
PDA DEVELOPERS 4.4 • July/August 1996 55

I

WorldTime: A Pilot World Clock

Steve Mann
sem@cdpubs.com

t started out as a simple idea – create a straightforward Palm Pilot
application to demonstrate some of the basics of building, testing,
and deploying Pilot software. But it quickly got out of hand. I didn’t

mean for this to happen, it just did. What follows is the sordid story.
For some helpful background information, you may want to read

“Pilot Programming Primer” in the May/June issue of PDA Developers
for some useful background information. It's available in text format,
without graphics, at http://www.cdpubs.com.

World Time, Take One

I constantly rely on a PDA to calculate dates and times in foreign coun-
tries so that when I place an overseas telephone call, I know I’m not
waking someone up in the middle of the night or disturbing them on a
weekend. Unfortunately, the Pilot doesn’t have a world time calculator.
If I’m going to carry a Pilot with me and actually use it, I need at least a
basic time zone application. It seemed like a simple first-time program.

My first design was much like the time zone calculators on most
other PDAs – there’s a world map and a home location. You select a
point on the map by tapping on it, and the program tells you the date
and time of that location. The immediate problem with this traditional
implementation is that the Pilot doesn’t really have a home location that
it saves. It just stores a date and time. To deal with that issue, I decided
that the user could enter two locations. The program would assume that
the first is their current location, whether it’s home or not, and assign it
the current date and time from the device. The second location would
be the location the user was interested in knowing about.

The first job was to find some time zone data. After scouring Com-
puServe, I found a world map with reasonably clearly marked time
zones and about 100 cities. This data seemed like a good starting point.
There were a few strange markings like “+30” in a few spots, but being

naive about time zones, I didn’t worry about those. I downloaded the
map as a GIF file and set it aside.

The Interface

Figure 1 shows my first interface design. The user is supposed to tap on
one of the location fields to indicate which location they want to
change, and then tap on the world map. The program finds the city
nearest the tap point and displays the date and time for that location. If
the primary location (the one on top) is selected, the date and time are
set to the Pilot’s date and time. If the secondary location is selected, and
the primary location is already identified, the program calculates the
date and time of the secondary location using it’s knowledge of the time
zone difference between the two locations.

The Resources

The interface uses a simple set of resources:

• A “tFRM” form that has a list of all the other interface elements
except the world bitmap;

• A “tFBM” form bitmap resource, which points to the map;
• The world map “PICT” graphic, which was created from the times

zones map I downloaded from CompuServe;
• A “tTTL” form title resource; and
• A set of fields and labels (“tFLD” and “tLBL” resources) for the data-

entry area at the screen’s bottom.

Source Code

Here’s the source code for my first pass at World Time. Note that this is
not finished code. For reasons I explain shortly, this first prototype was
never finished. I’m including it here for instructional purposes only.
(That’s another way of saying this code isn’t very good, doesn’t work
very well, and shouldn’t be taken very seriously).

/************************************
 * Pilot World Time Application - take one
 * File - WorldTime.c
 ***********************************/
#include <Pilot.h> // system toolbox headers
#include "WrldTimeRsc.h" // application resource defines
#include "WrldTime.h" // application constants, etc.
#include <math.h> // temp include for square root

/************************************
 * Global defines for this module
 ***********************************/
#define WrldTimeAppType 'WTim' // application type
#define WrldTimeDBType 'Data' // app database type
#define WrldTimeDBName "WrldTimeDB" // database name

struct cityinfo {
unsigned char zone, Xloc, Yloc;
char name[22]; };

struct cityinfo cityrec;

/************************************
 * Global variables for this module
 ***********************************/
static MenuBarPtr CurrentMenu = NULL;
static Word CurrentView;
static DmOpenRef WrldTimeDB;
static Word CurrentRecord;
static VoidPtr CityDataPtr;
static short CityCount = 0;
static VoidHand WrldTimeRec;
static FieldPtr CurrentFld;

/************************************
 * Prototypes for internal functions
 ***********************************/Figure 1 - The original World Time.

56 PDA Developers 4.4 • July/August 1996

static void StartApplication(void);
static Boolean EditFormHandleEvent(EventPtr event);
static Boolean MainFormHandleEvent(EventPtr event);
static Boolean ApplicationHandleEvent (EventPtr event);
static void EventLoop(void);
static void CreateRecord (short zone, short Xloc,

short Yloc, char * name);
static void MarkMapLocation (int Xloc, int Yloc);
static void DisplayLocation (int Xloc, int Yloc);
static void GetCityName (short Xloc, short Yloc);

/************************************
 * CreateRecord
 * create a database record
 ************************************/
static void CreateRecord (short zone, short Xloc,

short Yloc, char * name) {
UInt index;

/* load the zone and coordinate information */

cityrec.zone = zone;
cityrec.Xloc = Xloc;
cityrec.Yloc = Yloc;
StrCopy (cityrec.name, name);

/* create the new record and write it out */

index = DmNumRecords (WrldTimeDB);
WrldTimeRec = DmNewRecord (WrldTimeDB,

&index, StrLen (cityrec.name) + 4);
CityDataPtr = MemHandleLock (WrldTimeRec);
DmWrite (CityDataPtr, 0, &cityrec,

strlen(cityrec.name) + 4);
MemHandleUnlock (WrldTimeRec);
DmReleaseRecord (WrldTimeDB, index, true);

}

/************************************
 * StartApplication
 ************************************/
static void StartApplication(void) {

Word error;
UInt mode;

/* open the cities database if it's there */

mode = dmModeReadWrite;
WrldTimeDB = DmOpenDatabaseByTypeCreator(

WrldTimeDBType, WrldTimeAppType, mode);

/* if not, create it */

if (! WrldTimeDB) {
error = DmCreateDatabase(0, WrldTimeDBName,

WrldTimeAppType, WrldTimeDBType, false);
ErrFatalDisplayIf(error,"Couldn't create new DBMS.");

WrldTimeDB = DmOpenDatabaseByTypeCreator(
WrldTimeDBType, WrldTimeAppType, mode);

/* create and load a test subset of the location data */

CreateRecord (4,24,23,"San Francisco");
CreateRecord (5,29,22,"Denver");
CreateRecord (6,33,27,"Dallas");
CreateRecord (6,39,21,"Chicago");
CreateRecord (7,45,21,"New York");

}

/* init DB rec count and start main form processing */

CityCount = DmNumRecords (WrldTimeDB);
CurrentView = mainForm;
FrmGotoForm(CurrentView);

}

/************************************
 * GetCityName
 * find out which city is closest to the
 * user's pen tap location.
 ************************************/
static void GetCityName (short Xloc, short Yloc) {

Int winner, WinDist = 999, CurrentDist = 0;
Int Xdist, Ydist, DBindex, WinX = 0;

/* loop thru database looking for the closest city */

for (DBindex = 0; DBindex < CityCount; DBindex++) {

WrldTimeRec = DmQueryRecord (WrldTimeDB, DBindex);
if (WrldTimeRec != NULL) {

/* get data for next record */

CityDataPtr = MemHandleLock (WrldTimeRec);
StrCopy ((char *) &cityrec, CityDataPtr);
MemHandleUnlock (WrldTimeRec);

/* compute the distance from the pen tap */

Xdist = cityrec.Xloc - Xloc;
Ydist = cityrec.Yloc - Yloc + MapVStart;
CurrentDist = sqrtf ((Xdist*Xdist)+(Ydist*Ydist));

/* save new values if it's closer to this city */

if (CurrentDist < WinDist) {
winner = DBindex; WinDist = CurrentDist;

} } }

/* retrieve the winner for displaying the name */

WrldTimeRec = DmQueryRecord (WrldTimeDB, winner);
CityDataPtr = MemHandleLock (WrldTimeRec);
StrCopy ((char *) &cityrec, CityDataPtr);
MemHandleUnlock (WrldTimeRec);

}

/************************************
 * DisplayLocation
 * display the closest city's name in the
 * currently selected location field.
 ************************************/
static void DisplayLocation (int Xloc, int Yloc) {

VoidHand NameHand;
VoidPtr NamePtr;

/* check for fld's text handle. if not there, make one */

NameHand = FldGetTextHandle (CurrentFld);
if (NameHand == NULL)

NameHand = MemHandleNew (22);

/* put the new city name's text in the field */

GetCityName (Xloc, Yloc);
NamePtr = MemHandleLock (NameHand);

PDA DEVELOPERS 4.4 • July/August 1996 57

NamePtr = StrCopy (NamePtr, cityrec.name);
FldSetText (CurrentFld, NameHand, 0, 22);
MemHandleUnlock (NameHand);

/* Draw the new value and disable the insertion point */

FldDrawField (CurrentFld);
InsPtEnable (false);

}

/************************************
 * MarkMapLocation
 * draw an asterisk at the location the user just
 * tapped, wait for a bit, and then unmark it.
 ************************************/
static void MarkMapLocation (int Xloc, int Yloc) {

float j;
int i;
WordPtr error;
CharPtr Asterisk = "*";
WinHandle SaveRegion;
RectanglePtr source;

/* preserve the bitmap around the location to mark */

source->topLeft.x = Xloc - 10;
source->topLeft.y = Yloc - 10;
source->extent.x = Xloc + 10;
source->extent.y = Yloc + 10;
SaveRegion = WinSaveBits (source, error);

/* draw an asterisk at the mark point. wait. */

WinDrawChars (Asterisk, 1,Xloc, Yloc);
for (i = 1; i < 20000; ++i) {j = i * I;};

/* restore the original bitmap */

WinRestoreBits (SaveRegion, Xloc - 10, Yloc - 10);
}

/************************************
 * MainFormHandleEvent
 ************************************/
static Boolean MainFormHandleEvent(EventPtr event) {

Boolean handled = false;

switch (event->eType) {

/* check for a form open event */

case frmOpenEvent:
FrmDrawForm (FrmGetActiveForm());
handled = true;
break;

/* check for a pen tap within the world map */

case penDownEvent:
if ((event->screenY >= MapVStart) && (

event->screenY <= MapVStop)) {
MarkMapLocation (event->screenX, event->screenY);
handled = true;
if (CurrentFld != NULL)

DisplayLocation(event->screenX,event->screenY);
}
break;

} return(handled);
}

/************************************
 * ApplicationHandleEvent
 ************************************/
static Boolean ApplicationHandleEvent (EventPtr event)
{

FormPtr frm;
Word formId;
Boolean handled = false;

switch (event->eType) {

/* check for a form load event */

case frmLoadEvent:
formId = event->data.frmLoad.formID;
frm = FrmInitForm(formId);
FrmSetActiveForm(frm);
FrmSetEventHandler(frm, MainFormHandleEvent);
handled = true;
break;

/* check for a field - switch the current field */

case fldEnterEvent:
CurrentFld = event->data.fldEnter.pField;
handled = true;
break;

}
return handled;

}

/************************************
 * EventLoop
 ************************************/
static void EventLoop(void) {

EventType event;
Word error;

do {
EvtGetEvent(&event, evtWaitForever);
if (! SysHandleEvent(&event))

if (! MenuHandleEvent(CurrentMenu, &event, &error))
if (! ApplicationHandleEvent(&event))

FrmDispatchEvent(&event);
}
while (event.eType != appStopEvent);

}

/************************************
 * PilotMain
 ************************************/
DWord PilotMain(Word cmd, Ptr cmdPBP, Word launchFlags) {

StartApplication();
EventLoop();
DmCloseDatabase (WrldTimeDB);
return 0;

}

This example uses a database which gets initialized in the Start -
Application routine with a small subset of the final data. Each
record contains a city name, a time zone, and X and Y coordinates for
that city. I got the coordinates by clicking in a graphics program on map
locations on the original, large-scale map I downloaded from Compu-
Serve, and then manually mapping the coordinates into the 160 x 120
coordinate space of the Pilot map graphic. If I had ended up using this
application interface, I would have eventually included the coordinate
mapping as part of the application start-up code.

58 PDA Developers 4.4 • July/August 1996

Once the data is all set up, the user proceeds as I described earlier.
When they tap on the world map, the penDownEvent is intercepted
in MainFormHandleEvent . The program marks the map at the
tap location. Then, if a field has been selected by the user, the program
determines the closest city name and displays it in the current field. The
distance to each city is determined by calculating the hypotenuse of the
triangle formed by the city location and the tap location, and the hori-
zontal and vertical axes.

Pros and Cons

Once I actually got this code running, it became immediately obvious
the user interface doesn’t work for one basic reason – the screen is too
small and the resolution is not fine enough. As a result, a pen tap
doesn’t let you get close to a target location with any accuracy, especially
in the Pilot simulator where you use a mouse instead of a pen. If you
tap in the Rocky Mountains, for instance, you’re equally likely to get
Denver, Dallas, San Francisco, or Los Angeles. Also, if your pen calibra-
tion is not perfect, which is likely, then the accuracy is worse.

There are two other reasons to consider alternate implementations:

• The triangulation algorithm uses a square root function and
floating point numbers, which are not available as part of the Pilot
ROM-based libraries. In a case like that, the linker takes floating
point functions from the standard desktop libraries. Not only might
they be error-prone on the Pilot, but they could use substantial
amounts of memory.

• There’s a basic problem with handling the location data. In order to
use a database, there should really be a separate program that just
creates the database. Otherwise, with the static allocation approach I
use, the data is both embedded in the program and the Pilot’s
dynamic data store, using twice as much memory it needs. The
database functions are useful for searching and if you want to let the
user add their own locations (something I was considering). Having
two programs for a simple function like calculating world time
zones strikes me as very awkward.

The only interesting part of this sample is the database code. I was
surprised at how easy it was to set create, load, and search a database. I
didn’t test this code on an actual Pilot device, only with the simulator, so
I don’t know how well it actually works in real life (more about that
later).

Lessons Learned

With all that in mind, I decided on a new approach. First, the next
revision would be based on a scrolling text list of locations instead of a
world map. The Pilot has two list-like structures: lists and tables. At first
glance, tables have a fairly complex API, so I decided to use lists instead.

Second, I decided to use static data storage instead of a database. I
could easily search through string arrays and look up locations – I
didn’t need the Pilot’s database routines just for that. Also, I could avoid
having two programs (one for initialization and one for daily use) or
double data storage in one program. The only restriction with static
storage is that I can’t easily set up the application to let users enter their
own locations without a database. The logical decision is to make sure
that I have a very comprehensive set of locations, of all types, so that no
one ever needs to add any new sites. (As it turns out, everyone wants
more locations).

World Time, Take Two

I started off phase two of this project looking for more complete time
zone data. After scouring CompuServe and trying to search the web (for
you Mac users, Open Transport 1.1 isn’t all it’s cracked up to be), I
resigned myself to some old-fashioned research – I went to the library.
There, in a matter of minutes, I found a fairly complete reference to
world times zones.

Unfortunately, that complete reference included lots of details. It
turns out that:

• Every country, and certain time zones and locations within
countries have different starting and ending dates for daylight
savings time.

• The northern and southern hemispheres have daylight savings time
during the summer and the winter respectively.

• There are certain countries that have their time set forward a
fraction of an hour from the rest of the world (that explained the
“+30” markings I found on the original maps).

Armed with this knowledge, I made some simplifying assumptions.
First, I decided to set daylight savings time in the northern hemisphere
to run from May 1 through September 30 for all countries, and October
1 through April 30 for all southern-hemisphere countries. These dates
are close to the actual dates used by all countries that indulge in daylight
savings time. This simplification saves storing at least four bytes of extra
data per location, saving at least 2K, and guarantees that the calculated
times are inaccurate by no more than one hour for just a few days close
to the transition dates.

I also decided that I would only use countries, not cities, for loca-
tions. I later changed my mind and added in the 50 or so original cities I
had collected.

Finally, I also rounded off all offsets for countries whose normal
times don’t fall on an even number of hours from Greenwich Mean
Time to 30-minute offsets. This only applies to Nepal and Guyana. Both
are 45 minutes ahead of other countries in their time zones.

The Interface

Figure 2 shows the interface for World Time, take two. It’s a simple
scrolling list. Once you set up the list for the Pilot ROM routines, scroll-
ing, item selection, and most of the other boring housekeeping details
are taken care of for you. After using the scrolling list of the program for
a few hours, I decided to add some additional navigation aids: if you
enter a letter in the Graffiti pad, the list scrolls to the first item starting
with that letter. Also, I enabled the scroll buttons so that they work just
like the scroll arrows.

Figure 2 - World Time with a scrolling list.

PDA DEVELOPERS 4.4 • July/August 1996 59

Figure 3 shows what happens when you tap an item in the list – the
location is treated as the home location, and is assigned the current date
and time as set by the user with the Pilot’s Prefs program. The date and
time for all the other locations are then calculated relative to the home
location. Daylight savings time is also factored in. Those locations
currently operating under daylight savings time are highlighted with an
asterisk. As the user scrolls through the list, using the Graffiti pad or the
scroll arrows or buttons, the home location stays the same until they tap
another list item.

The Locations Data

The data about each of the locations is stored in a separate source code
file that is included in the main World Time program. Here’s its struc-
ture:

struct LocInfo {
char name[18];
short zone;
short DST;
} LocationInfo [248] = {

"Afghanistan ",46,0,
"Albania ",13,6,

.

.

.
"Zambia",14,0,
"Zimbabwe",14,0,
"Zurich",13,60};

Each location includes its name, a time zone indicator ranging from 1 -
54, and a daylight savings time indicator. The time zone indicator is
normally a value between 1 and 24, but if a location is shifted ahead 30
minutes, the difference is added to the time zone. For instance, most of

India is 30 minutes ahead of the other countries in its time zone. Conse-
quently, all locations in India have a time zone of 47. World Time inter-
prets this value as time zone 17 plus 30 minutes.

Likewise, the daylight savings time value has some embedded cod-
ing. A zero value indicates that the location never uses daylight savings
time. A value of 60 (indicating a 60 minute shift) indicates locations
that run under daylight savings from May through September. A value
of -60 indicates locations that run under daylight savings between
October and April.

For data fetching reasons on the Pilot, with the data structure I use,
each character string must be padded out to an even number of charac-
ters. That’s why there’s a blank at the end of “Albania ” but not “Zambia”.

The List Structure

One of the most important parts of World Time is the list-handling
code. Lists are interesting resources. You start off by specifying the list
parameters – the location, the font, and the number of visible items (the
list height) – using a “tLST” resource. You then point to the list resource
from a “tFRM” resource, your primary container view for the list. You
initialize the list, set up an optional callback function for drawing a
single line of the list on the screen, and then the Pilot OS takes care of
the basic list handling. Every time the list is updated, the callback func-
tion is called to draw individual lines.

To initialize a list you need to create an array of pointers to the list’s
strings (see Figure 4). Fortunately, there’s a Pilot ROM routine to set up
this structure from a packed list of null-terminated strings

Here’s the code for setting up the list, plus the World Time’s main
routine and an initialization function. I leave out all the declarations,
include files, and other miscellany. For the full details, you should look
at the complete project on the source code disk for this issue of PDA
Developers:

Figure 3 - World Time in action.

Choices Array

"This is record one"

"This is record two"

"This is record three"

"This is record four"

0

1

2

3

Figure 4 - A List data structure.

60 PDA Developers 4.4 • July/August 1996

/************************************
* MainFormInit
* create the locations list string array
 ************************************/
static void MainFormInit (void)
{

CharPtr errmsg;
Int choicesOffset = 0, half;

/* get a pointer to the list resource */

frm = FrmGetActiveForm ();
itemIndex = FrmGetObjectIndex (frm, LocationsList);
lst = FrmGetObjectPtr (frm, itemIndex);

/* allocate dynamic memory variables */

MemAllocate ();

/* add the location names to the list setup string*/

for (itemIndex=0;itemIndex<numLocations;itemIndex++) {
textLen = StrLen (LocationInfo [itemIndex].name);

/* error check for odd-length string */

#if EMULATION_LEVEL == EMULATION_MAC
half = textLen / 2;
if ((half * 2) != textLen) {

errmsg = StrCat ("Odd-length string - ",
LocationInfo [itemIndex].name);

ErrFatalDisplayIf (1, errmsg);
}

#endif

/* add new location to choices list, NULL terminated */

error = MemPtrResize (
choicesPtr, textLen + 1 + choicesOffset);

ErrFatalDisplayIf (error,
"Couldn't grow locations list.");

for (i = 0; i < textLen; i++)
choicesPtr [choicesOffset + i] =

LocationInfo [itemIndex].name [i];
choicesOffset += textLen;
choicesPtr [choicesOffset++] = 0;

}

/* list complete - convert it to a list data structure
and set the list drawing function callback */

choicesPtrsHandle = SysFormPointerArrayToStrings
(choicesPtr, numLocations);

LstSetListChoices (lst,
MemHandleLock (choicesPtrsHandle), numLocations);

LstSetDrawFunction (lst, DrawListLine);
}

/************************************
 * MemAllocate and MemFree
 * Routines to handle most dynamic memory globals.
 ************************************/
static void MemAllocate (void){

strHandle = MemHandleNew (10);
strPtr = MemHandleLock (strHandle);
choicesHandle = MemHandleNew (sizeof (char));
choicesPtr = MemHandleLock (choicesHandle);
*choicesPtr = 0;

}

static void MemFree () {
error = MemHandleFree (strHandle);
error = MemHandleFree (choicesHandle);
error = MemHandleFree (choicesPtrsHandle);

}

/************************************
 * MainFormHandleEvent
 * handle events for the main (and only) form.
 ************************************/
static Boolean MainFormHandleEvent(EventPtr event) {

Boolean handled = false;
char key;
FormPtr tempfrm;

/* form open - initialize the list */

switch (event->eType) {
case frmOpenEvent:

MainFormInit ();
FrmDrawForm (frm);
handled = true;
break;

/* a list item has been tapped - set current location */

case lstSelectEvent:
SetHereZone ();
handled = true;
break;

/* keystroke - move to matching location if alphabetic */

case keyDownEvent:
key = event->data.keyDown.chr;
handled = ProcessKeystroke (key);
break;

/* menu event - show the About box */

case menuEvent:
MenuEraseStatus (currentMenu);
FrmEraseForm (frm);
tempfrm = FrmInitForm(AboutForm);
FrmDoDialog (tempfrm);
FrmDeleteForm (tempfrm);
FrmDrawForm (frm);
handled = true;

}
return (handled);

}

/************************************
 * ApplicationHandleEvent
 * handle application events.
 ************************************/
static Boolean ApplicationHandleEvent (EventPtr event) {

Word formId;
Boolean handled = false;

/* check for a form load event */

if (event->eType == frmLoadEvent) {
formId = event->data.frmLoad.formID;
frm = FrmInitForm (formId);
FrmSetActiveForm (frm);

PDA DEVELOPERS 4.4 • July/August 1996 61

/* if so, load the appropriate form event handler */

switch (formId){
case mainForm:

FrmSetEventHandler (frm, MainFormHandleEvent);
break;

}
handled = true;

}
return handled;

}

/************************************
 * EventLoop
 * handle program events.
 ************************************/
static void EventLoop(void)
{

EventType event;

do {
EvtGetEvent (&event, evtWaitForever);
if (! SysHandleEvent (&event))

if (!MenuHandleEvent (currentMenu, &event, &error))
if (! ApplicationHandleEvent (&event))

FrmDispatchEvent (&event);
}
while (event.eType != appStopEvent);

}

/************************************
 * PilotMain
 ************************************/
DWord PilotMain(Word cmd, Ptr cmdPBP, Word launchFlags) {

if (cmd == sysAppLaunchCmdNormalLaunch) {
FrmGotoForm (mainForm);
currentMenu = MenuInit (mainMenu);
EventLoop ();
MemFree ();

}
return (0);

}

If you read the “Pilot Programming Primer” article I referenced
earlier, you should recognize a lot of this code. PilotMain ,
EventLoop , ApplicationHandleEvent , and MainForm -
HandleEvent are very similar to routines with the same name in the
Hello World program in that article. PilotMain controls the appli-
cation flow at a very high level. EventLoop is a generic event-
handling loop that is found in an almost identical format in all Pilot
programs. ApplicationHandleEvent loads the main form and
sets its handler (if there are multiple forms their handlers are all set
here). And finally, MainFormHandleEvent intercepts keystrokes,
pen taps, and menu events for the main form.

The list initialization is done in MainFormInit , which is called
when a frmOpenEvent event is intercepted for the main (and only)
form. First, the list dynamic memory variables are allocated. Then the
routine loops through the list of locations, adding each one to the
packed names list, resizing the packed list for each new addition. Finally,
once the packed list is built, the program calls SysFormPointer -
ArrayToStrings to create the pointers list, LstSetList -
Choices to initialize the pointer to the list in the list data structure,
and LstSetDrawFunction to initialize the callback function for
drawing each list line.

The code surrounded by

#if EMULATION_LEVEL == EMULATION_MAC
#endif

is designed to catch any odd-length location names that make it
through the source code editing process. It generates an exception, only
while running under the Pilot simulator, and is not compiled for the
final device upload. More about this later.

Setting the Primary Location

When the program first starts, the display shown in Figure 2 appears.
Once the user selects a primary location, the list shown in Figure 3
appears. Both of these displays are created by the list drawing callback
routine.

Here’s the function that sets the home location. It’s called from
MainFormHandleEvent in response to a lstSelectEvent
which indicates that the user has tapped a list item:

/************************************
 * SetHereZone
 * there's been a pen tap on the list.
 * set the primary time zone to that location.
 * all subsequent times/dates are calculated
 * relative to that location.
 ************************************/
static void SetHereZone (void) {

currentRecord = LstGetSelection (lst);
hereZone = LocationInfo [currentRecord].zone;
hereTime = TimGetSeconds ();

/* convert the current time to discrete values and
determine DST period. */

TimSecondsToDateTime (hereTime, &dateTime);
DSTseason = spring;
if ((dateTime.month >=10) || (dateTime.month <= 3))

DSTseason = fall;
hereDST = LocationInfo [currentRecord].DST;

/* check for a partial hour adjustment */

if (hereZone > 24) {
hereZone = hereZone - 30;
hereTime = hereTime - 1800;

}

/* force a redraw of the list to update all the other
locations */

LstEraseList (lst);
LstSetSelection (lst, currentRecord);
LstDrawList (lst);

}

The primary location is called the Here zone. All other zones, as
calculated in the list callback function, are There zones. Setting the Here
zone is straightforward. First, SetHereZone gets the tapped list
location and the current date and time, which are converted to an
appropriate data type. Then the routine determines the daylight savings
status of the new primary location, and checks for any partial hour
adjustment. Finally, it erases the current list, sets the list selection to the
new primary location, and redraws the list. LstDrawList sets in
motion a drawing callback for every list item that is now visible.

62 PDA Developers 4.4 • July/August 1996

Drawing Each Line

The callback function is responsible for drawing each line of the list
display. Although this happens in response to setting a new primary
location, scrolling and entering a letter using the Graffiti pad also cause
the list view to change. All list-change events eventually call the drawing
callback routine.

My first callback routine merely concatenated the calculated date
and time for each line onto the location name and displayed the result.
The first time I got that code running, it became clear that approach
wouldn’t work – Pilot fonts are all proportionally spaced, making it
impossible to get the date and time columns to line up vertically. In-
stead, I switched to drawing characters directly on the screen at specific
horizontal locations. The vertical locations are calculated by determin-
ing the distance of the current line from the list’s first visible line, multi-
plying it by the height of the current font, and adding an offset to com-
pensate for the start of the list from the top of the device display. To
simplify matters, the Pilot coordinate drawing system is all relative to
the top left-hand corner of the screen. There aren’t separate coordinate
systems for each view.

Here’s the routine to draw a string at a specific screen location:

/************************************
 * DrawListChars
 * draw a character string at the current list location.
************************************/
static void DrawListChars (CharPtr string, int location,

short Xloc) {

Yloc = location - lst->topItem;
Yloc = (Yloc * fontHeight) + lstTop;
textLen = StrLen (string);
WinDrawChars (string, textLen, Xloc, Yloc);

}

DrawListLine , the callback procedure, uses DrawList -
Chars to draw all the components of each list item. DSTAdjust
handles the various daylight savings time adjustments that need to be
made.

/************************************
 * DrawListLine
 * draw one full line for the current list item. if a
 * current time zone is selected,include the date
 * and time, relative to the selected zone.
 ************************************/

static void DrawListLine (Word location,
RectanglePtr bounds, CharPtr *itemsText) {

short ThereZone;
short ZoneDiff, AbsZoneDiff;
ULong ThereTime, adjust;

/* draw the current city name, no more if virgin list */

fontHeight = FntLineHeight ();
DrawListChars (LocationInfo[location].name,location,3);
if (currentRecord < 0) return;

/* current time zone is active. Draw time & date too */

ThereZone = LocationInfo [location].zone;
currentDST = LocationInfo [location].DST;
if (ThereZone > 24) ThereZone = ThereZone - 30;
ZoneDiff = ThereZone - hereZone;
AbsZoneDiff = ZoneDiff;

/* get absolute value the old-fashioned way */
/* to avoid linking in a C desktop C library */

if (ZoneDiff < 0) AbsZoneDiff = - ZoneDiff;
adjust = 0;

/* adjust time using addition - bug in multiplication */

for (i = 0; i < AbsZoneDiff; i++)
adjust = adjust + hoursInSeconds;

/* check for 30-minute adjustment (zone > 24) */

if (LocationInfo [location].zone > 24)
adjust = adjust + hoursInSeconds/2;

if (ZoneDiff > 0)
ThereTime = hereTime + adjust;

else
ThereTime = hereTime - adjust;

// adjust for daylight savings time for all
// locations except Home */

if (currentRecord != location)
ThereTime = DSTAdjust (ThereTime, location);

/* convert time/date to a useful format */

TimSecondsToDateTime (ThereTime, &dateTime);

// get date string & zero-fill on the left if needed

TimeToAscii (dateTime.hour, dateTime.minute,
tfColon24h, strPtr);

if (StrLen (strPtr) == 4) {
for (i = 5; i >= 1 ; i—)

strPtr [i] = strPtr [i - 1];
strPtr [0] = blankChar;

}

/* draw DST indicator and the current time */

if ((currentDST == hereDST) && (hereDST != 0))
DrawListChars ("*", location, DSTLoc);

if ((hereDST == noDST) && (currentDST != noDST))
DrawListChars ("*", location, DSTLoc);

DrawListChars (strPtr, location, timeLoc);

/* get current date and draw it too */

DateToAscii (dateTime.month, dateTime.day,
dateTime.year, dfMDYWithSlashes, strPtr);

DrawListChars (strPtr, location, dateLoc);
}

/************************************
 * DSTAdjust - adjust for daylight savings time.
 * simplified DST adjustment. assume that May - Sept and
 * Oct - March are the two DST periods.
 ************************************/
static ULong DSTAdjust (ULong Time, Word location) {

// if primary zone is same DST setting as the
// current location, do nothing

if (hereDST == currentDST) return (Time);

/* if primary zone has no DST, bump everyone in the
active DST season up 1 hour */

PDA DEVELOPERS 4.4 • July/August 1996 63

if (hereDST == noDST)
if (currentDST == DSTseason)

return (Time + hoursInSeconds);

// if primary zone is the active DST, bump everyone back
// 1 hour except those with the same DST season

if (hereDST == DSTseason)
if (currentDST != DSTseason)

return (Time - hoursInSeconds);

// if primary zone has DST but it's wrong season, bump
// opposite DST season up in fall, back in spring

if ((hereDST == spring) && (currentDST == fall))
if (currentDST == fall)

return (Time + hoursInSeconds);
if ((hereDST == fall) && (currentDST == spring))

if (currentDST == spring)
return (Time - hoursInSeconds);

return (Time);
}

Navigation

The last bit of code of any consequence is the keystroke and scroll-
button processing. It’s handled by ProcessKeystroke , which is
called from the main form event handler when there’s a keystroke:

/************************************
 * ProcessKeystroke
 * check for an alphabetic keystroke. if so,
 * set the list to point to the first matching item.
 ************************************/
static Boolean ProcessKeystroke (char key) {

Boolean handled = false;

if (key != NULL) {

/* map lower case into upper case */

if (key >= lowerA && key <= lowerZ)
key = key - lowerUpperDiff;

/* search location array for match & set list pointer */

if (key >= upperA && key <= upperZ) {
for (i = 0; LocationInfo [i].name [0] < key; i++);
LstEraseList (lst);
LstSetTopItem (lst, i);
LstDrawList (lst);
handled = true;

}

/* check for scroll up button */

if (key == scrollUp) {
i = lst->topItem;
i = i - visibleItems;
if (i < 0) i = 0;
LstEraseList (lst);
LstMakeItemVisible (lst, i);
LstDrawList (lst);
handled = true;

}

/* check for scroll down button */

if (key == scrollDown) {
i = lst->topItem;
i = i + visibleItems;
if (i > (numLocations - 1)) i = numLocations - 1;
LstEraseList (lst);
LstMakeItemVisible (lst, i);
LstDrawList (lst);
handled = true;

} }
return (handled);

}

Graffiti keystrokes arrive as characters. This function merely maps
them into the uppercase alphabet, finds the appropriate list item (if it’s
an alphabetic key), and repositions the list at the new location. Note the
simple code for repositioning the list. It gives you an idea of how easy it
is to use a Pilot list:

LstEraseList (lst);
LstSetTopItem (lst, i);
LstDrawList (lst);

The list is also redrawn in response to the scroll buttons. The only
difference is that the function has to figure out the new list top before
setting it.

The About Box

Most of the Pilot built-in applications have an About box that is dis-
played when the user selects the About command on the Options
menu. I decided to add an About Box to World Time. You’ve already
seen the code; it’s in MainFormHandleEvent in the switch
statement:

Figure 4 - World Time’s About box.

64 PDA Developers 4.4 • July/August 1996

case menuEvent:
MenuEraseStatus (currentMenu);
FrmEraseForm (frm);
tempfrm = FrmInitForm(AboutForm);
FrmDoDialog (tempfrm);
FrmDeleteForm (tempfrm);
FrmDrawForm (frm);
handled = true;

Since there’s only one menu command, I assume it’s the About com-
mand. I erase the menu and the main form, display the About dialog
using FrmDoDialog (which doesn’t return until a dialog control is
pressed), then delete the dialog and redraw the main form.

Figure 4 shows the About dialog. It’s simply two 72-dpi graphics,
one for the title and one for the horizontal line, plus a set of “tLBL” label
resources and a default OK button.

World Time Meets the Real World

Once I got all this code running under the simulator, it was time to turn
it into something that could be run on a real Pilot device. On the sur-
face, this seems very straightforward. First, you create a Rez file that
defines the application’s resources as required by the Pilot, not the
desktop. Here’s the World Time Rez file as created from a sample that is
included with the Pilot SDK:

/**
 * FileName: WorldTime.r
 * Resource description for generating the
 * World Time resource database
 ***/
//———————————————————————
// Include definitions for basic resources.
//———————————————————————
#include <BuildRules.h>
#include <SystemMgr.rh>

//———————————————————————
// Code and Globals resources
//———————————————————————
// Include the main code resource
include "WorldTime.code" 'CODE' 1 as sysResTAppCode 1;

// Include CODE 0 which has global size information in it
include "WorldTime.code" 'CODE' 0 as sysResTAppCode 0;

// Include DATA 0 which has initialized global data info
include "WorldTime.code" 'DATA' 0 as sysResTAppGData 0;

//——————————————————————————————
// Include the MemoPad UI resources
//——————————————————————————————
#if LANGUAGE==LANGUAGE_ENGLISH
include ":Rsc:WorldTime.rsrc";
include ":Rsc:WorldTimeAbout.rsrc";

#elif LANGUAGE==LANGUAGE_GERMAN
include ":Rsc:German:WorldTime.rsrc";
include ":Rsc:German:WorldTimeAbout.rsrc";

#elif LANGUAGE==LANGUAGE_FRENCH
include ":Rsc:French:WorldTime.rsrc";
include ":Rsc:French:WorldTimeAbout.rsrc";

#else
#error "The compiler variable LANGUAGE must be defined"
#endif

//——————————————————————————————
// PREF resource. The current version of the OS does not
// use the ionfo in this resource. it should be included
// for future compatibility.
//——————————————————————————————
resource sysResTAppPrefs 0 {

30, // priority
0x1000, // stack size
0x1000 // minHeapSpace
}

Every place you see the name “WorldTime” you need to substitute the
name of your application. Also, you need to include each of your Res-
Edit resource files in the LANGUAGE sections.

Next, you have to create a Makefile, a set of commands that is used
by the MPW shell to compile, link, and set up your application for
downloading and debugging on a real Pilot. Here’s the World Time
Makefile:

###
Set up paths
###
LIB_DIR = :::Libraries:PalmOS:
INC_DIR = :::Incs:
SRC_DIR = :Src:
OBJ_DIR = :Obj:
DBG_DIR = :::

###
Set up Compiler
###
Use Metrowerks' compiler
CC = MWC68K
CPP = MWC68K
LINK = MWLink68K

###
Compile Options
The most likely options you might change are COUNTRY,
LANGUAGE, and ERROR_CHECK_LEVEL.
###
C_OPTIONS = ∂

-d COUNTRY=0 ∂
-d LANGUAGE=0 ∂
-d ERROR_CHECK_LEVEL=2 ∂
-d CMD_LINE_BUILD ∂
-d EMULATION_LEVEL=0 ∂
-d ENVIRONMENT=0 ∂
-d MEMORY_FORCE_LOCK=1 ∂
-nosyspath ∂
-i ":Src:" ∂
-i "{INC_DIR}" ∂
-i "{INC_DIR}System:" ∂
-i "{INC_DIR}UI:" ∂
-i "{INC_DIR}Hardware:" ∂
-model near ∂
-intsize 2 ∂
-maxerrors 3 ∂
-opt speed -opt global -opt peep ∂
-mbg on ∂
-b ∂
-d PILOT_PRECOMPILED_HEADERS_OFF

LINK_OPTIONS = -single -custom

PDA DEVELOPERS 4.4 • July/August 1996 65

###
Object List
###
OBJECTS = ∂

 "{LIB_DIR}StartupCode.c.o" ∂
 "{OBJ_DIR}WorldTime.c.o"

###
Compiles
###
"{OBJ_DIR}WorldTime.c.o" ƒ MakeFile
"{SRC_DIR}WorldTime.c"

 {CPP} -o "{OBJ_DIR}WorldTime.c.o" ∂
"{SRC_DIR}WorldTime.c" ∂
{C_OPTIONS}

###
Final Link
###
WorldTime ƒƒ MakeFile {OBJECTS} "{SRC_DIR}WorldTime.r"

{LINK} {LINK_OPTIONS} -t rsrc -c RSED ∂
{OBJECTS} ∂
"{MW68KLibraries}ANSI (2i) C.68K.Lib" ∂
"{MW68KLibraries}console.stubs.c.o" ∂
-o WorldTime.code

Delete -i "WorldTime.prc"
{CC} -d RESOURCE_COMPILER ∂

{C_OPTIONS} ∂
-e ∂
"{SRC_DIR}WorldTime.r" > WorldTime.i

PilotRez -backupBit -v 1 -t appl -c CDI1 -it
WorldTime.i -ot "WorldTime"

Rename -y "WorldTime" "WrldTime.prc"
Duplicate -y "WrldTime.prc" "{DBG_DIR}"Debugger

I’m not a serious MPW-head (and I don’t really want to be), so I don’t
really know what a lot of these commands do. Basically, you need to use
the name of your application every place you see the word “World-
Time”, except for the last two references where I revert to DOS file-
naming conventions for compatibility with Windows systems.

There’s one other change you also need to make – in the Pilot -
Rez line, use your own application’s creator ID instead of CDI1 ,
which is Creative Digital’s creator ID. Creator IDs are designed to pre-
vent applications from accidentally messing with each other’s data and
resources during loading and at runtime. You need to request a unique
creator ID from Palm Computing tech support.

To compile and link your application, you start up the MPW shell,
set the current directory to point to your applications directory, and
chose the Build command. The script is run, and if all goes well, your
application is created and a copy is put in the Pilot Debugger folder in
your Pilot SDK folder.

To download the program, you start up the Debugger and open a
serial connection between your cradled Pilot and your Mac. There are
currently no options for selecting the port (the Debugger assumes that
you’re connected to the modem port), just the baud rate. To open the
connection, you start the Pilot Prefs application and enter the “.2”
shortcut. (You initiate a shortcuts by first entering a tall lower-case
cursive “l” with very long beginning and ending strokes, then enter the
shortcut name by tapping twice in the left-hand side of the Graffiti pad
and entering a “2” on the numeric side of the pad.) The Pilot should
beep once, indicating that the connection is open.

Once you establish the connection, go back to the debugger and
enter the phrase “import 0 WrldTime.prc” in the Debugger’s Console
window (not the Debugger window). If you have a connection, the
resources are downloaded and you’re all set for some real testing. The
“.prc” extension is added for compatibility with the Pilot desktop, whose
installation file open dialog filters for that extension.

Crash-and-Burn City

When I first loaded one of the earlier version of World Time onto my
Pilot, I was greeted with some immediate serious crash-and-burn
exceptions. I had to hard reset the device to get any response from it. I
still had lots of work to do on the program, so I sent off an e-mail to
Palm’s tech support, pretended nothing had happened, and went back
to work on the desktop.

In a subsequent conversation with tech support, I learned there are
several things that you can do on the desktop that you definitely can’t
do on the Pilot. Here’s an abbreviated list:

• Don’t use any library routines except those that are explicitly
defined for the Pilot. That rules out many standard C runtime
library calls that we take for granted, including memory allocations,
string operations, and arithmetic functions. There are Pilot
equivalents for many, but not all, standard library routines.

• Don’t write to storage RAM unless you use the database routine
DMWrite . The simulator doesn’t have write protection, but the
Pilot does.

• Don’t access 16 or 32-bit values at odd addresses. This generates a
bus error on the Pilot but not on the simulator. This can happen
when working with packed data structures.

• Don’t use intra-application jumps of more than 32K. You will get
linking errors when you try to create your Pilot-bound application
with MPW.

• Applications running on a Pilot only have a 2K stack. Avoid storing
a lot of data on the stack.

Pilot errors are generally much more destructive than simulator errors.
Expect everything to be destroyed all the time.

After learning about these crash-and-burn problems, I went back
and checked my code more carefully. I’m not a great code reader – I’m
more inclined to let my machines, not my brain, do my debugging.
With these gotchas in mind, and by liberally sprinkling system sounds
throughout the code, creating an audio audit trail, I was eventually able
to track down my errors. There was one serious problem: some location
names were an odd number of characters, resulting in time zone data
being fetched from odd locations on the Pilot. Once I cleared that up,
most of my problems went away. I could have avoided this problem by
putting the time zone information first in the location structure. By the
time I realized this, however, I didn’t want to go back and re-edit 250
locations, introducing new editing errors that I would have to track
down. Instead, I just added blanks where needed and included the
error-checking code for odd-length strings.

One other note about errors: while testing my daylight savings time
code, I kept coming up with ridiculous time zone calculations. For a
long time, knowing the level of my programming skills, I figured it was
my code. After several hours of careful checking, however, I managed to
track down a compiler error in the Ulong multiplication operator.
Since then I’ve also found at least one other bug having to do with static
string declarations. These types of errors can be real hair pullers. The
moral of the story – don’t assume that the compilers are perfect.

Simulator Testing

Getting your program to run on a real Pilot is no guarantee of success,
as I found out. The other thing you need to do is run your program
under the simulator and start up a Gremlin. Gremlins generate semi-
random system events that test many difference facets of your applica-
tion. After I successfully got World Time running on my Pilot, I went
and tried a Gremlin at the urging of Palm’s tech support. Within five
seconds World Time was seriously dead in the water.

Again, the problem was essentially one item – action codes. Action
codes are global system events that are passed to your PilotMain
routine, whether you like it or not. They can arrive when your applica-
tion is active or inactive. They are used primarily for interapplication
communication, communication between the operating system and
your application, and communication between your application and
the Pilot desktop. Palm suggests you set up your application to respond
to as many action codes as possible.

66 PDA Developers 4.4 • July/August 1996

There are two very basic action codes that almost all applications
should support in order to act like a real Pilot application. The first is
sysAppLaunchCmdFind , which tells your application to go find a
particular text string in your database. This is used for global searching.
The second is sysAppLaunchCmdGoTo . This ones tells your appli-
cation to launch itself and go to the record (with the appropriate view)
that contains a particular string. This is used to implement the “Go to”
command on the global search dialog.

There’s a whole section in the beginning of the Pilot SDK documen-
tation that explains actions codes, and tell you how to offensively and
defensively deal with them. My problem was that I didn’t even set up
my application to ignore the actions codes, let alone respond to them.
The simplest thing to do is bracket your PilotMain routine with a de-
fense barrier:

DWord PilotMain (Word cmd, Ptr cmdPBP, Word launchFlags)
{

if (cmd == sysAppLaunchCmdNormalLaunch) {
FrmGotoForm (mainForm);
currentMenu = MenuInit (mainMenu);
EventLoop ();
MemFree ();

}
return (0);

That way none of your code gets executed unless it’s part of a normal
launch. Of course, this also makes your application a bit brain dead in
the Pilot sense of the phrase, but it’s quick and easy.

Ready for Prime Time

Once you think you have a bullet-proof, or relatively wound-proof
application, you need to prepare it for the outside world. The only
remaining step (assuming you already have a unique Creator ID) is to
give it an icon and an application name, which may or may not be
different from your file name.

Creating an icon is easy. First, you create an “ICON” resource. Next,
in its Info window, give it the name “App Icon” (see Figure 5). That’s it.

Creating the application name is relatively easy too. You create a
“tAIN” resource and set its contents to the name you want to appear on
the Pilot desktop. The -ot item on the PilotRez line of the
Makefile also comes into play with the application name, but I couldn’t

quite figure out all the details (tech support explained them to me, but I
failed to grasp all the ramifications). To be on the safe side, I used the
same name in the Makefile and the “tAIN” resource.

Pilot Rules

This is the second Pilot project I’ve done. The first was a very lame and
simple Hello World. This is more like a real application. In fact, World
Time is the first publicly released third-party Pilot client application (as
far as we know – by the time you read this there will probably be more).
You can find World Time on our web site at http://www.cdpubs.com.
The full source code is also on the source code disk for this issue of PDA
Developers.

 There are several things that World Time needs. First of all, I need
to go back to Plan A and put all the data in a database. That’s the only
way you can implement global find, and World Time is a natural for
global find support. I may have to create a separate database initializa-
tion application, which makes for a very awkward user experience. (It
looks like there may be a way to initialize a database from the desktop,
using HotSyncing, without writing a separate application. One of the
action codes sounds suspiciously like it might be designed to do that.)
Once I have the data stored in a bona fide Pilot database, it also makes
sense to let users add their own locations, delete useless locations, and
provide full data access.

I’ve also gotten a series of suggestions from end users about provid-
ing more locations, location filters, a persistent Home location, alternate
interface suggestions, and much more. There’s a lot of work that could
be done. Based on my experience with World Time, I think anyone with
reasonable programming skills (and I’m not sure I would classify my
skills as reasonable) can turn out a full-featured Pilot application with
just several weeks of full-time effort. That estimate is based on the
current state of the SDK documentation, which as I write this are mini-
mal. With real docs, anything is possible.

The Pilot developer tools, even in their current beta form, with bugs
and all, are definitely usable. However, there are two additional, very
good reasons you might want to consider writing Pilot applications.

The first is the Pilot architecture. It’s well designed, lean and mean,
and simple, but not so simple that you have to do everything for your-
self. It can be documented in a modest number of pages, understood
with a reasonable amount of effort, and the System ROM contains a lot
of high-level functionality, enough to save you a considerable amount
of work. For a less-than-hard-core programmer like me, this is a defi-

nite plus. Palm has lowered, not raised the bound-
aries for programmers. Also, there’s no depen-
dence on C++ (a definite plus in my book).

Second, Palm has left lots of opportunities
for third-party developers. Some other PDAs on
the market are so full-featured that developers are
hard-pressed to think of applications to write for
them. Not so with the Pilot.

The Palm SDK, which requires Metro-
werks CodeWarrior and a Macintosh computer,
should be publicly available by the time you read
this. I expect to see a lot of interesting Pilot appli-
cations, perhaps even a new version of World
Time, in the coming months. ✔

Acknowledgments

I would like to thank the tech support folks at
Palm Computing for their assistance in writing
this article and creating World Time. I would
especially like to thank Chris Raff for taking the
time to explain some of the finer points of Pilot
development, while at the same time, working
very hard on finishing the tools.

Figure 6 - A typical ICON resource.

