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Abstract

In this thesis, a topological construction of Hecke algebra representations associated
with two-row Young diagrams is presented. These are the representations which appear in
the one-variable Jones polynomial, looked at from the braid point of view. The construc-
tion used obtains these representations from monodromy representations on a vector bundle
whose fibre is the homology of a complex manifold with a suitable, non-trivial, abelian lo-
cal coefficient system. Alternatively, they are expressed as the monodromy representations

obtained from the solutions of suitable systems of differential equations.

In the work of Tsuchiya & Kanie and Kohno, another construction of these representa-
tions can be found, in terms of the monodromy of n-point functions in conformal field theory.
A comparison between the two constructions is made, which leads to a detailed correspon-
dence, and the implications of this, in the context of conformal field theory, are very briefly

discussed.
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1: Introduction and overview

In this Thesis, it will be shown how Hecke algebra representations associated with two-row Young
diagrams can be constructed topologically, using monodromy representations on homology with a non-
trivial local coefficient system. Tsuchiya & Kanie have given (in [TK]) another construction for these same
representations, but from the point of view of conformal field theory. These two constructions will be
compared, and, using a Theorem of Kohno’s, will be identified. The correspondence thus obtained leads to

some speculation on the wider relations between conformal field theory and topology.

The main themes which motivated the work were the twin links with knot theory and physics. In §1.1,
the scene will be set from the knot theory point of view. There are many different influences from physics
which bear on the work, but the one which initially motivated it was the paper of Tsuchiya & Kanie [TK].

This conformal field theory aspect will be discussed in more detail in Chapter 8.

In this Chapter, some of the background material leading up to the results put forward in this Thesis,
will be discussed. The interest in Hecke algebra representations comes from their presence in the Jones
invariant of knots and links. In §1.2, the basic structure of the homology representations to be constructed,
will be described. The main Theorems of the Thesis are announced here, albeit without the details of the
constructions involved—see Chapter 3 for such details. Finally the basic structure of the work is outlined in

§1.3.

1.1 Background knot theory

Over 1its history, knot theory has benefited from contacts with many different fields—some in mathemat-
ics and some in physics—at different times. Indeed, the theory of knots was begun in an attempt to solve a
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problem in physics around 1870. That problem was the modelling of atoms and their spectra, and the model
proposed by Lord Kelvin and J.C. Maxwell (see [Max], [Th], [Kn]) was known as the vortex theory. In this
model , the presence of matter was considered as equivalent to the existence of a singularity in the motion of
the aether. Such singularities, if point-like, can be identified and classified by the knots corresponding to the
flow-lines of the aether in the vicinity of the singularity. Thus it was thought that one could classify atoms
by classifying the corresponding knots, namely, all those knots satisfying some constraint associated with
the physical viability (‘dynamic stability’ as it was then called) of the @ether flow represented by the knot.
The spectrum of the atom was thought to correspond to different modes of vibration of the knot, very much

as present day string theory seeks to explain the energy level structure of elementary particles.

The task of classifying knots, up to isotopy, was started by P.G. Tait (see [Ta]). By largely combinatorial
methods, Tait succeeded in classifying all knots with ten or fewer crossings. Until the last few years, purely
topological methods were used to make progress on the classification of knots (see [R]). For example, the
first knot polynomial discovered, the Alexander polynomial [Al 1] can be expressed in terms of the first
homology of the infinite cyclic cover of the knot complement (we discuss this from our point of view in §5.1).
Various techniques have been used, including considering manifolds which are covering spaces branched over

the knot. Seifert surfaces have also played an important role (see [R]).

Another angle from which the study of knots and links has been approached is via braids. In §2.1, more
details will be given of this approach, but for now we will only mention that for each n, there is an associated
braid group By; and from any braid, a knot (or more correctly, a link) can be obtained by the operation of
closure. Thus, the specification of an invariant, defined on the collection of links, up to isotopy, is equivalent
to a specification of a representation of B,, for each n, with certain constraints to ensure ‘compatibility’
of these representations. The classification of links can thus be reduced to the word problem on the braid
groups. An algorithm for solving this word problem was produced by W.Haken. However, although in theory
this solves the classification problem for links, in practice only knots up to 13 crossings can be classified using

present computers. This is due to the complexity of the algorithm.

However, the braid approach to knots goes far beyond producing an algorithm for their classification. In
1984, while working in the theory of von Neumann algebras, V. Jones discovered a new invariant of links (see
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[Jo 1]) and [Jo 2]). This invariant is a one-variable polynomial just like the Alexander polynomial. However,
unlike the Alexander polynomial, the Jones polynomial is chiral; that is, it is capable of distinguishing
some knots from their mirror images. This one-variable polynomial was soon extended to a two-variable
polynomial, which also contained the Alexander polynomial within itself, as a one-dimensional specialisation.

See [FYHLMO)] for more details.

As a result of contributions from many branches of mathematics and physics, 1t was seen that the
original one-variable Jones polynomial could be viewed as the first in a series of one-variable polynomial link
invariants. For each Lie group G, representation p, and integer k& (known as the level), such a link invariant
can be defined. The original Jones polynomial is then associated with G = SU(2) and the standard two-

dimensional (vector) representation of GG. At level k, the invariant obtained is simply:
1% (exp (27Ti/(lc + 2)))

where V, is the (one-variable) Jones polynomial of link L. Areas that contributed to this result include
statistical mechanics (see [Jo 3], [Ba]) and quantum groups (see [D], [Ji], [L], [Tu], just to name a few of the

many relevant references in this area), and their relations to the Yang-Baxter equation.

Many viewpoints on these invariants exist, and it is the process of attempting to understand the relations
between them which has recently led to many new insights in mathematics. Until recently, however, all such
approaches either used a two-dimensional projection of a knot, with over and under crossings, or used the
braid approach (see §2.1), or a combination of these twin viewpoints. Both types of method involve viewing
the knot in an essentially two-dimensional way. Since a knot (or link) intrinsically lives in three dimensions,

it seems that one ought to be able to express invariants, such as the Jones polynomial, naturally in terms of

the link as embedded in S2.

Recently, E.-Witten [W] interpreted the Jones polynomial and its generalisations, in terms of an expec-
tation value in a topological quantum field theory. For any Lie group G, and level k| he defines a topological
quantum field theory in which, for a three-dimensional manifold M, the fields are G-connections on M. That
is, he constructs the space:

A = {G-connections on M} .
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An element A € A is a Lie algebra valued 1-form on a trivial G-bundle over M. For any A € A, the action

S(A) is defined to be given by the Chern-Simons functional:
S(A) = / tr(AANdA+ 23BANANA)
M

where ‘tr’ denotes a suitably normalised inner product on g, the Lie algebra associated with the Lie group

G. The partition function of this model is now constructed as:

Z(M) = /.A/g RS A

where A/g is the moduli space obtained by dividing out by the action of the gauge group G. For a three-

manifold M, Z(M) is now meant to be an invariant of M up to homotopy.

To obtain invariants of links, and not just invariants of three-manifolds, one starts with the general
situation of a link L embedded in a three-manifold M. Together with the data above, namely G and k, it
is also necessary to specify a representation of GG associated with each component of the link, together with
framings of M and L. For a given connection A € A and representation p of G, a Wilson loop can be defined
for a component of L, by taking the trace of the holonomy of A around the loop, in the given representation

p. The expectation value of the product of the Wilson loops associated with the different components of L:

Z(M,L) = /A/GH (Wilson loops) ¢/*S()D A

is now meant to give an invariant of the pair (M, L). Leaving aside any question as to the validity of such a
functional integral, for the moment, this invariant gives a complex number, for each choice of G, k& and an

appropriate collection of representations of GG. This is Witten’s formulation of (generalised) link invariants.

The Jones polynomial is obtained from the above formulation in the special case G = SU(2), associating
the vector representation to each component of the link. The value of Z(S3, L) obtained with this data turns
out to be V1,(¢) where ¢ = exp (27ri/(k + 2)) Since Vi, 1s a polynomial, it is uniquely determined by the
collection of its values at such roots of unity, . Note that this is the very same evaluation of V7 mentioned

above in connection with quantum groups, etc.

However, there are many problems with this functional integral formulation of V. Firstly, it is not clear
what DA means, as A/g is an infinite-dimensional space. There are several approaches which attempt to
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resolve these problems—see for example, [S 1], [H 1] and [H 2]. In the approach following along the lines of

[S 1], the invariant is extended to a functor 7, which in the simplest case associates:

(a) to a Riemann surface, X, with marked points {p;}, and representations {\;} of GG, one associated

with each marked point, a vector space Z(E, {p:}, {/\i});

(b) to a three-dimensional manifold M, containing a curve L, together with representations of G, one
assigned to each component of I, a vector Z(M, L) in the vector space associated with the boundary

data (OM,0L).

Tt is assumed in (b) that L is such that 0L C 9M, and the representations of G associated with the marked
points (in L) on M, are induced from those associated with components of L by assigning p or p to a
boundary point of a component of L to which the representation p is attached. Whether it is p or p which

is picked, depends on the relative orientations, as indicated in Fig. 1.1.

component of L

p

. marked point on M
op (in OL)
[ ]
77
M
oM
Figure 1.1

Many details have been omitted from the above structure; for example, the precise manner in which the
framings on M and L enter the theory. The functor Z must satisfy certain properties, which relate Z’s on
manifolds whose orientations are opposite, or which have been obtained by surgery on some other manifold.
For more details, see [S 2] and [S 3]. To define a functor 7 satisfying all these axioms, geometric quantisation
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and loop groups have been employed, amongst other techniques. When M is a closed manifold containing
the link L, Z(M, L) is a vector in the vector space associated with ¥ = (). By one of the axioms, this vector

space is C, so that Z(M, L) is a complex number, namely the invariant required.

There i1s another relationship with physics of interest to the present work—mamely that with conformal
field theory. In [TK], Tsuchiya & Kanie obtain representations of the braid group by considering conformal
field theory on P!, the complex projective line. This work will be discussed in more detail in Chapter 8, but
for now it suffices to say, that their construction also makes essential use of a punctured complex plane, since
they construct n-point functions on such a plane. The representations which they obtain are the building
blocks out of which the one-variable Jones polynomial can be constructed. These representations all factor
through a quotient of the braid group known as the Hecke algebra. The Hecke algebra H,(q) can be thought
of as a deformation of the symmetric group, and, as such, the representations involved are deformations
of the representations of the symmetric group associated with two-row Young diagrams. See §2.1 for more
details. Kohno [Ko] produces a flat connection on a vector bundle whose monodromy representation gives

rise to similar Hecke algebra representations.

The two connections between knot theory and physics outlined above, namely the Witten theory, and
the theory of Tsuchiya & Kanie/Kohno, are themselves related. Thus, the Witten theory gives rise to Hilbert

spaces which are the conformal blocks of a suitable two-dimensional conformal field theory.

The present work was motivated by the constructions of Tsuchiya & Kanie and Kohno, and contains
the essentials of their methods, but put into a topological context. The differential equations found for
n-point functions in [TK], and used extensively in that work, will be identified with those satisfied by the
homology used in the present work—see Chapter 8. Hence the theory described, not only gives rise to a Hecke
algebra representation by purely topological techniques, but also may be identified with the construction of
[TK]. Although such an identification has not been explicitly constructed, the fact that it exists, has many

interesting implications—see Chapter 9.



1.2 Basic structure of homology representations

The braid group B, can be constructed as the fundamental group of the configuration space, )?n, of
n unordered distinct points in a plane. Thus representations of B,, are defined whenever a flat connection
is given, on a vector bundle over )?n The vector bundle which we shall use is one whose fibre, over a
point w € )?n, is the middle homology of the configuration space of m points in the punctured complex
plane C\{w,...,wy}, with a suitable local coefficient system, depending on a complex parameter ¢ (see
Chapter 3). The representation of the braid group so obtained, does not factor through the Hecke algebra
Hn(q™"), but generically has, as its largest quotient, an irreducible Hecke algebra representation. The
representation so obtained, depends on the parameter ¢q, as well as the integer m < [7/9]. It turns out
to give, for m = 0,1,...,[n/2], precisely the characters obtained in a decomposition of the braid group
representation associated with the Jones polynomial—see Chapter 2 for more details, and in particular

Theorem 2.3.

The homology construction of representations of the braid groups can be viewed dually as a cohomology
construction. The basic situation is essentially the same as before, except that the fibres of the vector bundle
used are cohomology spaces rather than homology spaces. The braid group representations obtained from
the two procedures are dual to each other, and thus instead of obtaining a representation of B,, which factors
through H,(¢7') as a quotient, one gets a sub-representation factoring through H,(g) in the cohomology

picture.

The monodromy representation of the braid group which gives rise to the Hecke algebra representation
required, is one special member of a larger family of braid representations. For, a monodromy representation
of the braid group can be constructed using a vector bundle over X,, whose fibre is homology with a local
coefficient system determined by two parameters ¢ and . The ‘special’ representations are given by a = ¢~2
and they are reducible, containing a sub-representation, being the required Hecke algebra representation.
Generically, the braid group representation for a # ¢~2 is irreducible. Tt turns out that, for fixed ¢, the
representation can be viewed as lying on a quotient V/Va of some fixed vector space V, as « varies. Subject
to various degeneracy conditions, it is shown in Chapter 7 (and in particular Theorem 7.2) how a derived

representation can be obtained from this family, near to & = ¢~2. This representation exists on a subspace
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of V/Va transverse to the variation dV, of V, with respect to a, at & = ¢=2. Hence a braid group action
exists on a reduced space to V/Vq_Q. In the special case m = 2, it is verified in §7.2 that the representation
of the braid group so obtained is the required Hecke algebra representation. For larger m, a slightly more
refined construction is needed, and this i1s given in §7.3. This essentially consists of taking the totally
symmetric part of the derived representation of the family of braid group representations obtained from a
suitable parameterisation of the space of local coefficient systems. Tt will be shown (Theorem 7.5) that the

representation obtained contains a Hecke algebra representation corresponding to a two-row Young diagram.

In Chapter 6, the required Hecke algebra representation will be constructed, from the special member
of the family used, as an explicit sub-representation. This will be done in terms of the standard basis for

homology, employing repeated loops as a basis at the level of chains.

Note that whenever we refer simply to the Jones polynomial, we mean the one-variable Jones polynomial
of [Jo 2], which in the context of the more general link polynomials discussed in §1.1, is associated with

G = SU(2) and its vector representation.

Tsuchiya & Kanie also construct these same Hecke algebra repesentations, as monodromy represen-
tations, but they use a vector bundle whose fibre is spanned by n-point functions. They show that these
n-point functions satisfy a system of differential equations, from which it is possible to compute the braid
group action. In Chapter 8, Theorem 8.5, it will be shown that a similar differential equation can be obtained
naturally in the homology picture. Since the two differential equations give rise to the same monodromy
representation, and are of the same form, with identical behaviour near ¢ = 1, it is possible to conclude
that they are isomorphic systems of differential equations, using a Theorem of Kohno. For more details,
see Chapter 8, and in particular Theorem 8.10. As will be seen later in Chapter 8, this leads to a precise

correspondence between our approach and that of [TK].

1.3 Overview

In this section we will give an overview of the approach given in this Thesis. Chapter 2 describes
the motivations for constructing Hecke algebra representations from the context of knot theory, starting in
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82.1 with a review of the basic concepts in the Jones theory. In §2.2, the motivations for the topological
constructions of this Thesis are described in more detail than it was possible to do in this Chapter. Chapter 3
gives the basic definitions and notation used throughout the work. In §3.2, all the main Theorems are

presented, in a more precise way than it was possible to give in the last section.

To study the monodromy action in more detail, the geometrical constructions of Chapter 3 are translated
into algebra in Chapter 4. In that Chapter, recursion relations are obtained (Theorems 4.4, 4.5) from which
matrices for all the relevant actions can be evaluated, using the basis for the space of chains in terms of
repeated loops. The application of these formulae is illustrated in Chapter 5, where three special cases are

consldered 1n detail.

The monodromy representations obtained depend on two parameters; a non-zero complex number gq,
and an integer m. Here ¢ is the same as the variable appearing in the Jones polynomial. For a given m, the
representation of the braid group B, obtained, is generically the irreducible Hecke algebra representation
associated with the Young diagram of two rows whose lengths are n — m and m, respectively. The Jones
polynomial is a combination of characters of such representations, for m = 0,1,...,[?/2]. The special cases
m = 1,2 contain some of the essential points necessary for the general case, and therefore serve as useful
examples for the general theory. These cases are dealt with in §§5.1, 5.2 respectively. When ¢ = 1, the local
coefficient system is trivial, and the construction produces a representation of the symmetric group S,,. This

situation is investigated in detail in §5.3.

Chapter 6 deals with the case of general m. A quotient space of homology, or dually a subspace of
cohomology, 1s explicitly constructed at the level of chains. It is then shown, using the recursion formulae
of Chapter 4, and induction, that the monodromy action of B, on this space gives the Hecke algebra
representaions required. See Theorems 6.1 and 6.6 for explicit statements of the action of B,, using the

concrete basis of homology specified in terms of iterated loops.

Chapter 7 discusses the ‘limiting lemma’ by which a derived representation is obtained from a suitable
family of representations of B, deforming a particular ‘special’ representation. The derived representation
obtained is then a sub-representation of the special representation. In the case m = 2, this lemma (The-
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orem 7.2) is used to derive the subspace on which the Hecke algebra action appears. The point of this
construction is that it shows how one may obtain the Hecke algebra naturally without having to pick it
out explicitly, in terms of a basis of homology. In §7.3, various problems that arise when one attempts to

generalise this construction to arbitrary m are discussed, and a conjectured solution is given.

Chapter 8 aims to describe how our homology approach to obtaining braid group representations is
related to the work of Tsuchiya & Kanie and Kohno. In §8.1, a review of their work, or at least of that
part of interest in the present context, is given. It is found that the natural correspondence is with the dual
picture on cohomology, rather than homology. In §8.3, Theorem 8.5 gives a system of differential equations
satisfied by flat sections of the bundle from which we construct our monodromy representations. In the
rest of Chapter 8, it is seen how a comparison of this system with that used in [TK] and [Ko] gives rise to
an isomorphism between the two constructions. This leads to a detailed correspondence between the two

approaches (see the table at the end of §8.4), and some implications of this are discussed in §8.6.

Finally, Chapter 9 contains some, as yet, open problems which arise out of the theories discussed. Some
remarks on ways in which the constructions described in earlier Chapters can be extended and connected to

other approaches to Hecke algebra representations (and knot polynomials in general) are made.
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2: Motivation

2.1 Review of the Jones theory

In this section we will review some of the basic theory of knots and their invariants. Although there are
many other approaches to knot theory, as mentioned in §1.1, we shall be concerned, in this work, with the

braid approach. Those results of Wenzl, which will be used in later Chapters, have also been included.

We start by defining the full braid group. Let X,, be the configuration space of n (ordered points) in the
complex plane C. The fundamental group, m1(X,), of X,, is called the pure braid group, P,,. The symmetric

group S, acts naturally on X, by:

The orbits of this action are all of order n!, and:

where X,, is the configuration space of sets of n, unordered, distinct points in C. The fundamental group of

this reduced space is the full braid group, denoted by B,,.
Any element of B, can thus be represented by a curve:
7:[0,1] — Xn

with 7(0) = (z1, ..., z,) being the chosen base-point in X,, and [y(1)] = [y(0)] as elements of X,,. There is
thus some o € S,, such that:
(1) = 7 (+(0))
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as points in X,,. There is a natural map:
B, — S,

M —o
and the kernel of this map is precisely P,, the subset of B, consisting of elements [y] for which v(0) = (1)
in X,,. Such a curve 4 in X,, can be represented by n curves in R? x [0, 1] joining two sets of n points, as

indicated by an example with n = 3 in Fig. 2.1 below.

3
*
2 R? x {1}
[ ]
1
[ ]
—
™
*
3 R? x {0}
[ ]
2
[ ]
1
Figure 2.1

A horizontal slice through the n curves in such a diagram, that is a slice R? x {t} for some fixed ¢, will reveal
the n points in R? = C specified by ¥(¢) € X,,. The usual pictorial representation of the braid [y] € B, is
now obtained by projecting onto a two-dimensional space, using the map:
mR?x[0,1] — R x [0,1]
(z, 1) — (S(2), 1) .
At positions where the projections of two of the curves in R? x [0, 1] cross, it is recorded which curve was
associated with the smaller R(z) by drawing over and under crossings. It may be assumed, without loss of
generality that at most two curves pass through any one point in R x [0, 1]; if this is not true in any particular

12



case, then the curves in R? x [0, 1] are deformed slightly so as to remove such multiple crossings. It is also
assumed that the base-point (z?, 29,... zo) € X, (that is, ¥(0)), is chosen such that J(2) (1 < i < n) is

’En

ordered in a monotonic increasing sequence.

The resulting description of a braid [y] is as a diagram in two-dimensions, joining two sets of n points,
with over and under crossings marked. The braid drawn above would then have a description as indicated

in Fig. 2.2.

1 2 3
. L] L]
L] L] .
2 3

Figure 2.2

The composition of braids is effected by placing such diagrams end to end. Since ¢ increases upwards
in such diagrams, the diagram for [y1] o [y2] where [y1], [y2] € B, is obtained by placing the diagram for v,

above that for ;.

2 1 1+1 n—1 n
L[] L[] L[] L[] * L[]
L[] L[] L[] L[] * L[]
2 1 1+1 n—1 n

Figure 2.3

From this description it is clear that B, is generated by elements o; for 1 < i < n—1, which transpose
the two points z; and z;1, as in Fig. 2.3. It is seen that the curve in X,, corresponding to o; is given by

13



fixing all z; for j # 4, ¢+1, and making z; swap with z;;1 by going around each other in a clockwise direction
(see §§3.1, 4.1). The relations satisfied by these generators are found to be:
OO 05 = O 1 05004 fori=1,2,...,n—2
0i0; = 0;0; . for |i—j|>1

These relations are both obvious geometrically; Fig. 2.4 illustrates the first of them.

? +1 042 ? +1 142

L] L] L] L] L] L]

L] L] L] L] [} [}

? +1 042 ? +1 142
Figure 2.4

As mentioned above, the symmetric group S, may be viewed as a quotient of the braid group, namely

that given by imposing the extra relations:

for i = 1,2,...,n —1. Another quotient of B,, which plays an important role in knot theory is the Hecke

algebra, Hy(q). Tt is defined for arbitrary complex ¢ by imposing the relations:

(0i =1)(0i +¢) =0

for each i € {1,2,...,n—1}. Some authors use relations requiring each ¢; to have eigenvalues of —1, q only,
rather than 1, —¢ as we have used here. The map ¢; — —o;, which is well-defined as a homomorphism on
By, converts between the two conventions. Note that when ¢ = 1, Hy(q) reduces to S,. In general, H,(q)
should be thought of as a deformation of the algebra of the symmetric group S,,. The work of Wenzl [We]
shows that the representation theory of Hy(q) is also very similar to that of .S,.

14



As is well known, any Young diagram A, with n squares, gives rise to an irreducible representation of
Sy In [We], Wenzl shows how to explicitly construct deformations of these representations as ¢ moves away
from unity, which are representations of H,(q). When ¢ is not a root of unity, such representations are
irreducible; but when ¢ is a root of unity they may be reducible, and Wenzl has shown how to explicitly
produce an irreducible sub-representation. However, in the present work, we will not be concerned with
this smaller representation. We shall denote by s the representation of H,(q) associated with the Young
diagram A, irrespective of whether ¢ 1s a root of unity or not. Hence it is only certain that 7, is irreducible

away from roots of unity.

There is a natural embedding of Hecke algebras:

Hn(q) = Hpp(q)

given by transforming the generators o4, ..., 0,1 of Hy(q) to the corresponding generators of Hyyi(q). The

direct limit:

Heo(q) = [T Hala)
has generators {o; | i € N} with relations:
0;0i10; = 0104041
0i0; = 0;0; for |z —j| > 1
(0 ~1)(ei +4) = 0
for any integers i and j. Ocneanu showed (see [FYHLMO)], [Jo 4]) that there is a unique trace, tr, defined

on Hs(gq) such that:

tr(l) =1
(2.1.1)
ztr(g) = tr(gon)
for all g which are expressible as words in o4, ...,0,1 only (that is, they can be thought of as elements of

H,(q)). Here z is an arbitrary complex parameter.

The importance of all this to knot theory is due to the relation between braids and links, obtained from
the operation of closure. Thus from a braid g € B,, a link B can be constructed by canonically joining the
endpoints of the braid. This operation is illustrated in Fig. 2.5.
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Figure 2.5

The following Theorems describe the nature of this closure map from braids to links.

Theorem 2.1 (Alexander [Al 2]) For any link L, there exists N € N and 3 € B, foreachn > N,

such that ﬁ ~ L, where ~ denotes isotopy equivalence.

Theorem 2.2 (Markov [Mar]) Suppose a € B, and € B,,, are two braids in possibly differently
sized braid groups. Then their closures & and ﬁ are isotopic if, and only if, there exists a sequence of moves
from « to 3, each one of which is of one of the following two types:

I v —6y67" with v, 0 € B;;

IIy— 'yafl with v € B, — Bpp .

In this second Theorem, move IT changes the order of the braid group either up of down by 1. Thus ¥y
is considered as an element of B,, whereas 'yaril is considered as an element of B,y . The embedding of B,
in Bpy is defined by adding an extra point 2,41, which is fixed throughout a motion associated with a braid

in B,. This move is illustrated by Fig. 2.6.

Theorem 2.1 expresses the surjectivity of the map from braids to links, whereas Theorem 2.2 expresses

the extent to which the operation of closure departs from an injective map. Thus, starting from a link L,
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Figure 2.6

we can express it as the closure of some braid f € B,,. Let:
7 By, — Hn(q)

denote the map obtained by restricting to the group B, the natural quotient map from the group algebra
of B, to Hy(q). It maps generators o; of By, (as a group) to the corresponding generators of H,(q) (as an
algebra). Then Theorem 2.2 implies that tr (ﬂ'([)’)) is invariant under move I and multiplies by a factor of z
or (q_l(z -1) +1) under move IT (according to whether the degree of the braid group increases or decreases

by one). A suitable renormalisation now gives rise to an invariant polynomial—the Jones polynomial.

Theorem 2.3 The expression:

Xi(g,\) = <%)n_l (\FA) tr(x(3)) (2.1.2)

defines an invariant of the link I = B where B € B, and e is the exponent sum of the word for 3 in

{o; | 1 <i<n—1}. Here A, q, z are complex parameters related by the equation:

z(1=Xg)=(¢g—1). (2.1.3)
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Here X7, 1s known as the two-variable Jones polynomial. The original one-variable Jones polynomial, V7,
is the specialisation of this given by ¢ = A; this polynomial historically predates the two-variable polynomial.
In the present work, we shall only be concerned with the one-variable polynomial. Before we discuss the
significance of this specialisation, we shall consider the nature of the Ocneanu trace occuring in (2.1.2), in

more detail.

The Ocneanu trace, defined by (2.1.1), can be thought of as a collection of traces, one on H,(gq) for
each n € N, and as such can be decomposed as a linear combination of characters y corresponding to the

(generically irreducible) representations w5 of H,(q). When this is carried out, it can be shown that:

tr(g) =Y Wal(q,2)xal9) (2.1.4)

where the sum is over all Young diagrams A, with n squares, and g € B,,. The coefficients Wy (q, z) are
given by:

(wq' — z¢7) .
(iVj)

where w = 1— ¢ + z, and the product is over all squares (¢, j) in the Young diagram A; here ¢, j label rows
and columns starting with ¢ = j = 0 at the top left hand corner of A. The hook length I(i, j) is defined to
be the number of squares of A in the L-shaped hook with corner at (7, j) and extending, in one direction to
the right, and in the other direction vertically downwards. See [Jo 4] for more details. Fig. 2.7 illustrates

this notation.

Figure 2.7

The numbers inside the squares give the values of [(¢,j) in each square for a sample Young diagram with

ten squares.
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When ¢ = A, the relations for z, w above give w = ¢?z (see (2.1.3)). From (2.1.5), we conclude that Wy
vanishes for any Young diagram A with more than two rows. The two-row Young diagram, A,,, with rows

of lengths n — m and m, has:

1 ) 1_qn—2m+1
 (

WAm <Qa_
l+gq 1= g)(1+¢)"

as can be seen from the hook lengths for A,, illustrated in Fig. 2.8.

n—m+1 n—2m+4 2 n—2m 1
m 1
Figure 2.8
However, in the case ¢ = A, (2.1.3) gives z = ~1/14¢), and thus from Theorem 2.3, we conclude the

following Theorem.

Theorem 2.4 The one-variable Jones polynomial V1,(q) of a link L expressed as the closure of a braid

B € By, is given by:

(_1)n(\/§)e—n+1 [?/2

Vilg) = 1

(1= q" ™) xa,. (7(8))

m=0
where n(f) € H,(q) is the image of § € B, under the natural map; and e is the exponent sum of §§ as a

word in the generators oy, ...,0p 1.

The importance of this result for the present work, is that it expresses V7, as a combination of characters
associated with two-row Young diagrams. No other specialisation of the two-variable polynomial Xy, can
be expressed in this way, and thus for our purposes Vf, is the simplest specialisation of X with which one
can deal. The main constructions in the present work give rise to precisely the representation w5, (see
Chapters 3-6). Hence Vg can be expressed as a combination of the characters xa, which are naturally

constructed in the following Chapters.
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The main motivation for wishing to obtain a topological interpretation of w5, was the desire to better
understand Xp. Tt seems that, as was remarked on p.364 of Jones [Jo 4], a better understanding of X,
will only come once V7 has been understood. Since Vj is expressible as in Theorem 2.4, the first step is
to investigate wa_,. In Chapter 9 we will make some comments on possible methods for continuing the

programime.

2.2 Translation into topology

As was discussed extensively in the last section, the problem of obtaining a better understanding of
the one-variable Jones polynomial V7,(¢) leads naturally to the Hecke algebra representation 7, associated
with two-row Young diagrams A,,. In the work of Tsuchiya & Kanie [TK], Kohno [Ko] and Witten [W],
these representations, wa, , appear in various differing contexts. Tsuchiya & Kanie obtained them by doing
conformal field theory on the complex projective line P*. They obtained a basis that arose naturally from
their constructions, and on which the action of the braid group, By, could be identified with that of s,

as found in the work of Wenzl [We].

Kohno produced a connection on X,,, which gives rise to a monodromy representation of:

Wl(Xn) = Pn

Tt is shown in [Ko] that this representation factors through the Hecke algebra H,(g), for a suitable choice
of the parameters occuring in the connection. However, the representations obtained are not irreducible,
although, in the simplest cases, they do give rise to combinations of 75’s for Young Young diagrams A, with
two rows only. It turns out that in this latter case, the multiplicities involved are such that the representation

of B, is precisely the Pimsner-Popa-Temperley-Lieb representation required to obtain the Jones polynomial

(see [Jo 4]).

Kohno’s connection is naturally associated with the differential equations arising in Tsuchiya & Kanie’s
work. For more details on these constructions see Chapter 8. For now, it is sufficient to remark that
the constructions are essentially based on picking out conformal blocks of a conformal field theory on the
punctured sphere.
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As was briefly outlined in §1.1, Witten’s approach to the Jones polynomial also puts Riemann surfaces
with punctured (or marked points) into a central role. At least, that part of Witten’s construction which has
been made rigorous in Segal’s work (see [S 2] and [S 3]) is restricted to the situation in which such punctured

Riemann surfaces bound manifolds containing curves.

All these results lead one to suspect that a simple topological approach should exist, producing the
Hecke algebra representations ma, naturally. In the next few Chapters, we will present a method by which
this can be achieved. As in the other methods for producing such representations, it is obtained as the

monodromy representation associated with some flat connection on a vector bundle over X, .

Figure 2.9

The vector bundle E,,(q) will be constructed in terms of branched coverings and using a twisted local
coefficient system. The fibres will be homology spaces. Then @, will appear as the dual representation;
equivalently, it is obtained as the monodromy action on a vector bundle whose fibres are cohomology spaces.
Such cohomology spaces can be identified with spaces of functions, and this point of view will be found to
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be useful later on.

In Chapter 8, we will return to the comparison between the constructions of Chapters 3-7 and the others
mentioned above, in particular, those of Tsuchiya & Kanie. It will be shown that the connection defined in
Chapter 3 gives rise to a differential equation of the same nature as that to be found in [TK] or [Ko]. There
are further similarities, and they lead to a more intimate correspondence between the two constructions—see

Chapters 8 and 9 for further details.

In Witten’s approach, the representation w4 _ appears, once one shifts from the ‘S3’ picture to the
‘ST x 5%’ picture. That is, in the former picture one considers a link L embedded in S? (in some senses this
is the most natural approach). In the latter picture, L is considered as embedded in S x S%; this approach
is naturally related to the braid approach to links. The fact that a topological description of the ‘S?’ picture

exists, and that this is related to the braid approach, was another motivation for the work.
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3: Basic structure of theory

3.1 Definitions of basic spaces

We shall here define all the basic spaces necessary to enable us to state the main theorems in the next

section.

Recall that in §2.1, X, )~(n were defined to be:
X, = {(wl, ., wy) | {w;}distinet in C} (ordered points)

X, = {{wl, .. Wu} | {w; }distinet in C} (unordered points)

We shall now construct a fibre bundle over X,,, whose fibre has dimension m (complex dimension), where

m € N is arbitrary, but fixed. For any w € X,,, define:

)

Ywm:{(zl,...,zm)EXm|zi;£wj for alli € {1,2,...,m} andjE{l,Q,...,n}}.

Then Yy, defines a subset of X,,. In fact, the projection map:

Xm+n

Xn
given by taking the first n points only, of a set of m+n points in C, representing a point in X,, 45, has fibre

Yw m over the point w € X,,. There is an obvious action of S), on Y , given by permuting z1, ..., zp; this

action will be important later in this section.

Over each w € X,,, we now wish to define a branched covering space m of Y m. Such a covering
space, or equivalently, a local coefficient system Xw m, Will be defined as a function of a finite number of

complex parameters. Now, a local coefficient system on Yi n,,, modelled on C, is specified by a map:

11 (V) — C* .
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However, m1(X,,) is the pure braid group on m strings; and m1(Yw m) is the generalisation of this to the
complex plane with n points removed (namely the points w1, ..., w,). An element of 71 (Yw ) is given by
[v] where:

- [Oa 1] — Ywm

is a collection of m curves in C\{w1,...,w,}, describing the motions of 21, ..., z;,. Using the usual braid

notation, we obtain a picture of v like that in Fig. 3.1, as an element of B,;, with the last n strands

straight, corresponding to wy, ..., w, being fixed.
21 29 e Zm w1 Wy e W,
zl 22 DR zm wl wz DR wn
Figure 3.1

To make matters more precise at this stage, we will introduce some notation for particular elements of
T1(Yw,m). Since Yy n, is unchanged when w € X, is changed to o(w) for any o € S,, we may assume,
without loss of generality, that wy, ..., w, are ordered so that their imaginary parts are increasing. We will

also choose a base point in Yy ,,, say 2", such that:
F()) << S(%) < S(wr) < -0 < S(wn)

Let fx, denote the element of 71 (Yw m) given by the curve fixing all z; # A, with A going round a curve in
C which has winding number 1 about y, in a clockwise direction. Here,
A E {zl,...,zm}
and ,LLE{zj+1,...,zm,w1,...,wn}
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where z; = A. The curve which A must follow, which corresponds to 3,, is defined by the statement that

no point on the curve lies below any point in:

{zla'"aé\j:'";Znawla"'awn}\{“}

in the sense that z is said to lie below y (for z,y € C) if and only if R(z) = R(y) and F(z) < S(y). Thus

we obtain a diagram for 3y, like that in Fig. 3.2.

curve followed Wn
L[]
by A
Y 1
L[]
0
e
L[]
0
%
L[]
2
Figure 3.2

Any such element [y] of 71(Yw m) defines an element of By, 4, as mentioned above. It corresponds to a
set of m curves in [0, 1] x (C\{wl, . ..,wn}) given by {(t,'yi(t)) | t e o, 1]} fori=1,2,...,m. If we draw
time, ¢, in a vertical direction, we obtain m oriented curves in R3, connecting m points on the plane t = 0
to the corresponding set of m points on the plane t = 1. This picture may be viewed by projecting onto the
vertical plane [0, 1] X 7R, as indicated in Fig. 3.3. This diagram gives the three-dimensional picture of §),.
When this is projected onto [0, 1] x iR, we obtain, as illustrated in Fig. 3.4, the usual braid picture for gy,

(see §2.1). In this picture time moves upwards, giving a natural orientation to the curves.

The generalised pure braid group m1(Ywm) is generated by {3\, | A=z,j5€{,2,...,m} and
wE{zipm, . zmw, . wn}} These generators satisfy generalised braid group relations, the details of

which we shall not go into here. A one-dimensional representation of m1(Yw n) is thus given by specifying
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u
* {1} x C
.
A
.
—_—
graph of B,
t=0
.
* {0} x C
]
.
.
A
[0,1] x iR
Figure 3.3
A Iz
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
A Iz
Figure 3.4

the images of these generators:

7"'l(i/w,m) — C*

-1
ﬂAu Dy

where ¢y, are non-zero complex numbers. There are no relations imposed on ¢,, as can be seen by noting

that:
m m . n »
I1 (Hw —z)" e [T = w) )
i=1 \ i=1 =1
Jj>
defines an analytic function of z1,..., 2z, with branch points where z; = z; or z; = w;. This function
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multiplies by q;; as A goes around p along the curve §,. Here {kku} is defined so that:

qruy = €Xp (27ri/k)\u) :

For any given set of non-zero complex numbers {‘D\u} we can therefore define a local coefficient system
Xw,m(q) on Y n, or equivalently, a branched covering m When {kAu} are all integers, m is a finite
branched covering of the space Yi . For most of the work we will deal with arbitrary ¢,,, and thus prefer

to work with the twisted local coefficient system rather than the branched covering.

We have thus shown the following result:

Lemma 3.1 Given any q = {QM} with ¢, € C\{0} for any X, p of the form:
A=z;, withj=1{1,2...,m}

e {Zj+1:~~~:Zm:w1a~~~:wn}a

there exists a well defined local coefficient system Yw, m(q) which twists by q;ﬁlt around the curve represented

by [ﬁ)\u] € 7"'I(X/W,m)-

Hence there is defined a homology space Hp,(Yw m, Xw,m(q)). We now define a vector bundle E,,(q)

over the space X,, by defining the fibre over a point w € X, to be the vector space:

Hyn(Yw,ms Xw,m(4)) = Fw m(a) .

Since homology is homotopy invariant, there is a natural flat connection on this vector bundle. The mon-
odromy of this connection gives rise to a representation of 71(X,) = P, on the homology. However, to
obtain a representation of B, = 71(5(”), it 1s only necessary to note that the natural action of S,, on X,

acts trivially on Ew ,(q). That is, if [y] € 71(X,,), then 7 is a curve:
[0,1] — X,

such that y(0), v(1) € X,, differ from each other by a permutation. The natural connection on F,,(q) then
gives a parallel transport along v from the fibre over v(0) to that over y(1). However 4(0), v(1) differ by a
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permutation, and thus for suitable q (see below), we have:

Eqo),m(@) = Eyym(a) -

Together with the parallel transport defined above, this gives rise to an action of ¥ on £, (¢),m(q), and hence

a representation of B, on the twisted homology space.

As mentioned earlier in this section, there is a natural action of S, on Yi , given by permuting
Z1, ..., 2m. This carries over to an action on m so long as the local coefficient system yw m(q) is preserved

by the action of S,,. In particular, this requires that q must be such that,

qz;z; 1s independent of 7, j € {1,2,...,m}, for i< j;
(3.1.1)
2w, is independent of 7 € {1,2,...,m}, for j=1,2,...,n.

Going back to the action of By, if [y] € m1(X,) with y(1) = o(wq), 7(0) = wg, then:
Yw,m = Yo(wo),m -

The local coefficient system Xo(wo),m (@) On Yo(wy),m 1 equivalent to a local coefficient system xw, m (U(q))

on Yw, m, where o(q) is defined by:

_ oy forpe{wr, ... wn}
[U(Q)]Au_{cp\u for p € {z1,...,zm}\X

Hence if q is such that o(q) = q, then there is a natural isomorphism between:

Hy, (YWO,m; qu,m(Q)) = E’y(o),m((l)

and Hm (YG(WD),ma XU(WO),m(q)) = E’y(l),m(q) .

The parallel transport induces a map:

Eq0),m(@) — Ey(1),m(a@) = Ey0),m(a)

which thus gives rise to an action on () m(q). Hence we obtain an action of B, on the fibre E, o) m(q)
so long as:

o(q)=q Yo €S, . (3.1.2)

This requires that ¢, is independent of j € {1,2,...,n} for all i € {1,2,...,m}. Hence we have:
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Lemma 3.2 The natural connection on Fp,(q) induces natural actions of B, and Sy, on the fibres of
Fm(q), whenever q satisfies conditions (3.1.1) and (3.1.2), respectively. Hence there is an action of By, X Sp,
on the fibres of Fy,(q), whenever q is of the form:

q,zlz]' =«

(3.1.3)
Qz,wy = 4

where i,j € {1,2,...,m}, k€ {1,2,...,n} and q,a € C*.

When q satisfies (3.1.2), the action of B, on the fibres of F,;,(q) may be expressed more simply as follows.
Let Em(q) be the vector bundle over )?n whose fibre over a point [w] € )~(n is the vector space Ew m(q).
This is well-defined, so long as we identify the vector spaces corresponding to o(w) and w as outlined above.
Then the natural connection on Fy,(q) induces a natural connection on Em(q) The two vector bundles
FEm(a), Em(q) have identical fibres, but their base spaces differ, being X,, and X, respectively. The action
of B, on the fibres of E,,(q) is now more simply expressed as the monodromy action of m; ()?n) = B, on

the fibres of Em(q)

Since the fibres of F,,(q) and Em(q) are identical, the action of Sy, on Ep,(q) naturally identifies with

an action on Em(q), so long as q satisfies (3.1.2), that is, for q’s of the form (3.1.3).

3.2 Statement of main Theorems

Using the definitions of the preceding section, we are now in a position to give precise versions of the

main Theorems.

The local coefficient system Xw m(q) (defined in Lemma 3.1) in which ¢ takes the special values given

by:
z,2; = q_2

(3.2.1)
Qz,wyr = 4

will be denoted by xw, m(q). Here q refers to all the coefficients ¢x,, whereas ¢ indicates the special value of
q given by (3.2.1). This special local coefficient system satisfies both the conditions in Lemma 3.2 (that is
(3.1.1) and (3.1.2)). Thus, by Lemma 3.2, natural actions of B, and Sy, exist on the fibres of F,,(q), and,
equivalently on the fibres of Em(q)
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Theorem 3.3 The monodromy action of B, = 71()?”) on the Sp,-invariant part of the vector bundle

Em(q) contains, as a quotient, the representation of B, obtained from wy, of Hn(¢7™'). The remaining

component of the monodromy representation has dimension of order 1/, times that of 7p .

The proof of this Theorem occupies Chapters 4 and 6. In Chapter 6, the local coefficient system is
restricted to that of the form (3.2.1). However, since it is no more complicated to do so, the results of
Chapter 4 will be proved for arbitrary local coefficient systems xw m(q) satisfying (3.1.1) and (3.1.2) as
appropriate. As it stands, the extent to which 7 can be naturally picked out of the larger monodromy
representation on Ewym(q)sm, is not clear. However the monodromy representation consists almost entirely
of ma,,, and in Chapter 7, a construction will be given which enables the sub-representation to be isolated,

at least In certain cases.

For any local coefficient system yw m(q) for which q satisfies (3.1.1), there is an action of B,, on Ew m(q).
Thus we have a family of representations of By, which contains the special case in which q is given by (3.2.1).
There is an action of Sy, only on the two-dimensional sub-family obtained from those q of the form (3.2.1).
In Chapter 7, a quotient representation of the special braid group representation is constructed from the
family of braid group representations with neighbouring q’s. This quotient representation will be referred
to as the derived representation of the family. As was mentioned above, there is no action of S, defined on
a general member of the family; however, the derived representation exists at the special value of q given by

(3.2.1), and at this value of q, an action of Sy, exists.

Theorem 3.4 The symmetric part of the derived representation of the family of monodromy repre-

sentations of B, on the vector bundles Em(q), for q satisfying (3.1.1), at the value of q given by (3.2.1), is

TA,-

This Theorem is proved in §7.2 in the special case of m = 2 (see Theorem 7.3). For general m, it is
shown in §7.3 (see Theorem 7.5) that the derived representation referred to above contains the representation
7a,, of Ha(g™'). Theorem 3.4 has not been proved in general, but from Theorem 7.5, the proof would be

complete if 1t was verified that the symmetric part of the derived representation contains nothing other than
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TA,,, by, for example, a dimension count.

Another point of view on the construction of w5 is given in Chapter 8, where it is shown that the

following result holds (see Corollary 8.7).

Theorem 3.5 The monodromy action defined in §3.1 is equivalent to that obtained from a system of

differential equations of the form:

of it
a_wi:ZL

i (wi —wy)

for a vector valued function f on X,,, where c;; are constant matrices.

In Chapter 8, the constructions of Tsuchiya & Kanie [TK] and Kohno [Ko], which also give rise to
Hecke algebra representations, are discussed. One of the main themes of their methods is the reduction to
the study of a system of differential equations of the form specified in Theorem 3.5; and in §8.4, a detailed

dictionary correspondence between the two approaches will be given.

However, in Chapters 4,5 and 6 we will confine our attention to the homology construction of §3.1. In
Chapter 4, the action of B, x S, on homology is determined by obtaining the full action on a suitable
chain complex. The obvious basis for chains, in terms of repeated loops, is used, and recurrence relations
are obtained from which matrices for all the actions can, in principle, be computed. The homology space is

also constructed as the kernel of a certain map on the space of chains.

In Chapter 5, these formulae are applied in some special cases. To prove Theorem 3.3, a concrete basis
for a subspace of cohomology is constructed, on which the actions of B, and S,, are determined. This is
carried out in Chapter 6, where it is found that working on cohomology is more convenient than homology.
The action of B, on cohomology is dual to that on homology, and Theorem 3.3 is equivalent on cohomology
to stating that a sub-representation of the monodromy representation of B, on cohomology, factors through
Hy(q) (rather than H,(q7') as in Theorem 3.3). It turns out that, in terms of a concrete basis for the
sub-representation, the action of B, is given in a particularly simple form (see Theorem 6.6), and it is then
easy to deduce Theorem 3.3, or Theorem 6.1, which is a more precise form of the earlier Theorem.
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In Chapter 9, some remarks are made on some possible extensions of the constructions employed in
Chapters 3-7, as well as on the implications of the correspondence found, in Chapter 8, between our methods

and those of Tsuchiya & Kanie.
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4: Translation into algebra

In this Chapter we translate all the geometry of Chapter 3 into algebra. We will produce a concrete

chain complex which gives rise to the homology:

Hm(Yw,ma Xw,m(q))

and on this complex find relations which define the actions of the braid group, B,, and the symmetric group
Sm- In §4.1 we construct the concrete chain complex, and in §4.3 give the boundaries necessary to construct
the homology. The last two sections §§4.5, 4.6 contain the formulae for the actions of By, Sy,. In §4.4 we

use some geometry to obtain some relations which will be useful in later sections.

4.1 Concrete basis for chains

In this section we will construct a concrete chain complex on Yy, with local coefficient system xw. m(q).

On {z1,...,2m,w1,...,w,} define an ordering so that:

<z iffi<y
we < w; iff k<l

z; < Wg

fori,j €{1,2,...,m}, k,1 € {1,2,...,n}. We start with a base-point z°, as in §3.1, at which:

whenever A, p € {z1,...,2m, w1, ..., wy} and A < p.

For A < p, let oy, denote the motion in Yiy 5, in which v # A, p is fixed Vv, and A, g move so that they

transpose while following curves which are such that no point on them is ever below any point in:

{z1, .-, zm, w1, .. ., wa ]\ {A, u}.
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We suppose that A, p swap round by going around each other in a clockwise direction. We thus have the

diagrams found in Fig. 4.1 for oy, as a motion in the complex plane, and in terms of the braid picture.

Wnp
N 21 A 7 wy,
H . . . . .
[ ]
. =
A
[ ]
7 . . . . .
z1 A 7 wy,
Figure 4.1

In §3.1, we similarly defined the curves @), to correspond to motions in which A went once around g in a

clockwise direction. It 1s now obvious that:

2
ﬁ)\u = a)\u.

Definition For any w € X,,, and r € {1,2,...,m}, let:
Sew =1{a=(a1,...;a0)|as €E{zipa, ooy 2Zm, w1, .., Wi }}
To={a € S, |a; € {wy,...,wy} and a; are all distinct} ;

UQI{QETVS|Q1>OZQ>"'>CVT}.

This definition gives rise to sets S, 7., U, of orders:
(n+m-=1)...(n+m-—r)
nn—1)...(n—r+1)

Ynn(n=1)...(n—r+1)

respectively.

For each a € S, we will now proceed to define an embedding of the r-dimensional torus 77 in Y .
This torus will have:
zs = 2
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whenever s > r. The map:
Yo:T" — Yam

(tl, . ..,tr) — ')/g(tla .. .,tr)
is then defined by giving the i** component of Ya(ti,...,t,) starting at ¢ = r, and working back to i = 1.
This definition will be such that, for all #, the ith component 1s independent of ¢1,...,%;_1. So we start by
setting:

(altr, - t))r = Pz,a, ().

For a particular value of ., we have defined the value of the position of z.. The loop defined by z; as t;

increases from 0 to 1, with ¢;45,...,%, fixed is defined so as to be a deformation of f,,,,. Suppose that
Zi1,..., 2 have already been defined as functions of ¢;41,...,%,. Then we deform f.,,, continuously as
Ziy1, ...,z move from z{y,, ..., 20 due to the variation of (¢4, ...,t,) from(0,...,0). The deformed curve

1s the curve we use to define the motion of z;.

Thus for ¢y, ...,t, small, the values of (y4(t1,...,t,)); are given by:
Bziai(ti) for1<i<r.

When t1,...,t, are increased, we define v, so as to give a continuous embedding in Y .

We can now think of 7, as a cycle on Yy n,, whenever o € S;,. When w moves along a curve in X,,, the
torus 7, can be continuously deformed in a unique way (up to homotopy). This deformation corresponds at
the level of homology to the natural connection discussed in §3.1. For each o € &I,, it is now possible to lift
the torus 7,, which is embedded in Y4 o, to m When this is done, one obtains an embedding of [0, 1]"

n m with base-point z°. Thus for any such «a, Yo defines a chain on ffwym.

The homology Hpm(Yw m, Xw,m(q)) may be computed in terms of the homology groups evaluated with

a trivial local coefficient system, yg, by using the following Lemma.

Lemma 4.1 The homology Hpm(Yw m, Xw,m(q)) can be computed from a finite dimensional chain
complex D, given by:

Dr — Hr(Yw,ma XO)
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as the kernel of a suitably defined chain map 6: D, — Dy .

PROOF: Throughout this proof, w € X,, will be fixed, and we will abbreviate Yo » to Y and xw,m(q)

to x. It is also assumed that {(w;)} are ordered as in §3.1. Consider the space:
Y, = {(zr_H,...,zm) € Xpmer |zl + wj forr<i§mand1§j§n}.

Then Yy = Y and for all » = 1,2,...,m—1, there is a fibration of Y,; over Y,, the fibres being one-
dimensional. The fibre over (z.1,...,2,) € Y, is the punctured plane C\{zr_H7 ey Zm, W, . .,wn} A
filtration of this fibre is defined by:

K =9,

Ky_l) = U (Rt +a);

oa> 2y
~(r—1
Ixé ) = C\{zr_H,...,zm,wl,...,wn} .
A(r=1) . . .
where R{r ) is a union of (n + m — r) cuts emanating from zpy, ..., Zm, w1, ..., w, and RT denotes the

positive real numbers. When r = m, the above defines a filtration of Y,,_;. This filtration defines a cell

(r-1) _ A’(

decomposition of the fibre, in which the d-dimensional cells are the components of K, d

r—1) 1
_1’,s0 long as

no two z;’s (i < r) have identical imaginary parts. Whenever two or more z;’s have identical imaginary parts,

we obtain non-distinct cuts, but it is still possible to define a filtration of the fibre by suitably deforming

these cuts, in such a way that they no longer intersect.

Since there 1s a tower:

Y=Yy —V¥V1— - —Vp1—0,
we can define a filtration, § = Ko C Ky C --- C Ko, = Y of Y, in which K, is of dimension r, and is
obtained as the union of:
KO % ox K{mY) (4.1.1)
over all rg,..., 7 € {0,1,2} with sum r. Here the product is defined in the natural way, so as to give

a subspace of Y, and the stP term gives the possible values of z, in this subspace, once the values of

(r) _ [((7"1)

Zsy1, -, Zm are fixed. Now K .1 1s a disjoint union of Euclidean spaces for ¢ = 1,2 and any r, and
thus so also is K, — K,—4. Hence {K,} may be viewed as providing a cellular decomposition of Y, in which
the r-dimensional cells are given by the components of K, — K,;. This is a slightly unconventional use
of the term ‘cellular decomposition’, since Y is a non-compact space; however, K, — K,_; 1s still a disjoint

union of Euclidean spaces.
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Since Kéi) = () for all ¢, so K, = () whenever r < m. Also, K,, consists of a disjoint union of products of
one-dimensional rays. The components of K, are indexed by (a1, ..., am) where a; indexes the components

of I(Y_l). That is:

aiE{zH_l,...,zm,wl,...,wn} (4.1.2)

and hence the components of K, are indexed by SI'. It is also seen that K, is a disjoint union of products
of the form (4.1.1), with all but one r; being 1, the remaining one being 2. Hence K,y naturally splits into
m parts, the k™" part having components indexed by (1,...,Qk,...,am) where {a;} satisfy (4.1.2). This

part is given by r; = 14 ;.

The natural fibration of Y,_; over Y, has fibres homotopic to a wedge of n + m — r circles. Hence if a
tower:

L =Zy— 71— —Fm1 —0,

is defined so that the fibres in the fibration of Z,.; over Z, are wedges of n + m — r circles, for all r, then
the homology of Y can be computed from that of Z. It is also easily seen that Ky, — Kspm-1 consists
of a union of products of Kér) — KY) and KY) spaces, with s of the former type in each product. (Once
again the product refers to the subspace of Y with the z’s as specified by the factors in each term.) Hence
Kstm — Ksym-1 1s homotopic to a wedge of s-torii. In particular, the components of K4 — Ksym-1 are in

1-1 correspondence with those s-torii embedded in 7, obtained from one of the components of a slice of 7

by fixing one or more of the coordinates. The cohomology of ¥ can be computed from the chain complex:
D' =H (K, —Kr1)

where H} denotes cohomology with compact support. In the case of a compact manifold this would follow
from the standard theorem giving cohomology in terms of a cell decomposition. Although Y is not compact,
its cohomology can still be computed in this way, with the compactly supported cohomology H} replacing
ordinary cohomology, since the interesting structure of Y comes from those points z for which z; is near to
Zitly .-y Zm OF W1, ..., Wy, for each . As noted above, D™ = 0 whenever r < m, while D™ = <S€J> and D™
splits naturally as a product of m spaces. In the dual picture, it is seen that the required homology is given

by the homology of the chain complex D, = D?™~". Hence the m-dimensional homology is given by:
ker(0: P — Dt ) fim (8: Dyyy — D) = ker(8: D™ — D™y

Since D,,_1 naturally splits into a product of m vector spaces, this homology space is the intersection of the

kernels of m maps on D™ = <S€’J>
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Finally, when the local coefficient system is trivial, all the boundary maps 9 become trivial, and thus:
Dr = Hr(Y1 XO)
as required. ]

In §4.3, the precise form of § will be investigated. In particular, the components of é corresponding to the
decomposition of D™ noted above, will be evaluated. The above analysis in terms of cellular decompositions
has a more geometrical formulation in which each cell in Ky,,_; is represented by an embedding of a torus
in Y, with base-point z°. Thus a cell in Ks,,_, is given by a choice of a;’s satisfying (4.1.2) for i € T where
I is some subset of {1,2,...,m} of order s. The subset I labels those i for which r; = 1 in (4.1.1), the rest of
the r;’s being 2. Such a choice of a;’s defines an embedding of 7 in Y, as given by 7,. When this is lifted
to 17, it defines an embedding of [0, 1]°, and the different components of §, mentioned above, are obtained

from the s pairs of opposite faces in the boundary of such a hypercube.

The tower given by the spaces Y; will play a central role in all the calculations of the rest of this
Chapter. Let C, denote the vector space generated by formal C-combinations of 7, for o € S,. Then
C, can be identified with a subspace of the space of r-chains on Y. As noted above D,, = C,,, and so
Hp(Yw,m, Xw,m(q)) may be identified with a subspace of Cp,.

4.2 General definitions and notation

In the next section we shall embark on the process of determining first the boundary map, and then the
actions of the braid group B, and symmetric group S,, on the space of chains defined in the last section. In

this section we shall set up some notation.

Whenever a € 8, and s < r, we denote by a’, that element of &, given by truncating a:
o’ =(ag,...,a5).
If « € 84, and s > r, then we shall denote the element (aq,...,a;) € S5, by:

[o e PTG
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For any a € S, the r-torus v, has z.y1, ..., z, fixed, and a section on which z.y is constant looks like 74,
or a deformed version of it. In future sections we shall often write v4.0np for v4.q,4,, Where it is understood

to mean that sections in which z. is constant are deformed versions of 7, and also that z. varies around

a IOOp ﬁzp+1o<7+1 .

Under the motions of zpyq1, ..., 2m, w1, ..., w, specified by ax,, B zrp1 < A< p < wy), the elements
+ y Pap + H
of 8§, will transform to other chains, which are thus expressible as linear combinations of elements of S,.

We denote by Ag\rg, bg\rg these transformations; they will be square matrices of order |SZ |.

To obtain the homology, it is necessary to compute the boundary map:
6: Dm — Dm—l .

This map is specified by {m; 08:1=1,2,... m} where m; is the projection of D,,,_; onto that part in which
z; 1s fixed. Then m; 0 & gives rise to a matrix with |S",’J| rows; these matrices are denoted by DZ(»m). The
corresponding matrices, for » = ¢,241, ..., m, representing the boundary map on C,, with 2,4, ..., 2z, fixed

will be denoted by DZ(»T).

The action of S,, on the chains is specified in terms of the action of the generator which interchanges

z; and z;q1. This action is denoted by _]2(12'_1 on the chains vy, for a € Sy, with r > i 41.

The above definition of the A’s means that the action of B,, on the chain space Cy, is given by:

L pim)
0; bw,w,+1 .

Thus the aim of this Chapter is to produce formulae from which AEU”}IL*I, bm,lﬂ, 32(74-)1 and DZ(»m) can be

computed. We note that at zeroth order,

0 _
b(Au) = qxi
Ag\ou) =1

for any A, p. Note also that A()\TJ

is only well defined if the chains at w, and at the vector obtained from w by
transposing A and p, can be identified. That is, only if the local twists q are invariant under a transposition

of A and p. In the future, {'yg | a € SCJ} will often be referred to simply as 8.
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4.3 Form of the boundaries

The homology is the kernel of the boundary map on C,,. When a € 8, corresponding to a basis

element of Cp,, the " component of §(y,) is given by:

8i(Vor - cvitiqr. ) = 8i(Ygin ). Cigr . - Oy

Here we know that 62'(721.%) is the boundary of the torus T in which a section with zq,...,z_; fixed is

given by the loop 3.4, for ;. Its boundary is thus the difference of two (i —1)-torii corresponding to o~

and its deformation when z; has gone around f;,,,. Thus we obtain:

bi(va) = (bgi;{) — Dygim i oo,
where this denotes an (i —1)-cycle in which z; is constant at z!.

Hence a suitable matrix for é is given by:

(i-1) _
Zizip bzlzm 1 zZ;w1

Dz('i) - <b(i—1) _ 1‘ .

pli-1) _ 1‘

iTh 1) : (4.3.1)

This is a partitioned matrix acting on <S€v>, and mapping it to <S€V_1>. The corresponding matrices DZ(»T)

for i < r < m acting on (Sy,) are given by:

D" = fori<r<m. (4.3.2)
D(r—l)

In all cases, the matrices are partitioned according to the values of a, € {21, ..., 2Zm, w1,. .., Wy }.

We have now shown how the action of the boundary map on the space of chains C,, can be computed;
it 1s given by Dl(m). In the rest of this work, DZ(-m) will be referred to simply as D;. It is given by a diagonal
matrix with blocks DZ(»i) down the diagonal, where the separation into blocks is specified by the values of

Qi41, ..., @m. Thus we obtain the Lemma:

Lemma 4.2 The space (-, ker(D;) C C,, where D; are the matrices DZ(-m) specified by (4.3.1) and

(4.3.2), is in 1-1 correspondence with the homology of Yy, , with the twisted local coefficient system Xw m(q).
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The reason for the non-trivial boundary map is that the local coefficient system is non-trivial. Thus

when 7, is lifted to m it gives rise to an embedded m-cube:

and there are components in the boundary arising from each pair of opposite faces; that is from each

i€ {l,2,...,m}. See Fig. 4.2.

Faces z; = constant

associated with the " component of the boundary.

Figure 4.2

4.4 Some useful relations obtained using geometry

In this section we shall derive some relations which are satisfied by the A") 5(") matrices, by going
back to the definitions of these matrices in §4.2, and using some geometry. The relations we consider are
(r

given by the following Lemma. So as to avoid unnecessary indices, Ag\rg and b)\g have been abbreviated to

Ay and by, where it is always understood that they are transformations on (Sy,) for a common value of 7.

Lemma 4.3

(1) Ajrbij = bixAjk;

(ﬁ) bijbikAjk = Ajkbijbik;
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(i) AijAjrAi; = AjrAijAjr;

(iv) Af; = aijbij;

(v) Ajr commutes with b;y whenever A < j or A > k;
(vi) bi_lejkbij commutes with b;y whenever j < XA < k;
(vii) bjr commutes with b;y whenever A < j or A > k;

(viii) bi_jlbjkbij commutes with b;, whenever j < A < k;

(ix) bjkbiibir = biibigbin = bikbjbi;;

and these relations hold between A") and b") matrices, for all i,j, k, X € {zrp1, -+ -y Zm, w1, ..., W, } and any

re{0,1,...,m}.

ProOOF: We shall start with (iv) and then show that all the relations follow from (i), (ii), (iii), (v), (vi)

about which we will then go into more detail.

The matrix A;; represents the action on (S},) given by «;; € m1(Yw,m ), and similarly b;; corresponds to
the action of §;;. However,

2
Bij = o

and so, at first sight, it would seem that b;; should be given by A?j. However it must be recalled that the
natural connection of §3.1 gives rise to a map from chains at {z;,...,z),,w1,...,w,} = af to those where i
and j have been transposed, induced from a;;. There is an identification between the chain spaces obtained
by using the natural identification which exists between the spaces Yw m and Y, (w) m, for any o € S,. Hence
Aj; 1s defined to be the composition of the map induced by the connection with the identification map.
The square of the map induced by the connection here is precisely b;;. However the composition of the

identification maps:
{chains at a2} «—— {chains at (ij)(al)}

and  {chains at (ij)(al)} «—— {chains at a2)}
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which occur in the two applications of A;;, leaves a residual factor of ¢;;, coming from the fact that overall,
i and j have gone round each other once in a clockwise direction. Here (ij) € Spmin acts on a2 in the usual

way. See Fig. 4.3.

{space of chains (S.)}

multiplication

by qi;

o (if)a;

Figure 4.3

Hence we conclude that:

Aij = qijbij
as required.

From this result, it is clear that (vii), (viii) follow directly from (v), (vi). Also, (ix) can be deduced from

(1), (ii), since:
(a) from (ii), b;;b;x commutes with Az, and thus by (iv), with bk, giving the first half of (ix);
(b) from (i), bikAjzkbij = AjpbijbisAjr = A?kbijbik using (ii), which by (iv), leads to the other half of

(ix).

We are now left with (1), (ii), (iii), (v), (vi). However A;; and b;; are defined in terms of the actions of the
braid group, as is illustrated in Figs. 4.4 and 4.5.
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Zrtl 3 J Wn

. . . . . .
Aij —
. . . . . .
Zppl 2 J Wn
Figuré 4.4
Zrpl 1 _7 Wn
. . . . . .
bij —
. . . . . .
Zrpl 2 J Wn
Figu”r’e 4.5

Thus we can verify all the relations by checking that the corresponding equations hold on the braid
group. (The extra factors of ¢;; which may appear, due to the reason outlined above in the proof of (iv), are
identical on either side for all of the relations considered, so that we need only consider the maps induced

by the connection.)

We obtain Figs 4.6-4.9 for (i), (ii), (iii) and (iv). Since the relations can be checked at the braid group
level, they can all be derived algebraically from the braid group relations. However it is nicer to derive them

geometrically!

(1) 1 J k 1 J k
[ ] [ ] [ ] * * *
-1 -1
Aj bij
bi A%
[ ] [ ] [ ] * * *
) J k 1 J k
Figure 4.6

Finally (vi) states that for j < A < k, b;x commutes with bi_lejkbij. This latter transformation is given by
Fig. 4.10, and the commutativity of this with b;) is given by Fig. 4.11. This equivalence follows by sliding
the twist of ¢ around A down the diagram until it comes out at the base.
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(i)

7 J k i J k
[ ] [ ] [ ] * * [ ]
bi Ajx
bi_jl = bl_kl
Ajx b
[ ] [ ] [ ] * * [ ]
1 j k i j k
Figqure 4.7
(iii)
) J k i J k
[ ] [ ] [ ] * * .
Aij Ajr
Ajx = Ay
Aij Ajr
. [ ] [ ] * * [ ]
) J k 1 J k
Figure 4.8

Hence the proofs of (i), (ii), (iii), (v) and (vi) are complete, and from the discussion at the start of the

proof, it follows that the proof of the Lemma is complete. ]
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J k A 1 J k
. . . . . .
bix
Ajk
. . . . . .
J k A ? J k
Figure 4.9
J A k 7 J A
. L) L) . L) L)
. L) L) . L) L)
J A k 1 J A
Figure 4.10
J A k 7 J A
. . . . . .
by Ajibij
bix
. . . . . .
J A k 7 J A
Figure 4.11
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4.5 Action of the braid group

In this section we shall derive recursion formulae for A()\TJ and b()\r; in terms of the matrices {A()\rgl)} and
{bg\’;l)}. One can think of such relations as connecting transformation properties of embedded r-torii with
Zpfly e oy Zmy W1, .« . ., Wy fixed with those of embedded (r—1)-torii with z,,..., zm, w1, ..., w, fixed. One can

think of the space S, as equivalent to S where:

{z1,...,2m} is replaced by {z1,...,2-};

{ws,...,wy} is replaced by {zmp1, ..., 2m, w1,. .., wp}.

Passing from ST, to SI,! is thus given by thinking of one of the z’s (namely z, ) as part of the set of parameters

on the base (the w’s) rather than as a parameter on the fibre.

Theorem 4.4 The actions of A()\rlj and b()\rg on (S8,) are given in block form by the following matrices,
where the blocks are separated by the value of a, € {zr41, ..., Zm, W1, ..., Wn }:
column coluvrnn column
A J H
1 { 1
A
A
0 o (=1 Aby - buA
(r) _
A = b1 Aby
A A(l—b;) s A(L—by)
A
A
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and:

column colu_mn column
i i i
b
b
bub bub(l—bﬁl)(l—bj) bub(1—1b,)
(r) _
bai = bbb,
b(l—b)\) b(l—b)\)(l—bj) b(l—bu—‘rb)\bu)
b
b

where all entries vanish except those given above; by = bi:_)\l), b= b()\rgl), A= Ag\ru_l).
PROOF: To determine the action of A();) and b()\rg on an r-torus v,, for a € §,, we consider the following

four cases separately:

(i) a, either greater than both A, u or less than both A, y;
(il) a, = X;
(ill) ar = p;
(iv) A< a, < p.

(r)

In each case we evaluate the actions of A} and bg\ru) on the r-torus 75 o, where f = o 1 € 8771 in terms of

the action of the braid group on (r—1)-torii.

48



Case (i): Fither a, > A, pp or ap < A, p.

In this case, under transposition of A and g, the loop f;,,, is unchanged, and thus 7, transforms
according to g, that is:

A(@) = ATV (B).n

When a, < A, it we have the situation illustrated in Fig. 4.12.

7

action of ay,

motion of A
L[]
Zp a,
. Bera
2
Figure 4.12

When a, > A, p we obtain Fig. 4.13.

motion
(s
of z, T
L
N action ay,
A
*
2
Figure 4.13

Similarly one obtains b(;; (@) = bg\rgl)(gr_l.ar).
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Case (ii): a, = A.

In this case the transformation given by ay,, %, will deform the curve @,  as indicated below. To
obtain the deformed curve in terms of the basis loops, we cut the image loop up into three parts (under

Brn). This gives rise to an image of the r-torus v, which is:

O B+ 6B B — b Db Db g

under bg\rg; and under AE\TJ is:

A()\r;l)ﬁﬂ

For, when z. goes around A, the cycle v3 is transformed according to bi’;\l); see Fig. 4.14.

o H

Cru Y

oH
ﬂ)\,u
oA

Soe

Figure 4.14

The dissection of the image of 3, » under £y, is given by Fig. 4.15.

;1), respectively, then we have:

Hence if we write b, by and A for b()\rgl)’ bi’;}) and Ag\r
AT () = Ay
bE\TJ(Q) = (1= b;"bxbu)bB.p + b,bB.A
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oA

Figure 4.15

However, by Lemma 4.3(ix),

babub = bbby

and so (1— b;lebH)b = b(1—by). This gives the o, = A columns of Ag\rg, bg\ru) as required in the Theorem.

Case (iii): o, = p
The deformed versions of the loop 3;,, under the motions ay,, 85, are shown in Fig. 4.16.

We thus obtain:
AE\TN) (@) = (1= b;"bab)AB.p+ b AR

b (@) = (1= b3 b,uba)bubBA + (14 baby — by b5 bbb, )bG.p

Using the relations:

bab,A=1b,Ab, (Lemma 4.3(i),(ii))

babyb = bbyb, = bbby (Lemma 4.3(1}())

we can reduce the above transformation laws to:
A(ATJ(Q) = A(1=b,)B-pn+buABA
ba(@) = bub(1= bu) BN+ b(1+ bab, = b)Bn
This gives the same expressions for the ut! columns of the matrices for A()\ru) and b();) as are given in the

Theorem.
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B p o H

Pru o)

o
[e5 Y7

oA

Soe

Figure 4.16

Case (iv): A < a, < i

This is the last, and most complicated case. The actions of 8y, and ay, on @, , are illustrated in

Fig. 4.17.

This gives rise to:
AN(@) = (ba, —1)baTbu ABN + (1= b, baba b7 b)) AR+ bx " bu A oy

BN (@) = —(1— by b,uba) (1= b, )ba b bxbybB. A + by b, T baby by

+ (1= b baby) (1= b~ ba " byubaba, b by " baby)bB.p
However, by Lemma 4.3(ix),
by"'b, T bbb = by bby = bbb,
which by 4.3(viii), commutes with b,,. Thus the ‘coefficients’ of §.u and 3.X in b()\r; (a) reduce to:
(1= b babu) (b — bba,) = b(1— by)(1— ba,)

and — (1= b7, )bx T bba (1= by, ) = bub(1— b, 7 ) (1= by,)
respectively. Also, by Lemma 4.3(i),
bra7lb A = by Aby
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[y Ly

ﬂzrocr oYy ﬂxu ¢ a,
. .
A A
.
22 z:)
r
H e
Qoy .
. Oy
A
ZO .
F'Lgure 4.17

which, by Lemma 4.3(vi), commutes with b, . Thus:

(1= b, babo, by "0, )A = A — Ab,, .
Hence the actions of A()\rg and bg\rg on « are given by:
AN(@) = (ba, —1)baT AbxBA + A(1= bo, )B.pa+ by Aby B,

b0 (@) = bub(1— b, ) (1= o )BX + b(1— ba)(1= b, )B.pe + by bbaf.xy

This gives rise to the columns of A()\TN) and bg;) between the A" and pt? columns, as given in the Theorem.

This completes the four cases required to prove the Theorem. ]

Theorem 4.4 can be used to recursively compute the matrices A()\TJ, bg\ru) for all A < p with:

AMpe{zm, oy Zm, W1, ..., Wy}

starting from the zeroth order matrices:

Ag\ou) =1
0 _
bg\u) = q)\!ll.
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Using Theorem 4.4, it is now easy to check that ker(D,) is fixed under A()\TZ) and bg\n;). For, using (4.3.1), it

can be seen that:

r r

D AY) = AU D)

D) = 4D

r r

By applying (4.3.2), it may be observed that:

DA™ =AM D™

(4.5.1)

D7) = =D ™)

where A()\n;_l) and b()\TZ_l) denote the matrices obtained when a,, 8, are applied to the space of chains
(8), where we replace {z1,...,2m} by {z1,...,%Z+,...,2m}. These latter matrices thus act on a space
spanned by:
a=(a, ..., 0, ..., 0m)
with @ € {ziq, ..., Zm, w1, ..., wy}. Tt is clear from (4.5.1) that:
A()\n;) ker(D{™)) C ker(D{™)

b()\TZ) ker(D{™)) C ker(D{™)

Since by Lemma 4.2, the homology is given by the intersection of ker(D,) over r = 1,2, ..., m, thus one

(m) p(m)

a0 by, o homology by restricting to the subspace ker(D,) at the rth stage

may obtain the actions of A

of calculation. Under such a procedure, starting with A(®), 5(®) matrices, we use Theorem 4.4 to obtain the

AWM (1) matrices and then restrict to ker(D1). These reduced matrices are then used at the next stage,
being substituted into Theorem 4.4 again. At the end of the procedure, the matrices obtained give only the

actions of A(™) and b(™) matrices on homology (and not on all chains). For examples of these procedures,

see Chapter 5.

4.6 Action of the symmetric group

As seen in §3.1, the symmetric group S, has a natural action on the homology space:

Hm(Yw,ma Xw,m(q))

so long as q is suitably chosen. This action is specified by the action of the generators (ii+1) of Sp,. Let
(r)

ji1;+1 denote the action on (S84, ) of the transposition z; < z; ;3 where i +1 < r < m. By this action we mean
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the following: suppose that o € S,. Then « defines an r-torus in Yy ,; and lifts to an embedding of an
r-dimensional cube in Yi . Under the transposition z; < z;41, it maps to another r-dimensional cube in

Yw m. However the transformed cube has a base-point given by:

0 0 0 0 o]
(zla'~~azi—1azi+1azi;~~-azm)

and this base-point does not have its imaginary parts ordered in the natural way. To correspond this with a
standard r-chain, it is necessary to move the base-point to (29,...,29,, 29, ZE_H, ..., 23). When this is done,

the (i 4+1)-torus given by a(" ) transforms to another (i 4+1)-torus, given by:

(i)
i el

(m)

The whole m-torus 7y, transforms according to j;;,; where:
(r—1
) J£i+4)
-7
Jiip =
(r—1
j£i+i)
for r =14 2,..., m; where the blocks are separated by the value of «,.

So, the important part of the matrix JZ(T-|-)1 is given by Jz(lzi) The action on <S€V+1> is given by a partition

matrix in terms of actions on (i —1)-torii of the braid group, by the following Theorem.
(i41)
iiHl

Theorem 4.5 The matrix for j as a partitioned matrix with blocks defined by the values of «;

and a; Is given by:

(ba—1)b ™ — by (1=ba)b' ™ (bx = 1) + babs"  ba(by'—1)+ (1=bx)b' ™ (b,/ " =1) (bu—1)b'™"
bt -1 b (1—by") + by O =1)(1-1b,") 0
AI
0 0 0 bt
0 0 1 0

where A', b, by, by’ denote A,(zl;l) bgi;}ll, p%Y and b(i_l) respectively. Here the entries correspond to

1417 2iA Zipa A’

zip A, AA, puA and Ay where A > p.
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Proor: Using the results of Lemma 4.3, it can be shown that the above matrix satisfies the following

properties:

(a) Jiip preserves ker(D;)N ker(D;41);

(b) j?i_}_1 is a scalar, namely ¢, .,

¢) Jisq1 commutes with AU for all A
+ A H

(d) jis1 satisfy the braid relation.

As these are the only properties that we require of the matrices j;;41, at this stage it is not necessary to
actually show that they correspond to the natural action of S,,. Of course, the natural action of S, will
satisfy properties (a)-(d), and this follows immediately from the definitions of the S, and B, actions in
§3.1. To actually derive the above matrix for the action of Sy,, it is necesary to compute the images of the
four types of elements of Sif! of the form: BzipA, BAA, BAp, B.pd where A > . When we swap z; and
zi41 and then shift the transformed base-point back to a position in which the imaginary parts are in order,

we obtain Figs. 4.18 and 4.19 for the first two of these cases.

G ) . A
2z

0 0
Zin Zin

Figure 4.18

When the torii corresponding to the curves on the right hand side are expressed in terms of the basis
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Zit1 A U A
0 0
Zip1 Zip1

Figure 4.19

elements in S}, we obtain:

((bx =16 ™ = b)) A'Bzig A + ('™ —1)A'BAN

(1= 5B ™ (b = 1) + baba ) Az A+ (07 (1= Ba) +52) A2

although the details required to obtain this result are not very simple. ]

The only part of the action of the braid group on homology with which we will be concerned is that
which is on the part invariant under the action of the symmetric group Sp,. By (c) above this is well defined.
We now have the equipment necessary to explicitly compute this action; all the actions involved can be

computed using Theorems 4.4, 4.5 together with Lemma 4.2.

Finally, we make the following remark about the matrices j;;;1 obtained above. Since we are only
interested in the action on homology, it is clear, using Lemma 4.2, that all the relevant parts of the action

of 31(2111) are contained in its action restricted to ker(DZ(»i'H)) N ker(DET{l)). However,

)

b, —1|by,| -

Zm

o= (11|

by (4.3.1), and so:

b7 by —1) A

Ay D = ((1— by A

with the marked entry giving the A" block. This means that Jz(lzi) ’s action on ker(DZ(»i-H)) N ker(DZ(»:jl)) is
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equivalently specified by the matrix:

(bx =16 — by (1= ba)b 7 (ba" —1) + baba' ba(bu' —1) + (1= by )b (b,
0 by (b, 1)
0 0 0
0 0 1

In later Chapters, this form of j;; 11 will come in useful.
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5: Examples

In this Chapter we will discuss the two special cases m = 1 and m = 2 in detail. These correspond to
homology in one and two dimensions, respectively. The case m = 1 gives rise to the simplest non-trivial braid
group representation, namely the Burau representation. The case m = 2 is the first case in which the action
of the symmetric group is present. At the end of the Chapter, the case in which the local coefficient system,
Xw,m(q) is trivial, is also discussed. The examples of this Chapter should be borne in mind throughout the

next Chapter, where we deal in detail with the case of general m.

5.1 m = 1 and the Alexander polynomial

When m = 1, we have precisely one z;, so that S}, is given by:
{(A) | A= wl,...,wn} :

The chains thus form an n-dimensional space on which the braid group acts. We can now apply Theorem 4.4

with r = 1, starting with:

0
A()\H) =1
0
) =1
b\ =g
for all A, u € {wn,...,w,}. This gives rise to the following matrix for Awllwlﬂ:
1
1
0 q7!
Ll (5.1.1)
1
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where the non-trivial 2 x 2 block occurs in the it" and i+1*" rows and columns.
By (4.3.1), the matrix for D(ll) is the 1 x n matrix:

(=1, ¢ =1).

Lemma 4.2 now gives the homology H; (wal, wal(q)) as the subset of C; given by kerD;. Thus the

homology space can be identified with the subset:
{(z1,. . za) |21+ + 2, =0} (5.1.2)

of C; = (8L) = C™. This subset is clearly preserved by the matrix AE}]U, above, and thus the action of the

i+

AM_matrices on homology gives rise to a representation of B, on an (n—1)-dimensional space.

(1)

The eigenvalues of the action of Awlllerl on C; are ¢~% and 1 (with multiplicity n—1). The action of B,
on homology thus factors through the Hecke algebra H,(q™!) (since all the o; have eigenvalues —¢~ and 1
only). Tts action is known as the Burau representation, w,. This representation is important in knot theory

in the context of the Alexander polynomial.

Suppose that L is a link. By Theorem 2.1 (i), L can be expressed as the closure 7 of some braid y € By,

for suitably large n. The Alexander polynomial, Ay, of the link L, can now be defined by:

A, = det (1—7rA1(7))
L 1+q—1+..,+q1—n

(5.1.3)

in terms of the representation 74, . This defines a polynomial in the one variable q. See for example [Jo 4].

However, the original definition of Ap (see [Al 1]) was given in terms of covering spaces. Consider the
complement of the link S3\ L. There is a natural map:

71 (S°\L) — Z

[T] — (the linking number of I and L)

where T is any closed curve in S3, not intersecting the link L. This map defines an infinite cyclic covering
§§’\\/L of S3\ L. There is a natural action, T, on §§’\\/L given by a translation in which each branch of the

cover is translated into the next. Then T induces an action on the first homology:

Hi(S3\L).
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This homology is finite dimensional, and the characteristic polynomial of the induced action, Ty, is the
Alexander polynomial. This definition of Ay makes it obvious that Ay is invariant under continuous defor-

mations of L, through non-self-intersecting curves.

The braid approach to Ay, as given by (5.1.3), can be considered as corresponding to an embedding of
Lin S' x S?, as opposed to an embedding in S3. The latter approach is that used in the above topological

interpretation of Ay. For, a braid v € B,, defines a map:
O — Xn
where ¥(1) € X, is given by n points {wl(t), Cely wn(t)}, say. The subset of ST x S? specified by:

{(t,wi(t)) |tes', i= 1271}

now gives the link L = ¥, as embedded in S' x S?. Suppose next that T is a closed curve in the complement
of L, with base-point (0,z%) € S x S?. We use the correspondence between C U {co} and the Riemann

sphere S?. Then T is defined by a map:
[:[0,1] — (S* x SH\L

with T'(0)= ['(1)= (0, z°). Such a curve T is homotopic, in (S x S?)\L, to a combination of the curves T;

(0 < i< n) given by:

(i) for each i = 1,2,...,n, [;(t) C {0} x S? for all ¢, with the winding number of T;, considered as

embedded in S? = C U {oo}, around w;(0) being &;;;
(i) To(t) = (¢, 2Y).

Thus 74 ((51 X 52)\L) is generated by the (n+1) elements associated with T'g,T'y,...,T,. Under the surgery
St x §%.~S53, the situation transforms so that 'y disappears as a non-trivial generator, and 1(S3\L)
is generated by n elements, of similar form to I'y,...,T,,. Hence, it is not surprising to find that the
characteristic polynomial det(7T* — ¢=) (where T* is the translation map on % defined above) is related
to the local coefficient system on:

C\{w1(0),...,w,(0)}
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with twistings of ¢~ around each w;. This local coefficient system is precisely Xw,1(¢q) as defined in §3.1.

See Fig. 5.1.

Wy t . —
ws(t) ) "
w3(0) L
H’Q(O)
wl(O)
t=20
Figure 5.1

The action of B,, on H; (wal, wal(q)) is mp,, as noted above, and the precise relation between the

S x S? and S3 pictures is given by:

det (1— TA, (7))

1+ q—l + o+ ql—n = det(T* _q_l)

St x 5% picture —— S® picture
H, (wal, wal(q)) involved «—— H; (S?\/L) involved

twist xw, (¢) — parameter ¢~

The interplay between S x S? and S? also plays a major role in the discussion of the Jones polynomials
Vi and X, in Witten’s theory (see [W]). Just as V7, is a specialisation of the two-variable Jones polynomial

X1 (see §2.1), the Alexander polynomial Vz,(q) is another such one-variable specialisation.

It was the fact that Ay could be expressed purely topologically (that is, in terms of the link L C S,
rather than using a plane projection of the link, or the braid approach) that was the initial motivation for
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attempting to express the Jones polynomial in a similar way. To some extent [W] accomplishes this aim,

although the remarks of §2.2 on the lack of a truly mathematically rigorous formulation, apply here.

5.2 The case m = 2 and symmetrisation

When m = 2, the space of chains C» has a basis given by {73 | a € S&,} where:
va = {(al,az) | oy € {22,w1,...,wn}, as € {wl,...,wn}}.

We shall use the local coefficient system yw 2(q) specified by the following parameters:

Qz,wj; = 44

Q212 = &

for i € {1,2}, j € {1,2,...,n}. It is necessary that q.,,; is independent of j, for there to be an action of
the braid group B, on C;. The local coefficient system defined above has three parameters, q1, ¢2, a. For
arbitrary non-zero values of these parameters, the definitions of §3.1 give rise to a representation of B,,. This
is computed by using Theorem 4.4 and Lemma 4.2. An action of S,, is only present if ¢ = g2, but we shall
avoid making this specialisation until later, in order to illustrate some points that will become relevant in

Chapter 7.

We start from the following matrices for i = 1,2; A, p € {1,2,...,n}:

1(19A)7UA+1 =1 )
o) =1
b =q;
b, = o)



(1)

and we use Theorem 4.4 to obtain the following matrices for Agngl and by,

column column column
22 wy wWAH
1
1
SO 0 a
WAWAHL
IS
1
1
column column column
29 wy,p <A WX
ey — (=)t e ger (I-gp)
0
b, =
g7 (I—a™) - ' (I—a™)(1=g7) -+ gy (I—q7" +a7le)
0
-1

By the Lemma 4.2, we can construct the homology Hs (waz, sz(q)) as the subspace ker(Djp) N ker(D3)
of the space <S§,> of chains. The action of B,, on this subspace can be obtained by considering the matrix
for Ag}le obtained from Theorem 4.4 using matrices A™), b(1) restricted to ker(D(ll)). By (4.3.1), D(ll) is
given by the 1 x (n+1) matrix:

(@ —1,¢7 =1, q7" = 1) (5.2.1)

(W

where the first element corresponds to z3. The actions of Aw;w; .y, b2,w, on the subspace ker(D(ll)) can now

be specified by n x n matrices defining the induced action on the space,

{021, 2n)} C(Sw)
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under the projection:

72 (o, 21, .., 2n) — (0,21, ..., 20) .
This projection defines an isomorphism on ker(D(ll)). The matrices obtained for AS,}A)M,Hrl and b,(zizm are:
column column column
wy wx w4
1
1
-1
1 _ 0 VAl
A'EUA)U/A+1 -
11—
1
1
column
WA
{
0
b = —L -1~ _1 R “1-l 1
ceoqp o (g =) e gy o oy (a0 —1)
0
All the non-zero elements in bgﬂm occur in either the main diagonal or the At row.

These matrices may now be substituted into Theorem 4.4, to obtain the matrix for Agﬁer The
result obtained is shown in Fig. 5.2 below, where h = 1— ql_lq:)_la_l. We can now restrict the action to the
subspace ker(D3) in order to obtain the action on homology. The matrix elements given are only non-zero
elements except for entries of 1 on the main diagonal, corresponding to basis elements (wyw,) € SZ where
Aped{1,2,...,n}\{i,i+1}. Here j, k denote elements of {1,...,i—1}, {i + 2,...,n}, respectively. The

projection 7?7 naturally gives a projection on <S2 >, and, when this causes no confusion, the same notation,

w

72, will be used to refer to both.
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Wiwi Wi Wi wiw i Wi Wi WiW; WiWi WipW; wiwip WiWR WhWi WipWk  WrWip
wiw; a7t
wipwip| 1 (1=g7)h 1= 4¢3 a7 (1-¢7")? 1] @t e (1-gt)? 0" (1=q7)?
wiw i ah Ty e (-gr) g 0y e (1-qr) 4 e (I=q;")
wipwi 0 e ) 0" (a7 1)
wiw; 0 ¢
wjw; 0 g7
Wipnw; 1 1— g7
wiwipn 1 1—q3"
WiWk 0 fh_l
WiWs 0 ‘J2_1
winw 1 1—qt
wrwin 1 1—q3t
Figure 5.2
The matrix for D(22) is specified by (4.3.1) as:
DY = (8, ~1]-++[p. 1)
The A row of this matrix is given by:
3 00y 1) it = 3 (05" —Drw) + 3 (a0 = 1)uyen)
p=1 B i>A (5.2.2)
+ ("7 0™ = D(wawn) + Y (6307 a7 —D(wywa)) -
J<A

The subspace ker(D(;)) of <(w)\wu)|1 <A p< n> has codimension n, and is given by n relations, one

(2)

corresponding to each of the rows of D5’ given above. The projection :

ﬂ§:<(w>\wu) | 1<A p< n> — ((uu\wu) | 1<A p<n, A;E,u>
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given by mapping (wxyw,) to 0, will be an isomorphism on the restriction ker(D(22)) whenever:

In this case, we can obtain an n(n—1) x n(n—1) matrix for the action of Aq(i)w

on:

gilas e £ 1

((U})\w#)|1§)‘v p<mn, )‘3&/1>

w1, from the induced action

under the above projection. The matrix obtained is that given in Fig. 5.3 below, where we have omitted

diagonal entries corresponding to (waw,) with A, p € {1,2,..., n}\{ii4+1}, A # p, which are all I’s.

wW;Wip

Wit Wy

Wi Wy Wi Wi

WiWE WgW; Wi W WgWip

w; Wiy

Wi Wi

w;w;

wji;w;

Wi Wy

Wi Wi

Wi W

Wg W

Wi Wk

WE Wiy

The eigenvalues of this matrix are 1, —ql_l, —q2_1, :l:ql_lqz_la_ 2

g (5" 1)

g7 oM (gr = 1)

q1

42

1— g7

1- g5

g (3" 1)

' (a7 —1)

Figure 5.3

41

1—q7!

This is the matrix specifying the

action of the generator o; of the braid group B,, with the three parameters q1, ¢q2, «. We can only proceed
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further by specialising the values of ¢1, g2, @. There is an Sy action on the homology (and also on the space
<S§v> of chains) so long as ¢1 = ¢qa2. In this case, the matrix for ji2 as given by §4.6 (see Theorem 4.5) is:

A>pu

Z9A AA LA Ap

2A | algT =) —q¢ ¢ —a(l-¢")? (¢ +(1-g¢ M) =1)  a(gT -1)

A a—1 a(l—qg)+4¢7t (e —1)(1—¢7h)
1A !
Ap 1

as an action on the chains. Here we have substituted:
¥ =a™, A =1 b)\:bl)\:q_l
where ¢ = ¢q1 = ¢-.
The natural orthogonal projection:
(Sa) — ((wawy) [ 1< A p<n, X p)

is an isomorphism on ker(D;) N ker(D3), and so there is an n(n—1) x n(n—1) matrix giving the action of

j12 on homology. This holds for o # ¢=2. The matrix of this induced action is:

Ap 1

where A > p. This matrix has eigenvalues +a 1/2, with corresponding eigenvectors:

o P (pd) = (M)
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for A > p. Let us denote by fi, the element of homology given by o' (uA)+ (Ap), for each A > p. Then the
symmetric part of homology, under the action of Sy given by ji2, is spanned by fy, for A > u. The action
of B, on this space is specified by the action of its generators ;. From the matrix for the action of o; on

homology we obtain:

Theorem 5.1 The action of B,, on the symmetric part of the homology Hs (Yw’g, wag(q)) is given by

the matrix below for the action of o;. This holds for all values of a and q with o # q~2.

fimi fij finj Jri Jrin
furi | a2 ¢ (gt —1)a 2 ¢ (g7 —1)
i 0 q!
fin 1 1—q™
Jri 0 q!
Jrin 1 1—q™t

On the other hand, for any «, the symmetric part of the space of chains 82 is found to be spanned by:

fiu = o 2(u) + () +a (g7 =1)(22))
(5.2.3)
£y = (g7 + (47 —1a2)(22)) + (1+a )W)

The subspace <f>\u,f>\> of the span of chains intersects ker(D1) N ker(D32) in a space which is isomorphic to

the symmetric part of the homology. However, the map:

73 0wy (Sg) — ((wawy) | L<A p<n, A#p)

is an isomorphism on ker(D;) N ker(D3y) when ¢=? # . In this case, (7% o 77) ™ (w)w,) defines the element

of <S§,> given by some complicated expression, namely:

-1

(05_1—1)((](1_205—_1_1) ((1_q_1)(22)\)+(q_205_1—1+q_1_q_z)(ZQH)) for A > H

(w)+ (1_12—0%1_1 ((>\>\)+q_1 (uu)) +
(5.2.4)
1_g-1

1—g7" q
(a7 =1)(g7%a™1-1)

O+ —= = ((AA)‘l'q_lOé_l(uu)) +

p ((l—q_l)(ZQ)\H—(q_loc_l—1)(22#)) for A< p
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In fact it can be seen that the inverse image of al/z(p/\) + (Ag) under this map is precisely:

1—q7t
(1+ a'2)(g7 a= 2 — 1)

f1,+ [fA + a1/2fu} (5.2.5)

So, in the case o # ¢~ %, when we refer to ozl/Q(u/\) + (Ap) in the homology H? (Yw’g, wag(q)), as identified

with ((Ap) | A p € {wr,...,wy}, A # p) we are really referring to the element given by (5.2.5).

2 2

In the case @ = ¢7*, all of this breaks down, since 75 is no longer an isomorphism on ker(Dgz)).

However, inside ker(D1) N ker(D3), there is a subspace of dimension lan(n—1) given by ji12 = a2, There

2

is no natural basis on which this action can given, unlike the case of o # ¢~°. However, as we shall see in

the next Chapter, there is a natural action of B,, on the quotient of the symmetric part of homology by a

suitable subspace of dimension n.

This action can be obtained in another way, starting from the action of B, on the symmetric part of

2

homology for oo # ¢~2, given above. The matrix for the action of o; given in the Theorem depends smoothly

on « near ¢~ 2, and the limiting matrix for this action is:

fine fi; Fins  fra frin
Jiri g ¢t -1 g -1
fi 0 4
finj 1 1—q7
Tri 0 q!
Jrin 1 1—q7!

It can be seen that the subspace given by the kernel of the map:
(fij) —C

fij—(0,...,¢7 ..., 1,...0)

is preserved by the limiting action of o;. Hence there is induced an action of B, on this subspace, and this
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action of o; is equivalent on the subspace to that of the matrix:

fini fi; fing e frip
St 1
fij 0 ¢
Jir j 1 1-g¢7
S 0 q!
Trin 1 1-47
This shows that:
Theorem 5.2 There is a quotient space of the symmetric part of the homology H, (wag, Xw’g(q))

with o = ¢~%, on which the action of B, factors through the Hecke algebra H,(q™").

We have indicated above how this action may be obtained on either a quotient space of (H3z)%* at
a = ¢~2, or as a subspace of the limiting space (H3)%2 for @ — ¢~2. In Chapter 7 we will discuss this in a
more general context. The space obtained by either procedure has dimension on(n—1) — n= lhan(n — 3),

and as will be seen in Chapter 7, the actions of B,, obtained are identical on these two spaces. The action

on the limiting subspace was seen above to factor through the Hecke algebra H,(¢™").

The work of Wenzl [W] showed how, for any Young diagram A with n squares, one could construct an
irreducible representation mp of H,(g). These representations are deformations of the standard irreducible
representations of S,, as ¢ — 1. See §2.1 for more details. Consider the two-row Young diagram, A,
with n — 2 and 2 squares in its rows, as shown in Fig. 5.4. In each square, the integer indicates the hook
length I(7, j) as defined in §2.1. By the hook length formula the dimension of the corresponding irreducible

representation of S, (and thus also that for Hy,(q)) is:

n!

(n=1)(n —2)(n—4)---1)(21)

on(n —3).



A more careful examination of the transformation properties of <f”> reveals that the representation of
Hp(g™) referred to in the Theorem above, is precisely the irreducible representation of H,,(¢7!) corresponding

to the above Young diagram; see §6.3, p91-93 for more details. We conclude that:

Theorem 5.3

any local coefficient system q specified by two non-zero complex parameters ¢ and o. When a = ¢q~2, this
action preserves an n-dimensional subspace of this 1/on(n—1)-dimensional space, and the quotient action

induced is the irreducible representation, my,, of the Hecke algebra H,(q™') corresponding to the two-row

Figure 5.4

There is an action of B, on the symmetric part of the homology H, (Yw’g, Xw, 2(q)) for

Young diagram with n — 2 and 2 squares in its rows.

5.3 Symmetric group representations for ¢ = 1

In this section we will discuss the case when ¢ = 1. In this case, the local coefficient system is trivial.

Thus the A()\O) and b()\o) matrices are all just 1. Theorem 4.4 allows one to compute the matrices A "

I I

arbitrary A, g and r, and it is found that:

b(’") —

)\,u_I

while A(;u) is given by the following action on <S€V>:

where o, f€ Sy, and:




(r)

The formulae given in §4.3 for the matrices D;"’ also simplify greatly. Thus, from (4.3.1), it is seen that:

D(-i) =0

(3

for all . Hence DZ(»T) = 0, by (4.3.2), and so Lemma 4.2 reduces to the trivial statement that the homology
Hy(Yw,m, Xwm(q)) can be identified with C,,. The action of S, on the space of chains is specified in

Theorem 4.5 in terms of the matrices:
—A A
(i Al
]z(i-}-l) = Al (5.3.1)
A/
where A’ = Agi;{jl and the blocks of the above matrix are associated with the values zig A, AX, pA, Ap

(A > p) of the pair a;ai1. The matrix gives the action on <S€j’1>, and it is extended to give the action on

(1)
i

Cm, by putting blocks of j; down the diagonal.

Since the representation of B, on homology, in this special case, gives rise to an action of o; € B, of
order 2, it factors through S,,. So all the representations obtained in this case, are representations of the

symmetric group, S,. The action of o € S,, on S} is given by:

o(a)=p

where (; is obtained from «; by the induced action of ¢ on {Zi+1, ey Zm, W, . wn}. The character of the
representation is thus given by:

X(U) = (0'1 -}-m—l)...(al _+_1)01

where ¢” is the number of cycles of order r in the disjoint cycle decomposition of .
However, the representation with which we are concerned here, is that on

V= {Hm(YW,ma XW,M(Q))} o :

This totally symmetric part is the subspace of <S€’J> on which jjy = 1fori=1,2,...,m—1. By (5.3.1),

the subspace given by j;;u = 1 is spanned by:

0 a

0 (A" +1)a
Ala and 0

a 0



for arbitrary a € Sf;l. The action of A,(zi_zlil = A’ on Sf;l is the natural one, under which z; and z;; are

interchanged. Hence V consists of elements

of <S€’J> such that:

(a) Aq = A whenever o, 3 are both vectors of distinct elements, which can be obtained from each

other by exchanging z; and z;;; while, at the same time, interchanging the it and i+1%" elements,

for some 7 with 1 <17 < m;

(b) all the A, are given by well defined linear combinations (which we will not give here) of those A,

for which aq, ..., a,, are all distinct.

This implies that all the A, are determined by {Ag | a € V} where V is a suitable subset of 8} of order:

(n+m—=1)---(n+1)n/m!.

Example 1

Consider the case of m = 2. Then it is clear that:
V:{(wiwj)|1§i<j§n}u{(z2wi)|1§i§n}
will do. The action of S, here is the natural action, and splits into a direct sum of representations:

(i) the induced representation coming from the identity on Sy x S,_2 C S, (of dimension on(n—1));

(ii) the natural representation of .S, of dimension n (associated with the identity action of S7 x S, C

Sn).

Both of these parts split into irreducible components, namely as wp, & 7o, B 7p, and 7, G 7o, Hence
the total representation is wa, @ 2ma, ® 2wa,. Although it still contains ma,, it is by no means irreducible!

The character of the represention of S, (or By) on the symmetric part of the homology is given by:

x(0) = Yoo (oh +1) + 0°
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for ¢ € S,. This should be compared with x4,(¢) = 10! (c? —3) + o2 .

Example 2

When m = 3, a suitable set V consists of all & = (a1, @2, a3) in 82, of one of the following forms:
(wiwjwg) (i < j < k);
(z2wiwj) (i <j);
(zswiwj) (1 <j);
(zaz3w;) .
This set has order:

Ysn(n—1)(n —2) + 2. an(n—1)+n = Ysn(n+1)(n + 2)

and the representation of S, so obtained is:
TAa, O 3mA, @ 4ma, O 4wy, -

It is possible to prove, in the general case, the following Theorem.

Theorem 5.4 The representation of B, obtained in Theorem 3.3 when q = 1, factors through S, , and

as such, has the direct sum decomposition:
m
@ Ak CTAL
k=0

where Ay = (T__ll) for k > 0 and Ag = A;.
r=k

Note that only two-row Young diagrams enter here. This would not be true if we expressed the repre-

sentation of B, on the homology:

Hon (Y, my Xw,m(2))
with ¢ = 1 (without restricting to the Sy,-invariant part), in the form of a direct sum decomposition.
When ¢ differs from 1, but is nearby, the dimension of the homology is less than that at ¢ = 1, since the

boundaries are non-trivial in such a case. There is thus a discontinuity in the dimension of the representation
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obtained at ¢ = 1. Similar discontinuities exist at other roots of unity, but only a finite number of roots of
unity are affected for a given m. In all cases, however, w5, occurs with multiplicity 1, and is the major part

of the representation.



6: The General Case

In this Chapter we will discuss the theory for the case of general m, and prove Theorem 3.3. Throughout
this Chapter the local coefficient system is assumed to be given by:

Qz,2; = q_2

Q2w = 4

fori,j€{1,2,...,m}, k€ {1,2,...,n}. This local coefficient system is suitably symmetric so as to enable

both the actions of B, and S,, as defined in §3.1, to exist on the space of homology.

The duality between homology and cohomology which exists via the natural pairing:

HyxH™ — C

(@.w)— [w

induces natural actions of B, and S,, on cohomology. In §6.1 we shall discuss the relation between the
actions on homology and cohomology, and define a natural quotient of the space of chains. For the rest of
the Chapter it is most convenient to work with the dual picture of actions on cohomology. The quotient space

of homology is dual to a subspace of cohomology, and in §6.1 we specify a spanning set for this subspace.

Using the results of Chapter 4, the actions of S,,, and B, on this subspace are evaluated in §§6.2, 6.3
(see Lemma 6.3, Corollary 6.5 and Theorem 6.6). The action of B,, on the symmetric part of the subspace
is shown to be the required irreducible representaton of the Hecke algebra corresponding to the two-row
diagram A,,. When m > n/s, the subspace of cohomology vanishes. The result proved is thus stronger
than Theorem 3.3, since it identifies the subspace on which the Hecke algebra representation appears, with

a concrete spanning set — see §6.1 (Theorem 6.1).



6.1: Concrete construction of homology quotient

The picture we have obtained up until now is that B, x S,, acts on C,,, a space of chains. This action

preserves the subspace ker(D) C C,, where D denotes the matrix:
D{™
D)

For, ker(D) = (N2, ker(DZ(»m)), and by Lemma 4.2, there i1s an isomorphism between the homology:

Hm(Yw,mv Xw,m(q))
(which we shall in future abbreviate to H,, since the context is clear) and ker(D).

In the dual picture, we have B,, x S,, acting on the space C™ dual to the space of chains C,,. The action
preserves the subspace:

Im(D') C C™

where D’ corresponds to the differential map d, just as D corresponds to the boundary map §. The coho-

mology space H™ is now isomorphic to Cm/Im(D'). An element of C™ is specified by a vector:

{/gf gec’m}

The boundary map & : C;, — Cpu—1 gives rise to the differential map d : C™ ' — C™. This map is specified

by the transpose of the matrix for §; that is D’ = DT.

We wish to define a quotient #=/ of homology; or equivalently a subspace of cohomology. We will do
this by defining a subspace W' of €™, the dual to the space of chains. The situation which we now obtain is
embodied in Fig. 6.1. The subspace W' C C™ gives a natural embedding s’. The map r’ induced by s’ on
W'/Im([)') gives the required subspace of ¢™/imp) = H™. We can reach this subspace, alternatively, as the
image of j, giving W’/Im([)*') where:

D, : D'_l(W') — W

is the resriction of D’ : ¢™~1 — ™ to D’_I(W’).



Cm /W

kerD)yyr L ker(D)  —— Cm
WimmD) ~ CmD) < em

W/

Figure 6.1

In the dual picture, W' is dual to a quotient €=/ of the space of chains C,,, giving a quotient map
s. Restricted to ker(D), this gives the map r, whose image is ker(D)/y, the required quotient of homology.

Alternatively, one can obtain this result as a subspace of Cm/i | using j; namely ker(D*) where:
D*: Cm/W — Cm—l/D(W)
is a quotient of D:C,, — C_q.

Now, to define W' C C™, we use the natural pairing between C™ and C,,, and put:

W’:{fecm‘/
.

a; € {wy,...,w,} for all 7, and «; are all distinct elements}. From this

f=0foralla € SC:\’Twm}

=

where 7" = {(al,...,am)

definition it is clear that 7., and thus also W', is trivial when m > n. We will see later in this Chapter

that W'/Im([)f) is also trivial when m > nj.

(m)

The action of B, on H,,, given by the matrices Ay, w,, for the action of the generator o;, corresponds

(

in the dual picture to the action of B, on H™, given by a matrix Aw:?u)&l, where:

<A$’:}U)mw ‘ Aq(unjt)l}l+lv> = <w ‘ v>
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for all ve H,, w & H" where < | > denotes the natural pairing between H™ and H,,. Thus the matrix
A;(,?Z,)lﬂ is the transpose of the inverse of A&,”fﬁ,lﬂ; it gives rise to a representation of B, which is the dual of
the representation obtained on H,,. Thus the statement of Theorem 3.3, namely that the action of B, on

Hpm /v is an irreducible representation of H,(g¢™!) is equivalent to the statement below in terms of the action

on cohomology.

Theorem 6.1 There is a natural action of B, x Sy, on the subspace (W//Im (D')) of the cohomology:

H™ (Y, Xw,m(@))

and the action of B, on that part of the space that is totally symmetric under the action of S,,, factors
through the Hecke algebra Hy(q). Moreover this action is irreducible and corresponds to the Young diagram

with two rows of lengths n—m and m, for m < nfs. When m > n/a, the subspace defined by W is trivial.

This is the form in which we will prove Theorem 3.3. In §6.2, we establish the action of S,, on the
space W'; and in §6.3, we obtain the form of the action of B, on the space (W’)*~. The form of the space
(W'/Im([))) m is also discussed in 6.3, and this discussion enables a proof of the Theorem above. We actually
obtain a stronger result, namely that the action of B, is given on the basis for W’ in the standard form; see

Theorem 6.6 in §6.3.

Finally note that f € C™ is specified by the values of

f

Yo
for @ € 82 (i.e. thinking of C™ as (Cy,)*). Then W' has a basis consisting of (@) for each a € 70", where
fw (@) = 84p for all g € 87 That is, dual to the basis 8§ for Cp,, we have a basis {(a) |a € 83} for C™;

and W' is spanned by those (o) associated with o € 7).

6.2 Symmetrization

In this section we will evaluate the action of S, on the subspace of H™ defined in §6.1, and will deduce

a basis for that part of the space invariant under S, (see Corollary 6.5). Let us recall some notation:
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Sew ={a=(a1,...,a0)|o; €E{zipa, o, 2Zm, W1, .., Wi }}

Definition< 75 = {a € Si,|ai € {w1,...,w,} and «; are all distinct} ;

3

UWZ{QETVC|Q1>CYQ>"'>OZ,«}.

There is an obvious action of the symmetric group S, on 7.7, given by:

o(a) = (ao(l) Qg(2) - '%(m)) .

Under this action,
T3S, = uUm .

In this notation, the subspace W' C C™ of §6.1 is given by:
" = (o) |g€ S

W'=((e)|aeTy)

The main result of this section is that a basis exists for (W)= the fixed part of W/ under the action

of the symmetric group, whose elements correspond to those of 7J* .

Definition: For any o € Sy, define e(0) € N U {0} by:

e(0) =Y H(o(i) = a()))

i<j
where the sum runs over all pairs (i,7) in {1,2,...,m} with i < j; and H(z) is the Heaviside function:
1 forx>0;
H = =7
(2) 0 forx<O.
Then (o) denotes the number of pairs of elements of {1,2,...,m} whose numerical order is reversed

under the action of o.

Definition: For each a € Uy, define ' € W' by:

=3 ¢ (c(a))

ocES,
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Lemma 6.2 (o) satisfies the following two relations which uniquely determine ¢:

e(1)=0;

6(0’ o (ii—}—l)) =e(o) + sgn(a(i—i—l) — a(i)); Vo € Sm, 1 <i<m.

ProoF: The two relations uniquely determine € since Sy, is generated by (¢i+1) for 1 <7< m—1. Also
for any pair A, p € {1,2,...,m} with A < p,

{70 D))~ oo (1))} = H (V) = o(u)
where X' = (ii4+1)(A), g/ = (ii+1)(p). Then X < p unless A =i and p = i+1. Thus e(o o (ii+1)) differs

from £(¢) due only to the contribution of the pair 7, i+1 to the two sums. This completes the proof. |

We claim that {f2'} spans the symmetric part of W’. The proof of this result is split into the following

two Lemmas.

Lemma 6.3 For all a € Uy;, fy' is preserved by the action of Sy, defined in §3.1, on C™.

Proor: The action of the generator (ii+1) of Sy, on C™ is the dual of the corresponding action on Cp,.

However, as remarked in Theorem 4.5,
2 _ -2
Jiiyt = Qziz2i0 = 4

and thus the dual action of o; is given by:
. T .
(gGiiv) ™ = qjiin " -

However by Theorem 4.5, it is seen that j“_HT preserves the vector space spanned by («) where o € 82 and

(i) T

@i, ayg € {wi, ..., wy} are distinct. Thus, if @ € 75", then the action of ¢j;;/ on (@) € CH is given
by:
HA Ap
0 qA’
gt AT 0

where A’ = A.(zi_zll}rl and the blocks are specified by the values of a; and a;p1, with A > p. In the next section
it will be shown that the action of A’ on a(*) is trivial whenever @ € T.? (see Lemma 6.8).
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Hence the action of ¢j;i;1 " on (o) € C™ for a € T.J" is given by:

a
T _JaNar-aiqaipag - a,)  for ap < agp
g o) =
(2::17)(@) { qlar - aiaipa; o) fora; > apn

Applying this to o(a) where o € U, we see that:

(2jii0 ™) (0(@) = ¢ (7 0 (i+1)) (2))
where the power +1 is determined by:
(o(2));2(0(2)),, -

Since {«;} is in decreasing order, thus (O’(g))i > (U(g))i+1 is equivalent to o(i+1) > (i), and hence the

image of fI' is given by:

(ajiin™) f2 = Z qa(g)qsgn(g(m)_g(i)) (00 (ii+1))(a)

oES,
= 3 ¢CH) (oo (it 1)) (@)
oc€ES,
=
by Lemma 6.2. This shows that f* is invariant under the action of the generators of Sy,; and hence the
Lemma is proved. ]
Lemma 6.4 The dimension of the symmetric part of W' is Ymin(n —1)---(n — m +1).
ProOF: Now 77 is a set of order n(n —1)---(n — m +1). When ¢ = 1, we are using a trivial local

coefficient system, and so the action of Sy, given by ji;" on ((a) | @ € T2) is identical to the action
of Sy given by permuting {a;}. Hence the part of ((a) | @ € 7.7*) invariant under S,, is spanned by the

symmetrised elements:

Um! Y~ (o(a) -

ocES,

These are precisely the elements fI* for a € U]}, in the case ¢ = 1. Hence for ¢ = 1, the symmetrised
part has dimension (:1) When ¢ is moved away from 1, this dimension cannot increase locally, since the

symmetrised part can be thought of as an intersection of subspaces of C™:

m—1

ﬂ {vec™ |qjiinv=v}.

i=1
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However by Lemma 6.3, {fg@ |a € U",’;} defines a set of (:1) linearly independent elements of the symmetric
part, so that this dimension must be at least (:@) We conclude that the dimension of the symmetric part is

precisely (:1) ) [ |

Hence, putting the two Lemmas together, we obtain:

Corollary 6.5 The symmetric part of W' C C™ under the natural action of S,, given by §3.1 is

precisely <fg‘ |a € L{‘T> .

In Theorem 6.1, the space on which B, acts is the symmetric part of the subspace W’/Im(D') of the

cohomology space Cm/Im (D’) = H™. By the above Corollary, this space is given by:

(i'(f2) laeuyy

where, for v.€ C™, i’(v) denotes the corresponding element of H™.

6.3 The monodromy action

To calculate the monodromy action of B, on the subspace of cohomology given by the last section,
we start by evaluating the action of B, on the corresponding chains. That is, we calculate the action of
generators o; € B, (for i =1,2,...,n—1) on:

(7 lacuy)yccem.
This action preserves the space Im (D), and thus induces an action on the corresponding subspace of coho-

mology, namely that referred to in Theorem 6.1.

At the level of C™, the action of B, is explicitly given by:

Theorem 6.6 The generator o; of the braid group B, acts on <f§1 | ¢ € L{(”J>g C™ by the natural

monodromy representation, according to:
fa + (M=o fy if{w,wipn}N{ar,...,an} = {wi}

m— S e if {wi, wips } N {ar, ..., am} = {wip }
o otherwise

where «; denotes o with any entry w; changed to wiy, and any entry w;y; changed to w;.
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Recall that the action of B, on C™ is the dual action to that on C,,. The action of the generator o; € B,

on Cp, is given by Aq(ﬂnjg,*l, and the dual action is thus given by:

T
(A(m ,+1) 1

wiw

T
Hence the Theorem is equivalent to showing that the action of (Am,m) on the subspace of C™ spanned

by {fg | « € UZ} is given by:

q_lfg if {wi, wip } N a1, ..., am} = {w;}
fo — Qfe+ =g )f2 if {wi, win} N {a, . am} = {win}
fa otherwise
The matrices (Am,&l) for i = 1,,2,...,n —1, are given by the recursion formulae of Theorem 4.4 (§4.5),

and the proof of Theorem 6.6 proceeds by applying induction on m to prove many intermediate results. To
avoid the necessity for using extra brackets, we shall in future use a to refer to the corresponding element

(@) of C™, as well as an elements S, so long as the context is clear.

Lemma 6.7 For a € U, then if f7 is defined as in §6.2 it satisfies the folowing relation:

f; = Z qr—a(f;—(i).aa)
a=1

h

where a(a) € UL is obtained by removing the a'' element from o, to give (ay,...,04_1, 0041, .., ay).

ProoF: From the definition of f as:

Z qa(a).a(g)

c€ES,

we may split this sum up, according to the value of @ = o(r), into r parts. For any particular value a,

Jo’ € 5,1 such that:
o(a) = ' (a(a)).a .
The correct ¢’ to use here is given by:

1 Joo(d) if o(i) <a
o'(i) = {U(i) -1 ifo(i) >a

However, it is easily verified from the definition of £ that:

elo)=c¢(c’)+r—a.
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Thus one obtains:

= Z ¢ .7 (a(a)).aq

c€eS,
=20 Usay@e)
a=1

which completes the proof of the Lemma. ]

This Lemma enables us to prove theorems on the behaviour of the action of B, on (f7) C C" in terms

of its action on (f51) C C".

T \T
Lemma 6.8 The actions on bg\rg and A()\TJ on («) are given by multiplication by q;ﬁlt and 1 respectively,

whenever o € S, with «; & {z1,...,2,, A, pu} for all i. Here r is an integer, 1 <r < m.

ProoOF: We prove this Lemma by induction on r. For r = 0, it holds trivially. Assume the statement of
the Lemma holds for r—1. Suppose o € S, with «; & {z1,..., 2, A, pu} for all i. Then by Theorem 4.4:

T
A(A’;l) (e ).y ifa, <Aora,>p

T
A(r) ozr_l.O[r — T T T-1
(@) [bi:;” A ]@-w-ar ifA <ar<p

T
p{—1) (™)., ifa, <Aora,>p

and b(T)T(of_l.a): M T T T
e [0 @ it <ar <4

However, none of the entries of ™ lie in the set {z1,...,2,, A, u}, and thus by the inductive assumption,
T T T
A()\ru_l) , b()\ru_l) , bg’;\l) all act on o™ as multiplication by factors of 1, q;;, q;}x respectively. Thus we
obtain: )
r
Ayi(a) = a
r -1
b (a) = arpa
which gives the general statement of the Lemma at 7. Hence the proof of Lemma 6.8 is complete. |
Lemma 6.9 Suppose that a,, o, € Ty, are such that oy and oy differ only in the k" component

where they are w;, w;y respectively, some i, k with 1 <k <r,1<i<n-—1. Then b,(zt_)leJrl b,(zt_)le preserves

the element:

(2) —a(ey) €W’
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PRrROOF: As in the last Lemma, we use induction on r. For r = 0, the result is trivial. Assume the
statement of the Lemma holds for r—1. When k < r, the result follows immediately from the inductive

hypothesis using Theorem 4.4 and Lemma 6.8, since:

(Q1)ra (Qz)r ¢ {wiawi-l-lazla .. ~azf‘} .

When k = r, we have for some o € 7271, that:

) = aw;;

Qy = Q. Wiy -
By Theorem 4.4, since a contains neither w; nor wj,

T
bxgm<%—4gn=b;T@>wﬂ—q{u—@mTwm<>zﬁr+ ST =)= bay T, ] (@) A

Zrp <AL W;
+D@T+%Fmﬁwmf—nhgw}

where by = bg:l), b, = bgﬁ;\ By Lemma 6.8 this can be reduced to:

(> —Dazm + (07 =1 = awi+ ¢ awyn + (¢ =1) D>, (1=h"aA.

Zrp <AL W,

When bg:llw is applied to this vector, using Theorem 4.4 once more, together with Lemma 6.8, one obtains:

i

(@ -1 azep + (1= ¢ g Pawm +¢7°(1—q) Y. (I=bNaw,; p+ (g7 —1-q)q " aw
zrp<j<wipn

+q7 (=) ez + (- ¢ + Qg awin +¢7 (1= ¢%) > (1= aw;
Zrp <j<Wipn
H(®=1) Y g(1-bhDaA
2 <ALW;
which reduces to a.wipy — qa.w; = ay — qa;. This completes the proof of the Lemma. ]
ProoF: (Theorem 6.6) As remarked at the start of this section, the Theorem is proved once it is shown
that, for all o € UZ,:
_1f’" if {wi, wip } N{ay,...,am} = {w;}
wwl+1 (fa)_ fr +(1_q )f& if{fwiau’i-}-l}m{ala“'aam}:{wH'l}

f’” otherwise

For r = 1, this follows directly from Theorem 4.4 applied at first order. Assume that the above action of

T
A(ufl)wrl on (f& | « € Uy,) holds for r—1. Suppose 3 € U,. By Lemma 6.7,
fy= qu“‘(fg?i)ﬂa) . (6.3.1)
a=1 -

T
We now consider the action of AEJ)MI on the terms in (6.3.1) separately.
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Case(i) Bq # wi, wip -

By Theorem 4.4,

A (f )-0a) = AT, (f ) Ba

T
and thus by the inductive assumption, fﬁ .Bq transforms under Aq(u )wl+1 in the natural way, according to

whether ﬁ(a) contains w; and/or wsy .

Case(ii) f, = w; and (3 does not contain both w; and wy .
Here, ﬁ(a) does not contain either w; or w;y;, and by Theorem 4.4 and Lemma 6.8,

)Trl)T

U/ wz+1 (-f 6‘1) = w wl+1 z Wi (f ) Wiy
- q—lféz}l).wlq_l

using the inductive assumption. This gives the natural transformation for fg?i)[)’a .

Case(iii) B4 = wipy and B does not contain both w; and wy .
Here, once again f(a) does not contain either w; or w1, and :

)T

w w,+1 (f ﬁa) — w w,+1 (f ) (1_ bg Wi ) w w,+1 (f ) Wi
oy i+ (1= 07 ) 0y win

by Lemma 6.8 and the inductive assumption.

When 3 does not contain both w; and wiys, these three cases put together, using (6.3.1) give the required
transformation properties of fé at level r. The only case we are left with is that for which 3 contains both
w; and wiy1. By case (i), those terms in (6.3.1) with 8, # w;, win are preserved. Thus, to show that fé is
preserved, it is only necessary to show that the sum of the two terms in (6.3.1) corresponding to a’s such

T
that B, = w;, wip, 1s preserved by Aq(url)wr+1

(r)

Since ﬁ € Uy, then B, = wyy and F,41 = w; for some s. Thus, it is only necessary to show that Ay /w,,

preserves:
r—1 r—1 o 1 _
Qfﬁ(s)'w“‘l + fﬁ(s+1)'wi =qfs, win + fo, Wi
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where o, a, satisfy the conditions of Lemma 6.9. Since {81,...,8s—1, Bs+2, - -, B} does not contain either

w; or Wiy, we deduce from Theorem 4.4, that:

T
Ai(urz)wl.u (‘1.@1—1 Wiy + f;z_l .wl-)
_ T .
= q{ATféll.wi + [AT(l— wa_lwalwaer )] fgll-u’z}l} + (AwaH_lT)fg21.u,i+l

= q{q‘lfgj wi+ (7 o - qAwa,+1wa,Tf;j1)~wi+1} + (AT bu ) fa win

by the inductive hypothesis. (In the above we have used the simplified notation in which A = AEL‘&LA,

by = b(:_)\l).) Applying Lemma 6.8, we can reduce this to the form:

fag wit (ot + A b, " bo (0 fe]! = 0 fa )] i
= f;;l.wi + [f;j + AT(‘]f;j - q2f;1_1)] Wit by Lemma 6.9
= fo b wi+ qfeT wip

the last step again being a consequence of the inductive hypothesis.
Hence the proof of Theorem 6.6 is complete. |
Finally to derive Theorem 6.1 it is now necessary to discuss the part of Im(D’) contained in:
(f2 |acuy).

That is, it is necessary to derive the relations between {j’(f$)|g € U‘T} C H™ which exist due to taking

out the ‘boundary space’ Im (D').

Lemma 6.10 Suppose a € U},. Then in C" we have

" Ty = ro .
(bzmwaj 1)‘fﬁ_ Z <f(o<1...ocj...ozrwl)'q (q 1))

where s; is such that as,_1 > i > ay, and s; € {1,2,...,r}.

ProoF: By Lemma 6.7, we can express f,, as a combination of terms:
r
Do dT (6.3.2)
a=1
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(r)

T
Those terms corresponding to @ # j transform under (bzrwaj —1) according to:

O D) () ifa<j

—a r— T r— T r— T 7 — . .
(0, T 1) () e it

by Theorem 4.4. However, by Lemma 6.8, f(;(_;) multiplies by q;}zm under bgi;},}, and so assuming the Lemma

holds for r —1, the terms in (6.3.2) with a # j transform to:

a=1 ooy /s

it
where s}, is the value of s; corresponding to w; relative to {ay,...,@q,...,a,}; and j* is the position at
which a; occurs in {aq,...,aq,...,a,}. However, it is easily verified that:
/ . -a j
Sig—si=a—j+j*—d
where @’ is the position a, occurs in, when «; is removed from {a1,..., a,}. Thus:

(r—a)+(siy = §%) = (r—a’) + (si = 5) .

The expression on the right hand side of the equation in the Lemma may be written as a combination of
/s, by expanding out each f” as in Lemma 6.7. Those terms obtained when a; (s # j) is removed, in
going from an f7 to an f™, give rise to the expression (6.3.3). The remaining component consists of those
terms obtained when w; is removed. Hence to prove the Lemma for r, it remains to show that the remaining
terms on either side are equal, namely that:

iZag's

However, by Theorem 4.4, the left hand side here is:

] 3 I 0™ W) ) (s, 0V =102
k<j

+ ) (b, " —1)67] (23 .ak}

k>j
where b, by denote bﬁ’;})aj and bi:\l). By Lemma 6.7, b, b, and b,, act on fg(—]}) as multiplication by ¢7',
q% and ¢! respectively, when:

k;éaj V_]
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Hence, the left hand side of (6.3.4) reduces to:

Yo Tt (g w) @ =)

iZog's
where the sign £+ depends on whether ¢ is greater or less than «;. This reduces to the right hand side of
(6.3.4), since it is easily seen that the sign is precisely s; — 5 . The inductive step in the proof of this Lemma
(1)

is thus complete. The case r = 1 follows directly from the first order formula for b3 /., given by Theorem 4.4.

Hence the proof of Lemma 6.10 1s complete. |

However, Im (DiT) can be factored out of the space of chains C™ by setting the component of (&) to

zero for all & € 8 with a; = 24 This is possible for i = 1,2,...,m —1, so that:

cm /(Im( )|l—|—1,2,...,m—1>§((Q)ES$|Qi¢Zi+1 fori=1,2,...,m—1).

Hence the only part of Im (D’) which imposes relations on {j’(f$)|g € U‘T} comes from Im (DmT). Now:

n

(=) (me 1))

i=1
=2 DUz ) £ 30 D (a5, e, )a"
i#a; j=lizox's

by Lemmas 6.8 and 6.10. Lemma 6.7 reduces the right hand side to:

- ) Z qSIf(n;cl...ozm_lw,) .

1#oj
Thus the relations on the subset j/(W’) = {j’(fg”) |a €UT} of H™ are given by:

S A, = (6.3.5)

i#o0j

for all @ € UL, using the usual notation for s;.

As was shown in Theorem 6.6, if we define:

gu= D ¢, €cm (6.3.6)
i#o0j

for « € YU, then under o; € B, {ga} transforms according to:

ggl—i—(l—q)gg if {wi, wip } N{ay, ..., am} = {w;}
Jo — { 990, if {wi, wip} N{aq, ..., am} = {win}
Jo otherwise

since each term in (6.3.6) transforms in this way.
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Definition: V™ = <{j’(f$) |QEU‘T}> CH™.

The action of o; on V™, as defined in §3.1, is the quotient of an action which factors through the Hecke
algebra H,(q), as is given in Theorem 6.6. Lemma 6.10 shows that this quotient is by another Hecke algebra

representation, in which m is replaced by m —1. The dimension of V'™ is:

m m—1| __ n _ n
et == (1) = (")

since there are |LI",’J—1| relations satisfied by the spanning set {j’ (fz) | a € L{‘T} of Vi, (see Lemma 6.10).
The hook length formula [Jo 4] gives the dimension of the Hecke algebra representation 74, where A,, is

the two-row Young diagram with rows of length n — m and m, as:

n!

(n=m+1)---(n—=2m+2)(n—2m)---1.m!

Ymn(n=1)---(n—m+2)(n—2m+1)

() = (1)

= dim V™.
n—m-+1 n—2m-+42 n—2m 1
m 1
Figure 6.2

The Hecke algebra representaion given in Theorem 6.6 corresponds to that obtained by symmetrising
along the rows in A,,, but not anti-symmetrising down the columns. As in the case of the symmetric group

Sn, such a representation of the Hecke algebra has character:

XA, Tt XA T XA,

where ya, is the character of the irreducible representation of H,(q) corresponding to the Young diagram
A;. However V™ is the quotient of <(f21) | a € U",’J> by <gg | a € U{,’J—l), and the action of B, on (g,) also
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factors through H,(q), with character:

(XA, Xa0) — (XAmo -+ XAy) = XA,

Going back to Wenzl’s definition of the representation @4, it is easy to see that the action on V™ of

B, is precisely that of 75, and the basis that /] supplies at the level of chains, is the natural basis for

m)

this action. Hence Theorem 6.1 is proved. |

In this Chapter we have completed the proof of Theorem 6.1 and thus also of Theorem 3.3. However,

the embedding of V™ in the totally symmetric part of the cohomology:

" (Yw,ma Xw,m(Q))

remains to be understood in more detail. Some remarks on this question are made in the next Chapter.
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7: The selection of a quotient of homology

In this Chapter, we will discuss the construction of the quotient of homology defined in §6.1, namely
ker(D)/W. As was observed in §6.1, this is equivalent, by duality, to the construction of a subspace of
cohomology, namely W//Im (D’). It is the braid group action induced on the part of this subspace invariant

under the action of Sy,, which factors through a Hecke algebra, giving rise to the representation my, .

The general situation considered in §7.1 starts from a smooth family of linear transformations, each of
which fixes a subspace, and satisfying certain suitable conditions near to one member of the family. There
is thus also a family of linear transformations defined by the quotient actions. The main Theorem of §7.1
(Theorem 7.2) shows how a derived action can be obtained naturally from this data, which is a subaction of

the chosen action at the ‘special’ member of the family.

Going back to the braid group representation obtained on homology, the representation used in The-
orem 6.1 can be considered as a special member of a family of such representations, obtained using more
general local coefficient systems. The derived representation of this family, at the special local coefficient

system used in Theorem 6.1, is shown in §7.2 (Theorem 7.3) to give rise to w4, in the special case m = 2.

In §7.3, it is shown that w4 is contained in the derived representation obtained from a suitable family (The-
orem 7.5), and it is conjectured that the symmetric part of this derived representation gives precisely ma,, .
This would be resolved by a dimension count — however this is not easy to do here. In the next Chapter
we will go on to discuss the theory of Tsuchiya & Kanie, and see how this is related to the construction

embodied in Theorem 6.1.
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7.1 Limiting lemma

The representation of the braid group on homology as defined in §3.1, is a function of m and the local

coefficient system q. It is thus possible to obtain a braid group representation from any q written in the

form:
z,2; = Q5
Qzywyx = i
where ¢;, «;; are non-zero complex numbers. Here ¢ < j and ¢, j € {1,2,...,m}, k € {1,2,...,n}. Thus

there are 1/sm(m+1) parameters available in the representation.

Of course, the action of the symmetric group S, on the space of homology only exists if a;; = o and
q; = q are independent of 7 and j. This reduces the number of parameters to two, and in Theorems 3.3, 6.1

2 is the one used. The Lemma which we discuss in this section

it is seen that the special case given by a = ¢~
can be applied before the symmetrisation procedure, to produce a derived representation of the braid group

at:

aiqu_2, % =q.

This derived representation can now be symmetrised, and it is claimed that the result obtained is the action
on (Hm/W) Sm peferred to in 86.3. We will discuss this last part in more detail in §7.3, and in the special case
m = 2,1n §7.2. However, in this section we concentrate on the Theorem enabling the derived representation

to be obtained.

Let us start with the simplest situation in which the lemma we prove, Theorem 7.2, is applicable.
Suppose {A(h)} is a one parameter family of linear transformations on a vector space V', such that for each
h, there is a subspace Vj, C V fixed by A(h). Then A(h) defines an action on the quotient space V /1. We
suppose also that A(h) and V}, depend smoothly on h, using a suitable definition of the smooth variation of

a subspace. The first order variation of Vj, near h = 0 can be represented by a map:
Vo — Vv,

and it will be assumed that this map has maximal rank. (This is a non-degeneracy condition on {V},} near
h = 0.) Assume also that there exists a subspace W of V such that, for all sufficiently small é:
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(i) W, V3 are transverse in V for 0 < |h| < 6, and W is a maximal space satisfying this condition;
(i) Vo CW.
The first condition states that W and V}, span V, with trivial intersection, for all sufficiently small non-zero
values of h; it is always possible to find a suitable subspace W C V satisfying this condition. However, to be

able to find W satisfying condition (ii) as well, it is necessary to use the non-degeneracy condition mentioned

above.

Assuming that all the above conditions are satisfied, W can be identified with V/y;, for all A # 0
sufficiently small. The action of A(h) on V induces an action on W, say B(h), for all sufficiently small

h # 0. If B(h) depends continuously on h, and has a limiting value:
By = lim B(h)
h—0

then By is another action on W. However, Bg is simply the limiting action of {A(h)} on a quotient
Vs = W of V. The limit of the family {A(h)}, namely A(0), preserves V5 C W, and thus it is natural
to expect that By preserves V5 and hence acts on W/y;. The following Lemma sets out the exact relation

between By and A(0), together with the assumptions required.

Lemma 7.1 Assume that A(h), B(h), Vi, W are defined as described above where W satisfies condi-

tions (i) and (ii) above; and {V}} is non-degenerate near h = 0. Further assume that:
By = %1_1}16 B(h)
exists. Then:
(a) Bg preserves Vy;
(b) A(0) preserves W;

(¢) the quotient action of By on W/, and the subaction of A(0) on W)y, C Vv, are identical.
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PROOF: Choose a basis for V', {ey,...,en} such that Vj = <e1,...,en> and V, = <ei +hf; |1 =

1,2,.. .,n> up to first order in h. Then, by condition (ii), we can assume without loss of generality that:

some n, m with n < m < N. Then <f1, . ..,fn> NW = {0} by condition (i), and the non-degeneracy

condition.

We can now write A(h) as a matrix (AM(h)), when it is partitioned into a 3 x 3 matrix, using the

following subdivision of the basis:

{ela . ~7en}: {en+17 .. ~1em}7 {em-l—la . ~7eN}-
Since A(h) preserves V3, for some matrix C(h):
(A(0) + hA'(0))(e; + hf;) = Cij(h)(e; + hfi) + O(h?) .

Hence we have, using the Einstein summation convention:
A(0)(ei) C (ei)

A(0)f; + A'(0)e; = Ci;(0)f: + C;(0)e;

The correspondence V/y, = W maps [v], for v € V, to (v 4+ Vi) N W. As remarked above, since

(W, Vi) =V, with W NV, =0 for all h # 0, sufficiently small,
(fi,....f.)nW = {0}

and W is maximal satisfying this condition. It also follows that f; are linearly independent (otherwise
there would be a non-trivial element of V} in Vo C W). Hence without loss of generality, we may use
the basis {el, R Y ST IR i, S ..,fn} for V. With respect to this basis, the matrix for B(h) on

W ={e1,...,en) is given by:
A11(h) = YnAsi(h)  A1a(h) — Y/nAsz(h)
Aa1(h) Aza(h)
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This depends on h in a smooth way as h — 0 so long as A31(0) = As3(0). Thus A(0) preserves W; this

proves (b). The matrix for By can now be written as:
A11(0) = A5, (0)  A12(0) — Agy(0)
A21(0) A22(0)

However A(0) preserves Vg, and so A31(0) = 0. Thus Bo(Vy) C Vg, proving (a). The induced action of Bg

on W/, is thus given by As2(0) using the correspondence,

VV/V0 o~ <en+1, . ..,em> .

We can now write A(0)|w as:

AH(O) Alz(O)

0 A22(0)

Tts action on W/yj is thus also given by A35(0), and thus (c) is proved. The proof of the Lemma is thus

complete. |

We will refer to the action of By on W/yj, as the derived action of the family {A(h)} at h = 0. By part

(¢) of the above Lemma, it is identical to the sub-action of A(0) on W/, C V.

Example Suppose V = C3 and A(h) is given by:

1 0 0
1/ /s 0
h?4+2h —h —h
Then the one dimensional subspace V;, C V spanned by,

1
1
h

is preserved by A(h). A suitable space W, satisfying the conditions of Lemma 7.1 is given by:

1 0
<0,1>.
0 0

The action of A(h) on V)5, = W, for h # 0, is then given by the matrix:

o= (550 )
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This is a smooth function of A, and it 1s seen that:

SERY

preserves <G)>, inducing an action on W/, given by the scalar 1/a.

On the other hand, the action of:

1 0 0
AO)=1| 1 Y 0
0 0 0

on V /i, restricts to an action on Wy, given by:

()

with <G)> removed, and again this is given by the scalar 1/5.

Vi

h—0 Vo v

Figure 7.1

As we have observed during the proof of Lemma 7.1, the existence of the limit Bg is equivalent to (b)
in that Lemma. Lemma 7.1 can be generalised to obtain derived actions from multi-dimensional families of

linear transformations. In order to do so, it is necessary to set up some notation.
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Definition: A map f: M — Grass(n, V) will be said to be non-degenerate at a point x € M, if the

derivative:

df: Te M — Ty Grass(n, V)

when considered as a map:

Dfe: TeM @ f(z) — V/f(x)

has maximal rank.

In this definition, M is a smooth manifold and Grass(n, V) denotes the set of all subspaces of V, of
dimension n. Let zq, ...,z be local coordinates for M near z, with z; = 0 at € M. Then, locally, f can

be specified by n maps:
viM —V

(z1,. .y zg) — vi(Z1, ..., Tk)

This defines n linearly independent sections of the trivial bundle over M with fibre V' over each point. Then

at (0,...,0), the derivative Df, is a map:
RF@R" —V
(h,v) — (df; . h)v
given by:

(Dfz)(ej,ei) = (dfz.ej)e; = IVijda;

forie {1,2,...,n},7€{1,2,...,k}. The condition of non-degeneracy states that the nk vectors avi/amj are
linearly independent. It is much stronger than the statement that df;, as a map T M — T}(,)Grass(n, V)

is non-degenerate. For, df, is given by:

(@o)es) = (8o .., Vofou;)

and non-degeneracy of this map means only these k£, n x n matrices are linearly dependent.

The generalised version of Lemma 7.1 can now be stated.
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Theorem 7.2 Suppose that A: M — End (V) is smooth family of linear transformations on V, and
that:

f: M — Grass(n, V)

defines a corresponding smooth family of subspaces of V which are preserved by A. That is, A(z)f(z) C f(z).

Assume that f is non-degenerate at xo € M, and W C V is a subspace such that:

(i) f(zo) €W, A(zg) preserves W;
(ii) W/f(;po) is transverse to Im (Dfy,);

(iii) W is maximal satisfying (ii).

Then the family of actions A(y) (for y € M\{xzo}) on the quotients V/f(y) defines a derived action By on

W/f(;po) Furthermore, this action can be obtained in either of the following ways:

(a) the restriction of the quotient action of A(xg) on V/f(mo) to W/f(mo);

(b) the quotient of a limiting action on W.

PRrROOF: The main idea of the proof is to break the family up so as to consider only a one-dimensional
variation at any one time; Lemma 7.1 may then be applied repeatedly. Suppose z1,...,z; are local coor-
dinates on M near zy. Define a sequence of spaces W; C V for ¢ = 0,1,..., k as follows. For each 7, W;

depends on the parameters z;p1, ..., zg, and satisfies the conditions:

() Wi (=i, . ~~;=’L‘k)/f(()’ oo 0,z xg) = Wi, .-, x) for x; # 0 sufficiently small;
(ﬁ) f(O,...,O,O,:L‘Z'+1,...,Ik) g Wi(CEH_l,...,I‘k) .

We start with the initial space Wy = V', and then Wy = W without loss of generality.

At each stage, we suppose that {A(a:)} has induced an action:

Bi1y(xi, ..., 2x) € End (Wi (%4, ..., 28))
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preserving the subspace f(0,...,0,z;,...,2zx), where for i = 1, B) = A. By Lemma 7.1, this induces
an action By (z41,. .., 2x) on Wi(xiy, ..., ) where zgq,. .., 2 are considered fixed and z; replaces the
parameter h. This action corresponds to that of Bg on W in Lemma 7.1. By Lemma 7.1(a), the limiting

action B(i)(xya, ..., ) preserves the subspace:

f(o,...,o,l‘i,...,xk)gM($i+1,...,£k).

To sum up, we have here applied Lemma 7.1, with:

A(h) — B(i—l)(fEiy cey :L‘k)

w — Wiz, ... xk)
h — x;
Bo — Bz, ..., 2)
14 — Wiz, ..., o)
Vi — F0,..., 0,2, ..., 2k)
The spaces W; can be chosen to be independent of x4, ..., zx for sufficiently small z; # 0, and thus,

at the kP stage, we observe that B(x) € End (W) preserves f(0,...,0) C Wy. Thus in the notation of the
Theorem, W = W}, and By is the quotient action of B() on W/f(;po) By applying part (c¢) of Lemma 7.1
at each stage, it may be seen that By can also be obtained as the reduced action of A(zg) on the subspace

W/f(xo) - V/f(;po). This completes the proof of the Theorem. [ |

This Theorem should be thought of as involving the transposition of the operations of taking out fixed
spaces, and taking a limit. Thus By) should be considered as being obtained by first taking out the fixed
space f(z) from the action of A(z) on V, and then taking the limit x — zo. If instead we take the limit
r — xg first, we obtain an action of A(z) on V fixing f(zg), and removing this fixed space gives an action
on V/f(ggo). The Theorem states that one obtains identical actions on the reduced space W/f(;po), namely

the derived action, if one takes either
(i) a quotient of the action obtained by first taking out fixed spaces and then taking the limit; or

(ii) a restriction of the action obtained by taking the limit first.
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The space W/f(ggo) is isomorphic to V/<Im (Dfzo) ,f(x0)>, and so should be thought of as being constructed

from V by removing not only the fixed space f(zg) but also the ‘limiting space’ given by ITm (Dfy, ).

7.2 Special case of m = 2

In this section we will discuss the application of Lemma 7.1 to the action of B, on cohomology with

m = 2. At the level of C2, B,, acts on :
(@) |aesy).

The cohomology is given by Cz/<1m(D1T), Im(DQT)>. However as was noted in §5.2, Cz/<1m(D1T)> can be

1dentified with:

<(Q) | a1, as € {wy, .. .,wn}> .

(TIn §5.2, we dealt with the dual situation of a basis for kerD; C €y .) This gives a representation of B, on

CZ/<Im(D1T)> which preserves Im(DgT) and depends on the parameters ¢1, g2 and «.

Now one can apply Lemma 7.1 with ¢q1, ¢ fixed, and:

h=1-q¢"¢ a™

V= <(g) | aq, ag € {wl,...,wn}>

Vi = Im(DzT) =(e1,...,en)

where e; = (g3 —1) X (wiwn) + 43 (a1 —1) Lo i(wrws) + a3 a7 (g7 —1) 35 i (wjwi) + (g7 03 ™" —

1)(wzwl)

Then W = <(g) | ay, ag € {wy, ..., w,}; a1 # oz2> is clearly transverse to Vj whenever ql_lqgla_l—l +0,

that is for A # 0. The action of A(h) is given by AEE}U, , where A&?}u,&l has the matrix form given in Fig.

i+
5.2, §5.2. The matrix B(h) of Lemma 7.1 is then the action of o; on the cohomology at o™ = g142(1 — h).
It is given by the inverse of the transpose of the matrix of Fig. 5.3, §5.2 for A — 0. Clearly, B(h) depends

smoothly on A near 0, and has a limit By as h — 0. By Lemma 7.1, By preserves Vg, namely:

Vo= <(q§1 —1) ) (wiwn) + 43" (a7 =1) Y (wpwi) + (1= q1) Y (wjw;)

i E>i j<i

i:1,2,...,n>gW
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and the action of By on W/ is identical to the restriction of A(0) (i.e. the action of o; on the cohomology

for a = q7%q5") to W/, € V/14,. This gives an action of o; on a space of dimension n(n—1), since:
dimW = n?, dimV; = n.
The action of B,, now has two parameters, namely ¢; and ¢s.

There is an action of S, on C? or H?, only when ¢; = ¢5. In this case,

i:1,2,...,n>

Vo = <Z(wiw)\) +q7 Z(wkwi) +q Z(“’jwi)

A£i E>i i<i

lies within the symmetric part of €2, since the symmetric part of C? is spanned by:
(wiw;) + q(wjw;) =1;;  fori>j

2(wiw;) + (1= q) Z(ugwﬁ +q7 g =1) Z(wkwi) =f; for all 1.
j<i E>i

Thus Vg = <Zj<ifij +q7 Dorsifei [1=1,2,.. ~a”>~

Under the action of qji2, C? splits into two halves of dimension /on(n+1); and similarly H? = V/th w
splits into two equally sized spaces of dimension l/sn(n—1). However, Vj is contained in the half with

qj12 = 1, and thus the dimension of the symmetric part of W/VO 1S:
Yon(n—1) —n = Yan(n—3).

It is spanned by {fij | 7> j} considered as elements of W/VO, with the n relations:

quij+szi =0.
j<i E>i
This space 1s precisely the subspace of cohomology specified in Theorem 6.6 for the case of m = 2; it is a

subspace when considered after taking the limit A — 0 (i.e. & — ¢~2) first. When this limit is taken after

the fixed space <Im(D2T)> is removed, it is a quotient space.

Thus we have obtained the following Theorem:
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Theorem 7.3 Consider the family of representations of B, on the quotient of the chain space C?
obtained by dividing out by the boundaries Im(DlT), and using the local coefficient system specified by q,

«. Then the derived representation of this family at o = ¢~ 2

, Is a representation of B, on a subspace of the
cohomology H?. Moreover, the part of the derived representation invariant under the action of Sy factors

through H,(q), and is the irreducible representation .

7.3 Some general remarks

Theorem 7.2 (or at least its special case, Lemma 7.1) was successfully applied in the last section to
obtain the subspace of cohomology in Theorem 6.1 on which the braid group action factors through H,(q),

at least in the case m = 2.

For the case of general m this procedure gets more complicated. Firstly, the initial representation of B,

has !/am(m+1) parameters; namely a;;, ¢;. Theorem 7.2 can now be applied to the situation where:
V=C"m(D,T),. .., Im(D, 7))
o~ <(g) |QES€’J, a; # zin  fori= 1,2,...,m—1>
flx) = Im(DmT) .

In the above z € M refers to (a;m,) € C™ ' with ¢; (1 = 1,2,...,m) and a;; (1 <i < j < m) fixed. Here,
the family A(z), which we use, is given by the induced action of ¢; € B,, on the quotient V of C™ (that is,
AEU”ZZ)UPAT_I, using the notation of §4.2). The point zg € M is given by «;; = ql-_lqj_l.

From Theorem 7.2, we now obtain an action of B, on a space W/f(ggo) C H™, depending on the m

parameters qi,. .., ¢m. There is an action of Sy, on €™ (and thus also on H™) only when:

(== m=q.

In this case, the action:

Spm — End (H™)

(ii+1) — qjiin
defines a symmetriser:
R:H™ — H™

VI—>$ Z a(v).

oES,
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Thus Tm (R) consists of that part of the cohomology H™ invariant under the action of the symmetric group,
Sm- The best way to construct the symmetric part of the reduced space W/f(;po), is as a subset of Im (R),
transverse to:

Im(RODfxo) :

Here, we are using the following maps:
Dfpy: TeoM @ f(o) — V/f(zg) = H™
Ro Dfpy: Too M @ f(zo) — H™ .
Of course in order to apply Theorem 7.2, it is necessary to check all the conditions of that Theorem. For
generic q, Dfy, has maximal rank, as can be verified by using the recursion relations of Chapter 4, together
with ¢ close to 1, but not equal to 1. To do this, it is necessary to identify V with a suitable subspace of

C™, and then to investigate the action of DmT on this space.

Although W needs to be introduced in Theorem 7.2, and this gives rise to an arbitrary element in the
construction, which is not ‘natural’, of course the braid group action obtained, using different choices of W
satisfying the conditions of the Theorem, are isomorphic. Thus the derived representation finally obtained

is natural. We now make the following conjecture:

Conjecture 7.4 Consider the family of representations of B, on the cohomology with local coefficient
system given by:

z,2; = Q45 , Quwyz; = 4
(for 1 <i,j <m, 1<k <n) and parametrised by {c;;}. The symmetric part of the derived representation

of this family at a;; = ¢~2 factors through the Hecke algebra H,(q), giving the representation mx,, .

In the case m = 2, this conjecture has been proved in §7.2. In the general case, V™ = ({j'(fé”) | a €

uz }> is a subspace of the cohomology H™ such that:

(a) Sp preserves V™ i.e. V™ is contained in Im (R);

(b) V™ is invariant under the action of Bp;
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(c) for generic ¢, Im (Dfy,) is transverse to V™.

The last result is obtained by considering ¢ close to 1, and using the basis for the space of chains, defined in
§4.1. Since all the matrices involved depend on ¢ in an analytic way (indeed, they are polynomialsin ¢ and
q7'), it is possible to infer results for generic ¢ from those which hold for all ¢ # 1, sufficiently close to 1.
A comparison of (a), (b) and (¢) with the conditions of Theorem 7.2 shows that the derived action can be
obtained on a space containing V'™; that is, W can be chosen so that W/f(;po) D V™ while W satisfies the
conditions (i)—(iii) of the Theorem. By the remark above, the derived action is independent of W, and thus
contains the action on V™. Since V™ is also preserved under the action of S, thus the action referred to

in Conjecture 7.4 contains that of B, on V™. By Theorem 6.1, we now obtain the following result.

Theorem 7.5 The symmetric part of the derived action of Conjecture 7.4 contains wy,, for all m and

generic q.

All that is necessary to obtain a proof of Conjecture 7.4 is to show that there is no other part to the
totally symmetric piece of the derived representation. A dimension count would suffice for this; however,

dimIm (R o Dfy,) is not simple to compute!

107



8: Relations with conformal field theory

In Chapter 6, the main Theorem which was proved (Theorem 6.1) established the existence of an action
of the Hecke algebra on a subspace of the cohomology of Yy ,, with a suitably defined local coefficient system
Xw,m(q). In Chapter 7, a technique was described which, at least in certain special cases, gives this action
naturally by considering the behaviour of a family of braid group representations in the vicinity of a ‘special’

representation.

In this Chapter, the theory of Tsuchiya & Kanie [TK] and Kohno [Ko] will be discussed. It will be seen
that they also produce, initially, a representation on a large space, and then restrict it to a smaller space
to obtain the (generically irreducible) Hecke algebra representation required. (However, in [TK], one of the
approaches to this theory does give the resulting representation immediately, namely as the monodromy
representation on a space of n-point functions. See §8.1 for more details.) Both approaches can be seen
as being given by monodromy representations on vector bundles over X, , with suitable flat connections.
Equivalently, they can be viewed as monodromy representations of solutions to certain systems of differential
equations (see Theorem 8.1 and Corollary 8.7). In §8.3, we will see that the differential equations giving rise
to the representations of Chapters 3—7 are of the same form as those arising out of Tsuchiya & Kanie’s work.
Furthermore, it 1s deduced, using a Theorem of Kohno’s, that these two systems of differential equations are

isomorphic, since they give rise to identical braid group representations (see Theorem 8.10).

To establish the nature of the differential equations corresponding to the representations of Chapters 3—
7, it is found to be more convenient to work with the action on cohomology rather than the dual action on
homology. In §8.2, this duality is discussed, together with a concrete representation of the cohomology in

terms of holomorphic functions.
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Although, in §8.4, Theorem 8.10 proves the existence of a correspondence between the conformal field
theory representation of [TK] and the homological construction of Chapters 3-7, it does not give the cor-
respondence explicitly. However, in §8.5, the coefficients in the two systems of differential equations, corre-

sponding to the two procedures, are evaluated in a special case.

In §8.6 some further remarks about the correspondence of Theorem 8.10, are made. In Chapter 9, some

of the wider issues raised by this Theorem will be discussed.

8.1 Review of Tsuchiya-Kanie theory

In [TK], Tsuchiya & Kanie produced (generically irreducible) Hecke algebra representations from con-
formal field theory on the projective line P'. The representations obtained are, when ¢ is not a root of unity,
those irreducible representations of H,(g) constructed by Wenzl [We], associated with Young diagrams with
two rows. When ¢ is a root of unity, these representations constructed by Wenzl may be reducible, and
Wenzl has shown how to pick out their largest irreducible pieces. These irreducible pieces are obtained by
a natural construction in Tsuchiya & Kanie’s theory, as we shall see later in this section. This section is
devoted to reviewing the theory of [TK], picking out those points which will be of interest to us later in this

Chapter.

8.1.1 Vertex operators

The Lie algebra sls is generated by H, F, F' with the commutation relations:

[H,E]=2E
[H,F]= —2F (8.1.1)
[E,F]=H

Let V; be the irreducible sls-module of highest weight 2j. That is, the representation of sl; obtained on V;

is the spin j representation, and dimV; = 2j +1. The standard (vector) representation of sly, in which:

e (D 8) m=(0 ). =0 0) 012

is then the (spin 1/2) representation on Vi,
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Let g be the affine Lie algebra extending g = sl3:
g=g®C[t,t]® Cc
where ¢ is the central element. For each X € g, we can now define:
X(m)=Xat"
to be an element of g. With this is mind, the energy-momentum tensor can be defined by:

L(m) = ﬁ E L E(—k)F(m+k): 4+ :F(=k)E(m +k): +,1 CH(—k)H(m+k): }

2
keZ
where the symbol : : denotes the normal ordering. That is,
X(m)Y (n) for m < n
:X(m)Y (n):= < a(X(m)Y (n) +Y (n)X(m)) form=n
Y(n)X(m) for m > n

More usually, the term ‘energy-momentum tensor’ is used to refer to the ‘Fourier transform’ of the above

formula, that is, > 2™ L(m).

Denote by H; the irreducible g-module of highest weight 2j with central charge [, where [ is a fixed real
number and 2j € N U {0}; V; can be embedded in H;. A vertex operator of spin j is now defined to be an

operator-valued function ®(u;z): H — ﬁ, such that:
[X(m), D(u; z)] = 2"®(Xu;2)

d
[L(m), <I>(u; z)] =zm <zd— + (m—}-l)A])(I)(U, Z)
z
forallme Z, X € g and u € V;. Here H and H denote the direct sums of {H;} and the completions {’}f(:}
for 2j € N U{0}. The quantities A; are given by:
A= +)[1+2)

and are known as the conformal dimensions.

The space of vertex operators of spin j forms an infinite dimensional vector space, and 1t is shown in

[TK] that a spanning set exists (which is a basis when [ ¢ Z) indexed by vertices:
Oy
v=1. .
J1 J2
where ji, jo are non-negative half-integers such that |j1 — j2| < j < j1 + j2. The vertex operator associated
with v is non-trivial purely on V; ® H;, C V; ® H and gives a map V; @ H;, — ﬁjz. Let (CG) denote the
set of vertices v satisfying these conditions (this notation is used so as to conform with [TK]).
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8.1.2 Differential equations

Suppose now that ji,...,jop are non-negative half-integers. Whenever ®;(z;) are vertex operators of
spin j;, for 1 < ¢ < n, the n-point function:
<Vac|<I>1(z1) . <I>n(zn)|u>
can be defined, for fixed z1,...,z, with |z1| < ... < |z,], giving a map:
Vi@--oV;, oV, —C
In [TK], it

where |Vac> denotes a generator of the one-dimensional vector space V4 in ‘H, and |u> € Vi

was shown that this function satisfies the following differential equations:

K —
8zi Z; — Zg

( 9, " )<(I)1(21)"'<I)n(zn)>:0 (8.1.3)

k=1
ki

where k = [+ 2. Here (®1(z1) - q)n(zn)> denotes the n-point function defined above, considered as a map:

X, — (Viy® 0V, aV,,.) =V

where ~ denotes the operation of dualising; and the function is defined on X,, as a many-valued holomorphic
function using analytic continuation. Also Q;; denotes the transformation on V induced by the action of

the polarisation of the Casimir operator Q on the ith and k™" factors. That is:
Qi = Vomi(H)m(H) + mi(E)7i(F) + mi(F) e (E)
where m; denotes the action of sl on the ith factor le inV.

When [ is an integer, a basis for the space of vertex operators is indexed by a subset (CG); C(CQ) given
by imposing the extra condition j + j; + j2 < {. The n-point functions obtained from such vertex operators

then satisfy, in addition to (8.1.3), the further relations:
(@1 (ur, 21) - (1) 720 @, (w; (i), 21) -+ @ (, 20)) = 0 (8.1.4)

whenever u; € Vj,, where E(—l) denotes the operator with:

B(-DAG) = 52 § 22 BOAG).

c(—z
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Here C' is a closed curve enclosing z, with 0 in its exterior.

Tsuchiya & Kanie show that the reduced n-point function, given by projecting V onto its g-invariant

part, Vp, satisfies (8.1.3), and, when [ is integral,

S () TIs = (@B 20) 0y, 2) - @u(F™ ) =0 (8.15)
Imgl=t; ~ " ki

(this is the analogue of (8.1.4)). Here the sum is over all (n—1)-tuples of non-negative integers m; =

(my,...,my,...,my) and l; =1 —25; +1, while (gj) refers to the multinomial coefficient:

n!

my!- - m,!

where it is assumed that |m| = Y. m; = n. The combined system of equations (8.1.3) and (8.1.5) for
i=1

functions X,, — Vj thus has solutions given by the reduced n-point functions for any set of n vertices:

Ji
P = € (CG
v (Pz’—1 Di ) ( )l

where po = 0, pn = Jnp-

8.1.3 Braid group representations

Since the solutions to (8.1.3), (8.1.5) are functions on X, there is a natural action B, (or, at least of
71(X,) = P,) on the solution space. In [TK], it is shown that the set of all n-point functions spans the
solution space. Firstly we fix:

== jn =1 Jnp =t .

Then the n-point functions are indexed by (n+1)-tuples (pg, ..., ps) with:
2p; € NU{0} fori=0,1,...,n

pi — pica | = 1o fori=1,2,...,n
po=0, pp=t
For any such n-tuple, vertex operators are defined, from which first an n-point function, and then a
reduced function X,, — V; can be computed (see Fig. 8.1). Tt turns out that the number of possible (n41)-
tuples (po, . .., pn) is exactly dim Vj; and that for different p;’s, the corresponding reduced n-point functions

are linearly independent. Thus there is an action of By, on the space of solutions of (8.1.3) and (8.1.5), or

equivalently on V. The main result of the paper of Tsuchiya & Kanie can now be stated as follows.
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2= jr Y2 = ji 2= jn
Figure 8.1
Theorem 8.1 The monodromy representation of By, on the space of solutions to (8.1.3), for | ¢ Z,

is q~ "4 times the representation of the Hecke algebra H,(q) associated with the two-row Young diagram

whose row lengths are 7/2 +t, n/2 — t respectively, where q = ¢>™ilx and Kk = 1+ 2.

Note that here V = (Vf?; ® Vt)“ and thus its dimension is given by the number of copies of V; in a direct
sum decomposition of Vf?zn. When [ € Z, the n-point function obeys the further relations (8.1.5), and we

obtain irreducible Hecke algebra representations once again; they are exactly those representations obtained

by Wenzl.

Theorem 8.1’ The monodromy representation of By, on the space of solutions to (8.1.3), (8.1.5) for
integral [, is q~ "4 times the representation of the Hecke algebra H, (eZM/(l‘F?)) associated with the two-row

Young diagram Any,_;, and the integer I, in Wenzl’s construction.

The irreducible representation referred to in this Theorem is that constructed by Wenzl explicitly, on
a space whose basis was indexed by Young tableaux. Equivalently, an element of the basis is specified by a
sequence of Young diagrams A(q), A(1), ..., A») in which each A;) is a Young diagram with ¢ squares and
A¢y € Ay So Ay is the empty Young diagram, and A(,) is the full two-row Young diagram Ans,_;. On
the vector space with a basis indexed on such sets, a representation of H,(q) is constructed by Wenzl. Tt is
irreducible when ¢ = ¢7™1+2) and 1 is not integral. When [ is an integer, an irreducible sub-representation
is obtained on the subspace spanned by those Young tableaux for which the difference in the lengths of the
two rows of A(;) is at most [, for all 7.
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To summarise, the monodromy representation of B, on the space spanned by the reduced n-point
functions always factors through a scaled version of the Hecke algebra H, (ezWi/(l+2)), and is irreducible. It is
equivalent to the monodromy representation obtained on the solution set of (8.1.3) when [ ¢ Z, or of (8.1.3)

and (8.1.5) when [ € Z.

For the rest of this Chapter, it will be assumed except where explicitly stated otherwise, that [ ¢ Z.
Thus the monodromy representation is obtained on the space of solutions f: X,, — V; to the equations of

Knizhnik-Zamolodchikov:

<ff 6. —Zn: 'ﬂ““ )f(zl,...,zn):0 (8.1.6)

where k = [+2. The projections Q; of the Casimir operator €2 act naturally on Vfb?" and thus on that part of
Vf?; which transforms as a spin-t representation under sly; that is, on Vj. As such, the required scaled Hecke
algebra representations are obtained as sub-representations of a much larger braid group representation,

namely the monodromy representation on the solution space of (8.1.6) where f are functions with values in

VSZ” This latter representation has dimension 27.

For the purposes of the section it will be found to be more convenient to replace (8.1.6) by a similar
differential equation in such a way that the monodromy representation obtained will factor through the
Hecke algebra H,(g), rather than a scaled version of it. Since the action of the generator o; € B, associated
with (8.1.6) is ¢~ "4 times that associated with the representation mx,, _, of Hy(q), thus the monodromy

action given by functions:

g(z1,...,20) = H(Zl —z;)Pf(z1, ... 20),
i<j

where f satisfies (8.1.6), factors through H,(g) so long as:

e~ P g~ a = 1.

Tt is also clear that f satisfies (8.1.6) if, and only if, g satisfies:

0 <= Qg+ prl
<K3zi — Z M)g(zl,...,zn) =0 (8.1.6)

o fiT %k
k#i
From the above, p = — 1/, is suitable, and thus, in (8.1.6)', px = —1/5 gives rise to monodromy represen-

tations of the Hecke algebra H, (ezm/“) where £ = (I + 2). The functions g are defined on X, with values
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in Vo, just as for the functions f in (8.1.6). So (8.1.6)" is of the same form as (8.1.6), with £, replaced by

Qi + 121

8.1.4 Special case

In the case n=2, it is particularly easy to compute the image of the generator o1 € By in the monodromy
representation of B, on the space of solutions to (8.1.6) by functions with values in Vf?f. The matrix for
) = Q45 is given by:
1y

1y 1 -

1 —1/
1y

with respect to the basis 11, 12, 21, 22 of V1/2 ® V1/2. In this case (8.1.6) reduces to:

Q=

LI P
821 o Z1 — 29
6f _ 921

K— =
82’2 Z9 — 21

f

(8.1.8)
f

where Q12 = Q21 = © and f is a (4-dimensional) vector-valued function on X,,. The solutions to (8.1.8) are
given by:

f =exp (1/5 In(z; — zz)ﬂ) 1o

where f € V1/2 ® V1/2 i1s a constant vector. The monodromy matrix associated with oy € Bj 1s thus:

exp (— 7i/s.Q)

where the action of o; on )?2 is as defined in §2.1, namely, a clockwise motion of z; and zs around each

other, under which they transpose.

However, it should be noted that z; and z5 have now been interchanged, and thus the two factors of
Vi, should properly be interchanged when the spaces Vi @ Vi, over the two points (z1, z2) and (z2,21) in
X3, are identified. Thus the image of o1 € By under the monodromy representation associated with (8.1.8),
is given by the matrix:

P exp (— ™i/:.0)

where:

_ O
[eiy e
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Tt is easily verified, using (8.1.7), that this matrix is:
o= Wi/zﬂ
1/2(6_7ri/2“—63ﬂ—i/2") 1/2((;‘_7ri/2“+63ﬂ—i/2“)

(8.1.9)
1/2(6_7r2/2r; _ ESWZ/%) 1/2(6_7r2/% + 6371'2/25)

e Wi/2r;

2wl . .
/=, and thus these eigenvalues are

The eigenvalues of this matrix are e~ 2k and —e "2k, However, g = €
q- Y4 and —q3/4. This verifies that the representation obtained in this case is ¢~ "4 times a Hecke algebra

representation.

In order to discuss the monodromy representations produced from solutions of (8.1.3), it is necessary to
investigate the solutions in more detail: see [TK] for this. However, it is hoped that the above calculation
gives a flavour of the way in which equation (8.1.3) can be used to obtain information about the structure

of the monodromy representation.

Equation (8.1.6) may also be viewed as stating that f defines a flat section of a vector bundle over X,
with fibre Vp, with respect to a suitable (flat) connection. The connection required is given in Kohno’s work

[Ko]. The associated 1-form is given by:
N
Vier) ==Y wnn®ey (8.1.10)
u=1
where N = dim Vg, (ex) is a basis for Vi, and w = (wap) is the matrix valued 1-form defined by:

w=" " QdIn(z — z) (8.1.11)
i<y

the sum being over all 4,5 € {1,2,...,n} with i <j.

For convenience we collect together in the following Theorem various results obtained from this point

of view.
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Theorem 8.2 The connection V defined by (8.1.10) is integrable, where w is the matrix valued I-form

given in (8.1.11), if and only if:
[Qj, Qik + Q] =0

[Qj, Q] =0

for all i, j, k, | distinct. Here Q;; = §2;; when ¢ < j, 1,5 € 1,2,...,n. Furthermore, when these conditions

are satisfied, the monodromy representation of B,, obtained is given by:

7|—>I—|—/w—|—/ww+/www+~~
v v v

where v € m1(X,) and fv ww - - -w denotes Chen’s iterated integral.

For more details, see Kohno [Ko]. The last part of this Theorem is due to Chen. Note that Chen’s
iterated integral differs from the repeated loop integrals mentioned in Chapter 6, since the region over which

Chen integrates is always a simplex, whereas in the case of repeated loop integrals, it is a cuboid.

In [Ko], the above Theorem is used to show that the monodromy representation associated with the
equations (8.1.6), when solutions f: X,, — VS; are considered, gives rise to a Hecke algebra representation
when €, is given by the Casimir operator. This provides an alternative proof of part of Theorem 8.1, to

that presented in [TK].

8.2 Duality between homology and cohomology

In §3.1, natural actions of B,, and S,, on the homology space:

Hm(Yw,mv Xw,m(q))

were defined. As mentioned in §6.1, there is naturally defined a dual action of B,, x S, on the cohomology

space:

Hm(Yw,m: Xw,m(q))~

To obtain useful information from this point of view, it is necessary to express this cohomology space in
terms of functions. Since Yy », is the complement of a complex algebraic hypersurface in C™, it is a Stein
manifold. For any Stein manifold, the cohomology can be calculated as the cohomology of the the complex
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of holomorphic differentials. This result also holds when an abelian local coefficient system is introduced.
Thus:

H™ (Yo m, Xw,m(d)) (abbreviated to H™)

can be computed in terms of the space:
0= {f Yem — C | f is holomorphic and twists according to wam(q)}.
That is, O consists of those holomorphic functions f for which:

F(r(1) = (xw,m(@) (9)-£(7(0))

for all v € m1(Yw m). Hence:

m o .~ O
H :0/{26%

fie(’)forizlj,...,m} (8.2.1)

By a Theorem of Grothendieck (see [A]), This cohomology can be computed as the cohomology of
algebraic differential forms. Any function f € O can always be written as:

r=o(TITIG—w) ( ﬁ( ) = 0a° (822)

i=1j5=1
¢ J 1<k

where b, a are such that ¢*™® = ¢, ¢?™® = . Thus @ = —2b in the situation considered in Theorem 3.3.

Here g is a holomorphic function Yy ,, — C, since ¢° contains all the twisting required of f. The space
R C O, of algebraic differential forms, in the case in which the local coefficient system is non-trivial, is given

by:
{ggo

where {)\ik} and {Mij} are all integers.

m n m
g is a finite linear combination of terms of the form <H I_I(ZZ — wj)_“’j) < H (z — zk)_)‘“‘>}
i=1j=1 ik=1

i<k

(8.2.3)

For any map:

g:{1a2a"'am}'—>{zla"'azm:wla"'awn}

which is such that, thought of as an m-tuple, « is an element of S}, define:

Jo = <ﬁ(z - ai)‘l) g eR (8.2.4)
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Just as for each a € S, the chain v, was defined in §4.1, with {73 | a € S",’J} defining a spanning set

for C,,, and ultimately for the homology H,,, similarly we have the following result for cohomology.

Lemma 8.3 The subset {gg | a € S"ZJ} of R, when projected onto the cohomology H™ is a spanning
set.
ProoF: By Gothendieck’s Theorem, H™ is the cohomology of the complex of differential forms based

on the subset R of O defined in (8.2.3). Tt is thus given by a similar expression to (8.2.1), in which O has
been replaced by R. To verify the Lemma it is thus sufficient to show that the function defined by (8.2.2),

with:
9= <f[ ﬁ(zi - wj)—ﬂw') < ﬁ (2 — zk)_)"k> (8.2.5)

(where {)\ik | 1<i<k< n}, {Hij | 1<i<m,1<j5< n} are subsets of the integers) is equivalent to a

combination of 7,’s with o € S, up to the equivalence ‘~’ in which:

of

~
&zi

0 whenever f € R . (8.2.6)

This result is obtained by repeated application of Lemma 8.4. At each stage, {aik} and {bij} differ
from a and b, by integer values, and the Lemma is used to reduce gg° (where g is defined in (8.2.2)) to a
combination of similar functions,

{hgo.(H(zi — ai)_l) ‘ a € S‘TN”}
i=1
where h is given by (8.2.5) with Ak, pi; replaced by smaller integers (at least, integers no larger than A,

Hij)-

In the rest of this Chapter, the element g.¢° € R defined by (8.2.5) will be denoted by [, pt] where A is
an upper triangular m x m matrix with zero diagonal entries, and p is an m x n matrix. If all the elements
of the m x (m + n) integer matrix (A | i) are 0 or 1, with precisely one ‘1’ entry in each row, then g.gg is a
g&, for some a, and we are finished. If an element of the matrix is 2 or more, then one may apply Lemma 8.4
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with:
A = 265001y — Aix + a;

bij = —pij +b;

if Ay > 2. Similarly, if the element > 2 is gy, we may apply Lemma 8.4 with:

aik = —Aig +a;

bij = —pij + 261065y + b .
In either case, Lemma 8.4 reduces the function to a combination of functions [X’, /] where (X’ | p') is still
a matrix of integers with at least one ‘1’ in each row, but now the sum of all the integers in this matrix is
one less than that in (A | p). This process must therefore terminate, with a combination of [A, p] in which
the matrices (A | 1) all contain exactly one ‘1’ in each row, with all the remaining entries vanishing. Such
matrices, as was remarked earlier, give rise to functions in R of the form g& some o € 8. Hence the proof

is complete. |

In the proof of the last Lemma, repeated uses of the following Lemma were made, which will also play

an important role in the next section.

Lemma 8.4 Suppose that f is a function of the following form:
7= (TITTG - v ) TL ) e
i=1j=1 i, k=1
1<k

where {a;;} and {b;;} differ from a and b by integers only. For o € 83}, define f, by an equation similar to
(8.2.4) in which ¢° is replaced by f. Then, up to the equivalence of (8.2.6), fo(z; — A)™' can be expressed
as a combination of fﬁ’s, where w1, ..., w, are thought of as fixed and X\ € {zpq1,...,2m,w1,...,Wwp}.
Furthermore, the coefficients of fﬁ in fo(ze — w;)~' can be expressed as constant linear combinations of

(wj —w;)™" over I’s not equal to j.

ProoOF: We shall prove the last part of the Lemma first. There are three different cases here:
(a) az € {wl,...,@j,...,wn};
(b) ag = wy;
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(¢) a =z some k€ {1,2,...,m}.

In case (a), the result follows immediately from the partial fraction decomposition:

1 1 1
fg(zx - wj)_l = f(l_[(zZ o ai)_1> <z£ —wj B Zy — ax).wj — Oy

=1

ite

Thus fu(z; — w;)™" can be expressed as (w; — a;)™" times the difference of two f5’s, and we are complete.

Note that, as it stands, this doesn’t complete the proof in case (c), for in that case ay is a z;, so that

-1

(w; — az)™ is not a ‘constant’ for fixed w’s.

In case (b), note that in the expansion of:

0

Bz, (f'ﬁ(zi —ai)”)

i=1

the following terms appear:

n

- _ Ay bxl_élozr
f.g(zi—ai) 1{2% . —I-E p— }

—z
y#T Y

where, for convenience a, is defined for z > y so as to make it symmetric. The term corresponding to I = j

1

is precisely (bgy —1)fa(2zz —w;)™". Hence under the equivalence ‘~’, fo(z; —w;)™" is equivalent to a constant

combination of terms of the form:

fg(zx—wl)_1 forle{1,2,...,n};

falza — Zy)_l :
By case (a), we have already dealt with the first of these forms.

Before proceeding further , we shall introduce a graphical notation for the functions occuring. A function
fa will be denoted by a set of lines joining n 4 m points, representing z1,...,2m, w1, ..., w,. Each z; is
joined to the point «; and an arrow is inserted. In general an edge joining A and g, with an arrow from A
to p is used to denote (A — p)™. Thus for a € 8, the diagram for f, consists of m oriented lines, and
at each z; precisely one line emanates. Multiplying by (z; — A)™! is equivalent to placing an extra edge on
the diagram, from z, to A. By the reasoning above, it can be seen that any diagram in which there are two
edges emerging from z, and going to the same vertex A (> z;) can be replaced by a constant combination

of diagrams in which one copy of the duplicate edge is replaced by an edge from z, to u for some g in:
{21, Zey oy Zmy W1, -, W A

See Fig. 8.2.
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oA H

)
— I
I3
L] L[]
Zy Zy
Figure 8.2
Next observe that:
1 1 1

(zz =Nz —n) (e—mp=2) (=M=

and diagramatically, this gives the relation depicted in Fig. 8.3.

A A A
. . .
. - i - o[ (II)
7
. . .
Zz Zz Zz
Figu"re 8.3

From a particular point z;, the arrows on the edges of the diagram associated with f, may lead along
a long chain of points, eventually landing up at w;, for some [. Note that there i1s no limit on the number of
arrows entering any particular vertex, although only one arrow may leave any vertex in a diagram of f, for
a € 8. When the extra edge from z; to A is added, the diagram so obtained is not that of an fﬁ since now

two edges issue from z;; see Fig. 8.4.

Move (IT) can be used repeatedly to obtain diagrams in which the node from which two edges issue is
moved first from z, to a,, and then to the next node on the chain, etc. This process will get stuck at a
node where the next node in the chain coincides with A, unless such a node doesn’t exist, in which case it
ends with the last node but one, zx, say. This is because move (IT) only works when all three nodes involved
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Qg

oZL

2z

Figure 8.4

are distinct. However, if one gets stuck in the former way, the diagram involved will have a reduced chain
with the first node being connected to A twice. Move (I) can then be used to ‘unstick’ the situation and
then repeated applications of move (IT) will move up the chain. In the end, we are left with a combination
of diagrams, all of which are associated with functions of the form fﬁ.(zk — A)7}, in which the chain in the

diagram associated with 3, starting at the point z; is of length one, as in Fig. 8.5.

Ao oWy

2k

Figure 8.5

When A = wj, the above arguments have reduced case (c) to cases (a) and (b). As was discussed earlier,
it is easy to deal with case (a). Case (b), that is | = j, can be reduced by move (I) to a combination of

diagrams for which the only node at which two edges emerge is zg, the edges being from z; to A and p where

pweE{z1, . . 2y Zmy W, ..., W} (see Fig. 8.6).

Under all the moves used, the total number of edges joining 2z’s will either reduce, or, at most, stay
the same. We can now solve for fo.(z; — A)™" in terms of diagrams with one less edge joining two z’s. The
diagrams are now those associated with fﬁ.(zk — p)7! where p is a w, and distinct from A. This falls into
case (a) again, and thus the proof is complete; this is the second half of the Lemma.
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2k

Figure 8.6

Finally we are left with the case in which A is a z, say z,. In such a situation, the above arguments,
used for A = w;, carry over to give a reduction to diagrams in which there is only one node, 2z, from which
two edges issue, and these edges are to A = z, and some other node g € {w1,...,w,}. However, this is
precisely the case dealt with above, and has been expressed in the required form by the second half of the
Lemma. The coefficients fé entering, may be expressed as combinations of (w; — w;)™", but this time it is

possible that all pairs (7, j) become involved. This completes the proof of the Lemma. ]

From the last two Lemmas, it is apparent that the action of the braid group B, on cohomology can be
computed from its action on {g& | a € SCJ} Just as the homology can be embedded in <{'yg | a € SCJ}>,
similarly, in the cohomology H™, {gg | a € SCJ} is not a linearly independent set, although it does span
H™. Since H,, and H™ are dual,

dim H,, = dim H™

and thus the number of relations that exist between { [gg] } is identical to the dimension of the image of the

boundary map 6: Cp, — Cpq (whose kernel is Hp,).

8.3 Differential equations for cohomology

In this section we will obtain a system of differential equations whose monodromy action is identical to
that defined in §3.1. As w follows a path in X,,, the flat connection defined in §3.1 enables elements of the
fibres over different points w to be identified, using parallel transport. In Chapter 3, it was seen how such
an identification could lead to a representation of B, (and not just P, = m1(X,)). This was accomplished
using the natural identification of Yy ,, and Y4/, which exists when w' lies in the orbit of w under the
action of S, .
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The functions g& of §8.2 are defined for all & € 8%, and give rise, over each w € X,,, to elements of the
fibre H"(Yw m, Xw,m(q)) of Er(q). These functions vary holomorphically with w. By Lemma 8.3 of the

last section, any element of the cohomology can be represented as [f], where:

F=Y Asgd (8.3.1)

aeSE

for some coefficients A,. In this relation , w € X, is fixed.

Theorem 8.5 For suitable constant matrices Cjp, defined for each distinct pair of elements j, k of

1,2,...,n, the system of differential equations:

oA _ <§ %)A _ (8.3.2)

6wj i — w

for vector valued functions A on X,,, with |S";,1| components has, as a solution, A = (A,) only if the function
f defined by (8.3.1), is such that the associated elements [f] of H™ (Yw m, Xw,m(q)) define a flat section of

the cohomology, with respect to the flat connection induced by that of §3.1 on homology.

Proor: Suppose [f] defines a flat section of cohomology with respect to the natural flat connection,

induced by duality, from that on F,,(q) defined in §3.1. Then, by definition, as w moves in the base,

([ 1)=

forall j€1,2,...,n and a € S. Thus:

/ (%) =0 (8.3.3)

for all a, so that ;Tfj ~ 0 with respect to the equivalence relation ‘~’ of (8.2.6). By (8.3.1),

of _ 044 090 .
By = > <6w'gg+Agawj . (8.3.4)

ges‘:,n J

However the definition of g2 in (8.2.4) gives rise to the following relation:

agg 0 " b_éale
6wj _gg'{z wj—zi }

i=1
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The second half of Lemma 8.4 states that there exists constants C](.Q (B, a) such that:

9%
0
R S ST
- k#]
where the first sum is over all 8 € S§'. Thus:
3ga 9%
=- ZZ%
w — wy

B

k#] —

where Cix(a, ) = S (b — 6ﬁle)C](Z) (@, B). Equation (8.3.4) now reduces to:

of ApCijr(a
i =X (e - Lo )
- k#] —

The condition for the flatness of the section [f], namely (8.3.3), is now seen to follow from the differential

equations:

0Aa = ApCik(a, P)

611}]' P wj — Wk
k#j
This completes the proof of the Theorem. The constant matrices C;j referred to in the Theorem are square

matrices of order |S€’J| whose entries are Cjx(a, 3). |

Theorem 8.5 shows that for any solution A of (8.3.2), the corresponding element of cohomology defines
a flat section of the vector bundle E™(q). Here E™(q) denotes the vector bundle over X,, whose are fibres
dual to those of E,,(q). The flat connection on Fp,(q) defined in §3.1, induces a flat connection on E™(q), by
duality, and this is the one referred to in the Theorem. However, the dimension of W’/Im([)') is less than the
size of the vectors A in (8.3.2). Thus, the monodromy representation of B, given by (8.3.2) will be defined

on a vector space, X, of dimension |S€’J |, and will be much larger than the representation of Theorem 6.1.

Choose a fixed point w® € X,,. Then (8.3.2) has a unique solution A for which:
A(w?) = A°

for arbitrary given A® € X. That is, (8.3.2) has |S€’J| linearly independent solutions. Let Z denote the
subspace of X consisting of those A for which the corresponding element, [f] of cohomology vanishes, where

is given by (8.3.1). Then the solutions of (8.3.2) associated with A € Z are all such that:
fisg y

Aw)eZ



for all w € X,, in the orbit of w®, under the action of S, on X,. The monodromy action obtained from
(8.3.2) thus preserves 7, and the induced action of B,, on X/z is identical to the monodromy representation

obtained on cohomology.

Let Y denote the subspace of X consisting of those A € X for which:
f) —y+z (8.3.5)
Yo
where f is the associated element of C™ defined by (8.3.1); y lies in the image of Im (D’) C C™ under the map
g — <I’Yg g); and z is a vector whose components associated with a € S?\7™ vanish. In this definition, y
and z are vectors with |S€J| components. This rather elaborate definition is analogous to that of W’ C C™

in §6.1. Indeed, [f] € W’/Im(Df) is equivalent to A €Y.

There is a natural action of S,;, on X induced by the action on homology in §3.1. As was true of the
actions in §3.1, the action of S, preserves the subspaces Z and Y. The space (Y)°™/z)sm = (Y/Z) 5 has

the same dimension as the space W’/Im([)f), on which the monodromy action of Theorem 6.1 acts.

From the above definitions of Z and Y, it follows that the monodromy action of Theorem 6.1 is obtained
from that given by (8.3.2), by inducing the action of B, on X, onto (Y/z) Smoat w = wyg. Since (8.3.2) ensures

that, for any solution, the associated function f has:

/hf

constant in w, for all & € 82’ (see the proof of Theorem 8.5), it is clear that the induced monodromy action

preserves both 7 and Y.

Lemma 8.6 The subspaces 7 and Y of X are independent of w.

PRrROOF: The subspace Z C X consists of the ‘boundaries’. That is, its elements give those linear

combinations of functions g%, for @ € 87, which can be written in the form:

o Ofi
8zi '

i=1
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Such boundaries are removed by relations (T) and (IT) of §8.2 (see Figs. 8..2 and 8.3). The relations so

imposed on {gg} involve no dependence on w, and thus z must be independent of w.

The definition of the subspace Y C X, given by (8.3.5), is clearly symmetric in the w; ’s. Tt is also a
natural definition, in that it is independent of the base-point, z°, chosen for the chains Yao. The spaces of

allowed y and z vectors in (8.3.5) are independent of w, and hence, Y is independent of w. ]

Note also that the action of S, on X is independent of w; in fact, the matrices giving the action
of o € S, on X, in terms of the standard basis, have all their elements 1, -1 or 0. Thus (Y/Z)Sm is a
constant quotient of a subspace of X. Since this space is invariant under the flow defined by (8.3.2), then the
induced monodromy action of B, on (Y/Z) Sm i given by the total monodromy action of a similar system of

differential equations to (8.3.2). In particular C;x gives a well defined action on (Y/Z) Sm  We thus deduce:

Corollary 8.7 The representation of Theorem 6.1 obtained by restricting the monodromy action on
cohomology to (W'/Im(D'))Sm C H™, can also be obtained as the monodromy representation associated with

the system of equations:

oA < L)A —0 (8.3.6)

wy; — Wk

where A is a vector-valued function on X,,, with constant matrices c;y.

The matrices c;i are obtained from Cjj by first taking X to the quotient X/z, and then restricting to
(Y/Z) Sm  That is, C;i preserves Z, and so can be thought of as a map X/z — X/z. This reduced linear
transformation preserves the subspace Y/z of X/z; it also preserves (Y/Z) Sm, and its restriction to (Y/z) Sm

gives the matrix c;y.

We have thus shown that the monodromy representation of Theorem 6.1 can be associated with a system
of differential equations (8.3.6), of the same form as those used by Tsuchiya & Kanie (see (8.1.6)). In the
next section it will be seen that the two systems of differential equations are isomorphic. In the rest of this
section we will illustrate Theorem 8.5, and the Lemma used in its proof (namely, Lemma 8.4), by considering
the special case m = 2.
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When m = 2, we shall denote by g(}, p', p?) the function given by:
(21— 22) [ (21 — wi) ™ (20 — wi) ™47
i=1

Then the equivalence (8.2.6) gives rise to the following relations:

(b= ph)g(h ' +ei, pu?) ~ (A —a)g(A +1, 1t p?)
=t (8.3.7)

n

S b= udgOh pt, i’ + i) ~ (a— Mg\ +1, pt, )

i=1

It is also clear from the definition of g(A, pu!, p?) that:
gA+1Lp' —ei, 1) —g(A+1,p', p* —e;) = g(\, p', p0?) (8.3.8)

and when combined with (8.3.7), these relations become:

Db —phg 't +ei,p’ —ei) ~ (bn+1+a— 2= |p' g\ p', p?)
=t (8.3.9)

Db —ud)g(h pt —ei, i’ 4 e) ~ (bn+1+a— A= |p))g(A, p', p?)

i=1

Here e; denotes the 7' standard basis vector, so that:

ga = 9(0,€a,,€q,)

while | | denotes the sum of all the components of the vector concerned. Equation (8.3.7) is equivalent to

move (I) of the proof of Lemma 8.4; and in the same way, (8.3.8) is associated with move (II).

The derivative % maps gg to:
6oc wy T b 604 wy T b
L + i 0 8.3.10
(oo w) ¥ e = an)(z2 - ) - w») v (8:3.10)

Case (1): w; # a1, @y

Using partial fractions (8.3.10) can be expressed in the required form as:

: (g?wjo‘2) B g?alcw)) + b (g?ale) o g?a1a2)) :

o] — Wy gy — Wy
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Case (iI): w; = a1 # as

-1

The first equation in (8.3.9) can be used to express ¢°(z1 — a1)”?(22 — @2)™" as a combination of gg ’s.

The expression obtained for (8.3.10) is then:

a+2b b 0 ( a—+ 3b b ) 0
Qg — alg(alal) * g — Oz1g(a2a1) + o] — @ i i?fazl:ag ay — 1 (aras)
eI IR R SR R e
ag — oy it s (i) (ieea) iforera oy — 1 (iaz)

Case (iil): wj = as # oy

This case is similar to case (ii), and the answer is obtained by interchanging a1 and aq, while converting

g?xy) to g?yx) for all z, y.

Case (iv): w; = oy = as (= a, say)

Applying (8.3.9) we obtain:

L — a)240 —b)(zy — a)" (2 — a) Vg0 ~ z3—J 0
(b =) e =)+ (0 el b; (21— a)(za — )2(z1 — J)
(a+bn)(z — a)_2(22 — a)_lgo +(1=b)(z1 — a)_1(22 — a)_2g0 ~b Z s a)Q(ZzZ_—ja)(Q ——y q°

ite

Adding these two relations, it is apparent that (8.3.10) is equivalent to:

b(1—5 z9—j z1—j
) Y (i st o)
a+1+b(n-1) = (z1 —a)(z1 — J)(z2 —a)? (21 — @)?(z2 — @)(22 — j)
However, these two terms have already been dealt with in cases (ii) and (iii) above, and thus (8.3.10)
can be reduced to the required form in this case also. In the terminology of Lemma 8.4, this case illustrates

the situation in which move (IT) has been applied repeatedly, and it is necessary to apply move (I) before

move (IT) can be applied again.

The matrices C;i, even in the simplest case, of m = 2, are non-trivial; however all the entries are simple
rational combinations of @ and b. It is readily seen that when @ = b = 0, C;; = 0 and thus cj; = 0, at least
in this special case; this observation plays a central role in the next section.
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8.4 Correspondence between CFT and topology

In this section a detailed correspondence between the methods of [TK], [Ko] and the homology represen-
tation techniques of Chapters 3-7 is proposed. This correspondence is based on the similarities exhibited in
the preceding sections. Both techniques for producing braid group representations come down to construct-
ing a flat connection on a vector bundle over X,,, and the representation required appears as the monodromy

representation. The fibres of these vector bundles in the two cases are:
- S m
Vo and (W'fim (D))" € H™ (Y Xw,m ()

as defined in §8.1 and §6.1, respectively.

Lemma 8.8 dim Vy = dim (W'/Im(D'))Sm where m = nfy — .

ProoOF: It was shown in Chapter 6 that (W'/Im(D'))Sm may be 1dentified with the vector space spanned
by the (:1) vectors {fg | a € LI‘T}, with (mn_l) relations existing between them. Thus:
dime:<n>—< " )
m m—1
However V = (Vf?zn ® Vt)“ and thus dim V; is the multiplicity of V; in the direct sum decomposition of V1®2”.

Using the standard relation, obtained for adding angular momenta:

le @ ‘/‘72 = VY]j1—j=| @ V|jl—jz|+1 ©---D ‘/j1+j2

dim ¥ = (”/2n— t) - <”/2 —nt —1)

as required. |

it can be shown that this gives:

In the next section an example will be given which illustrates this Lemma. The monodromy represen-
tation on the subspace of cohomology given by (W'/Im([)'))sm is that associated with differential equations

of the form specified in Corollary 8.7, but with ¢;; being matrices of dimension dim Vo =dimV™.

Theorem 8.2 (see §8.1) gives the monodromy representation of B, in terms of the matrices €;;. In [Ko],

Kohno shows the following Lemma:
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Lemma 8.9 The monodromy representation fgq of B, associated with the connection given by (8.1.10)
and (8.1.11), with the Q;; matrices small, depends on {€;;} injectively. That is, if g and . are identical
then Q = ', so long as ;;, Q;-j are small, in the sense that the maximum entries in §;; and Q;»j are all

sufficiently close to zero.

From this Lemma we now deduce the following result.

Theorem 8.10 There exists an isomorphism a: Vo — (W')5= such that:
klao (2 — ) =cijoa

where c¢;; are the matrices of Corollary 8.7, where m = nfa —t, ¢ = ¢ 2T+2)

ProoOF: The differential equations (8.1.6)" and (8.3.2) (or at least, the reduced system (8.3.6), given by
Corollary 8.7) both give rise to representations of B, which factor through Hy,(q). They both correspond
to two-row Young diagrams, with n squares in total, namely Anj_; and A,,, respectively. Thus when

m = n/a —t, the two braid group representations are isomorphic.

When | — oo, K7'€Q;; — 0 in the Tsuchiya-Kanie side of the story. On the other hand, this is associated
with ¢ — 1 and in this limit the local coefficient system is trivial. Thus in the proof of Theorem 8.5,

892 - 6ocleg&

— ~

6wj 2 — Wy

i=1

The only terms that occur here are thus of the form:

(z1— o)™ (i — i) T (2 — ) (2 — i) T (2 — ) T

8 0
and such terms are equivalent to 0 under ‘~’ of (8.2.6). Thus az% ~0foralla e 8 and j € {1,2,...,n}.

Hence C;r = 0 in (8.3.2), and so ¢ = 0 in Corollary 8.7. Since c;i are rational functions of ¢, thus, for
sufficiently small ¢, 7' €25 and c; will both be small and give rise to the same monodromy representations

of B,. By Lemma 8.9, the matrices k™! Q;; and c;; must therefore be equivalent. [ |

We conclude this section with a dictionary of the correspondence between Tsuchiya-Kanie theory and

the homology theory of Chapters 3-7, as derived in Theorem 8.10.
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Tsuchiya-Kanie theory Homology theory
1 "/2 —-m
- S ) S
Vo (Y/2)"" = (W m(p)) " =V
s/ Cij
k=142 271 q)
Theorem 8.1 Theorem 6.1
Equation (8.1.6) Theorem 8.5
Kohno connection Natural connection on cohomology

8.5 Example

In this section some aspects of the above correspondence will be discussed in the special case m = 2,

n = 5. In this case, t = njs — m = 1/, and so:
- @5 5
Vo = ((V1/2 ® Vl/z))o

where ( )o denotes the slp-invariant part. The spin 1/2 systems may be adjoined one at a time. This gives:

Vipb@Viy,=VeWh
V1/2 ® V1/2 ® ‘/1/2 == ‘/1/2 (©) (V1/2 D V3/2)
Vi, ® Vi, ® Vi, ® Vi, = VeWV)e(VodWi) e (Vie W)
= V1/2 @ (V1/2 S V3/2) @ V1/2 @ (V1/2 @ V3/2) S (V1/2 @ V3/2) S (V3/2 @ V5/2)

Vil

There are five copies of V1/2 in VS;’ and so dim Vg = 5. A natural basis for Vi may be constructed from the

five occurences of V1/2 in V1‘5/925. Let wq,...w5 be the basis so constructed, when spins are added in order,

as was done above. Then it can be shown that the matrices €2;; are as shown below, with respect to the

normalised basis of w’s.

EVA V3/,
—3/5 ~ V3/s
Dy = 1 ; Q13 V3 -1
/2 V3, -1
1 /2 1/2
— 3/, Yoo =Yz
Wiz s R R
Qg = | V3% -1 ; Q5 = 1 Wi e
1/yT2 s =V?s o =B B =% v
V25 Vs =5 =Wz =E B Ysva o =
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Qoz = | —V3f -1 ; Qo= | V3h -1
—V5/s -1 —1/y1a s =V
1/ -/ %3 —V2/y 5[
VARV —3/,
_1/2 1/\/5 1 \/g 1/2
Q5 = -1/ s e | Q34 = 1/
—lh Ys B =% s —fe  2V3
e e WWE v =S Vofs =5
V3/, — 3/,
V3 —1 —V3/ 1
Q35 = —1/\/ﬁ —\/_2% ; Qy5 = B _\/5/2
=yt s =V —V3h -1

_ 2/3 _\/5/3 _5/6 1/2

These ten matrices define the equations (8.1.6) from which the representation of Hs(q) corresponding to the

two-row Young diagram A, is obtained.

From the point of view of the homology representations, it is seen that:
|Se| =30,  |Ta|=20, |ui|=10.

The action of Sy on the cohomology space gives rise to an action of Bs on the 5-dimensional space V2 =
(W'/Im(D'))SQ. The subspace W’/Im(D') C H? is of dimension 10, and H? itself has dimension 20. At the
level of chains, there 1s an action on Bs on the 15-dimensional space given by the symmetric half of the chain
space. There is a five-dimensional boundary, totally contained within the symmetric half of the chain space,
so that an action of Bs on a 10-dimensional subspace of H? is obtained. Only the reduced action on the

5-dimensional space (W'/Im(D'))S2 factors through Hs(q).

A natural spanning set for V2 is indexed by #4Z2. However, even in this simple case, the correspondence,

a, between the two theories has no obvious description.
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8.6 Further remarks

In §8.4, it was shown that there exists an isomorphism between the vector spaces (and thus the vector
bundles) used in the Tsuchiya-Kanie approach, and that of Chapters 3-7. However, this proof (see Theo-
rem 8.10) was entirely non-constructive. It is hoped to give a more constructive form for this isomorphism

in a future work.

Throughout the last few sections, it has been assumed that ¢ is not a root of unity. Equivalently,
[l is not an integer. When [ is integral, Tsuchiya & Kanie showed how introducing the extra system of
equations (8.1.5) gives rise to irreducible Hecke algebra representations, once again. This suggests that a
similar such construction should exist in terms of the homology picture of Chapters 3-7. In §5.3, it was
observed that in the special case ¢ = 1, the representation of S, constructed on (W’)= is larger than the
irreducible representation w5 . At other roots of unity a similar degeneracy can occur, when the homology
is computed; that is, D’ may not have maximal rank. This is to be compared with the situation discussed

above, at roots of unity, in the theory of Tsuchiya & Kanie.

In both approaches to the construction of w5, , the Hecke algebra representation required appears as
a sub-representation of a much larger braid group representation. In Tsuchiya & Kanie’s approach, the

natural action of B, on V&

Uy gives the larger space. In the homology approach, the larger representation

appears on the symmetric part of the cohomology (with the dual representation on the symmetric part of

the homology). The dimension of the reduced representation is:

()= (o)

and those of the larger representations are 2" and /mi(n +m — 2)---n(n — 1), respectively.

In Chapter 7 it was shown how, in certain special cases, a reduced representation of B,, could be con-
structed from the family of representations with parameter o, by looking near to @ = ¢~2. The representation
of B, associated with generic values of o and g, is irreducible. When o = ¢~2, it is reducible, one part
being the required Hecke algebra representation. There is a similarity here with the behaviour of the Hecke
algebra representations as g varies. Generically w4, 1s irreducible. However, when ¢ is a root of unity, this

representation may be reducible, and when it is, the representation constructed by Tsuchiya & Kanie is a
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large irreducible piece of it. This leads one to speculate on how such an irreducible piece may be isolated.
Tsuchiya & Kanie do this by adding an extra system of equations. If the analogy is valid, one would expect
that it may be possible to select the sub-representation out by using a limiting lemma, along the lines of

Theorem 7.2.

As far as the Jones polynomial itself is concerned, the expression for V7, given in Chapter 2 (in particular
Theorem 2.3), is in terms of the characters xa,,. When ¢ is not a root of unity, these characters correspond
to irreducible representations; but when ¢ is a root of unity, it is still these characters, and not their
decompositions into irreducible parts, which play the central role. Thus although it should be possible to
construct, in a natural topological manner, the irreducible parts of x4, , for ¢ a root of unity, this would
have no significance as far as a topological interpretation of Vz, is concerned. However, the generalisations of
the Jones polynomial given in Witten’s theory [W] are in terms of the (smaller) irreducible representations.
In the case of the Jones polynomial, the extra parts of the representations cancel out, and so, we can equally
well use the larger representation, w4, as its irreducible sub-representation. This indicates that a better
topological understanding of the generalisations of Vi (and probably not even of Vi itself) will not be

obtained until the irreducible representations themselves have been interpreted topologically.
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9: Some further remarks

In Witten’s approach [W], the expansion of V1(¢q) as a linear combination of characters of H,(q) comes
out naturally by considering the interplay between the link L embedded in S®, and in S' x S?. The latter
theory is associated with the braid approach. Witten’s theory has data consisting of a Lie algebra g, level
k, and a representation of g for each component of L. When g = s[5, and the representations are all just the

standard vector representation, the invariant has value:
Vi (e “T2)Y

Thus q and k are related by ¢ = 2T NE+2) | Tn Witten’s theory Vi is only evaluated at roots of unity.
However, when £ is sufficiently large, such a root of unity behaves in a similar way to generic ¢q. That is,
the characters of H,(q) which appear are x5, which are irreducible. For small k, the representation m,  is
not irreducible, and in that case it is an irreducible part of w4, which will appear in Witten’s theory. An
important problem is, therefore, to understand how this reduced representation can be naturally picked out

of ma,,, in terms of the topological construction of Chapters 3-7.

Just as Witten’s theory can be extended to arbitrary Lie algebras g, it seems likely that our homology
theory can also be so extended. In fact, the paper of Kohno [Ko] is framed in the context of an arbitrary
Lie algebra. When sl; is generalised to sly, the shift ¥ — &k + 2 is generalised to a shift £ — k + N.
When this generalisation is carried out in Tsuchiya & Kanie’s theory, the Hecke algebra representations of
H, (e 2m/(k+N)) which are obtained are those associated with Young diagrams with n squares, and < N rows.
Such Hecke algebra representations should be obtained using a suitable generalisation of the constructions
presented in Chapters 3-6. One possible approach is to replace the set of points z1, ..., z;,, by several such
sets of points. The set {z;} was introduced, in Chapter 2, in order to give local coordinates in the fibre Yy
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of the vector bundle:

n w

and would be generalised, so as to give rise to local coordinates, in a suitable (more complicated) vector
bundle. In the construction of the subspace of cohomology (namely (W//Im (D’))Sm) it is seen that an

element of the spanning set {fg} (where oo € U) of this subspace is given by a map:
g:{l,?,...,m} — {wl,...,wn}

or, at least, by a subset of {wl, R wn} of order m. Such a map can be thought of as a pairing off of the
points zy,...., 2y with m points in {wl, R wn}. This gives rise to the Young diagram A,,. In a similar
way, one might imagine that NV sets of z;’s would give rise to a space with a spanning set given by a pairing
off of the N sets of z;’s with the w;’s. Thus one may conjecture that a Hecke algebra representation with

(N + 1) rows could be obtained in this way.
In Chapter 8, the factor ¢~ ta appears in Theorems 8.1 and 8.1’. This translates into a shift:
Qi — Qe — 121

The ‘—1/4" and ‘1/2” appearing here all arise from the choice of g = sl and its vector representation. It
should be expected thus, that in the generalised theory, just as the shift & — k+ 2 generalises to k — k+ N,
so the shift ‘15T’ will generalise, except that in this case it will depend on the representation used, as well

as the chosen Lie algebra.

The relations between the homology theory presented, and the structure of conformal field theory on
P!, as presented in Chapter 8, lead naturally to a much more general conjecture. Thus we conjecture that
the structure of vertex operators can be totally specified using elementary topology and branched covers,
etc., without the need to bring in complex topological concepts such as geometric quantisation. A better
understanding of the topological description of the Hecke algebra representations should then lead to an
understanding of the Jones polynomial, since the Jones polynomial is simply a combination of the characters
of these representations. To do this, it 1s necessary to obtain, in topological terms, an understanding of
the significance of the combination in which these characters occur. It seems likely that a close analysis of
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Witten’s interpretation of V7, in [W], and the relation between the braid and plait pictures of a link will lead

to this understanding.

So, as discussed above, one should view this work as the simplest case of a general structure which we
intend to investigate in future work. Finally, it is interesting to speculate on possible connections with the
work of N. Hitchin, see [H 2]. The constructions alluded to above, in which sy -theory is obtained by
using N sets of points in the fibre, with abelian local coefficient systems on a suitable branched cover, have
the same ingredients as in Hitchin’s work. Namely, they both reduce a complex, non-commutative system,
to a commutative one on a much larger space. In the homology picture described, it is the fibres of E,(q)
which play the role of the larger space. Beyond this comment, however, it is not clear how, or if, a detailed

correspondence between these two approaches exists.
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