the completion of other tasks. That user, or a
surrogate, must become a quasi-expert in operations ranging from
manipulation of the screen display (e.g. shaping windows, selection of colour
and background patterns) to running saved profiles which initiate start-up
processes to the coding of function keys and macros. Some routines will only
have to be set once and may be intuitively obvious or be in keeping with the
‘look and feel’ of a particular interface, but others may involve learning a
specialised command set or finding out how a specific terminal or piece of
equipment operates at a low physical level. The user may have to master
complex syntactical and semantic constructs in order to make use of the
system whilst the specification of macros is akin to a programming task,
forcing users to engage in a specialist activity for which they may have little
or no training.

page 2

Adaptive user interfaces relieve users of the burden of personalising the
system and so may overcome the limitations of customisation as a design
solution, but they present other potential problems. We have been
conditioned by habit and perceived good human-factors practice to expect to
meet computer interfaces which are static and (more-or-less) predictable. We
fear that a system which suddenly or autonomously changes is going to be
confusing, unsettling and inconsistent. Consistency is an important goal of
HCI research and adaptive systems appear to go against this maxim.

The problem of ‘hunting’ has been raised with respect to adaptive systems
(Innocent, 1982, Edmonds, 1987). This can happen when the response which a
fully adaptive system makes to its user is amended to meet the changed
circumstances or interpreted needs of that individual user, just at the time
when the user has adapted his or her response patterns or actions to that
previously demanded by the interface. The user then has to learn a new
interface. In the case of adaptive systems, the pertinent problem is one of
intervention at an appropriate point, identifying the natural and suitable
breaks in an interaction at which adaptation can be effective and efficient with
respect to the tracking of user task needs and the interpretation of user
actions. A major problem to be resolved is that of whether adaptation should
be controlled solely by the system, or whether it should be a co-operative
process, achieved by mutual recognition of the need and a shared agreement
on implementation.

There is a significant cost associated with the implementation of adaptive
systems, both in the early design stages and in the subsequent coding, and the
guestion naturally arises as to whether this cost can be justified. The answer is
likely to be ‘yes’ if adaptive systems significantly improve usability and the
guality of interaction. Furthermore, the inclusion of an adaptive capability
may not be such a large overhead if it arises as a natural consequence of better
attention and metrics being applied to interactive system design. One of the
objectives of the work reported here has been to develop cost-effective
software support for adaptive systems development.

Another argument against the implementation of adaptive systems is that of
‘feasibility’. Not only has it been asked whether systems can actually
incorporate enough suitable knowledge about an individual user in order to
make adaptive responses to that person a viable proposition, but the basis
upon which user characteristics can be inferred has been questioned
(Thimbleby, 1990; Pullinger, 1989).

Interaction with computer systems can be a frustrating, time-consuming and
ultimately unrewarding experience with many user misunderstandings and
difficulties because of inflexibility of system design. On the other hand,
human-human interaction shows excellent reactive, adaptive and co-
operative capabilities with an ability to recognise limits and provide
‘satisficing’ responses. As computer systems evolve in complexity to become
self-determining agents and dialogue partners, aspects of human-computer

page 3

interaction will require a similar degree of flexibility and accommodation to
the external world and to the needs of the other dialogue partner. Adaptive
interfaces and other adaptive systems offer the potential to deal with these
issues if they can overcome the problems mentioned.

Adaptive systems are systems which can automatically alter aspects of their
functionality and/or interface in order to accommodate the differing needs of
individuals or groups of users and the changing needs of users over time
(Benyon, Innocent and Murray 1987). It would seem that some systems have
to be adaptive if they are to serve their purpose. For example, an explanation
system or an advice giving system has to provide explanations and advice
appropriate to the user’s individual circumstances and the task. At the other
end of the spectrum, particularly simple systems do not have to be adaptive
and indeed there may be distinct advantages from having non-adaptive
systems. In the middle however, lies a host of systems which may benefit
from an adaptive capability, depending on their intended purpose and the
envisaged user groups.

It is not the argument presented here that systems should adapt to everyone.
We may decide that systems should not be expected to adapt to complete
novices. People should invest some effort in understanding the system if
only for the sake of safety and security. Similarly we may take the decision
that systems should not automatically adapt to the individual nuances of
behaviour exhibited by expert users. Experts can be legitimately expected to
learn a customising system so that they can tailor the system to their own
needs. Once again we have a host of intermediate users for whom the
interaction is difficult enough without imposing a tangential load of a
customising system and who want to use the system but perhaps only
infrequently and intermittently. Moreover it is this large group of users
whom we want to encourage to use technology and who are put off by its
complexities and inflexibility.

3. ADAPTIVE USER INTERFACES

Since the early 1980’s, intelligent and adaptive systems have appeared and
have been written about in a variety of guises. One early workshop on the
topic of ‘Intelligent Front Ends’ (Bundy, 1983) brought together some 24
research projects in the area and demonstrated just how wide ranging and - as
subsequently became apparent - how naive many of the assumptions were
about the viability of such constructions. One of the first fully-detailed
descriptions of the requirements of an adaptive interface was provided by
Innocent (Innocent, 1982) who specified the need for a self-adaptive user
interface (SAUI). Building on the idea of a SAUI, Benyon developed the
design for an adaptive system entitled MONITOR (Benyon, 1984). A prototype
system was implemented which included an explicit representation of
individual users and an explicit representation of the domain. This was
gualitatively different from other ‘adaptive’ systems at the time which

page 4

provided adaptation according to various mechanical or statistical means (e.g.
Furnas, 1985; Greenberg and Witten, 1985).

The essential difference is that the latter systems held a very limited and
implicit model of the user. This took the form of a record of command usage
or data access and provided an automatic response to the frequency of such
usage. For example, the inference was that the more a user used a command
the more they would be likely to use it in the future and the higher up the
preferred command list it would appear (Greenberg and Witten, 1985). There
was no attempt to infer or represent any other information about the user,
nor to maintain a long-term representation of user characteristics. The model
which was employed, moreover, remained implicit rather than explicit.
Although these approaches can be extremely effective, particularly when
coupled with a programming by example approach to inferring user
intentions and a number of successful systems have been developed
(Greenberg, Darragh, Maulsby and Witten, 1991), they are necessarily limited
because the user model is localised to the application and unavailable for
scrutiny.

The adaptive system concept could also be seen in the domain of intelligent
tutoring (see Elsom-Cook, this volume) and in the provisions of help and
other user support. With the application of computer as coach, assistant or
teacher, one use identified for intelligent systems is in the provision of
context-dependent ‘active’ help, fashioned to particular situations and user
difficulties or experiences (Fischer, Lemke and Schwab, 1986; Hansen,
Holgaard and Smith, 1988). On-line help systems track the user’s context and
incorporate assistant strategies and a set of action plans in order to intervene
when most appropriate or when the user appears to be having difficulty. They
are a highly relevant and active area for research into adaptive interface
systems.

Such systems must have a model or a set of domain specific knowledge in
addition to a general ‘recogniser’ and planner. They have many
commonalities with ITS since a diagnostic strategy is required to provide the
most appropriate help for that user in that particular situation, with that
individual history and error-making behaviour and misconceptions. These
types of intelligent system have been categorised as ‘intelligent support
systems’ (Fischer et al., 1986; Fischer, Morch, and McCall, 1989; Fischer, 1989).
Similar work on the Unix Consultant system (UC) (Wilensky, Arenas and
Chin, 1984; Chin, 1986; 1989) and on other interventionist interfaces to Unix
systems (Quilici, Dyer and Flowers, 1986) illustrated the need for a full
understanding of user dialogue and for a model of the user in order to
effectively provide a directed and context-sensitive help facility. These
systems have the aim of providing assistance to natural language queries on
how to best meet the user’s stated goals, whether such users be experienced or
novices. Related work is in the provision of user support in accessing and
customising the Unix manual system (Mason, 1986; Jerrams-Smith, 1985).

page 5

Intelligent help has further developed into ‘critiquing systems’ (Fischer, 1989),
where users must be competent in the subject domain being critiqued, rather
than being tutees or learners. A critic system provides learning on demand
and needs to infer the user’s context and world view, goals and plans. ITS and
help systems can be placed on a dimension from ‘active learning’ and
exploration through to pure information dissemination but critiquing
systems occupy the middle ground because the information imparted to the
user is requested and structured, rather than being open-ended. The critiquing
systems which have been built so far have been largely on powerful
workstations in very specific domains. One area is critical analysis of
programming style (Moore and Swartout, 1988) such as LISP-Critic (Fischer,
1987). Another is in design environments such as CRACK (Fischer, 1989).

A similar but slightly different strand has become apparent in recent research
into the provision of an explanatory facility for the behaviour of the system.
Applications can be seen in describing complex devices such as telephones
(Paris, 1989), educational diagnosis (Cohen and Jones, 1989) and general
advice such as facial skin care (Saratinos and Johnson, 1991). The need for
adaptivity and a representation of the user (or receiver) of the explanation has
been recognised (Kass and Finin, 1989; Carroll and McKendree, 1988) as being
central to the provision of good explanations.

Chignell and Hancock (1988) see an intelligent interface as an intermediary,
the function of which is to encode and translate information between two
interacting agents (for example, a human and a computer) who possess an
incomplete understanding of the other's knowledge. They argue that
intelligent interfaces are needed when there is an excessive semantic distance
between the user’s and the machine’s language for ‘sufficiently’ complex
tasks, as training surrogates or where the task can be shifted between human
and machine. The role played by a human search intermediary in
information retrieval tasks is such an example. Branjik, Guida and Tasso
(1990) describe a similar application with their IR - NL system which helps
and advises users of bibliographic databases to obtain a sensible set of search
criteria. A slightly different approach, but one which again emphasises the
need for an explicit user model is the Adaptive Intelligent Dialogues (AID)
project (Browne, Totterdell and Norman, 1990)

Recent interest in computer supported co-operative work (CSCW) and in
intelligent agents represents a further development of the adaptive system
concept. Co-operative systems require models of all the systems and humans
participating in the interaction (Seel, 1990). More complex systems are ‘agent’
based - capable of voluntary, rational action carried out in order to achieve
goals and holding a representation or ‘belief’ in the state of the world. They
come to hold these beliefs through existing data and by deriving new belief
from interaction with external sources and as a result of internal reasoning.
Intelligent computer systems are deemed to be agents capable of conversing
and discoursing about the events and beliefs of the world which they share
with their users. Kiss (Kiss, 1988) argues that intelligent dialogue agents are

page 6

autonomous, co-operative (but permitting conflict), continuously active and
reflexive in that they are capable of self-understanding and self-modification.
Multiple agent systems incorporating surrogates to filter routine tasks and
provide personalised ‘theatrical metaphor’ interfaces are cited as the wave of
the future (Negroponte, 1989) and simple agent-based interaction is a
prerequisite of co-operative dialogue, between human or computer as in the
interface agents which provide ‘expertise, skill and labour’ described by Laurel
(Laurel, 1990). Agents are adaptive systems, but systems which are specialised
and know about only a very small part of the world.

4. AN ARCHITECTURE FOR ADAPTIVE SYSTEMS

The above survey illustrates how, in the last ten years, many researchers from
different backgrounds have recognized the potential which user models have
in improving aspects of the interaction. Although the system categories in
which user modelling and adaptivity have been deployed are quite diverse
and work has taken place from different disciplines, with the researchers
employing different techniques and specialised language to explain their
concepts, they seem to share an underlying architecture. In this section we
present a description of the components which all adaptive systems must
have. Clearly the complexity of the system and the requirements of the
application have an impact on the detail contained in each component. The
advantage of developing a generalised architecture for adaptive systems is
that it enables researchers to talk the same language, to compare different
systems and to develop appropriate representation techniques.

The systems with which we are concerned are adaptive systems in that they
automatically alter aspects of the system to suit the requirements of
individual or groups of user - or more generally to suit the needs of other
agents in the system. All have to infer characteristics of the other agent from
the interaction. All utilize models of individual or groups of user. Work on
active help, intelligent tutoring, natural language, explanation-based and co-
operative agent systems contribute to the confusion because they describe
systems from distinct perspectives. We need to consider how adaptive
systems are designed and how the adaptive functionality can be incorporated
into existing architectures. A conceptual structure for adaptive systems is
shown in Figure 1. It consists of three models; the user model, the domain
model and the interaction model each of which is explained in detail in the
following sections.

page 7

cognitive fil) ()
mosel) (Uonouss)| | (Gaskrove
modae level
stuc(:ljerllt physical
mode level

9 user model) 9 domain model)

“ 4

4 N\
(dialogue record)

evaluation adaptation inference
mechanisms mechanism mechanism

interaction knowledge base

interaction model

Figure 1. Overall architecture for an adaptive system
4.1 The User Model

A user model has to be an integral part of any adaptive system. The term as
used here means a representation of the knowledge and preferences which
the system ‘believes’ that a user (which may be an individual, a group of
people or non-human agents) possesses. Wahlster and Kobsa (1989) stress that
a user model is a knowledge source which is separable by the system from the
rest of its knowledge and contains explicit assumptions about the user. Finin
(1989) argues that a user model is 'knowledge about the user, either explicitly
or implicitly encoded, which is used by the system to improve the
interaction.' (p.412)

A user model is different from both the actual knowledge possessed by a user
and knowledge employed by system designers. System users have some
knowledge of the system which is represented in their mental models of the
system - the user's model (Norman, 1986). System designers form mental
models of users (the designers' models) and use these to guide their designs.
Every system thus embodies an implicit model of the user (which may be as
basic as the assumptions made about the physical capabilities of users, such as
being able to type or use a mouse). This data though is not accessible to the
system and cannot be considered a user model. We must also distinguish
between the data which a system may have about a user (such as the data
stored in a personnel database) and a user model. Personal data of which the
system is unaware and which it cannot exploit in its interactions does not
constitute a user model (Wahlster, 1989).

The user model component of an adaptive system is a representation of the
characteristics of the users, or more generally the agents, with which the
system can interact. The user model is used to provide adaptivity either by

page 8

intervention or by co-operative agreement with a user. User models may be
highly pragmatic in that they represent only what is required in order to
facilitate the required adaptation. Other user models may be oriented towards
a realistic description of the user. Murray (1987) refers to these as ‘Embedded
User Models’ (EUMSs).

For example, we expect some adaptive interfaces will have to deal with
fundamental cognitive characteristics such as a user's preferences for
particular styles of display, basic cognitive capabilities such as spatial ability
and preferred learning styles (van der Veer, 1990). In these systems long-term,
psychologically valid models are vital. Cognitive models are also important
to intelligent support systems and explanation systems where the
requirements of the system demand that help or explanations take into
account users' existing knowledge and the intention which they have in
asking for advice.

Knowledge for the user model can be acquired implicitly by making
inferences about users from their interaction, by carrying out some from of
test, or from assigning users to generic user categories usually called
'stereotypes' (Rich 1983; 1989). Other mechanisms may be employed to infer
user characteristics. In terms of our adaptive system architecture, it is the
interaction model which is primarily responsible for inferring knowledge
about users. Explicit acquisition may be achieved through some co-operative
behaviour such as asking relevant questions. Alternatively, the user model
may be fed with previously stored information, held on whatever medium
may be appropriate or transportable. The use of user records, profiles or scores
in a personal data store such as a ‘smart’ card is one mechanism to allow full-
scale use of adaptive systems with explicitly acquired data (Murray, 1989).

User models may contain one or more of three types of knowledge of the
user. Firstly, the user model may hold data about what the system believes
the user believes about the domain. Because of the similarity of this data to
that held by intelligent tutoring systems, we refer to this portion of the user
model as the student model. The student model contains knowledge which
the system believes that a user has about the domain within which the
adaptive system is to function. Student model data is domain dependent data
and may be kept at one or more of three levels: the task, level, the logical
level and the physical level.

The task level describes user goals in the domain. For example, an intelligent
support system may need to infer that a user is trying to display the contents
of a directory and not list the content of a file in response to a query such as
'how do | use Is to display my directory'. A second level of description of user
knowledge of the domain is the logical level. Here the system records what it
believes the user understands about the logical functioning and the logical
concepts embodied by the domain. For example, a user having trouble
reformatting a paragraph in a word processor may have misunderstood the
logical concept of a paragraph rather than misconstruing the effect of a

page 9

particular system function. Finally the system records the user's (inferred)
knowledge at the physical level. It may be that anaphoric references (for
example) can be effectively inferred by using some heuristic concerning the
most recent use of a referent.

There is a strong justification for these three levels of description as will
become clear in Section 4.2 and much of the effectiveness of an adaptive
system depends on how comprehensively the levels, and the mappings
between the levels, are represented in the domain model. However, it is
unlikely that any system will be able consistently to infer the level
appropriate for the user without some form of co-operative
metacommunication. At each of these levels the user model should record
the user knowledge and the user's erroneous beliefs in the form of an
‘overlay’ or ‘perturbation’ model.

What separates the domain specific knowledge of the student model from the
other components of the user model is simply that the student model
represents users' beliefs about the domain in which the adaptive system is
effective. Domain independent data may be considered either as fundamental
psychological data or as profile data. Psychological data is concerned with
essential cognitive and affective traits of users and is held in the psychological
model component of the user model. There is an ever increasing body of
experimental evidence which confirms that users differ in cognitive skills
and personality traits which significantly affect the quality of certain
interaction styles and user requirements (van der Veer, 1990; Egan, 1988;
Jennings and Benyon, 1992). We believe that this data is sufficiently different
from other individual differences that it deserves to be separated into a
recognisable component of the user model. Moreover, these characteristics of
users are particularly resistant to change and hence represent user attributes
which are particularly important for adaptive systems. If users find it difficult
or impossible to change aspects of their make-up, these are exactly the
characteristics to which the system should adapt. Our own research in this
area (Benyon and Murray, 1988; Benyon, Murray and Milan, 1987; Benyon,
Innocent and Murray, 1987; Murray, 1988; Jennings, Benyon and Murray,
1991; Jennings and Benyon, in press) has been looking at a number of
cognitive style attributes and adaptation to spatial ability which appears
feasible and appropriate in some domains. Spatial ability is a characteristic
which has been identified by others (Vicente and Williges, 1988; Vicente,
Hayes and Williges, 1987; Egan, 1988) as affecting the quality of interaction,
particularly where users have to navigate through the conceptual space of file
structures or system modes.

Data concerning the background, interests and general knowledge of users is
held in a user profile component of the user model. This data is not
psychological in nature, but may interact with cognitive characteristics in a
number of ways. For example, users with poor spatial ability may be able to
deal effectively with an interface style if they have a certain level of
experience using that style (Jennings and Benyon, in press). Knowledge of

page 10

generic applications is stored in the user profile as is much of the stereotype-
inherited data such as being a business traveller (Morik, 1989) or feminist
(Rich, 1983).

As an additional consideration, it is worth noting that there are many moral
and legal problems associated with such types of user model and these can
only become more acute as their accuracy improves (Pullinger, 1989; Rivers,
1989). There is the issue of how open and available the model should be to
the user whom it represents and the amount of influence that a user can
have in viewing and changing the representation. We do not pursue these
issues in this paper but mention them to show that there are fundamental
moral issues at stake when developing and designing interactive systems
with a degree of intelligence and autonomy and that designers would do well
to be aware of and to be wary of the potential for harm and misuse (Kobsa,
1990).

3.2 The Domain Model

The domain model defines the aspects of the application which can be
adapted or which are otherwise required for the operation of the adaptive
system. Other terms which have been used for this concept include
application model, system model, device model and task model. It is ‘owned’
by, and embedded in the adaptive system. The object of the domain model is
the application which is to have the adaptive capability. For example, the
domain model of UC is a representation of certain aspects of Unix.

The domain model will serve a number of purposes. Firstly, it forms the basis
of all the inferences and predictions which can be made from the user-system
interaction. It is important therefore that the model is at an appropriate level
of abstraction to allow the required inferences to be made. Secondly, the
domain model defines the aspects of the system which are adaptive by
describing alternative representations of domain features. Thirdly, the
domain model holds the characteristics of the application which are
measurable, so that they can be evaluated for effectiveness against the
required criteria. The final use of the domain model is to form the basis of the
student model component of the user model. The system needs to record
what it 'believes' the user believes about certain aspects of the application.
The domain model must describe the system so that it can store data about
the user's understanding of the various concepts and functions in the
application.

The Domain Model consists of one or more abstractions of the system. It is a
description of the application which contains facts about the domain, i.e. the
objects, their attributes and the relationships between objects. The domain
model is the designer’s definition of the aspects of the application relevant to
the needs of the adaptive system. A central question in constructing a domain
model is deciding what level of description should be represented. For
example, the domain model may represent the fact that in Unix the
command rm is used to remove files as

page 11

- to remove a file called foo type ‘rm foo’
- rm is a command which removes files
- If you want to make more space for new files, you can use rm.

These are all quite different levels of abstraction. The first gives a physical,
'how-to-do-it' description. The second provides a logical perspective. The
third describes the purpose of rm.

This three-level domain model reflects the levels of description found
elsewhere in computer science. Issues of representations of systems and the
separability of these descriptions are central to the development of user
interface management systems (UIMS) and related software such as user
interface design environments (UIDE). Although the concerns of UIMS are
guite different from those here (UIMS are concerned with how the
interaction can be managed so that it may allow for multi-threaded dialogues
whereas we are concerned with finding a suitable abstraction of the system to
enable adaptivity), it is important to understand the relationship between the
two.

The ‘Seeheim’ model (Green, 1985) of an interface processor is still the
foundation of most discussion of UIMS. This model describes the interface in
terms of three components; an application model (or application interface)
which describes the application, a dialogue controller which deals with the
processing of input and output and a presentation manager which is
concerned with the actual displays. Cockton’s approach to defining UIMS
(Cockton, 1987) includes reference to a conceptual model of the application.
This provides the basis from which both the semantic, functional description
(the non-interactive core of the application) and the user interface (Ul) can be
derived. A linking mechanism is introduced to communicate between these
components. The Ul corresponds to the dialogue and presentation
components of the Seeheim model. Myers (Myers, 1989) also recommends
merging the dialogue and presentation layers of the Seeheim model.

Coutaz (Coutaz, 1987) takes a similar approach introducing the notion of
multiple, hierarchically arranged dialogue agents. These dialogue agents react
to events. Her model of an interactive system then consists of a presentation
component, an abstraction component and a control which links the other
two together and communicates with other agents. The top level of the
hierarchy describes the application and the presentation. Lower levels are
implementations of specific aspects of the system.

The separation of presentation from abstraction is a theme which runs
through most of the articles in the IEEE Software Issue on Interface Systems
(IEEE Software, 1989). It is illustrated in Figure 2. Foley et al.’s (Foley, Kim,
Kovacevic and Muray, 1989) description of a UIDE makes clear their
preference for an explicit conceptual design. Hurley and Silbert’s ‘Interaction
model’ (Hurley and Silbert, 1989) describes the interface between the Ul and
the Application. The two levels of description are apparent as is the need for

page 12

an underlying conceptual model of the whole system. Fischer (Fischer, 1989)
identifies the need for a representation of the problem domain and the
communication processes.

Presentation and Dialogue | g
Control Abstraction of
Application
'User Interface' (UIl)
A ~. I
* Li ge
Mechamism A\
User Application

(non-Interactive
part)

Figure 2 General view of levels of description in user interface software

The literature on software for user interface development gives us one view
of how to model computer applications and the separation of the
presentation level (concerning the graphics used, the windowing
mechanisms, fonts, dialogue style, screen layouts and so on) from an
abstraction of the functionality of the application appears central. These two
components are linked through some mechanism which maps aspects of the
presentation onto functionality and vice-versa. However, an important
difference between the purpose of our domain model and the representations
arising from UIMS research is that we seek an abstraction of the application at
various levels in order to facilitate adaptations to people. There should,
therefore, be some correspondence between the domain model and human
cognitive structures.

One of the areas to consider a realistic cognitive representation of computer
systems is the work on Task Analysis techniques (Wilson, Barnard, Green
and Maclean,1988; Diaper, 1988; Payne and Green; 1989, Bosser, 1987). These
are formalisms which attempt to represent some aspect of the application. For
example Cognitive Task Analysis (Barnard, 1987) is concerned with the
nature of mental activity required to perform a task. Other techniques focus
on the prediction of difficulties from interface specifications (ETIT, Moran,
1983), a measure of complexity in order to provide necessary education, such
as Task Action Grammar, (TAG, Green, Schiele and Payne, 1988; Payne and
Green, 1989), or cognitive complexity theory (Kieras and Polson, 1985),
performance e.g. GOMS (Card. Moran and Newell, 1983), learnability (TAG),
or the knowledge actually possessed by users (Wilson, Barnard and Maclean,
1985; Young and Hall, 1982; Johnson, 1989).

page 13

The model of human-computer interaction which underlies task analysis
(Benyon, 1992) recognizes that the user has something which s/he wishes to
achieve outside the computer system (e.g. produce a letter). This goal is then
translated into a number of tasks which have to be performed using a
specified device such as a particular word processor (e.g. start the word
processor, edit the letter, print it). Tasks are decomposed into a hierarchy of
simpler subtasks. These can be further decomposed through several levels
until some ‘simple task’ (Green and Payne, 1989) or ‘unit task’ (Card et al.,
1983) is reached. These simple tasks are those which can be characterised by
having no problem solving or control structure component. Simple tasks
may be different for experts and novices.

This model reflects the abstraction/presentation dichotomy of the UIMS
approach, but also includes the goal or external task level of description. Goals
are concerned with what the system can be used for. A central concern of HCI
is how goals can be mapped onto the functions which are available in the
application. These three levels can be seen in Rasmussen's consideration of
mental models and HCI (Rasmussen, 1986; 1987). and are also apparent in the
philosophical arguments of Pylyshyn (Pylyshyn, 1984) and Dennett (Dennett,
1989) and in the work of Newell ((Newell, 1982).

Thus, bringing together these descriptions, we may consider that a cognitively
valid domain model should capture descriptions of the application at three
levels which we shall refer to as the

= Task level
= Logical level
= Physical level.

At each of these levels, the structure (the objects and relationships which
exist) and the processing of the application need to be described. The task level
is important because the user needs to be aware of the system purpose. A task
level description of UC should reveal that the purpose of UC is to provide
advice, but it will not actually perform any Unix actions. Unless users
understand this level of description, they will be left frustrated and
wondering why UC did not actually display who is using the system
following this interaction (from Chin, 1989)

User: Who is on the system?
ucC: To find out who is on the system, type ‘who’.

The logical level of the domain model emphasises that in order to achieve
some purpose, certain functions have (logically) to be performed and certain
objects have to exist. It describes how something works. An important issue
in user-system interaction is whether some data is to be supplied, or whether
a particular function is to be carried out by the system or by the user. Logically
something has to be done in order to fulfil a purpose. Whether it is done by
human or machine is a design decision.

page 14

The physical level describes how to do something. It is a causal description
concerned with how simple tasks are sequenced and how objects and displays
are laid out. It is concerned with the presentation of the system, dialogue
control and physical actions.

In addition to describing the system at these three levels, the domain model
must describe the mappings between them. For example, a task maps to one
or more logical methods (sequences of functions, or plans) of accomplishing
that task. These functions are mapped onto the required physical actions.
Descriptions may then be provided with or without the mappings. A
description in physical actions describes simply how to do something.
Including the mapping to logical functions or to tasks describes why the
actions are appropriate.

As with the user model, the domain model does not contain everything
about the application. The domain model represents the aspects of the
application which are to be used in providing the adaptive capabilities.

3.3 The Interaction Model

The third component of an adaptive system is its representation of the actual
and designed interaction between user and application. We refer to this as the
interaction model. The interaction model contains everything which is
concerned with the relationships which exist between the representation of
the users (the user model) and the representation of the application (the
domain model).

Although the domain model and the user model describe the domain and
users respectively, it is only when a user actually uses the system that things
can be inferred, or the system can adapt. For our purposes, we may define an
interaction as a user making use of the system at a level which can be
monitored. From the data thus gathered, the system can make inferences
about the user’s beliefs, plans and/or goals, long-term characteristics, such as
cognitive traits, or profile data, such as previous experience. The system may
tailor its behaviour to the needs of a particular interaction or, given suitably
‘reflective’ mechanisms, the system may evaluate its inferences and
adaptations and adjust aspects of its own organization or behaviour.

There are two main aspects to the interaction model;
e capturing the appropriate raw data

- representing the inferences, adaptations and evaluations which may
occur

Raw data is obtained through maintaining a dialogue history or dialogue
record (DR) which records aspects of the individual user’s observed
behaviour. The mechanisms by which inferences, adaptations and
evaluations can be accomplished are represented in an Interaction Knowledge
Base (IKB).

page 15

The dialogue record is simply a trace of the interaction at a given level of
abstraction. It is kept for as long as is required according to the needs of the
adaptive system and is then deleted. The dialogue record may contain details
such as;

= the sequence of keystrokes made
- mouse clicks and mouse movements

e timing information such as the time between commands or the total
time to complete a task

= system messages and other system behaviour

The dialogue record is an abstraction of the interaction in so far as it does not
capture everything which takes place. Facial expressions and other gestures
are not yet part of the dialogue record, nor is it possible to record any non-
interactive activities (such as reading a book) which a user may undertake
during the interaction. However, as the variety of input devices continues to
increase with the introduction of video recordings of interactions, tracking of
eye-movements, etc. so the dialogue record may become more subtle.

Although the dialogue record contains only low level data, it is surprising
how much can be inferred if the knowledge necessary is available (i.e.
provided by a human or stored in a domain model). For example, using a
typical WIMP editor the command sequence 'position and cut' indicates a
possible error since there is no ‘drag’ (or ‘highlight’) operation which indicates
the data to be cut. User errors, habits and preferences can also be quickly
inferred.

The second part of the interaction model is a description of the 'stereotyped’
interaction; the Interaction Knowledge Base (IKB). This describes the
inferences that can be made from the dialogue, the evaluations of the
interaction which are possible and the changes (adaptations) which the
system can accomplish.

The user model and domain model define what can be inferred. The IKB
actually does the inferencing by combining the various domain model
concepts to infer user characteristics or by combining user model concepts to
adapt the system. The IKB represents the relationship between domain and
user characteristics. It provides the interpretation of the dialogue record.

The interaction model is a vital part of an adaptive system. The individual
interactions are maintained in the dialogue record and will be maintained for
as long as is required by the data requirements of the interaction knowledge
base. For example, in the IR-NLI system (Branjik et al, 1990) individual
‘session histories’ are analysed at the start of each interaction. The complete
dialogue record, or a summary of it, has to be maintained between sessions in
this system.

An important design decision which the developer of adaptive systems has to
make is the level of abstraction which is required for the dialogue record, the

page 16

individual user data and the interaction knowledge-base. In our approach, the
interaction model must be constrained so that all attributes used in the
representation are defined either in the domain model or in the user model
as appropriate. Automatic mechanisms are required for this through software
support.

The discussion above may have suggested that an adaptive system requires
only one user, domain and interaction model, but this will not always be the
case. For example, in a given system there may be several user roles. The
focus of the system may be about a person This is the case in Cohen and
Jones’s system (Cohen and Jones, 1989) which helps parents and psychologists
understand the learning difficulties of a student. It is also the issue raised by
Spark Jones (Spark Jones, 1989) who considers the need for an Agent (the
person who conducts the interaction) and Patient (the person who is the
subject of the system) user roles. In general there may be a large number of
user models representing the individual agents in a multi-agent co-operative
system.

Similarly there may be more than one domain model. For example, a system
may have a model of the domain of books and another model in the domain
of a particular company. The interaction can demand that these two domains
are considered in a particular interaction. In the Alvey AID project (Browne,
et al., 1990) one of the systems developed would have required one domain
model of the background system (Telecom Gold) and one for the help system.

The interaction model as discussed seems deceptively simple, but again this
will not always be the case. The adaptive, inference and evaluation
mechanisms contained in the IKB may be extremely complex and do not
have to consist of simple rules. For example, in a natural language dialogue
which is attempting to infer a user's focus of attention, the inference
mechanisms will need a model of the syntax, semantics and pragmatics of
dialogue in general. The IKB will need access to a theory of language
understanding and generation. The system will also need to store and refer to
its own reasoning which produced the recommendations. Although this
arrangement is seen by some as what a discourse model should be (e.g.
Wabhlster, 1988), others (e.g. Morik, 1988) emphasise the difference between
the interaction-independent theory of language and the interaction-
dependent nature of the actual dialogue. This reflects the distinction which
we have drawn between the dialogue record and the mechanisms in the IKB
which use that data.

It follows from this consideration of natural language systems as adaptive
systems that we can expect tutoring systems to include a model of teaching in
their interaction model, help systems to include a model of help giving and
explanation system to include a model of explanation giving. In general, the
interaction model will represent the strategies and theory of the particular
type of system. The IKB thus embodies what Spark Jones refers to as the

page 17

‘Systemm model’ which contains the system’s strategies and plans (Spark Jones,
1989).

As a final note, it is important to understand that this is a conceptual
framework and it does not prescribe any particular implementation. What
actually goes into each model will be a design decision. For example, the
relationship between a particular class of book and a particular class of user
could be represented as an attribute of the book object in the domain model or
it could be represented as a inference mechanism the interaction model. Such
design options will always be available. What this framework does do is to
focus attention on the different kinds of knowledge which are required by the
different models.

5. METHODOLOGY FOR ADAPTIVE SYSTEM DEVELOPMENT

Whether or not a system should have an adaptive capability is essentially a
human-computer interaction (HCI) activity. Alternatives to adaptive systems
will often exist for system developers including training users in the use of a
system, the use of other support mechanisms and customisation facilities.
The suitability of each of these solutions will depend on the nature of the
system, the environments in which it will be used and the characteristics of
its users. Adaptive systems are one solution to usability problems (Benyon, in
press). However, we do expect that incorporating more knowledge into the
interface and providing systems with an adaptive capability will become an
increasingly attractive option for designers.

As an HCI activity, developing adaptive systems shares problems with all HCI
development. HCI problems are typically ill-structured and HCI design is
characterised by ‘design instability’ (Fischer, 1989). Requirements cannot be
fixed and used as the basis for deriving a formal design equivalent and so
designers must take an ‘alternating waves’ approach to analysis and design
rather than a strict top-down approach. Evaluation of alternative designs
becomes central and effective software support tools are vital (Hartson and
Hix, 1989).

Adaptive systems differ from other interactive systems in that they are
characterised by design variety. Rather than the designer trying to obtain a
single solution to a problem, the designer specifies a number of solutions and
matches those with the variety and the changeability of users, environments
and tasks. At some point in the system development process, the designer
may decide that the system requires an adaptive capability. This may be to
meet a specified user requirement, it may arise from the analysis or it may
happen during the transition from a logical to physical design. Once this
option has been identified, the adaptive system must be developed in parallel
with the application and using the same development approach.

The specification of the adaptive system part of the application requires the
specification of the domain, user and interaction models. This in turn
requires the designer to focus on what features of the system are to be

page 18

adaptive, what characteristics of the users it will adapt to and how the
adaptations will be accomplished. It may be that the whole system is to be
adaptive. In this case, the domain model and the system design are the same
thing. However, usually only a part of an application will require an adaptive
capability and so it is this part which must be isolated and specified in the
domain model.

One important issue in adaptive system development is ensuring that the
adaptivity can be controlled and measured and that the reasons for having an
adaptive mechanism are known and clear. We believe that the architecture
and methodology presented here contribute to this. However others (Browne,
Totterdell and Norman, 1990) suggest that specific adaptivity metrics are
necessary in order to control the development process. We see adaptivity as a
usability issue which can be accommodated by usability metrics.

Browne et al. also recognise four levels of adaptive system. (Simple) adaptive
systems are characterised by their ability to produce a change in output in
response to a change in input. Thus they possess a dialogue record and some
adaptation mechanism, but do not have to have explicit user and domain
models (though refining the mechanisms is made more difficult if they do
not). Predictive interfaces (Greenberg et al., 1991) and some natural language
systems fall into this category. They have a generally limited variety of
behaviour because the adaptive mechanism is ‘hard wired’. These are the
stimulus-response systems, or simple rule-based systems.

Self-Regulating systems monitor the effects of the adaptation on the
subsequent interaction and evaluate this through trial and error. A
mechanism is required which maintains a history or at least provides
immediate feedback. This evaluation mechanism then selects from a range of
possible outputs for any given input. These systems require inference
mechanisms. They have to be able to abstract from the dialogue record and
capture a logical or task level interpretation of the interaction. Similarly the
system must now include a representation of its own purpose at the task level
of its domain model.

Whereas self-regulating systems monitor the effect of the change in
behaviour on the actual interaction, self-mediating systems monitor the effect
on a model of the interaction. Hence possible adaptations can be tried out in
theory before being put into practice. Self-mediating systems thus require a
model of the other system with which they are interacting (in order to
estimate the change of behaviour which will result from the systems own
adaptive change). They also need evaluation mechanisms in order to
determine how effective a possible adaptation may be.

In all the other adaptive systems the models are static. Self-modifying systems
are capable of changing these representations. This allows self-modifying
systems to reason about the interaction. These are meta-adaptive systems in
that they can change the user, interaction and domain models.

page 19

Browne et al. point out that these levels reflect a change of intention moving
from a designer specifying and testing the mechanisms in a (simple) adaptive
system to the system itself dealing with the design and evaluation of its
mechanisms in a self-modifying system. Moving up the levels also incurs an
increasing cost which may not be justified. It is important that designers
consider what capabilities are most appropriate for the particular application
at hand. There is little to be gained by having a self-modifying capability, for
example, if the context of the interaction is never going to change.

5.1. Example

As an illustrative example of the methodology in action, consider the
following casel. A database system was to be developed with the purpose of
providing access to data about students and staff in a university. The system
was to be easily usable, with no prior training by two main user groups;
managers and administrative staff who would require the system only very
infrequently and also by clerical staff who would use the system regularly.

During the systems analysis phase, two possible interface designs were
developed - a command language interface similar to SQL and a menu
interface - and experimentally evaluated with representative users. 80% of the
users performed better (faster and more accurately) using the command
interface, but 20% performed significantly better using the menu interface. All
users were tested on a number of characteristics, some profile and some
cognitive, and it was discovered that the 20% who had performed better using
the menu interface had a low score on a spatial ability test, had low experience
with command interfaces and were infrequent computer users.

The designer now has a dilemma. Should a single interface be provided,
should users be able to select one of the available interfaces or should the
designer adopt an adaptive system solution to the interface design? There is a
large group of users (20%) who require one sort of interface and another
group who require another. Being infrequent computer users, the users who
require the more constrained interface should not be expected to customise
the system. Training in the command language is not a viable option as
syntax would soon be forgotten. Thus in this case, there seems to be good
reason to consider the adaptive system approach.

Before making a final decision, however, the designer should consider
whether data is available from the dialogue record to facilitate the required
adaptation and what mechanisms could be employed to make the relevant
inferences and adaptations. An analysis of the experimental data revealed
that the number of errors made when using the command interface
correlated with the users' spatial ability and command experience - every user
making more than one error in twelve tasks was in the low spatial and low

1This is based on our experimental work which is reported fully in Jennings, Benyon and Murray,
1991 and Jennings and Benyon, in press)

page 20

experience class. Errors could be easily detected from the dialogue and could
be used to infer appropriate characteristics of users. The system was to be
adaptive insofar as it would change the interface style in response to these
characteristics of the users.

In this case, then, the adaptive system option seems feasible and desirable.
Data for the user model can be unobtrusively inferred from the interaction
and the mechanisms can be easily programmed. The domain model consists
of four attributes, one at the task level (tasks completed), two at the logical
level (errors made and average task completion time) and one at the physical
level of description (the interface being used).

The user model contains data on the user’s personal profile (experience with
command interfaces and frequency of computer use), cognitive characteristics
(spatial ability) and knowledge of the domain (the student model). This
inherits all the attributes from the domain model and is updated from the
dialogue record.

The interaction model consists of the dialogue record which records details of
the number of errors made and the number of tasks completed and the
Interaction Knowledge-base which describes the inferences (the level of
spatial ability is inferred from the number of errors and number of tasks) and
adaptations (providing the command or menu interface) which the system
can make. In this case no evaluations are undertaken since the system was
not required to be self-regulatory.

Each of the models developed is appropriate for its purpose both in terms of
the feasibility of collecting data and in terms of the characteristics represented.

5.2. Tool support

In our experience, a serious bottle-neck in the development of adaptive
systems has been the difficulty in extracting and modifying the IKB. The
Adaptive Systems Development Environment (ASDE, Benyon, Murray and
Jennings, 1990) is a designer’s tool-kit which tailors the general-purpose
nature of an Al Toolkit to the specific needs of an adaptive system developer
and which exploits the UIMS facilities of the underlying system at run-time.

The ASDE is similar to the concept of an expert system shell or user
modelling shell (Branjik, et al. 1990, Finin, 1989). During the development
phase of building an adaptive system, the ASDE has to play two separate but
related roles. In the first instance the developer employs the ASDE to specify
the characteristics of the target adaptive system and its users, their interaction
and the mechanisms which will guide the inferencing, adaptations and
evaluations which are to take place (see Section 3.3). These features are
represented in the adaptive system’s knowledge-base. Once the structure of a
particular adaptive system has been established, the developer uses the ASDE
to specify the values of relevant attributes of individual or classes of user and
the inferences, adaptations and evaluations which are to be made from these
values.

page 21

The user interacts directly with the target system which then exploits its
knowledge of users and the domain in order to adapt the system
appropriately. The interaction of the ASDE with an adaptive system is
illustrated schematically in Figure 4.

SI::e::iﬁE:s
Designer
—- &
ASDE
mdanitars o
nd -
evdluates Target (Adaptive)
Systermn

Ilter&cts
Trith

Figure 4. Relationship between the ASDE and an adaptive system

The ASDE reflects the architecture of adaptive systems described in Section 4.
It consists of a domain model which describes the structure and functioning
of the domain of the target (adaptive) system and provides the structure of an
overlay model which forms the basis of the student model. In the user model,
each user (individual or class) is represented in the adaptive system as a
system object. The attributes are represented as slots in the objects and hence
all members of that class of user automatically inherit all the attributes of the
class. The facilities offered by inheritance mechanisms are particularly
appropriate for the user model. Initially, the designer specifies the
characteristics of classes, or stereotypes of user using the ASDE. Standard
interactions are designed for stereotypes of user. When individuals use the
target system, they are allocated to one or more stereotypes on the basis of the
knowledge which the system has acquired about the user. The individual
then becomes a member of that class and inherits the characteristics of the
class. Conflicting classifications can be handled through the conflict
resolution mechanisms provided by the Al Toolkit. As the system learns
more about the user, so the user model becomes increasingly individual. The
IKB is defined using the knowledge representation facilities offered by the Al
Toolkit.

One of the most important aspects here is that the model of each user is
explicit and can be displayed and edited if necessary. This facility is vital both

page 22

in respect of the privacy of individuals and their rights under data protection
legislation, and in order to maintain the accuracy of the model. Making the
model explicit and separable from the other components of the adaptive
system facilitates changing the mechanisms as details of the interaction are
understood.

6. DISCUSSION

Building intelligence into the interface is a viable option for designers of
interactive systems particularly if the benefits can be shown to outweigh the
costs. Up until now, however, it has been a rather ad hoc affair. The
contribution which we make here is to place such decisions on a more stable
footing. Developers of adaptive systems should follow the methodology
outlined here and describe their designs in terms of the models identified.
Consideration of the level of adaptivity required is also important (Section 5).

The development of adaptive systems must be seen within the framework of
developing interactive systems. The need for an adaptive system emerges as a
design decision during the development of an interactive system. In some
cases (e.g. a natural language interface) this design decision may occur very
early in the development process, but in other systems it may not appear
until later. The purpose and functions of the adaptive system must be
carefully formulated and understood before they are expressed within the
adaptive system architecture. We expect that as adaptive systems become
more widely used, guidelines will be formulated to assist the designer in
making a decision on when and where to exploit an adaptive system option.
Principles emerging from our own work suggest guidelines such as;

- ‘adapt the system where users are least adaptable’
- '‘adapt to features which have the largest impact on the interaction’
- ‘adapt to the needs of intermittent and discretionary users'.

The adaptive system developer needs to consider the opportunities for
adaptivity provided by the framework of the three models and their
relationships identified in Section 4. Developing the user model forces the
designer to focus on the psychological, profile and domain knowledge which
users will require. The domain has to be described at the task, logical and
physical levels. Specifying the interaction model requires the designer to
consider what data is available from the interaction (the dialogue record) and
the inferences, adaptations and evaluations which can be made from the
dialogue record within the context of the domain and user models.

Although the 'bandwidth' of the dialogue record is necessarily rather narrow
(sequences of tokens passed across the interface and attributes of that sequence
such as timing information), this data can be put to powerful use when
coupled with an explicit domain model and the potential of re-use of user
data through long-term user models. For example, from the dialogue record
we can identify the use of individual commands and command sequences

page 23

which allows the system to infer goals from the physical/logical/task
mappings contained in the domain model. Unusual activities and inefficient
behaviour can be identified by comparing individual user activities with a
normative user model and the physical/logical mappings in the domain
model. Exploiting psychological data alongside a three level domain model
allows the system to adapt at the task level (e.g. by avoiding high-risk tasks
such as formatting discs for nervous users), at the logical level (e.g. by making
different functions available for users with particular cognitive skills) and at
the physical level (e.g. changing the interface style). Profile data can be used in
relating tasks to jobs, restricting the tasks the systems can do or altering
features such as command keys to suit previous computer experience.
Student model data can be used to introduce new tasks when a need is
observed or when a level of proficiency is reached, introduce new functions
or short cuts or to provide simple how-to-do-it knowledge if an important
concept is missing.

The methodology presented in this paper and the necessity for adequate tool-
support for design provides a firmer grounding for adaptive interface
development. To develop adaptive systems, the designer needs to:

= identify the need for an adaptive capability, the features of the system
which are to be adaptive and the variety of the users and environments
in which the system is to operate

< identify the scope of the adaptive mechanisms and define methods for
measuring the scope

= consider how data can be obtained for the user model - explicitly through
asking the user or implicitly through inferring characteristics from the
dialogue

= consider what data can be obtained from the dialogue record and
whether the degree of detail required for the IKB is available

- evaluate and refine the IKB

ACKNOWLEDGEMENTS

Much of the work reported here was sponsored by the National Physical
Laboratory, Teddington, UK under extra-mural research agreements NPL 86-
0436 and NPL 82-0486.

REFERENCES

Barnard, P. (1987) Cognitive resources and the learning of human-computer
dialogues. In Carrol, J.M. (Ed.) Interfacing Thought: Cognitive aspects of
human-computer interaction. (Cambridge, Mass: MIT Press)

Benyon, D.R. (1984) Monitor: a self-adaptive user interface. In: B. Shackel
(Ed.), Proc. INTERACT ’84, First IFIP Conference on Human-Computer
Interaction (Amsterdam: Elsevier Science Publishers B.V.).

page 24

Benyon, D.R. (1992) The Role of Task Analysis in Systems Design, in:
Interacting with Computers, vol. 4 no.1

Benyon, D.R. (in press) Adaptive Systems; a solution to usability problems, to
appear in: User Modelling and User Adapted Interaction,

Benyon D.R., Innocent P.R. and Murray, D.M. (1987)System adaptivity and the
modelling of stereotypes. In: B. Shackel and H-J. Bullinger (Eds.), Proc.
INTERACT 87, Second IFIP Conference on Human-Computer Interaction
(Amsterdam: Elsevier Science Publishers B.V.).

Benyon D.R., Murray, D.M. and Milan, S. (1987) Modelling users’ cognitive
abilities in an adaptive system, In: J. Rasmussen and P. Zunde (EdSs.), Proc. 5th
Symposium EFISS, Risg National Laboratory, Denmark, November 1987
(New York: Plenum Publishing).

Benyon, D.R. and Murray, D.M. (1988) Experience with adaptive interfaces,
The Computer Journal, Vol. 31(5).

Benyon, D.R., Jennings, F. and Murray, D.M. (1990) An adaptive system
developer’s toolkit. In: D. Diaper et al. (Eds.), Proc. INTERACT ’90, Third IFIP
Conference on Human-Computer Interaction (Amsterdam: Elsevier Science
Publishers B.V.).

Bosser, T. (1987) Learning in Man-Computer Interaction, (Berlin: Springer-
Verlag)

Branjik, G., Guida, G. and Tasso, C. (1990) User Modelling in Expert Man-
Machine Interfaces: A case study in Information Retrieval, IEEE Trans.
Systems, Man and Cybernetics, Vol. 20(1)

Browne, D.P., Totterdell, P.A. and Norman, M.A. (1990) Adaptive User
Interfaces (London: Academic Press).

Bundy, A. (1983) (Ed.) Alvey 1983 Intelligent Front End Workshop 26-27 Sept
1983 Cosener’s House, Abingdon, England. DTI, London

Card, S., Moran, A.P., and Newell, A. (1983) The Psychology of Human-
Computer Interaction (Hillsdale, NJ: Lawrence Erlbaum Associates).

Carroll, J.M. and McKendree, J. (1987) Interface design issues for advice-giving
systems, Communications of the ACM, Vol. 30(1).

Carroll, J.M. (1991) The Nurnberg Funnel (Cambridge, Mass.: MIT Press)

Chignell, M.H. and Hancock, P.A. (1988) Intelligent Interfaces in M. Helander
(Ed.) Handbook of Human-Computer Interaction (Amsterdam: Elsevier
Science Publishers B.V.).

Chin, D.N. (1986) User modelling in UC, the Unix consultant. In: M. Mantei
and P. Orbiton (Eds.), Proc. CHI ’86, Human Factors in Computing Systems
(New York: ACM).

page 25

Chin, D.N. (1989) KNOME: Modelling what the user knows in UC. In Kobsa,
A. and Wahlster, W. (1989) User models in dialog systems (Berlin: Springer-
Verlag)

Cockton, G. (1987) A new Model for Separable Interactive Systems In: B.
Shackel and H-J. Bullinger (Eds.), Proc. INTERACT ’87, Second IFIP
Conference on Human-Computer Interaction (Amsterdam: Elsevier Science
Publishers B.V.).

Cockton, G. (Ed.) (1990) Engineering for Human-Computer Interaction
(Amsterdam: Elsevier Science Publishers B.V.).

Cohen, R. (1988) and Jones, M. Incorporating User Models into ExpertSystems
for Educational Diagnosis. In Kobsa, A. and Wahlster, W. (1989) User models
in dialog systems (Berlin: Springer-Verlag)

Coutaz, J. (1987) PAC: An object orientated model for implementing user
interface. In H.J. Bullinger and B. Shackel (Eds.) Human- Computer
Interaction, Proceedings of INTERACT ’87 (Amsterdam: Elsevier Science
Publishers B.V.).

Demazeau, Y. and Muller, J.P. (Eds.) (1991) Decentralized artificial intelligence,
Vol. 2, Proceedings of 2nd European Workshop on Modelling Autonomous
Agents in a Multi-Agent world (Amsterdam: Elsevier Science Publishers
B.V.).

Dennett, D. (1989) The Intentional Stance (Cambridge, Mass., MIT Press)

Diaper, D. (1989) Task Analysis for Human-Computer Interaction (Chichester:
Ellis Horwood).

Edmonds, E.A. (1982) International Journal of Man Machine Studies, Vol.
16(?).

Edmonds, E.A. (1987) Adaptation, Response and Knowledge, Knowledge-
Based Systems, Vol. 1(1), Editorial.

Egan, D.E. (1988) Individual differences in Human-Computer Interaction. In
Helander, M. (Ed.) Handbook of Human-Computer Interaction(Amsterdam:
Elsevier Science Publishers B.V.).

Finin, T.W. (1989) GUMS - A general user modelling shell. In: W. Wahlster
and A. Kobsa (Eds.) op.cit.

Fischer, G. (1987) Making computers more useful. In: G. Salvendy (Ed.)
Cognitive Engineering in the Design of Human-Computer Interaction and
Expert-Systems (Amsterdam: Elsevier Science Publishers B.V.).

Fischer, G., Lemke, A.C. and Schwab, T. (1986) Knowledge-based help systems.
In: M. Mantei and P. Orbiton (Eds.), Proc. CHI ’86, Human Factors in
Computing Systems (New York: ACM).

page 26

Fischer, G., Morch, A. and McCall, R. (1989) Design environments for
constructive and argumentative design. In: Proceedings CHI 89, Human
Factors in Computing Systems (New York: ACM).

Fischer, G. (1989) HCI Software: Lessons learned, challenges ahead, IEEE
Software, January 1989.

Foley, J., Kim, Won Chul, Kovacevic, S. and Murray, K. (1989) Defining
interfaces at a high level of abstraction IEEE Software January

Green, M. (1985) Report on Dialogue Specification Tools in UIMS, in Pfaff,
G.E. (Ed.)User interface Management Systems, (Springer Verlag, Heidelberg)

Green, T.R.G., Schiele, F. and Payne S. J. (1988) Formalisable models of user
knowledge in human-computer interaction, In: C.C. van der Veer, T.R.G.
Green, J.M. Hoc and D.M. Murray (Eds.) Working with Computers: Theory
versus Outcome (London: Academic Press).

Greenberg, S. and Witten, 1.H. (1985) Adaptive personalized interfaces -a
question of viability, Behaviour and Information Technology, Vol. 4(1).

Greenberg, S., Darragh, I., Maulsby, D. and Witten, I.H. (1991) Predictive
Interfaces. What will they think of next? presented at CHI '91 (unpublished)

Hancock, P.A. and Chignell, M.H. (1989) (eds.) Intelligent Interfaces; Theory,
Research and Design. North-Holland, New York

Hansen, S.S., Holgaard, L. and Smith, M. (1988) EUROHELP: intelligent help
systems for information processing systems. In: Proc. 5th Annual ESPRIT
Conference, Brussels, November 1988 (Amsterdam: Kluwer Academic
Publishers).

Hartson, H.R. and Hix, D. (1989) Toward empirically derived methodologies
and tools for HCI development in International Journal of Man Machine
Studies 31, 477-494

Hurley, W.D. and Silbert, J.L. (1989) Modelling user interface application
interactions, IEEE Software, January.

IEEE Software, (1989) January.

Innocent, P.R. (1982) A self-adaptive user interface, International Journal of
Man Machine Studies, Vol. 16(?).

Jennings F., Benyon D.R. and Murray D.M. (1991) Adapting Systems to
individual differences in cognitive style, Acta Psychologica, 78, numbers 1-3,
December.

Jennings, F. and Benyon, D.R. (in press) Database Systems: Different Interfaces
for different users in Behaviour and Information Technology, (forthcoming)

Jerrams-Smith, J. (1985) SUSI -A smart user-system interface,. In: P. Johnson
and S. Cook (Eds.), People and Computers: Designing the Interface
(Cambridge: Cambridge University Press).

page 27

Johnson, P., Johnson, H. Waddington, R. and Shouls, A. (1988?) Task-related
knowledge structures: analysis, modelling and application in Jones, D. M. and
Winder, R. (Eds.) People and Computers IV: From Research to
Implementation (Cambridge University Press, Cambridge)

Johnson, P. (1989) Supporting System Design by analyzing current task
knowledge in Diaper, D. (ed) Task Analysis for Human-Computer Interaction.
(Chichester: Ellis-Horwood)

Kass R. (1989) Student modelling in intelligent tutoring systems. In Kobsa, A.
and Wabhlster, W. (1989) User models in dialog systems (Berlin: Springer-
Verlag)

Kass, R. and Finin, T. (1988) The need for user models in generating expert
system explanations, International Journal of Expert Systems, Vol. 1(4).

Kass, R. and Finin, T. (1989) The role of user models in cooperative
interactive systems, International Journal of Intelligent Systems, Vol. 4(1).

Kay, A. (1989) User interface: A personal view, in Laurel, B. (Ed.) op. cit.

Kay, J. (1991) UM: a toolkit for user modelling, User Modelling and User-
Adapted Interaction, Vol. 1(?).

Kieras, D. and Polson, P.G. (1985) An approach to the formal analysis of user
complexity, International Journal of Man Machine Studies, Vol. 22 (?).

Kiss, G. (1986) High level dialogues in MMI, Final Report on the Alvey
Survey Project (London: Department of Trade and Industry Information
Engineering Directorate).

Kobsa, A. (1987) A taxonomy of beliefs and goals for user modelling in dialog
systems, Memo Nr. 28, Universitat des Saarlandes, Saarbrucken.

Kobsa, A. (1988) A bibliography of the field of user modelling in artificial
intelligence dialog systems, Memo Nr. 23, Universitat des Saarlandes,
Saarbrucken.

Kobsa, A. and Wabhlster, W. (1989) User models in dialog systems (Berlin:
Springer-Verlag)

Laurel, B. (1990) Interface Agents. In: B. Laurel (Ed.) The Art of Human-
Computer Interface Design, Addison Wesley, Wokingham.

Lehner, P.E. (1987) Cognitive factors in user/expert-system interaction,
Human Factors, Vol. 29(1).

Mason, M.V. (1986) Adaptive command prompting in an on-line
documentation system, International Journal of Man-Machine Studies, Vol.
25 (7).

Moore, J. and Swartout, W.R. (1988) Planning and reacting, Proc, AAAI
Workshop on text planning and generation, August 25, 1988, St. Paul,
Minnesota.

page 28

Moran, T.P. (1981) Command language grammar: a representation for the
user interface of interactive computer systems, International Journal of Man-
Machine Studies, Vol. 15(3).

Moran, T.P. (1983) Getting into a system: external-internal task mapping
analysis, In: R.N. Smith and R.W. Pew (Eds.) Proceedings CHI'83: Human
Factors in Computing Systems (ACM Press).

Morik, K. (1989) User models and conversational settings: modelling the
user's wants. In Kobsa, A. and Wahlster, W. (1989) User models in dialog
systems (Berlin: Springer-Verlag)

Morik, K. (1988) ??? Computational Linguistics, Vol. 14(3).

Murray, D.M. (1987) Embedded user models. In: B. Shackel and H-J. Bullinger
(Eds.), Proc. INTERACT 87, Second IFIP Conference on Human-Computer
Interaction (Amsterdam: Elsevier Science Publishers B.V.)

Murray, D.M. (1988) Building a user modelling shell. in: P. Zunde (Ed.), Proc.
6th Symposium EFISS, Georgia Tech., Atlanta, Georgia, USA, October 1988
(New York: Plenum Publishing).

Murray, D.M. (1989) Modelling for adaptivity, Proceedings of 8th
Interdisciplinary Workshop, Informatics and Psychology, Scharding, Austria,
May 1989 (Amsterdam: North Holland).

Myers, B. (1989) User Interface Tools: Introduction and Survey IEEE Software
January

Negroponte, N. (1989) Beyond the desktop metaphor, International Journal of
HCI, Vol. 1(1).

Newell, A. (1982) The Knowledge Level Artifical Intelligence 18(1) 87 - 127

Norman, D. (1986) in Norman, D. and Draper, S. (eds.) User Centred System
Design.

Paris, C.L. (1989) The use of explicit user models in a generation system. In
Kobsa, A. and Wabhlster, W. (1989) User models in dialog systems (Berlin:
Springer-Verlag)

Payne, S.K. and Green, T.R.G. (1989) ??

Pullinger, D. (1989) Moral judgements in designing better systems In:
Interacting with Computers, Vol. 1 (1)

Pylyshyn, Z. W. (1984) Computation and Cognition MIT press, Cambridge,
Ma.

Quilici, A., Dyer, M. and Flowers, M. (1986) AQUA: An intelligent Unix
advisor in: Steels, L. (ed.), Proc. 7th ECAI, Brighton 1986.

Rasmussen, J. (1986) Information processing and human-machine interaction
(Amsterdam: Elsevier North-Holland).

page 29

Rasmussen, J. (1987) Mental models and their implications for design, In:
Austrian Computer Society 6th Workshop on Informatics and Psychology,
June 1987.

Rich, E. (1983) Users are individuals: individualising user models,
International Journal of Man Machine Studies, Vol. 18(?).

Rich, E. (1989) Stereotypes and user modelling. In Kobsa, A. and Wabhlster, W.
(1989) User models in dialog systems (Berlin: Springer-Verlag)

Rivers, R. (1989) Embedded User Models; where next? In Interacting with
Computers, Vol.1 (1)

Sarantinos, E. and Johnston, P. (1991) Explanation dialogues: A theory of how
experts probvide explanations of novices and partial experts, Journal of Al
vol

Seel, N. (1990) From here to Agent theory AISB Quarterly, no. 72 Spring

Spark Jones, K. (1988) Realsim about user modelling in Kobsa, A. and
Wahlster, W. (eds.) op. cit.

Steels, L. (1987) The deepening of Expert Systems, AICOM, No 1, 9-16
Thimbleby, H. (1990b) User Interface Design (Wokingham: Addison Wesley).

van der Veer, G.C. (1990) Human-Computer Interaction. Learning, individual
differences and design recommendations Offsetdrukkerij Haveka B.V.,
Alblasserdam

Vicente, K.J. and Williges, R.C. (1987). Assaying and isolating individual
differences in searching a hierarchical file system Human Factors, Vol. 29,
349-359.

Wahlster, W. (1988) ??? Computational Linguistics, Vol. 14(3).

Wahlster W. and Kobsa A. (1987) Dialogue-based user models, Proc. IEEE Vol.
74(4).

Wilensky, R., Arens, Y. and Chin D. (1984) Talking to Unix in English: an
overview of UC, Communications of the ACM, Vol. 27(6).

Wilson, M.D., Barnard, P. J, Green, T.R.G. and Maclean, A. (1988) Task
Analyses in Human-Computer Interaction. In: C.C. van der Veer, T.R.G.
Green, J.M. Hoc and D.M. Murray (Eds.) Working with Computers: Theory
versus Outcome, (London: Academic Press).

Wilson, M. D., Barnard, P. J. and Maclean, A. (1985) User learning of core
command sequences in a menu system. IBM Hursley Human Factors Report,
HF114, IBM Hursley park, Winchester, UK

Young, R. M. and Hull, A. (1982) Categorisation structures in hierarchical
menus in Proceedings of 10th International Symposium on Human Factors
in Telecommunications, Helsinki. pp 111 - 118

page 30

