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Abstract

The Hankel transform of a function by means of a direct Mellin approach requires sampling

on an exponential grid, which has the disadvantage of coarsely undersampling the tail of the

function. A novel modified Hankel transform procedure, not requiring exponential sampling,

is presented. The algorithm proceeds via a three-step Mellin approach to yield a decomposi-

tion of the Hankel transform into a sine, a cosine and an inversion transform, which can be

implemented by means of fast sine and cosine transforms.

1 INTRODUCTION

The need for numerical computation of the Hankel transform naturally arises in a variety of

applications of technological interest, including optics [1], acoustics [2], electromagnetics [3]-[4]

and image processing [5]. Over the past twenty-five years, a number of algorithms for the nu-

merical evaluation of the Hankel transform have been reported in the literature. For an overview

of these algorithms and their numerical complexity, the reader is referred to [6]. Except for the

obvious but inefficient numerical quadrature method, all these algorithms can be cast into three

general classes. The first class consists of O(N log2N) complexity Fourier-based algorithms via

an exponential change of variables [7]-[10], which has the disadvantage of requiring sampling over

an exponential grid, thereby leading to important errors in the Hankel transform of functions

with an oscillating tail. The second class is based on the asymptotic expansion of the Bessel

series in terms of sines and cosines [11]-[12], leading to an O(N log2N) complexity algorithm

which is flawed however for small values of the output variable. The third class consists of the

backprojection and projection-slice methods [12]-[18], which carry out the Hankel transform as a

double integral by means of one of the standard integral representations of the Bessel functions.
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These projection methods generally require the efficient implementation of Tchebycheff and Abel

transforms. The computational complexity of the projection-based algorithms unfortunately is

O(N2), except in the case of Hansens’s algorithm [15] where the overal complexity is O(N log2N).

In this paper we consider the Hankel transform in a direct Mellin setting and we show that this

leads to the Hankel transform methods by means of exponential sampling. Next we show that a

novel modified Hankel transform approach with a three-step Mellin procedure leads to an algo-

rithm consisting of a sine, a cosine and an inversion transform, which can be carried out without

requiring sampling over an exponential grid. Finally the algorithm is implemented by means

of the fast sine and cosine transform in O(N log2N) complexity and applied to some pertinent

numerical examples.

2 DIRECT MELLIN APPROACH

Consider the Hankel transform

G(x) =

∫ ∞

0
Jν(xt)F (t)tdt (1)

where Jν is the Bessel function of real order ν. The Mellin transform [19], [20], defined as

F̃ (s) =

∫ ∞

0
F (x)xs−1dx (2)

where F̃ (s) is defined over its strip of convergence σ1 < <s < σ2, can be utilized to perform the

Hankel transform (1). It is easy to prove [19] that the Hankel transform can be written in the

Mellin domain as

G̃(s) = J̃ν(s)F̃ (2− s) (3)

where J̃ν(s) is given by the analytic formula

J̃ν(s) =

∫ ∞

0
Jν(x)x

s−1dx =
2s−1Γ(

ν + s

2
)

Γ(
ν − s

2
+ 1)

− ν < <s < ν + 2 (4)

and where Γ is the Gamma function. Hence the Hankel transform can be implemented using

equation (3), requiring one direct and one inverse Mellin transform. Since the Mellin transform

can be interpreted as a two-sided Laplace transform by the change of variables x = e−t, i.e.

F̃ (s) =

∫ ∞

0
F (x)xs−1dx =

∫ ∞

−∞
e−stF (e−t)dt, (5)
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it would seem that this could be easily implemented. If the strip of convergence of the Mellin

or two-sided Laplace transform includes the imaginary axis s = iω, then the Mellin and inverse

Mellin transforms can be replaced by a Fourier and an inverse Fourier transform, providing the

basis for FFT-based algorithms [7]-[10]. However, the need to have F sampled on an exponential

grid is a severe disadvantage, since it amounts to a coarse undersampling of the tail away from

the origin of the function F [6].

3 MODIFIED MELLIN APPROACH

By means of the scaling transform pair

f(t) = 2tν/2F (2
√
t) (6)

g(x) = x−ν/2G(
√
x) (7)

the Hankel transform (1) can be put in the more convenient modified form

g(x) =

∫ ∞

0
(xt)−ν/2Jν(2

√
xt)f(t)dt. (8)

Applying the Mellin transform to (8) we obtain

g̃(s) =
Γ(s)

Γ(1 + ν − s)
f̃(1− s). (9)

To avoid the problem of sampling on an exponential grid inherent in the direct Mellin formulation,

as explained in the previous subsection, we interpret equation (8) as the result of a three-step

procedure

fa(x) =
2

π

∫ ∞

0
cos(xt)f(t)dt (10)

fb(x) =

∫ ∞

0
K(xt)fa(t)dt (11)

g(x) =

∫ ∞

0
sin(xt)fb(t)dt (12)

where K is a kernel function to be determined. In the Mellin domain this translates to

f̃a(s) =
2

π
Γ(s) cos(

π

2
s)f̃(1− s) (13)

f̃b(s) = K̃(s)f̃a(1− s) (14)

g̃(s) = Γ(s) sin(
π

2
s)f̃b(1− s) (15)
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Since g̃(s) is given by equation (9), and taking advantage of the identity

Γ(s)Γ(1− s) =
π

sinπs
(16)

we obtain

K̃(s) =
Γ(s)

Γ(ν + s)
. (17)

To find the inverse Mellin transform of K̃(s) we only consider values ν ≥ 0. For ν = 0 we have

K̃(s) = 1, yielding K(t) = δ(1− t) and hence

fb(x) =

∫ ∞

0
δ(1− xt)fa(t)dt = x−1fa

(

x−1
)

= T (fa)(x). (18)

The inversion operator T (f) is an isometry (unitary transform) over L2[0,∞] since we have

∫ ∞

0
T (f)(x) · T (g)(x)dx =

∫ ∞

0
x−1f

(

x−1
)

· x−1g
(

x−1
)

dx =

∫ ∞

0
f(x) · g(x)dx. (19)

It should be noted that this proves that the modified Hankel transform of order zero is a unitary

transform over L2[0,∞], since it consists of a combination of cosine, sine and inversion transforms.

For ν > 0 we have [19]

K(t) =
1

Γ(ν)
(1− t)ν−1Υ(1− t) (20)

where Υ is the Heaviside function. This leads to

fb
(

x−1
)

xν−1 =
1

Γ(ν)

∫ x

0
(x− t)ν−1fa(t)dt. (21)

The expression on the right-hand side of (21) is known as the fractional Riemann-Liouville integral

[21]-[22] , which, when ν = n is a natural number, can be written as the repeated integral

1

(n− 1)!

∫ x

0
(x− t)n−1fa(t)dt =

∫ x

0
dxn−1

∫ xn−1

0
dxn−2 . . .

∫ x1

0
fa(x0)dx0 = In0 (fa) (22)

where I0 stands for the integration operator

I0(f)(x) =
∫ x

0
f(t)dt. (23)

When ν = n is a natural number (including zero), equations (18) and (21) can be compactly

written as

fb(x) = T
(

x−nIn0 (fa)
)

(x). (24)

Hence the only tools necessary for the modified integer-order Hankel transform are a cosine

transform, a sine transform, repeated integrations and the inversion operator T .
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However, for n > 0, the repeated integrations in the middle of the algorithm are awkward to

deal with and we would like to transfer these repeated integrations to a preprocessing phase, i.e.

before the actual algorithm starts. This problem is addressed by changing the modified Hankel

transform of order ν into the modified Hankel transform of order zero by putting

∫ ∞

0
(xt)−ν/2Jν(2

√
xt)f(t)dt =

∫ ∞

0
J0(2

√
xt)fν(t)dt (25)

where fν is a function to be determined. In the Mellin domain this is equivalent with

Γ(s)

Γ(1 + ν − s)
f̃(1− s) =

Γ(s)

Γ(1− s)
f̃ν(1− s) (26)

or

f̃ν(s) =
Γ(s)

Γ(ν + s)
f̃(s) = K̃(s)f̃(s). (27)

Equation (27) bears close relationship with the Weyl fractional integral [19], leading to the explicit

expression

fν(x) =
1

Γ(ν)

∫ ∞

x
(t− x)ν−1t−νf(t)dt, (28)

valid for ν > 0. For ν = n a natural number, this can be simplified to

fn(x) = In∞(f(x)x−n) (29)

where I∞ stands for the integration operator

I∞(f)(x) =

∫ ∞

x
f(t)dt. (30)

From equations (25) and (29) we see that the modified Hankel transform of order n can be

obtained by repeated integrations, followed by a modified Hankel transform of order zero.

4 NUMERICAL IMPLEMENTATION

We restrict ourselves to the zero’th order modified Hankel transform, since we have shown in the

previous section how higher order modified Hankel transforms can be reduced to the zero’th order

transform. To stress that no exponential sampling is needed, we start by sampling the objective

function f(t) on a linear grid with step ∆, yielding the sample set {f(k∆)}. We then reconstruct

the function f(t) by linear interpolation as

f(t) =
r−1
∑

k=0

f(k∆)φ

(

t

∆
− k

)

+ εT (t) + εI(t) (31)
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where φ(t) is the linear interpolatory kernel, also known as the hat function,

φ(t) = (1− |t|)Υ(1− |t|) (32)

and εT (t), εI(t) are respectively the truncation and interpolation errors

εT (t) =
∞
∑

k=r

f(k∆)φ

(

t

∆
− k

)

(33)

εI(t) = f(t)−
∞
∑

k=0

f(k∆)φ

(

t

∆
− k

)

(34)

The L2 norm of the truncation error satisfies

‖εT ‖ =
√

∫

|εT (t)|2dt ≤
√

2∆/3
∞
∑

k=r

|f(k∆)| (35)

since ‖φ‖ =
√

2/3. Hence the truncation error is small provided |f(t)| has a fastly decreasing tail

for t ≥ r∆. Note that in general ‖εT ‖ → 0 for r →∞, provided supt |f(t)|tη <∞ for some η > 1.

The interpolation error mainly depends on the smoothness of the function f(t) and the quasi-

interpolant character of the kernel φ(t). It has been proved in [23] that the L2 norm of the

interpolation error satisfies

‖εI‖ ≤ C∆q‖f (q)‖ (36)

provided f(t) has its qth derivative in L2[0,∞] and provided the interpolation kernel is a quasi-

interpolant of order q, i.e.

∑

k∈Z

kmφ(x− k) = xm m = 0, . . . , q − 1 (37)

This is the case for the linear interpolatory kernel φ(t) for which q = 2. Note that in general

‖εI‖ → 0 for ∆→ 0. Since the zero’th order modified Hankel transform is unitary, the truncation

and interpolation errors propagate through the transform process with their L2 norms unchanged,

and hence we can as well omit the error terms in (31) and consider the modified Hankel transform

of

f̄(t) =
r−1
∑

k=0

f(k∆)φ

(

t

∆
− k

)

(38)

while acknowledging the existence of the error norms ‖εI‖ and ‖εT ‖.
After the cosine transform of (38) we obtain

fa(x) =
2

π
U∆(x)

r−1
∑

k=0+

f(k∆) cos(xk∆) (39)



7

where
∑r−1

k=0+ ak = 1
2a0 + a1 + · · ·+ ar−1 and U∆(x) is the Fourier transform

U∆(x) =

∫ ∞

−∞
e−ixtφ(t/∆)dt = ∆

(

sin∆x/2

∆x/2

)2

(40)

Note that equations (39) and (40) imply

fb(0) = lim
x→0

x−1fa(x
−1) = lim

x→∞
xfa(x) = 0. (41)

Sampling at multiples of the new step

∆c =
π

N∆
(42)

where N ≥ r is a power of two, leads to

fa(l∆c) =
2

π
U∆(l∆c)

r−1
∑

k=0+

f(k∆) cos(klπ/N) l = 0, 1, . . . ,M − 1 (43)

where M = Nm, and m, the oversampling rate is chosen to be a power of two. Oversampling is

necessary to adequately represent the tail of the function fa since it is easy to prove that

max
l≥M

|fa(l∆c)| ≤
∆

m2

(

2

π

)3 r−1
∑

k=0+

|f(k∆)|. (44)

Formula (43) can be efficiently implemented with the fast cosine transform [24] with possible

zero padding (r < N). Note that we only need two fast cosine transforms of order N, since the

modulo N decomposition of the index l = Nα+ β implies that

r−1
∑

k=0+

f(k∆) cos(klπ/N) =
r−1
∑

k=0+

(−1)kαf(k∆) cos(kβπ/N). (45)

Next we interpolate fa(x) at the chosen data points, yielding

fa(x) =
M−1
∑

l=0

fa(l∆c)φ

(

x

∆c
− l

)

+ εaT (x) + εaI (x) (46)

where the same error analysis as before is applicable. Omitting the error terms εaT and εaI we may

write

f̄a(x) =
M−1
∑

l=0

fa(l∆c)φ

(

x

∆c
− l

)

(47)

To find an adequate representation of the function fb(x) = x−1f̄a(x
−1) we split equation (47) as

f̄a(x) =
p
∑

l=0

fa(l∆c)φ

(

x

∆c
− l

)

+
M−1
∑

l=p+1

fa(l∆c)φ

(

x

∆c
− l

)

= fa1(x) + fa2(x) (48)
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where p ≥ 1. In fact, as will be seen from the numerical examples, taking the lowest possible

value plus one, i.e. p = 2 seems to be a judicious choice. The reason for the splitting (48) is that

the functions φ
(

x−1
)

and φ
(

x−1 − 1
)

do not have compact support, and in general the functions

φ
(

x−1 − l
)

with l small will represent functions with a too large support to fit in a subsequent

interpolatory scheme. Therefore the sine transform (12) of fb1(x) = x−1fa1(x
−1) is calculated

analytically, yielding

g1(x) =
p
∑

l=0

fa(l∆c)

∫ ∞

0
sin(xt)t−1φ

(

t−1

∆c
− l

)

dt =
p
∑

l=0

fa(l∆c)Θl(x/∆c) (49)

where the functions Θk, bearing close relationship with the sine and cosine integrals, are derived

in the Appendix.

To sample the function fb2(x) = x−1fa2(x
−1) we must first choose the sampling step. It is clear

from equation (41) that we must take fb2(0) = 0 as first sample. If we take as sampling step

Ω =
1

(M − 1)∆c
(50)

the second sample of fb2 corresponds with theMth sample of fa2. The other samples are obtained

by linear interpolation. Summarizing, we have

fb2(0) = 0 (51)

fb2(kΩ) = 0 k ≥ M − 1

p
(52)

fb2(Ω) =
1

Ω
fa((M − 1)∆c) (53)

else fb2(kΩ) =
1

kΩ

{

fa(lk∆c) +

(

M − 1

k
− lk

)

(fa((lk + 1)∆c)− fa(lk∆c))

}

(54)

where

lk =

⌊

M − 1

k

⌋

(55)

and b·c is the floor function. This leads to the interpolation formula

fb2(x) =
M−1
∑

l=0

fb2(lΩ)φ

(

x

Ω
− l

)

+ εbT (x) + εbI(x) (56)

where the same error analysis as before is applicable. Omitting the error terms εbT and εbI we may

write

f̄b2(x) =
M−1
∑

l=0

fb2(lΩ)φ

(

x

Ω
− l

)

(57)
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yielding the sine transform

g2(x) = UΩ(x)
M−1
∑

k=0

fb2(kΩ) sin(xkΩ) (58)

and its sampled version

g2(l∆s) = UΩ(l∆s)
M−1
∑

k=0

fb2(kΩ) sin(klπ/M) l = 0, 1, . . . ,M − 1 (59)

where

∆s =
π

MΩ
. (60)

Formula (59) can be efficiently implemented with the fast sine transform [24]. Finally g(x) can

be written as

g(x) =
M−1
∑

l=0

[g1(l∆s) + g2(l∆s)]φ

(

x

∆s
− l

)

+ εgT (x) + εgI(x) (61)

where the same error analysis as before is applicable. An important point is the choice of the

sampling steps ∆, ∆c, Ω and ∆s. If we require the input step ∆ to be approximately equal to

the output step ∆s, it is easy to show that
√
N ≈ π/∆, and hence a reasonable choice for N is

N = 4dlog2(π/∆)e. (62)

When N is chosen this way, all the sampling steps are of the same order of magnitude, since it

is then clear that

∆s ≈ ∆ ∆c ≈ ∆/π Ω ≈ ∆/mπ. (63)

The operation count is given by

NOP = 2N log2N +M log2M + (p+ 1 + γ)M (64)

where the constant γ summarizes the overhead due to the multiplications with the kernel U∆ and

the linear interpolations at the core of the algorithm.

5 NUMERICAL RESULTS

• As a first example we consider the modified Hankel transform pair

f(t) = Υ(1− t) g(x) = J1(2
√
x)/
√
x. (65)
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The direct transform f → g is performed with r = 64 samples, a sampling range r∆ = 2.0, an

oversampling rate m = 4 and a parameter p = 2. The resulting curve is shown in Figure 1. The

inverse transform g → f is more difficult to implement, since to have a finite sampling range we

need to cut off the tail of g, causing truncation errors, while Gibbs-type ringing errors occur due

to the fact that the outcome of the transform, f, is not a continuous function. The resulting

curve, with r = 4096, r∆ = 200.0, m = 4 and p = 2 is shown in Figure 2.

• As a second example we consider the modified Hankel transform pair

f(t) = Υ(1− t)/
√
1− t g(x) = sin(2

√
x)/
√
x. (66)

The direct transform f → g and inverse transform g → f are executed with respective parameters

r = 128, r∆ = 2.0, m = 4, p = 2 and r = 4096, r∆ = 197.0, m = 4, p = 2. The results are

shown in Figures 3 and 4. It is seen that the remarks from the first example regarding the inverse

transform apply to this example in an even enhanced fashion, due to the fact that f exhibits a

singularity at t = 1. It should be noted that this example does not fit readily in the setting of

the algorithm, since we tacitly assumed f to be in C[0,∞] (piece-wise linear=continuous) and

L2[0,∞], and in this example f is neither.

• As a third example we consider the modified Hankel transform pair

f(t) = 2e−2
√
t g(x) = (1 + x)−3/2. (67)

Both the direct and inverse transforms are performed with the same parameter set r = 128, r∆ =

10.0, m = 2, p = 2. The results are shown in Figures 5 and 6.

• Finally we consider the modified Hankel transform pair

f(t) = L8(2t)e
−t g(x) = L8(2x)e

−x (68)

where Ln stands for the Laguerre polynomial. Note that we have in general [25]

∫ ∞

0
J0(2

√
xt)Ln(2t)e

−tdt = (−1)nLn(2x)e
−x (69)

and hence the Laguerre functions (scaled by a factor two) are the eigenvectors of the modified

Hankel transform with eigenvalues 1 and -1. The results for this last example, with parameter

set r = 256, r∆ = 20.0, m = 4, p = 2, are shown in Figure 7.
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6 CONCLUSION

We have shown that a novel modified Hankel transform approach with a three-step Mellin proce-

dure leads to an algorithm consisting of a sine, a cosine and an inversion transform, which can be

carried out without requiring sampling over an exponential grid. The algorithm is implemented

by means of the fast sine and cosine transform, together with judiciously chosen interpolation

schemes, yielding an O(N log2N) complexity algorithm.

APPENDIX

In order to evaluate (49), we need to find an expression for

Θk(x) =

∫ ∞

0
sin(xt)t−1φ(t−1 − k)dt. (A1)

After some algebra we obtain

Θ0(x) =
π

2
− S(x). (A2)

where the function S(x) is given by

S(x) = Si(x) + sinx− xCi(x) (A3)

and where Si(x) and Ci(x) are the sine and cosine integral functions [26] defined as

Si(x) =

∫ x

0
sin(u)u−1du (A4)

Ci(x) = −
∫ ∞

x
cos(u)u−1du. (A5)

Programs for the computation of these functions are available e.g. in the Numerical Recipes [24]

packages. In the same vein we have

Θ1(x) = 2S(x)− 2S(x/2) (A6)

and for k > 1 we have the expression

Θk(x) = 2kS(x/k)− (k − 1)S(x/(k − 1))− (k + 1)S(x/(k + 1)). (A7)
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Figure Captions

Fig. 1: Modified Hankel transform pair Υ(1− t) 7−→ J1(2
√

x)/
√

x.

Fig. 2: Modified Hankel transform pair J1(2
√

x)/
√

x 7−→ Υ(1− t).

Fig. 3: Modified Hankel transform pair Υ(1− t)/
√
1− t 7−→ sin(2

√
x)/
√

x.

Fig. 4: Modified Hankel transform pair sin(2
√

x)/
√

x 7−→ Υ(1− t)/
√
1− t.

Fig. 5: Modified Hankel transform pair 2e−2
√

t 7−→ (1 + x)−3/2.

Fig. 6: Modified Hankel transform pair (1 + x)−3/2 7−→ 2e−2
√

t.

Fig. 7: Modified Hankel transform pair L8(2t)e
−t 7−→ L8(2x)e

−x.
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