
On the semantics of EPCs:
A framework for resolving the vicious circle

Ekkart Kindler
Computer Science Department, University of Paderborn, Germany

kindler@upb.de

Abstract: One of the most debatable features ofEvent driven Process Chains(EPCs)
is their non-local semantics. Most non-local semantics for EPCs either have a formal
flaw or are given informally only. In fact, it can be shown that there is no formal
semantics that precisely captures the informal idea of the non-local semantics of EPCs.

In this paper, we formally define a non-local semantics for EPCs in the best way
possible. To this end, we use standard techniques from fixed point theory.

Actually, there are several choices when defining non-local semantics for EPCs.
These choices, however, do not compromise the application of the underlying fixed
point theory. The mathematics used in this paper, can be considered as a semantical
framework for formally defining non-local semantics for EPCs. This framework can
be used for the discussion and, eventually, for settling the discussion on the semantics
of EPCs.

1 Introduction

Ever since the definition ofEvent driven Process Chains(EPCs) in the early 90ties
[KNS92], there has been a debate on their precise semantics. One feature recurrently
provoking a debate is thenon-localityof the semantics of the OR-join and the XOR-join
connectors. On the one hand, this non-local semantics helps to simplify many models.
On the other hand, there is no satisfactory formalization of this semantics yet. Many for-
malizations simply ignore the non-local semantics of the OR-join and XOR-join connec-
tors; others provide ad-hoc solutions. Rittgen [Rit00] discusses some aspects of this prob-
lem and some approaches towards defining more satisfactory semantics for EPCs, which
help resolving the problems. One concept proposed by Langner, Schneider and Wehler
[LSW98], for example, is some additional synchronization, which is similar todead path
eliminationin IBM’s MQ Series1 process model [LA94]. Rittgen himself introduces some
new syntax for EPCs in order to (partially) cure the problem [Rit00].

One reason for the ongoing debate on the semantics of EPCs is inherent to the non-locality
of the informal semantics for EPCs: In essence, a non-local semantics refers to itself in
its own definition (see Sect. 2 for more details). Even worse, this self-reference occurs
under a negation, which easily results in a mathematical, conceptual, and technical short-

1IBM MQ Series workflow was called FlowMark at that time.

1

Administrator
Technical Report, Reihe Informatik tr-ri-03-243
Institut für Informatik, Universität Paderborn, August 2003

circuit2. In [vdADK02], we pinpoint these arguments and prove that there cannot be a
formal semantics that fully complies with the informal semantics of EPCs – thevicious
circle.

From a theoretical point of view, the result of [vdADK02] should have settled the debate
– against non-local semantics for EPCs. In practice, however, there are many EPC models
exploiting the non-local semantics. Therefore, we set out to give a mathematically sound
semantics for EPCs that comes as close as possible to the informal semantics3, which will
be presented in this paper. In fact, we provide a framework for easily defining non-local
semantics for EPCs. Technically, this framework resolves the vicious circle by distinguish-
ing two related transition relations for EPCs and by using fixed point theory for capturing
self-references.

What is more, this framework comes with a characterization ofuncleanEPCs for each
concrete definition of a semantics. These unclean EPCs are those that do not exactly
capture the informal semantics and, therefore, are ambiguous. Maybe, this framework
helps to, eventually, settle the debate about ‘the semantics’ of EPCs – this way, resolving
the vicious circle of never-ending discussions.

2 The problem

In this section, we present the syntax and the non-local semantics of EPCs and discuss
the problem with the informal semantics of EPCs. Here, we can give a rough outline
only. For a more detailed motivation of EPCs, their syntax, and their semantics, we refer
to [KNS92, NR02]. For a more detailed exposition of the problems with the non-local
semantics of EPCs, we refer to [vdADK02].

Figure 1 shows an example of an EPC. It consists of three kinds of nodes:eventsgraph-
ically represented as hexagons,functionsrepresented as rounded boxes, andconnectors
graphically represented as circles. The dashed arcs between the different nodes represent
the control flow. The two black circles do not belong to the EPC itself; they represent a
stateof an EPC. A state, basically, assigns a number ofprocess foldersto each arc of the
EPC4. Each black circle represents a process folder at the corresponding arc.

The semantics of an EPC defines how process folders are propagated through an EPC.
Clearly, this depends on the involved node. For events and functions, a process folder
is simply propagated from the incoming arc to the outgoing arc. Thetransition relation
for events and functions is graphically represented in the top row of Fig. 2 (a. and b.).
For connectors, the propagation of folders depends on the type of the connector (AND,
OR, resp.XOR) and whether it is ajoin or asplit connector. Figure 2 shows the transition

2In fact, it was a ‘short-circuit’ in the formal definition of a semantics for EPCs in [NR02] which, again,
attracted our attention to this problem.

3Actually, there is not a single well-accepted informal semantics for EPCs. We refer to the informal semantics
presented by Nüttgens and Rump [NR02].

4In other formalizations, process folders are assigned to nodes rather than to arcs. Assigning folders to arcs
significantly simplifies the technical presentation of our ideas. Therefore, we have chosen to assign folders to
arcs. But, this is not inherent to our approach.

2

f1

Start1

Inner1

f’1

Stop1

f2

Start2

Inner2

f’2

Stop2

c2c1

Figure 1: An EPC

f fe ea. b.

c. d.

e. f.

g. h.

Figure 2: The transition relation for the different nodes

3

relation for the different connectors. For example, the AND-split connector (c.) propagates
a folder from its incoming arc to all outgoing arcs. The AND-join connector (d.) needs one
folder on each incoming arc; which are then propagated to a single folder on the outgoing
arc.

The more interesting connectors are the OR-join and the XOR-join. Here, we focus on
the XOR-join connector. An XOR-join connector (h.) waits for a folder on one incoming
arc, which is then propagated to the outgoing arc. But, there is one additional condition:
The XOR-join must not propagate the folder, if there is or there could arrive a folder on
the other incoming arc. In Fig. 2.h, this is represented by a labelat the other arc. Note
that this condition cannot be checked locally for the XOR-join connector, since whether
a folder could arrive at the other arc or not depends on the overall behaviour of the EPC.
Therefore, we call the semantics of the XOR-joinnon-local. Likewise, the OR-join con-
nector (f.) has a non-local semantics. Note that, in both cases, the additional condition
refers to the transition relation itself and that the transition relation occurs under a nega-
tion in this condition.

Basically, the intended non-local behaviour has two problems, a technical one and a con-
ceptual one (see [vdADK02] for details):

1. In the definition of the transition relation, we refer to the the transition relation itself,
which easily results in definitions that are not mathematically sound. In principle,
this problem could be avoided by using some kind of fixed point semantics (the
standard trick for giving semantics to objects that refer to themselves). The problem
with the non-local semantics of EPCs, however, is that a fixed point does not exist
in all cases.

2. The conceptual problem is that, for some EPCs, there is no formal semantics that
exactly captures the informal semantics. The reason is that the self-reference occurs
under a negation. For example, consider the EPC from Fig. 1 with one process
folder on one of the incoming arcs of each XOR-joinc1 and c2. For symmetry
reasons, either both of them should be able to propagate this folder or both should
not be able to propagate the folder. But, either way contradicts the definition of the
informal semantics of the XOR-join.

One purpose of this paper, is to define a non-local semantics for EPCs that is mathemat-
ically sound and comes as close as possible to the informal semantics of EPCs. What
is more, this definition allows us identifying problematic EPCs, i. e. EPCs for which the
informal semantics is ambiguous.

The main purpose of this paper, however, is the presentation of a framework for defining
and discussing different kinds of non-local semantics. The concrete semantics defined
here, serves as an example for presenting the framework. The definition of ‘the semantics’
of EPCs is left to the EPC community.

4

3 The syntax of EPCs

In this section, we formalize the syntax of EPCs. Since the focus of this paper is on a
formalization of the semantics of EPCs, we will omit some syntactical restrictions that are
not relevant for our semantical considerations; moreover, we considerflat EPCsonly, i. e.
EPCs without subprocesses.

Basically, an EPC is a graph, i. e. it consist of nodes and arcs. In order to express some
of the syntactical restrictions, we first introduce a simple notation for the ingoing and
outgoing arcs of a node:

Notation 1 (Ingoing and outgoing arcs)

Let N be a set ofnodesand letA ⊆ N ×N be a binary relation overN , thearcs.
For each noden ∈ N , we define the set of itsingoing arcsnin = {(x, n) | (x, n) ∈
A}, and we define the set of itsoutgoing arcsnout = {(n, y) | (n, y) ∈ A}.

An EPC consists of three different kinds of nodes,events, functions, andconnectors, which
are connected bycontrol flow arcs. A connector can be either an AND-, an OR-, or
an XOR-connector, which is indicated by labelling the connector correspondingly. Each
function has exactly one ingoing and one outgoing arc, whereas each event has at most
one ingoing and at most one outgoing arc. A connector has multiple ingoing arcs and one
outgoing arc, or it has one ingoing arc and multiple outgoing arcs:

Definition 2 (EPC)

An EPCM = (E,F,C, l, A) consists of three pairwise disjoint setsE, F , andC,
a mappingl : C → {and, or, xor} and a binary relationA ⊆ (E ∪F ∪C)× (E ∪
F ∪ C) such that

• |ein| ≤ 1 and|eout| ≤ 1 for eache ∈ E,

• |fin| = |fout| = 1 for eachf ∈ F , and

• |cin| ≥ 1 and|cout| ≥ 1 and either|cin| = 1 or |cout| = 1 for eachc ∈ C.

An element ofE is called anevent, an element ofF is called afunction, an element
of C is called aconnector, and an element ofA is called acontrol flowarc.

Note, that we have omitted some syntactical restrictions for EPCs:

• Functions and events should alternate along the control flow.

• The OR-split and the XOR-split connectors should be preceded by a function, which
determines to which direction process folders are propagated.

• There should be no cycle of control flow that consist of connectors only.

5

Though these requirements are important from a pragmatical point of view, these restric-
tions are not necessary for defining the semantics of EPCs. So, we do not formalize these
restrictions here. For a complete exposition of the syntax of EPCs, we refer to [NR02] .

In the definition of the semantics, we need to distinguish among different types of connec-
tors: AND-, OR-, and XOR-, each of which can be either asplit or a join connector. The
corresponding sets are defined below.

Notation 3 (Nodes and connectors)

For the rest of this paper, we fix an EPCM = (E,F,C, l, A). We denote the set of
all its nodes byN = E ∪ F ∪ C and we define the following sets of connectors:

AND-split: Cas = {c ∈ C | l(c) = and ∧ |cin| = 1}
AND-join: Caj = {c ∈ C | l(c) = and ∧ |cout| = 1}
OR-split: Cos = {c ∈ C | l(c) = or ∧ |cin| = 1}
OR-join: Coj = {c ∈ C | l(c) = or ∧ |cout| = 1}
XOR-split: Cxs = {c ∈ C | l(c) = xor ∧ |cin| = 1}
XOR-join: Cxj = {c ∈ C | l(c) = xor ∧ |cout| = 1}

At last, we define thestatesof an EPC: An assignment, of a number of process folders to
each arc of the EPC.

Definition 4 (State of an EPC)

For an EPCM = (E,F,C, l, A), we call a mappingσ : A → {0, 1} a stateof M .
The set of all states ofM is denoted byΣ.

For simplicity, at most one folder at each arc is allowed in a state. But, we will see in
Sect. 7 that this restriction can be easily released.

Note that, in our definition, we assign the process folders to the control flow arcs of the
EPC, whereas most other formalizations (e. g. [Rum99, Rit00, NR02]) assign the process
folders to the nodes of the EPC. Though this choice is not essential for the definition of the
semantics, it allows us a smoother technical presentation of the semantics5. In addition,
this choice makes the nodes of the EPCs the active parts, whereas the arcs become the
passive parts. We feel that this is a more natural conception of EPCs – but this is a very
personal view.

4 The transition relation R(P)

The semantics of an EPCs will be defined in terms of atransition relationbetween its
states. In order to identify the node involved in a transition, the transition relation is a

5For example, there is no need to extend an EPC withpre-connectorsas introduced in [NR02].

6

relationR ⊆ Σ × N × Σ. A single transition(σ, n, σ′) ∈ R, represents a change from
stateσ to σ′ that corresponds to noden.

In order to define and to argue on transition relations, we introduce some notations for
restricting it and for its induced reachability relation:

Notation 5 (Restriction and reachability)

For some transition relationR ⊆ Σ×N ×Σ, and some subsetN ′ ⊆ N , we define
therestriction ofR to N ′ asR|N ′ = {(σ, n, σ′) ∈ R | n ∈ N ′}.
By slight abuse of notation, we define thereachability relationR∗ of R as the
reflexive and transitive closure of the binary relation→ = {(σ, σ′) ∈ Σ×Σ | ∃n ∈
N : (σ, n, σ′) ∈ R}.

As discussed in Sect. 2, we need to refer to the transition relation in its own definition
when defining a non-local semantics for the OR-join and the XOR-join connectors. Such
cyclic references, however, are not possible in a sound mathematical definition. In order
to resolve this cycle, we assume that some transition relationP ⊆ Σ × N × Σ is given,
and we define another transition relationR ⊆ Σ×N × Σ where we refer toP whenever
we would like to refer toR itself. We writeR(P) in order to make this dependency ofR
from the transition relationP explicit6.

For now, we assume thatP is some given transition relation. So, there is no cycle in the
definition ofR(P). Later, in Sect. 5, we will use a standard trick of semantics, fixed points,
for establishing a reference ofR to itself. But, this need not bother us right now.

In the following definition, we first define one transition relationRn for each noden ∈ N
of the EPC separately. The overall transition relationR(P) is the union of the transition
relationsRn of all nodesn. Figure 2 from Sect. 2 gives a rough overview on the definitions
of Rn for the different nodesn. More details will be given after the definition.

Definition 6 (Transition relation R(P))

Let P be a transition relation for an EPCM . For each noden ∈ N , we define the
transition relationRn ⊆ Σ×N × Σ as follows:

a. Forn = e ∈ E with ein = {i} andeout = {o}, we defineRe ⊆ Σ×N × Σ
by (σ, e, σ′) ∈ Re iff σ(i) = 1, σ(o) = 0, σ′(i) = 0, σ′(o) = 1, and
σ′(a) = σ(a) for eacha ∈ A \ {i, o}.

a’ Forn = e ∈ E with ein = ∅ or eout = ∅, we defineRe = ∅.
b. Forn = f ∈ F with fin = {i} andfout = {o}, we defineRf ⊆ Σ×N ×Σ

by (σ, f, σ′) ∈ Rf iff σ(i) = 1, σ(o) = 0, σ′(i) = 0, σ′(o) = 1, and
σ′(a) = σ(a) for eacha ∈ A \ {i, o}.

c. Forn = c ∈ Cas with cin = {i}, we defineRc ⊆ Σ×N ×Σ by (σ, c, σ′) ∈
Rc iff σ(i) = 1, σ(o) = 0 for eacho ∈ cout, σ′(i) = 0, σ′(o) = 1 for each
o ∈ cout, andσ′(a) = σ(a) for eacha ∈ A \ ({i} ∪ cout).

6This reflects the fact, that actuallyR is a function that takes a transition relationP and gives another transi-
tion relation.

7

d. Forn = c ∈ Caj with cout = {o}, we defineRc ⊆ Σ×N×Σ by (σ, c, σ′) ∈
Rc iff σ(i) = 1 for eachi ∈ cin, σ(o) = 0, σ′(i) = 0 for eachi ∈ cin,
σ′(o) = 1, andσ′(a) = σ(a) for eacha ∈ A \ (cin ∪ {o}).

e. Forn = c ∈ Cos with cin = {i}, we defineRc ⊆ Σ×N ×Σ by (σ, c, σ′) ∈
Rc iff, for someS ⊆ cout with |S| ≥ 1, we haveσ(i) = 1, σ(o) = 0 for
eacho ∈ S, σ′(i) = 0, σ′(o) = 1 for eacho ∈ S, andσ′(a) = σ(a) for each
a ∈ A \ ({i} ∪ S).

f. Forn = c ∈ Coj with cout = {o}, we defineRc ⊆ Σ×N ×Σ by (σ, c, σ′) ∈
Rc iff, for someS ⊆ cin with |S| ≥ 1, we haveσ(i) = 1 for eachi ∈ S,
σ̂(a) = 0 for eachσ̂ with σ(P |N\{c})∗σ̂ and for eacha ∈ cin \ S, σ(o) = 0,
σ′(i) = 0 for eachi ∈ S, σ′(o) = 1, andσ′(a) = σ(a) for eacha ∈
A \ (S ∪ {o}).

g. Forn = c ∈ Cxs with cin = {i}, we defineRc ⊆ Σ×N ×Σ by (σ, c, σ′) ∈
Rc iff, for someo ∈ cout, we haveσ(i) = 1, σ(o) = 0, σ′(i) = 0, σ′(o) = 1,
andσ′(a) = σ(a) for eacha ∈ A \ {i, o}.

h. Forn = c ∈ Cxj with cout = {o}, we defineRc ⊆ Σ×N×Σ by (σ, c, σ′) ∈
Rc iff, for some i ∈ cin, we haveσ(i) = 1, σ̂(a) = 0 for eachσ̂ with
σ(P |N\{c})∗σ̂ and for eacha ∈ cin \ {i}, σ(o) = 0, σ′(i) = 0, σ′(o) = 1,
andσ′(a) = σ(a) for eacha ∈ A \ {i, o}.

We define thetransition relationR(P) =
⋃

n∈N Rn

Below, we briefly discuss the different cases of the above definition, which makes the
graphical representation of Fig. 2 more precise.

For an evente or a functionf with exactly one ingoing arc and exactly one outgoing arc
(a. and b.), the folder is propagated from the ingoing arc to the outgoing arc. Note that
the folder is only propagated, when there is no folder on the outgoing arc. For start and
end events (which have no incoming arc or have no outgoing arc) the transition relation is
empty (a’).

An AND-split connector (c.) propagates a folder from an incoming arc to all its outgo-
ing arcs. However, it will be propagated only, when there are no process folders on the
outgoing arcs. Likewise, the AND-join (d.) waits for a folder on each incoming arc and
propagates it to the outgoing arc, provided there is no process folder on the outgoing arc
yet.

The OR-split connector (e.) is similar to the end split. But, it can propagate a folder from
the incoming arc to any (but at least one) of its outgoing arcs provided that there are no
folders yet. The set of outgoing arcs to which the folders are propagated is denoted byS
in the definition.

The OR-join connector (f.) is more involved because of its non-local semantics. When
there is a folder on at least one of its incoming arcsS ⊆ cin and no folder can arrive
(according toP) on the other arcs without the occurrence ofc, the folder is propagated to
the outgoing arc. In order to formalize that no folder can arrive on the other incoming arcs
a ∈ cin \ S, the definition refers to the statesσ̂ that can be reached fromσ (with respect
to P) without the occurrence ofc: σ (P |N\{c})∗ σ̂.

8

The XOR-split operator (g.) propagates the folder from the incoming arc to exactly one
of its outgoing arcs. The formalization is similar to the one of the AND-split and the
OR-split.

The XOR-join (h.) is similar to the definition of the OR-join. Instead of selecting some
setS of incoming arcs on which a folder must be present, we select exactly one incoming
arc i. We require that no folder can arrive on the other incoming arcs (with respect toP)
before the occurrence ofc.

Altogether, the transition relationR(P) is defined as the union of all individual transition
relationsRn of the nodesn. Note thatRn depends onP only for the OR-join and the
XOR-join, which are the only connectors with a non-local semantics.

Note that there are several options on how the transition relation for each node type could
be defined. One option concerns the question whether a folder on an outgoing arc should
block the propagation of a folder from the ingoing arc. Another option would be to define
a local semantics for the XOR-join7. Actually, the purpose of this paper is not to discuss
these question, but to provide a framework for formally defining a semantics for EPCs.
The exact definition of the semantics for the individual connectors is left to the a standard-
ization effort within the EPC community. Actually, the precise definition ofR(P) is not
crucial for making the rest of our theory work (see Sect. 7 for details). There is only one
crucial condition:R(P) must be a monotonously decreasing function.

Lemma 7 (R(P) is monotonously decreasing)

The operationR(P) is monotonously decreasing; i. e. for two transition relations
P ⊆ P ′ we haveR(P) ⊇ R(P ′).

Proof: The only relations that depend onP and P ′ in the definition ofR(P)
andR(P ′) are the relationsRc for the OR-join and the XOR-join connector. For
each stateσ the set of stateŝσ reachable fromσ with respect toP andP ′ must
be checked for an additional condition (σ̂(a) = 0). With P ⊆ P ′, we have
{σ̂ | σ (P |N\{c})∗ σ̂} ⊆ {σ̂ | σ (P ′|N\{c})∗ σ̂}. Clearly, a smaller set means
less restrictions because less states must satisfy the condition. Therefore, there are
more transitions inRc for P than forP ′. 2

5 The semantics of EPCs

As mentioned above, the semantics of an EPC should be some transition relation on the
states of the EPC. In the previous section, we have not defined a transition relation, but we
have defined a transition relationR(P), which depends on some given transition relation
P . In this section, we will useR(P) for defining the semantics of EPCs. On a first glance,
there are two different ways to define this semantics:

7There is a debate whether the XOR-join should have a non-local semantic or not. For example, Rittgen
[Rit00] proposes a local semantics for the XOR-join connector. Here, we follow Nüttgens and Rump [NR02] in
giving it a non-local semantics.

9

1. We could use some transition relationP and then calculateR(P) as the semantics
of the EPC. Actually, this idea is used in the semantics of YAWL [vdAtH02]. The
problem, however, is that we need to defineP first. And it is by no means clear
how P should be defined, and which definition is the best. YAWL, for example,
uses a simple transition relation that ignores all OR-join connectors. Similar ideas
came up in private discussions with Nüttgens and Rump during the discussions on
[NR02, vdADK02]. But each choice appears to be ad hoc in some way.

2. A better solution would be to find someP such that we haveP = R(P) – i. e.P
is some fixed point ofR. In that case,P refers to itself in its own definitionR(P)
– the fixed point trick. Therefore, a fixed pointP of R(P) would exactly meet our
initial intension, which justifies to call such aP an ideal semanticsof the EPC.
The problem with this definition, however, is that for some EPCs such aP does
not exist; for others there are several different ideal semantics, and it is impossible
to characterize one (e. g. the least fixed point with respect to set inclusion) among
these ideal semantics to be ‘the semantics’ of the EPC (see Sect. 6 for a more detailed
discussion).

Since both of the above approaches are unsatisfactory, we try a combination of both: We
are now looking for a pair of transition relations(P,Q), such that we haveQ = R(P) and
P = R(Q), i. e. one transition relation is the input for the definition of the other. We will
see that such pairs exist for each EPC, and that we can characterize some particular pair
that will be used as ‘the semantics’ of the EPC.

In order to prove the existence of such pairs by standard fixed point theory, we define
the domainD of all pairs of transition relations and an order relation�, which forms a
complete lattice on this domain. Moreover, we define a functionϕ such that the fixed
points ofϕ are exactly the pairs meeting the above requirement.

Definition 8

For an EPC with nodesN and statesΣ, we define thedomainD = 2Σ×N×Σ ×
2Σ×N×Σ, and we define the relation� on D as follows: For two elementsd =
(P,Q) andd′ = (P ′, Q′), we defined � d′ if P ⊆ P ′ andQ ⊇ Q′.

OnD, we define the functionϕ : D → D by ϕ((P,Q)) = (R(Q), R(P)).

Note that(D,�) is a complete lattice onD, because� inherits this structure from⊆ and
⊇. Moreover, the functionϕ is monotonic:

Lemma 9

The functionϕ onD is monotonic, i. e. for eachd � d′, we haveϕ(d) � ϕ(d′).

Proof: Follows immediately from Lemma 7 and the definition ofϕ and�. 2

A fixed point ofϕ is an elementd ∈ D such thatϕ(d) = d. Note thatd = (P,Q) is a
fixed point ofϕ if and only if P = R(Q) andQ = R(P), which are exactly those pairs of
transition relations we are heading for. What is more, we can show thatϕ has fixed points.

10

Proposition 10

1. The functionϕ has fixed points; in particular, it has a least fixed point and it
has a greatest fixed point (with respect to�).

2. If (P,Q) is a fixed point ofϕ then also(Q, P) is a fixed point ofϕ.

3. In particular,(P,Q) is the least point ofϕ, iff (Q,P) is the greatest fixed
point ofϕ.

4. There is a unique fixed point ofϕ, iff the least fixed point has the form(P, P).

Proof:

1. As mentioned above,(D,�) is a complete lattice and, by Lemma 9, we know
that ϕ is a monotonic function onD (with respect to�). By the renown
Knaster-Tarski-Theorem,ϕ has a least and a greatest fixed point.

2. Let (P,Q) be a fixed point ofϕ. In combination with the definition ofϕ, we
have(P,Q) = ϕ((P,Q)) = (R(Q), R(P)), i. e.P = R(Q) andQ = R(P).
Thus, we haveϕ((Q,P)) = (R(P), R(Q)) = (Q,P). So,(Q,P) is also a
fixed point ofϕ.

3. Let (P,Q) be the least fixed point ofϕ and (P ′, Q′) be the greatest fixed
point of ϕ. By 2, (Q,P) and(Q′, P ′) are also fixed points ofϕ. Because
(P,Q) is the least fixed point and(P ′, Q′) is the greatest fixed point, we have
(P,Q) � (Q,P) � (P ′, Q′) and (P,Q) � (Q′, P ′) � (P ′, Q′). By the
definition of�, we haveQ ⊆ P ′ ⊆ Q andP ⊆ Q′ ⊆ P . This implies
P ′ = Q andQ′ = P .

4. Let(P, P) be the least fixed point ofϕ. By 3, we know that(P, P) is also the
greatest fixed point. So,(P, P) is the unique fixed point ofϕ.

On the other hand, if we know that there is a unique fixed point(P,Q), we
know that it is the least and the greatest fixed point. By 3, we know(P,Q) =
(Q,P), i. e.P = Q.

2

Proposition 10 says, thatϕ has two distinguished fixed points, the least and the greatest
fixed point. Fortunately, if we know the least fixed point(P,Q), we know the greatest
fixed point too: the reversed pair(Q, P). In particular, we haveP ⊆ Q. P is the transition
relation with the least transitions in it, andQ is the transition with the most transitions in
its. So we can use the least fixed point for defining the semantics of the EPC.

Definition 11 (Semantics of an EPC)

Let M be an EPC and let(P,Q) be the least fixed point ofϕ (wrt.�).

Then, we callP thepessimistic transition relationof the EPCM , and we callQ
theoptimistic transition relationof the EPCM .

11

Actually, we have defined two semantics. Thepessimistic semanticsP is the one that
stops rather than doing something ‘awkward’; theoptimistic semanticsQ does something
‘awkward’ rather than stopping indeliberately. Both semantics are related such thatP =
R(Q) andQ = R(P) – so one is the input transition relation for the definition of the other.

When the pessimistic and the optimistic semantics coincide, we know that we have an
ideal semanticsP = Q = R(P) = R(Q). These are the EPCs with acleansemantics –
without any ambiguity. Unfortunately, there are EPCs for which the pessimistic and the
optimistic semantics do not coincide. We call these the EPCs with anuncleansemantics.

6 The ideal semantics

Now, we have defined two semantics for an EPC, where the pessimistic semantics is the
one that was intended in [NR02]. As mentioned in the introduction of Sect. 5, we would
like to have an ideal semantics for an EPC, i. e. a transition relationP with P = R(P).
Here, we will show that an ideal semantics does not exist for all EPCs. Figure 3 shows

f1

Start1

Inner1

f’1

Stop1

f3

Inner3

f’3

Stop3

f2

Start2

Inner2

f’2

Stop2

Start3

c1 c2 c3

Figure 3: An EPC with no ideal semantics

an example. We argue indirectly that this EPCs has no ideal semantics: We assume that
there is a transition relationP with P = R(P) for this EPC. Now, we consider the state
where there is a folder on each outgoing arc of the functionsf1, f2, andf3 as shown
in Fig. 3. First, let us assume that according toP , connectorci does not propagate the
folder on its incoming arc. Then, according to the definition ofR(P), the subsequent
connectorc(i+1) mod 3 will propagate the folder inR(P). By P = R(P), we know that,
according toP , connectorc(i+1) mod 3 will propagate the folder. Second, let us assume

12

that, according toP , ci propagates the folder. By the same arguments, we can show that
connectorc(i+1) mod 3 will not propagate the folder according toP . Since we have an odd
number of XOR-join connectors on the cycle, we can argue that ifc1 propagates the folder
according toP , then it does not propagate it and vice versa – a contradiction. So, our
assumption that there is an ideal semanticsP = R(P) must have been wrong.

For some other examples, there are ideal semantics. But, there may be different ideal
semantics, which are symmetric such that one cannot be preferred to the other. For the
example shown in Fig. 1 in Sect. 2, we have two completely symmetric ideal semantics8. In
the first semantics, connectorc1 propagates the folder and connectorc2 does not propagate
it. In the second semantics, connectorc2 propagates the folder andc1 does not propagate
it. Since both semantics are completely symmetric, one is as good as the other, there is no
argument in favour of one of them.

These examples show that, in order to provide a semantics for all EPCs, we need to con-
sider pairs of transition relations, as we did in our definition. Our definition gives a seman-
tics to all (syntactically correct) EPCs – what is more, if the pessimistic and the optimistic
semantics coincide, we have an ideal semantics. These are the EPCs for which the formal
semantics precisely captures the informal semantics, the EPCs with a clean semantics.
On the other hand, EPCs for which the the pessimistic and the optimistic semantics do
not coincide, are problematic, because their formal semantics does not precisely capture
the informal semantics. One benefit of our characterization is that we now have a clear
definition of unclean EPCs.

7 The framework

In the previous sections, we presented a semantics for EPCs. Actually, it is not our inten-
sion to propose this semantics as ‘the semantics’ of EPCs. There are still some aspects
of this semantics that need to be discussed. The main purpose of this paper is to define
a framework for formalizing the semantics of EPCs, which allows us to discuss and to
compare different semantics.

For defining a semantics for EPCs, it is enough to define the functionR(P). The semantics
of each individual noden of an EPC could be changed by changing the definition of
relationRn in Def. 6. As long as the resulting functionR(P) is monotonously decreasing,
the rest of the theory will define a pessimistic and an optimistic semantics in the very
same way. Therefore, we can concentrate on the definition ofR(P) or even onRn when
discussing semantical issues.

The soundness of this framework is captured in the following theorem:

8The argument is the same as in the previous example. But, in this example we have an ideal semantics
because the cycle consists of an even number.

13

Theorem 12 (Semantical Framework)

Let M = (E,F,C, l, A) be an EPC.

1. LetA be some set. Then, we callσ : A → A astateof M . The setΣ denotes
the set of all states. A subsetP ⊆ Σ ×N × Σ is called atransition relation
of M with respect toA.

2. Let R : 2Σ×N×Σ → 2Σ×N×Σ be a monotonously decreasing (with respect
to ⊆) function. We define thedomainD = 2Σ×N×Σ × 2Σ×N×Σ and� on
D as follows: For two elementsd = (P,Q) andd′ = (P ′, Q′), we define
d � d′ if P ⊆ P ′ andQ ⊇ Q′. Moreover, we defineϕ : D → D by
ϕ((P,Q)) = (R(Q), R(P)).

Thenϕ has a least fixed point(P,Q) and a greatest fixed point(P,Q) (with respect
to�).

Proof: The proof follows exactly the lines of the proofs of Lemma 9 and Prop. 10.
2

In essence, for defining a semantics for EPCs, we first define some setA, which represents
the folders that are assigned to an arc of the EPC. In our example,A was the set{0, 1};
another reasonable choice would be the natural numbers9, when we would like to have
more than one folder on each arc.

Second, we need to define a transition relationR(P) (on the states derived from the set
A), which in fact defines a function from a transition relation to a transition relation. The
only requirement is that this function is monotonously decreasing. Then,R(P) defines the
functionϕ, which according to the above theorem has a least fixed point. The least fixed
point (P,Q) of this function defines the the pessimistic semantics of the EPCsP and the
optimistic semanticsQ.

8 Conclusion

In this paper, we have proposed a semantics for EPCs, which is mathematically sound. We
have argued that this semantics is as close to the informal semantics of [NR02] as can be.
Nevertheless, we do not claim that this should be ‘the semantics’ of EPCs10.

The main contribution of this paper is a sound mathematical theory for defining all kinds
of non-local semantics for EPCs. A new semantics can be defined by giving a definition
of R(P); when R(P) is monotonously decreasing, the semantics comes for free. For
discussing different versions of semantics, we can concentrate on this definition. What is

9We did not chose natural numbers in our paper, because this introduces many choices in the definition of
R(P), which need careful investigation and is beyond the scope of this paper.

10The author is not yet convinced that EPCs should have a non-local semantics because of the ambiguities
arising in some EPCs. In order to provide a sound foundation for a discussion of different semantics, however,
he saw the need to provide a mathematical theory for defining non-local semantics in a uniform way.

14

more, for any semantics defined in this framework, the framework clearly identifies clean
and unclean EPCs, where unclean EPCs are those that do not precisely meet the intended
informal semantics. We hope that this framework helps to discuss different semantics and,
ultimately, define ‘the semantics’ of EPCs.

Once ‘the semantics’ has been defined, the framework can be used for proving necessary
and sufficient syntactical conditions characterizing unclean EPCs and to develop efficient
algorithms for calculating the pessimistic and optimistic semantic for EPCs – whichever
seems to be the more appropriate one. Of course, there are some obviously sufficient
syntactical conditions for clean EPCs. For example, if no cycle of control flow of an
EPCs has an XOR-join and OR-join connectors on it, the EPC has a clean semantics. But,
stronger conditions are more difficult to find and strongly depend on the exact definition
of R(P). Likewise, fixed point approximation immediately gives us an algorithm for
calculating the semantics of an EPC. Efficient algorithms, however, strongly depend on
the exact definition ofR(P). Therefore, we need to define the ‘the semantics’ of EPCs
first. Then we can start working on efficient simulation algorithms and efficient syntactical
conditions for EPCs with a clean semantics.

Acknowledgements I would like to thank Markus Nüttgens and Frank Rump for many dicus-
sions on the semantics of EPCs, which inspired me to provide a sound definition of a non-local
semantics for EPCs. In particular, the arguments with Markus Nüttgens encouraged me not to stop
with an impossibility result. Moreover, I would like to thank Wil van der Aalst and Björn Axenath
for comments on earlier versions of this paper, which helped to improve the presentation of the ideas.

References

[KNS92] G. Keller, M. Nüttgens, and A.-W. Scheer. Semantische Prozessmodellierung auf der
Grundlage Ereignisgesteuerter Prozessketten (EPK). Veröffentlichungen des Instituts
für Wirtschaftsinformatik (IWi), Heft 89, Universität des Saarlandes, January 1992.

[LA94] F. Leymann and W. Altenhuber. Managing business processes as an information re-
source.IBM Systems Journal, 33(2):326–348, 1994.

[LSW98] P. Langner, C. Schneider, and J. Wehler. Petri Net Based Certification of Event driven
Process Chains. In J. Desel and M. Silva, editors,Application and Theory of Petri Nets
1998, LNCS1420, 286–305. Springer, 1998.

[NR02] Markus Nüttgens and Frank J. Rump. Syntax und Semantik Ereignisgesteuerter
Prozessketten (EPK). InPROMISE 2002, Prozessorientierte Methoden und Werkzeuge
fürr die Entwicklung von Informationssystemen, GI Lecture Notes in InformaticsP-21,
64–77. Gesellschaft für Informatik, 2002.

[Rit00] Peter Rittgen. Quo vadis EPK in ARIS?Wirtschaftsinformatik, 42:27–35, 2000.
[Rum99] Frank J. Rump. Geschäftsprozeßmanagement auf der Basis ereignisgesteuerter

Prozeßketten. Teubner-Reihe Wirtschaftsinformatik. B.G.Teubner, 1999.
[vdADK02] Wil van der Aalst, Jörg Desel, and Ekkart Kindler. On the semantics of EPCs: A

vicious circle. In M. Nüttgens and F. J. Rump, editors,EPK 2002, Geschäftsprozess-
management mit Ereignisgesteuerten Prozessketten, 71–79, November 2002.

[vdAtH02] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow Lan-
guage. Technical Report QUT Technical report, FIT-TR-2002-06, Queensland Univer-
sity of Technology, Brisbane, 2002.

15

