

 CodeWarrior
¨

MetroTRK Manual

Because of last-minute changes to CodeWarrior, some of the
information in this manual may be inaccurate. Please read the

Release Notes on the CodeWarrior CD for the latest
up-to-date information.

Revised: 101697 bpb

Metrowerks CodeWarrior copyright ©1993Ð1997 by Metrowerks Inc. and its licensors. All
rights reserved.

Documentation stored on the compact disk(s) may be printed by licensee for personal use.
Except for the foregoing, no part of this documentation may be reproduced or transmitted
in any form by any means, electronic or mechanical, including photocopying, recording, or
any information storage and retrieval system, without permission in writing from Metrow-
erks Inc.
Metrowerks, the Metrowerks logo, CodeWarrior, and Software at Work are registered
trademarks of Metrowerks Inc. PowerPlant and PowerPlant Constructor are trademarks of
Metrowerks Inc.
All other trademarks and registered trademarks are the property of their respective owners.
ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK(S) ARE SUB-
JECT TO THE LICENSE AGREEMENT IN THE CD BOOKLET.

How to Contact Metrowerks:

U.S.A. and international Metrowerks Corporation
P.O. Box 334
Austin, TX 78766
U.S.A.

Canada Metrowerks Inc.
1500 du College, Suite 300
Ville St-Laurent, QC
Canada H4L 5G6

Mail order Voice: (800) 377Ð5416
Fax: (512) 873Ð4901

World Wide Web http://www.metrowerks.com

Registration information register@metrowerks.com

Technical support support@metrowerks.com

Sales, marketing, & licensing sales@metrowerks.com

CompuServe goto Metrowerks

Table of Contents
1 Introduction . 7

Read the Release Notes! 7
About the MetroTRK Manual 7
What is MetroTRK? . . 8
MetroTRK Compatibility 8
Starting Points . 9
Where to Learn More 10

Code Warrior Documentation 10

2 Understanding MetroTRK . 11
Understanding MetroTRK Overview 11
How Does MetroTRK Work? 11
MetroTRK Architecture Overview 11

MetroTRK Core . 12
Communications Between MetroTRK and the Host Debugger 13
Message Queues . 13
Command and Request Handling 14
Putting it all Together 14

Where MetroTRK Lives in Memory 16
MetroTRKÕs RAM Sections 17
Locations of MetroTRK RAM Sections (on MIPS) 18
Locations of MetroTRK RAM Sections (on PowerPC) 19
Locations of Target Application RAM Sections 20
TRK Memory Map (MIPS) 21
TRK Memory Map (PowerPC) 22
Loading MetroTRK onto Your Hardware 22

MetroTRK Initializations 23
Low-Level Communication with Host Debugger 26
MetroTRK Debug API 26

Servicing Requests from the Host Debugger 27
Sending NotiÞcations to the Host Debugger 28

Host Debugger to MetroTRK Requests 28
Connect . 29
Reset . 30
MetroTRK Manual TRKÐ3

GetVersions . 30
SupportMask . 31
ReadMemory . 32
WriteMemory . 34
ReadRegisters . 35
WriteRegisters . 37
Continue . 38
Step . 38

MetroTRK to Host Debugger NotiÞcations 40
NotifyStopped . 40
NotifyException . 41
Fputs . 42

3 Customizing MetroTRK . 43
Customizing MetroTRK Overview 43
Customizing MetroTRK Initializations. 44

Customizing Hardware Initializations. 44
Customizing Exception Vector Initializations. 45
Customizing Additional Initializations 46

Customizing Low-Level Communications 46
Customizing Debug Services 47

Customizing Debug Request Handling 48
Customizing Debug NotiÞcations 52

A MetroTRK Function Reference . 55
MetroTRK Function Reference Overview 55

__copy_vectors() . 56
__init_data() . 57
__init_hardware() 58
__init_registers() . 59
__init_user() . 59
__reset . 60
__start() . 60
DoConnect() . 61
DoContinue() . 62
DoFputs() . 63
TRKÐ4 MetroTRK Manual

DoNotifyStopped() 63
DoReadMemory() 64
DoReadRegisters() 65
DoReset() . 66
DoStep() . 67
DoSupportMask() 68
DoVersions(). 69
DoWriteMemory() 70
DoWriteRegisters() 71
InitializeUART() . 72
ReadUARTPoll() . 73
ReadUART1() . 73
ReadUARTN() . 74
ReadUARTString() 75
TargetAccessMemory() 75
TargetAddExceptionInfo() 78
TargetAddStopInfo() 78
TargetContinue() . 79
TargetInterrupt() . 80
TargetReadDefault() 81
TargetReadExtended1() 82
TargetReadExtended2() 83
TargetReadFP() . 84
TargetReadMemory() 85
TargetSingleStep() 86
TargetStepOutOfRange() 86
TargetSupportMask() 87
TargetVersions() . 88
TargetWriteDefault() 89
TargetWriteExtended1() 90
TargetWriteExtended2() 91
TargetWriteFP() . 92
TargetWriteMemory() 93
TerminateUART() 94
ValidMemory32(). 95
WriteUART1() . 96
MetroTRK Manual TRKÐ5

WriteUARTN(). 96
WriteUARTString() 97

Index . 99
TRKÐ6 MetroTRK Manual

1
Introduction
The Metrowerks Target Resident Kernel, or ÒMetroTRKÓ for short,
is an on-target debug monitor for use with the CodeWarrior Debug-
ger. This manual serves as a reference to MetroTRK, as well as a
guide explaining how to customize it for use with your hardware
configuration.

Read the Release Notes!
Before using MetroTRK, please take the time to read the release
notes in the release notes folder. They contain important informa-
tion about new features, bug fixes, and any late-breaking changes
that may have occurred after the production of this manual.

About the MetroTRK Manual
This manual is organized into the following three chapters:

¥ Introduction

¥ Understanding MetroTRK

¥ Customizing MetroTRK

¥ MetroTRK Function Reference

You are reading the introduction now.

ÒUnderstanding MetroTRKÓ describes the various tasks MetroTRK
performs and how these tasks are implemented. It gives a Òbig-pic-
tureÓ view of MetroTRK as well as enough detail to understand
what you need to know to re-target MetroTRK to new board config-
urations.
MetroTRK Manual TRKÐ7

Introduction

What is MetroTRK?

ÒCustomizing MetroTRKÓ goes into more detail in the specific areas
where you customize or re-target MetroTRK to work with your
hardware configuration.

ÒMetroTRK Function ReferenceÓ describes each function mentioned
in the manual, as well as any other important MetroTRK utility
functions.

What is MetroTRK?
MetroTRK allows you to use the CodeWarrior debugger, MW De-
bug, to debug programs running on an embedded system. The Me-
troTRK program lives on the embedded system (along with the tar-
get program) and communicates with MW Debug by way of a serial
connection. Through this serial communication, MetroTRK acts as
MW DebugÕs interface to the target hardware.

MetroTRK communicates with MW Debug to service requests (like
the request for a register or memory value) as well as to notify the
user of runtime events or exceptions as they occur on the target. In
doing so, MetroTRK supplies all the target-side services necessary
to provide various levels of debugging from within MW Debug.

Since MetroTRK manipulates all of the important target resources,
its implementation inherently depends on the specifics of the hard-
ware being targeted. For this reason, MetroTRK is distributed as
source code so that you can modify portions of it for use with novel
hardware configurations. The primary purpose of this manual is to
point out the important concepts and sections of code that you will
need to know in order to customize MetroTRK based on the details
of your board configuration.

MetroTRK Compatibility
MetroTRK can be used with many board configurations based on
the processor or family of processors supported by your CodeWar-
rior tools. There are, however, some minimum requirements for
MetroTRK to be able to function properly.
TRKÐ8 MetroTRK Manual

Introduction

Starting Points

Serial controller

Since MetroTRK must communicate with MW Debug running on
the host computer, your hardware setup must be capable of con-
forming to the serial protocols used by MW Debug. In particular,
the hardware must have a serial port that can communicate be-
tween 300 baud and 230.4k baud.

RAM

MetroTRK always takes up some RAM space on the target. If you
are running MetroTRK from ROM, it takes up about 6KB for its glo-
bal data. If you are running MetroTRK from RAM, it takes up an ad-
ditional 26KB for its code section. In addition, MetroTRK needs 6KB
for its stack. For more information on how MetroTRK uses RAM,
see ÒWhere MetroTRK Lives in MemoryÓ on page 16.

Starting Points
This manual is intended as a general reference to the implementa-
tion of the MetroTRK system. It is meant for users who need to cus-
tomize MetroTRK to work with a new board configuration. Details
about how to actually load and use MetroTRK are not covered in
this manual because they will vary from one set of CodeWarrior
tools to another. Instead, they are covered in the Targeting manual
for your target processor.

One or more MetroTRK implementations are included in your
CodeWarrior distribution. These implementations are configured
for specific reference boards. If you are using one of these reference
boards, you should be able to use MetroTRK without any modifica-
tions whatsoever. If this is the case, you probably donÕt need to con-
sult this manual, as most of the information talks about the imple-
mentation of MetroTRK, not how to debug using MetroTRK. Your
Targeting manual explains which reference boards are supported.

If you already know how to use MetroTRK but need more specific
details about the implementation in order to build your own cus-
tomized version, youÕre in the right place! The chapter ÒUnder-
standing MetroTRKÓ discusses the MetroTRK architecture in gener-
MetroTRK Manual TRKÐ9

Introduction

Where to Learn More

al, and the chapter ÒCustomizing MetroTRKÓ spotlights which parts
of MetroTRK will need to be customized for use with new board
hardwareÉand how to do it.

Where to Learn More
This manual only covers the implementation of MetroTRK. There
are many things not covered here which you may need to know in
order to use MetroTRK productively. This section lists materials
that might be useful.

Code Warrior Documentation

CodeWarrior IDE User Guide: The manual for using the CodeWarrior
IDE (Integrated Development Environment.) The IDE is used for
creating, organizing, and building development projects.

CodeWarrior Debugger Manual: The manual for using MWDebug, the
CodeWarrior source debugger.

CodeWarrior Targeting (your target processor here): The ÒTargetingÓ
manual will be extremely helpful in working with your embedded
project. In fact, the targeting manual covers how to use MetroTRK
with your target processor. In addition, it contains all other informa-
tion about using CodeWarrior that is specific to your target proces-
sor.
TRKÐ10 MetroTRK Manual

2
Understanding
MetroTRK
This chapter describes the basic functioning of the Metrowerks Tar-
get Resident Kernel (MetroTRK) and its various modules.

Understanding MetroTRK Overview
This chapter describes the internal functioning of MetroTRK, de-
scribing how the source code is organized into various distinct sub-
modules. The sections in this chapter are:

¥ How Does MetroTRK Work?

¥ MetroTRK Architecture Overview

¥ Where MetroTRK Lives in Memory

¥ Low-Level Communication with Host Debugger

¥ MetroTRK Debug API

How Does MetroTRK Work?
MetroTRK is a debug monitor that runs on your embedded system,
along with the target program that you are debugging. You as the
developer indirectly manipulate MetroTRK by controlling the
CodeWarrior debugger, MW Debug, on the host personal comput-
er. MW Debug then engages in two-way communication with Me-
troTRK to perform the debugging services you have requested.

MetroTRK Architecture Overview
MetroTRK is organized around a core that serves as the central con-
troller of its internal state. Around this core, MetroTRK has several
MetroTRK Manual TRKÐ11

Understanding MetroTRK

MetroTRK Architecture Overview

other modules which perform various tasks. This section discusses
the following MetroTRK components:

¥ MetroTRK Core

¥ Communications Between MetroTRK and the Host Debug-
ger

¥ Command and Request Handling

¥ Message Queues

¥ Putting it all Together

MetroTRK Core

MetroTRK has two normal operating modes, the event-waiting mode
and the request-handling mode.

When the target program is running, MetroTRK is in event-waiting
mode. While in this mode, MetroTRK remains inactive, waiting for
an exception or interrupt that itÕs interested in. When one occurs, it
stops the target program, and takes back control of the processor.

When MetroTRK has control of the processor, it is in request-han-
dling mode. The target program remains stopped while MetroTRK
is in request-handling mode. While in request-handling mode, Me-
troTRK is in a continuous loop, waiting for commands and requests
from the host debugger. When it gets a command or request, Me-
troTRK passes it on to the appropriate handler function. This han-
dling of commands and requests continues until MetroTRK receives
a command to switch control back to the target program (a continue
or step command). At this point, MetroTRK returns to its event-
waiting mode. For more information on MetroTRKÕs state control,
see ÒState diagramÓ on page 14.

We refer to this central state control and event-handler as the Me-
troTRK core. All other modules of MetroTRK are organized around
this core.

The MetroTRK core is, generally speaking, independent of the tar-
get board configuration. Some of the handler functions which actu-
ally perform debugging requests, however, are board dependent.
TRKÐ12 MetroTRK Manual

Understanding MetroTRK

MetroTRK Architecture Overview

Communications Between MetroTRK and the
Host Debugger

MetroTRK is continuously engaged in two way communication
with the host debugger (MW Debug.) We divide this communica-
tion into two distinct levels, the Transport level and the Debug API
level.

The Transport level

The lower level of communication is the Transport level. This level
transmits arbitrarily sized segments of data between the target
board and the host debugger. These segments are transmitted over
a standard serial connection. For more information on the segment-
ed data level, see ÒLow-Level Communication with Host Debug-
gerÓ on page 26.

The Debug API level

The higher level communication is the MetroTRK Debug API level.
At this level, MetroTRK communicates with the debugger via a
clearly defined messaging API. This API defines the various re-
quests and notifications that MetroTRK and the host debugger un-
derstand. Each message or function in this API is structured to in-
clude relevant formal parameters and, if applicable, a return value.
For more details, see ÒMetroTRK Debug APIÓ on page 26.

Message Queues

When MetroTRK is in request-handling mode, it constantly moni-
tors the serial line for incoming requests and commands. It stores
each one in an incoming message queue. This message queue makes it
possible for MetroTRK to handle requests at its own pace without
losing new requests as they come in over the serial line.

Just as the serial line is monitored for incoming messages and re-
quests, another queue is maintained for outgoing messages. When-
ever MetroTRK needs to send a message to the host debugger, it
simply puts the message in this queue and can go on processing.
The message will be sent as soon as the serial line is free.
MetroTRK Manual TRKÐ13

Understanding MetroTRK
MetroTRK Architecture Overview
The message queues depend in no way on the target board configu-
ration. They will not be discussed in greater detail in this manual.

Command and Request Handling

The handling of requests and commands from the host debugger is
separated out from the MetroTRK core into a set of handler func-
tions. These handler functions constitute another module of Me-
troTRK. Handler functions which are board-dependent are further
separated out into another source file. For further details, see ÒCus-
tomizing Debug ServicesÓ on page 47.

Putting it all Together

So now that we have an overview of how MetroTRK works and its
various components, letÕs take a look at how everything works to-
gether. This section gives several diagrams illustrating of Me-
troTRKÕs architecture and functioning.

State diagram

The first illustration, Figure 2.1, shows the different states of Me-
troTRK. On a Reset command or a hardware reset, MetroTRK goes
into its Board Initialization state. After board initializations are com-
pleted, MetroTRK goes immediately into its Command and Request
Handling state. While in this state, MetroTRK continuously services
commands and requests from the host debugger. The target pro-
gram is not running at all while MetroTRK is in the Command and
Request Handling state.
TRKÐ14 MetroTRK Manual

Understanding MetroTRK
MetroTRK Architecture Overview
Figure 2.1 MetroTRK State Diagram

Whenever certain commands are given by the host debugger, name-
ly the CONTINUE or STEP commands, MetroTRK goes from Com-
mand and Request Handling state into its Event Waiting state. While
in Event Waiting state, MetroTRK is not running at all; the execu-
tion context is that of the target program.

The only way that MetroTRK gets out of Event Waiting state is
when an exception occurs. In most cases, and exception causes a
context switch (back to MetroTRKÕs context) and a move to the
Command and Request Handling state. The only exception to this
rule is when MetroTRK is in the middle of processing a multiple-
line step command. If this is the case, control goes back to the target
program and MetroTRK goes back into Event Waiting state.

Board
initialization

RESET command

¥ÊCONTINUE command
¥ÊSTEP command

Hardware
RESET

Any exception

Command
and Request

Handling

Command
and Request

Handling

stepping
multiple

lines and
not

completed?

YES

NO

Event
Waiting
Context of

target programContext of
MetroTRK
MetroTRK Manual TRKÐ15

Understanding MetroTRK
Where MetroTRK Lives in Memory
Data-flow diagram

The next diagram (Figure 2.2) illustrates the different components of
MetroTRK, and how data would flow through MetroTRK when it is
in the Command and Request Handling state. When MetroTRK is in
the Event Waiting state, all components are basically inactive as Me-
troTRK waits for the next exception to occur.

Figure 2.2 MetroTRK Data-flow Diagram

Where MetroTRK Lives in Memory
This section explains where the MetroTRK code and data lives in
memory, as well as where your target application will live. Informa-
tion in this section covers the default implementation of MetroTRK
included with CodeWarrior. It is possible to customize MetroTRKÕs
memory location to suit your needs by modifying variables in the
linker preferences panel in your MetroTRK project. For information
on these variables, see your CodeWarrior Targeting manual.

We discuss the following topics:

¥ MetroTRKÕs RAM Sections

¥ Locations of MetroTRK RAM Sections (on MIPS)

¥ Locations of MetroTRK RAM Sections (on PowerPC)

¥ Locations of Target Application RAM Sections

Legend

Processor or Board specific code

TargetReadMemory()
TargetWriteFP()
TargetContinue()
...
...

...

...
DoReadMemory()
DoWriteRegisters()
DoContinue()

Requests and
Commands

Requests and
Commands

Replies and
Notifications

Replies and
Notifications

UART
Serial
Driver

MetroTRK
CORE

Dispatches incoming
messages and

builds outgoing ones

Request and
 Command

Handler

Target-specific
functions

Output
Message

Queue

Input
Message

Queue

Message
Framing and

Checksum
Verification

MetroTRK
Host

Debugger
(on PC)

Legend

Processor or Board specific code

Serial
communication

between
MetroTRK and
host debugger
TRKÐ16 MetroTRK Manual

Understanding MetroTRK
Where MetroTRK Lives in Memory
¥ TRK Memory Map (MIPS)

¥ TRK Memory Map (PowerPC)

¥ Loading MetroTRK onto Your Hardware

MetroTRKÕs RAM Sections

The number of different MetroTRK RAM sections depends on
whether you are running a RAM-based version of MetroTRK or a
ROM-based version.

ROM-based MetroTRK

If you are running MetroTRK from ROM, the following three mem-
ory sections will be set up in RAM:

¥ Data

¥ Exception Vectors

¥ The Stack

Data includes all read/write data included in the program. When
running from a ROM-based version of MetroTRK, any initial values
will be copied from ROM into their locations in RAM. MetroTRK
uses 6KB of RAM for global data.

Exception Vectors are sections of code that are executed in the event
of a processor exception; their location in RAM is set and deter-
mined by the processor. When running from a ROM-based version,
MetroTRK will copy exception vectors from ROM into RAM upon
initialization. For information on this initialization process, see ÒMe-
troTRK InitializationsÓ on page 23.

The Stack uses no more than 6KB of RAM space. It is not recom-
mended to give MetroTRK any less space for its stack.

RAM-based MetroTRK

If you are running MetroTRK from RAM, there will be an additional
memory section for the MetroTRKÕs executable code. This section
does not exist in the ROM-based version because the code is execut-
MetroTRK Manual TRKÐ17

Understanding MetroTRK
Where MetroTRK Lives in Memory
ed directly from ROM memory. The code section of the TRK takes
up about 26KB.

Locations of MetroTRK RAM Sections (on
MIPS)

In this topic, we discuss the locations of the various MetroTRK
memory sections in RAM. In some cases, the default locations can
be reconfigured to suit your needs, while in others the locations are
fixed and should not be moved. For more information about the
purpose of the different memory sections, see ÒMetroTRKÕs RAM
SectionsÓ on page 17.

Exception vectors (on MIPS)

The location of the exception vectors in RAM is a set characteristic
of the processor. On MIPS, the exception vector must start at
0x80000000 (which is actually in low memory), and spans 4096 bytes
to end at 0x80001000. In a ROM-based implementation, these vec-
tors are copied from ROM in the MetroTRK initialization process.

The location of the exception vectors should not be changed, as the
processor expects to find them at the set location.

Data and Code sections (on MIPS)

In the default implementation, the MetroTRKÕs data and code sec-
tions are placed together in high memory, right above the Me-
troTRK stack. In a ROM-based implementation of MetroTRK, there
will be no code in RAM since it will execute directly from ROM.

For example, on the IDT79S381 board, the code and data sections
are by default placed at the address 0x801f8000.

The location of the data and code sections can be set from within the
linker preferences panel in the MetroTRK project. The linker prefer-
ences panel is available by going to the projectÕs preferences in the
CodeWarrior IDE. For information on linker preferences, see the
Targeting manual for your target processor.
TRKÐ18 MetroTRK Manual

Understanding MetroTRK
Where MetroTRK Lives in Memory
The stack (on MIPS)

In the default implementation, the MetroTRKÕs stack is placed in
high memory and grows downward. MetroTRK needs no more
than 6KB of stack space.

For example, on the IDT79S381 board, the stack is by default placed
at the address 0x801f7ff0.

The location of the stack section can be changed by rebuilding the
TRK project with new linker preferences. The linker preferences are
set from within the linker preferences panel in the CodeWarrior
IDE. For information on linker preferences, see the Targeting manu-
al for your target processor.

Locations of MetroTRK RAM Sections (on
PowerPC)

In this topic, we discuss the placement of the various MetroTRK
memory sections in RAM. In some cases, the default locations can
be reconfigured to suit your needs, while in others the locations are
fixed and should not be moved. For more information about the
purpose of the different memory sections, see ÒMetroTRKÕs RAM
SectionsÓ on page 17.

Exception vectors (on PowerPC)

The location of the exception vectors in RAM is a set characteristic
of the processor. On the PowerPC, the exception vector must start at
0x000100 (which is in low memory), and spans 7936 bytes to end at
0x002000. In a ROM-based implementation, these vectors are copied
from ROM in the MetroTRK initialization process.

The location of the exception vectors should not be changed, as the
processor expects to find them at the set location.

Data and Code sections (on PowerPC)

In the default implementation, the MetroTRKÕs data and code sec-
tions are placed together in high memory, right above the stack. In a
MetroTRK Manual TRKÐ19

Understanding MetroTRK
Where MetroTRK Lives in Memory
ROM-based implementation of MetroTRK, there will be no code in
RAM since it will execute directly from ROM.

For example, on the MPC821ADS board, the code and data sections
are by default placed at the address 0x3f8000. On the MBX821
board, they are placed at 0x.3f0000

The location of the data and code sections can be set from within the
linker preferences panel in the MetroTRK project. The linker prefer-
ences panel is available by going to the projectÕs preferences in the
CodeWarrior IDE. For information on linker preferences, see the
Targeting manual for your target processor.

The stack (on PowerPC)

In the default implementation, the MetroTRKÕs stack is placed in
high memory and grows downward. MetroTRK needs no more
than 6KB of stack space.

For example, on the MPC821ADS board, the stack is by default
placed at the address 0x3f7ff0. On the MBX821 board, it is placed at
0x.3efff0

The location of the stack section can be changed by rebuilding the
TRK project with new linker preferences. The linker preferences are
set from within the linker preferences panel in the CodeWarrior
IDE. For information on linker preferences, see the Targeting manu-
al for your target processor.

Locations of Target Application RAM Sections

Target application memory sections can go anywhere where they
donÕt interfere with the MetroTRK memory sections. These are de-
scribed in ÒMetroTRKÕs RAM SectionsÓ on page 17. Often, the best
is to put the code and data sections below the MetroTRKÕs code and
data sections in low memory, and the target applicationÕs stack
below the stack of the MetroTRK. Make sure, in doing this, that you
leave enough room for the MetroTRKÕs stack, since the stack grows
down.
TRKÐ20 MetroTRK Manual

Understanding MetroTRK
Where MetroTRK Lives in Memory
You can change the placements of your programÕs memory sections
by changing its linker preferences in the CodeWarrior IDE. For in-
formation on linker preferences, see the Targeting manual for your
target processor.

TRK Memory Map (MIPS)

Figure 2.3 shows a sample map of RAM memory sections as config-
ured when running MetroTRK along with a sample target program
on a IDT MIPS 79S381 board.

Figure 2.3 TRK RAM Map (MIPS)

ROM version RAM version

0x80200000 (2MB)

Exception vectors
4KB

Application
Heap

0x80000000

0x80001000

MetroTRK Data
6KB

MetroTRK stack
6KB

0x801F7FF0

0x801F67F0
Application
Stack

0x801F8000

0x801F9800

Application code
and data
(Sample 190KB)

0x80200000 (2MB)

Exception vectors
4KB

Application
Heap

0x80000000

0x80001000

MetroTRK Data
6KB

MetroTRK stack
6KB

0x801DFF00

0x801DE700

Application
Stack

0x801E0000

0x801E6100

MetroTRK Code
26KB

Application code
and data
(Sample 190KB)

0x801E7900
MetroTRK Manual TRKÐ21

Understanding MetroTRK
Where MetroTRK Lives in Memory
TRK Memory Map (PowerPC)

Figure 2.4 shows a sample map of RAM memory sections as config-
ured when running MetroTRK along with a sample target program
on an MPC821 MBX board.

Figure 2.4 TRK RAM Map (PowerPC)

Loading MetroTRK onto Your Hardware

For specific information on how to load MetroTRK onto your target
hardware, see the Targeting guide for your target processor.

ROM version RAM version

0x400000 (4MB)

Exception
vectors
8KB

Application
Heap

0x040000

0x010000

0x000100

0x002000

MetroTRK Data
6KB

MetroTRK stack
6KB

0x3EFFF0

0x3EE7F0

Application
Stack

0x3F8000

0x3F9800

Application code
and data
(Sample 190KB)

0x400000 (4MB)

Exception
vectors
8KB

Application
Heap

0x040000

0x010000

0x000100

0x002000

MetroTRK Data
6KB

MetroTRK stack
6KB

0x3EFFF0

0x3EE7F0

Application
Stack

0x3F0000

0x3F6760

MetroTRK Code
26KB

Application code
and data
(Sample 190KB)
TRKÐ22 MetroTRK Manual

Understanding MetroTRK
MetroTRK Initializations
MetroTRK Initializations
Initializations in MetroTRK follow a specific step-by-step sequence
that is built into the MetroTRK core. Several of these steps are spe-
cific only to the processor being targeted, while others may be spe-
cific to other aspects of the board hardware being targeted.

Initialization occurs in the following order:

1. Initialization of the target processorÕs registers

2. Board Initializations that donÕt Access MetroTRK Memory

3. Exception Vector Initializations

4. Initialization of all TRK RAM sections

5. Additional initializations

Initialization of the target processorÕs registers

This step initializes the processorÕs standard EABI (Embedded Ap-
plication Binary Interface) registers for use. Among those initialized
are the stack and small data registers. This step does not touch
memory nor is it dependent on any hardware configuration other
than the type of processor being used. This step occurs within the
__init_registers() function which, in turn, is called by
__start().

For a full specification of functions listed here, see the ÒMetroTRK
Function Reference OverviewÓ on page 55.

Board Initializations that donÕt Access MetroTRK Memory

This step initializes board hardware which does not rely on Me-
troTRKÕs memory sections being initialized. This can include a
whole range of items, such as cache initializations, clock initializa-
tions, or other memory system initializations. These initializations
occur within the __init_hardware() function which gets called
by __start().

This function is intended specifically for hardware initializations that
are going to differ between one board configuration and another.
MetroTRK Manual TRKÐ23

Understanding MetroTRK
MetroTRK Initializations
For this reason, you are going to want to pay special attention to this
function when customizing MetroTRK.

For a full specification of functions listed here, see the ÒMetroTRK
Function Reference OverviewÓ on page 55.

Exception Vector Initializations

This step initializes system exception vectors by copying them to the
appropriate place in system memory (RAM). This location is specif-
ic to the target processor. MetroTRKÕs default exception handling
strategy is to act on certain exceptions that it is interested in, and no-
tify the host debugger of all other exceptions.

If you want your application to handle certain exceptions, you must
take care that you are not interfering with MetroTRK operation.

The PowerPC version of MetroTRK needs to receive all Program
Error and Trace exceptions. Your application should not over-
write either of these exceptions. Other than that, your target pro-
gram may overwrite whichever exceptions it needs to handle.

WARNING! On PowerPC, you must make sure that MetroTRKÕs
exception-handling code gets called for the exception ÒSoftware
Emulation.Ó This exception is used to track breakpoints, and
breakpoints will not work properly if the exception is not handled
by MetroTRK.

The MIPS version of MetroTRK needs to receive all Breakpoint
exceptions. If your application needs to handle either of these excep-
tions, it needs to call into MetroTRKÕs handling code at some point
(you need to share the exception with MetroTRK.) Other than that,
your target program may overwrite whichever exceptions it needs
to handle. See ÒMetroTRKÕs RAM SectionsÓ on page 17 for informa-
tion on where MetroTRKÕs exception vectors are located.

Since the exception vectors locations in memory are specified by the
target processor, this vector-copying process is not board-depen-
TRKÐ24 MetroTRK Manual

Understanding MetroTRK
MetroTRK Initializations
dent. Therefore, you should not need to be modify it for differing
board configurations.

The exception vector copy takes place within the
__copy_vectors() function called from within
__init_hardware(). __copy_vectors() must be called in
order for MetroTRK to function properly.

For a full specification of functions listed here, see the ÒMetroTRK
Function Reference OverviewÓ on page 55.

Initialization of all TRK RAM sections

This step basically makes sure that all the RAM used by MetroTRK
is well initialized. This may mean different things for different pro-
cessors, but generally includes copying some initial data values
from ROM into RAM (in ROM-based TRK implementations), and
making sure all uninitialized sections are cleared with zeros.

All such memory initializations take place within the
__init_data() function which is called by __start(). If you
need to modify the locations of RAM sections, you should not need
to modify anything in __init_data(). Instead, you can change
the location from within the ÒLinker PreferencesÓ panel in your
project. See the Targeting manual for your target processor for de-
tails on setting linker preferences.

For a full specification of functions listed here, see the ÒMetroTRK
Function Reference OverviewÓ on page 55.

Additional initializations

This step provides an opportunity to perform special hardware or
software initializations not fitting into one of the previous steps.
You perform these additional initializations in the __init_user()
function. This function is called by __start(), and it is the last
code called before MetroTRK goes into its core event-waiting loop.
At the time this function is called, all other initializations have al-
ready been performed. You can rely on the assumption that all pro-
cessor, memory, and other hardware initializations have been com-
pleted.
MetroTRK Manual TRKÐ25

Understanding MetroTRK
Low-Level Communication with Host Debugger
You may use __init_user() to customize MetroTRK for differ-
ent hardware configurations, if there are certain initializations that
rely on other initializations being complete.

For a full specification of functions listed here, see the ÒMetroTRK
Function Reference OverviewÓ on page 55.

Low-Level Communication with Host Debugger
At the lowest levels, communication between MetroTRK and the
host debugger takes place over a standard serial connection. For
maximum portability, the low-level code which drives the actual se-
rial controller is completely factored away from the MetroTRK core.
MetroTRK provides a simple interface which can be plugged into
different UART (Universal Asynchronous Receiver Transmitter)
drivers if necessary. The default implementations plug into the stan-
dard on-board serial ports.

The transmission rate (or baud-rate) of this serial communication is
configurable depending on the target boardÕs capabilities. Possible
transmission rates range from 300 baud to 230.4k baud. On the Me-
troTRK side, transmission rate is set by changing a compile-time
constant. For more information, see ÒCustomizing Low-Level Com-
municationsÓ on page 46. On the host debugger side, it is set by
changing a field in the preferences dialog. For more information on
setting host debugger settings, see the Targeting manual for your
target processor.

On top of this serial communication, a simple messaging protocol is
used where each discrete message is framed verified by employing
a checksum. This messaging protocol allows MetroTRK and the
host debugger to send each other messages as defined by the Me-
troTRK debug API, as described in ÒMetroTRK Debug APIÓ on
page 26.

MetroTRK Debug API
Abstracting away from the actual serial communication between
MetroTRK and the host debugger, the two sides communicate via a
TRKÐ26 MetroTRK Manual

Understanding MetroTRK
MetroTRK Debug API
well-defined debug API. This API defines a set of messages, each of
which is either sent from the host debugger to MetroTRK, or vice-
versa.

Some of the messages in the debug API return a value via a reply
message. Since they have a return value, we refer to these messages
as functional messages, or simply functions. Messages which do not
return with a reply message are referred to as commands. In reality,
all messages return a reply message, but a reply message of a simple
command contains nothing more than an acknowledgment and an
error code. Replies to functional messages contain one or more val-
ues in addition to the standard acknowledgment and error code.

Debug commands and functions are grouped into two categories,
the primary command set (level 1) and the extended command set (level
2). The primary command set is absolutely necessary for the debug-
ger to function properly. The extended command set, in contrast,
adds functionality to the debugger but is not necessary.

MetroTRK uses commands and functions in two fundamental ways.
The first is to receive and service requests from the host debugger.
The second is to notify the host debugger that a special event has oc-
curred on the target. We will discuss the specific commands and
functions serving these two purposes in the following sections:

¥ Servicing Requests from the Host Debugger

¥ Sending Notifications to the Host Debugger

Servicing Requests from the Host Debugger

Most of the functions and commands in the MetroTRK debug API
are requests from the host debugger to MetroTRK. These can take the
form of requests for information (like asking for the value of a regis-
ter) or requests for action (like asking MetroTRK to step across a line
of code.)

When the MetroTRK core receives a request, it sends the request to
the corresponding handler function for processing. In the request
specifications that follow, the requestÕs handler function is specified
in the ÒHandler FunctionÓ field.
MetroTRK Manual TRKÐ27

Understanding MetroTRK
Host Debugger to MetroTRK Requests
The following is a list of each of the requests the host debugger can
send. Detailed specifications for each request can be found in the
section ÒHost Debugger to MetroTRK RequestsÓ on page 28, or on
the page number listed below:

¥ ÒConnectÓ on page 29

¥ ÒResetÓ on page 30

¥ ÒGetVersionsÓ on page 30

¥ ÒSupportMaskÓ on page 31

¥ ÒReadMemoryÓ on page 32

¥ ÒWriteMemoryÓ on page 34

¥ ÒReadRegistersÓ on page 35

¥ ÒWriteRegistersÓ on page 37

¥ ÒContinueÓ on page 38

¥ ÒStepÓ on page 38

Sending Notifications to the Host Debugger

In addition to receiving requests, MetroTRK can also send messages,
called notifications, to alert the host debugger of important events.

The following is a list of each of the notifications that MetroTRK can
send. Detailed specifications for each notification can be found in
the section ÒMetroTRK to Host Debugger NotificationsÓ on page 40,
or on the page number listed below:

¥ ÒNotifyStoppedÓ on page 40

¥ ÒNotifyExceptionÓ on page 41

¥ ÒFputsÓ on page 42

Host Debugger to MetroTRK Requests
This section lists the requests that the host debugger can send to
MetroTRK. Each listing gives the following attributes:
TRKÐ28 MetroTRK Manual

Understanding MetroTRK
Host Debugger to MetroTRK Requests
¥ Command Set: Either ÒPrimary Command SetÓ or ÒExtended
Command SetÓ. See ÒMetroTRK Debug APIÓ on page 26 for
more information.

¥ Description: A high-level description of the request

¥ Parameters: An explanation of each formal parameter, if any

¥ Handler function: The name of the MetroTRK function which
handles the request

¥ Return: An explanation of the value returned by the request,
if any (acknowledgments and error codes are omitted, since
they are always returned.)

¥ Remarks: Implementational or other notes about the request

¥ See Also: References to related information

NOTE: Each of these messages is also outlined in the source file
msgcmd.h. This file also defines all MessageCommandID values
and message-specific constants.

The following requests are described in this section:

¥ Connect

¥ Reset

¥ GetVersions

¥ SupportMask

¥ ReadMemory

¥ WriteMemory

¥ ReadRegisters

¥ WriteRegisters

¥ Continue

¥ Step

Connect

Command Set Primary Command Set (level 1)
MetroTRK Manual TRKÐ29

Understanding MetroTRK
Host Debugger to MetroTRK Requests
Description Begins debug session

Parameters None

Handler
Function

DoConnect()

Return None

Remarks This request should be sent by the host debugger once at the begin-
ning of each debug session.

See Also ÒDoConnect()Ó on page 61

Reset

Command Set Extended Command Set (level 2)

Description Tells MetroTRK to reset the target board

Parameters None

Handler
Function

DoReset()

Return None

Remarks Restarts MetroTRK and performs all hardware initializations, just as
if the board were being manually reset.

See Also ÒDoReset()Ó on page 66

GetVersions

Command Set Primary Command Set (level 1)

Description Returns MetroTRK version information

Parameters None
TRKÐ30 MetroTRK Manual

Understanding MetroTRK
Host Debugger to MetroTRK Requests
Handler
Function

DoVersions()

Return Return values for this function are:

See Also ÒDoVersions()Ó on page 69

SupportMask

Command Set Primary Command Set (level 1)

Description Returns a list of which messages are supported by the MetroTRK

Parameters None

Handler
Function

DoSupportMask()

Return Return values for this function are:

kernel
Major

ui8 The Òmajor changeÓ part of the Me-
troTRK version number (in version
1.2, the kernelMajor would be 1.)

kernel
Minor

ui8 The Òminor changeÓ part of the Me-
troTRK version number (in version
1.2, the kernelMinor would be 2.)

protocol
Major

ui8 The Òmajor changeÓ part of the mes-
saging protocol version number (in
version 1.2, the protocolMajor would
be 1.)

protocol
Minor

ui8 The Òmajor changeÓ part of the mes-
saging protocol version number (in
version 1.2, the protocolMinor would
be 2.)
MetroTRK Manual TRKÐ31

Understanding MetroTRK
Host Debugger to MetroTRK Requests
Remarks None

See Also ÒDoSupportMask()Ó on page 68,

msgcmd.h

ReadMemory

Command Set Primary Command Set (level 1)

Description Reads an arbitrary section of memory off target board

mask ui8[32] A bit-array of 32 bytes, where each bit
corresponds to the message (type
MessageCommandID) with an ID
matching the position of the bit in the
array. If the bit value is 1, it signiÞes
that the message is available. If the
value is 0, it signiÞes that the message
is not available.

As an example, if kDSReset were
available, then the 4th bit of mask
would be 1 since kDSReset is the 4th
message (its value is actually 3, but
we start counting from 0.)

See the documentation in msgcmd.h
for details. Also see how the default
values are set in target.h
TRKÐ32 MetroTRK Manual

Understanding MetroTRK
Host Debugger to MetroTRK Requests
Parameters If the options parameter is DS_MSG_MEMORY_EXTENDED, the pa-
rameters are as follows

If the options parameter is anything else, the parameters are:

Handler
Function

DoReadMemory()

Return Return values for this function are:

options ui8 One of the following values:

¥ DS_MSG_MEMORY_SEGMENTED

¥ DS_MSG_MEMORY_EXTENDED

¥ DS_MSG_MEMORY_PROTECTED

¥ DS_MSG_MEMORY_USERVIEW

(See msgcmd.h for details on these)

length ui16 Length of memory section, in bytes (1
to 2048)

start
High

ui32 Start address of memory section (up-
per word)

startLow ui32 Start address of memory section (low-
er word)

options ui8 One of the following values:

¥ DS_MSG_MEMORY_SEGMENTED

¥ DS_MSG_MEMORY_EXTENDED

¥ DS_MSG_MEMORY_PROTECTED

¥ DS_MSG_MEMORY_USERVIEW

(See msgcmd.h for details on these)

length ui16 Length of memory section, in bytes (1
to 2048)

start ui32 Start address of memory section
MetroTRK Manual TRKÐ33

Understanding MetroTRK
Host Debugger to MetroTRK Requests
Remarks MetroTRK will attempt to catch and handle any memory access ex-
ceptions that occur while reading the data.

See Also ÒDoReadMemory()Ó on page 64,

msgcmd.h

WriteMemory

Command Set Primary Command Set (level 1)

Description Writes data to an arbitrary position in memory

Parameters If the options parameter is DS_MSG_MEMORY_EXTENDED, the pa-
rameters are as follows

length ui16 Length of data read

data ui8[] Data (up to 2048 bytes)

options ui8 One of the following values:

¥ DS_MSG_MEMORY_SEGMENTED

¥ DS_MSG_MEMORY_EXTENDED

¥ DS_MSG_MEMORY_PROTECTED

¥ DS_MSG_MEMORY_USERVIEW

(See msgcmd.h for details on these)

length ui16 Length of data, in bytes (1 to 2048)

start
High

ui32 Start address of destination (upper
word)

startLow ui32 Start address of destination (lower
word)

data ui8[] Data (up to 2048 bytes)
TRKÐ34 MetroTRK Manual

Understanding MetroTRK
Host Debugger to MetroTRK Requests
If the options parameter is anything else, the parameters are:

Handler
Function

DoWriteMemory()

Return Return values for this function are:

Remarks MetroTRK will attempt to catch and handle any memory access ex-
ceptions that occur while writing the data.

See Also ÒDoWriteMemory()Ó on page 70,

msgcmd.h

ReadRegisters

Command Set Primary Command Set (level 1)

Description Reads a sequence of registers from the target processor

options ui8 One of the following values:

¥ DS_MSG_MEMORY_SEGMENTED

¥ DS_MSG_MEMORY_EXTENDED

¥ DS_MSG_MEMORY_PROTECTED

¥ DS_MSG_MEMORY_USERVIEW

(See msgcmd.h for details on these)

length ui16 Length of data, in bytes (1 to 2048)

start ui32 Start address of destination

data ui8[] Data (up to 2048 bytes)

length ui16 Amount of memory actually written
MetroTRK Manual TRKÐ35

Understanding MetroTRK
Host Debugger to MetroTRK Requests
Parameters Parameters are as follows:

Handler
Function

DoReadRegisters()

Return Return values for this function are:

Remarks MetroTRK will attempt to catch and handle any access exceptions
that occur while reading.

See Also ÒDoReadRegisters()Ó on page 65,

PowerPC m8xxreg.h,

MIPS mips.reg.h,

msgcmd.h

options ui8 One of the following value:

¥ kDSRegistersDefault

¥ kDSRegistersFP

¥ kDSRegistersExtended1

¥ kDSRegistersExtended2

(See msgcmd.h for details)

first
Register

ui16 Number of the first register in the se-
quence

last
Register

ui16 Number of the last register in the se-
quence

register
Data

void* An array of register values. The size
of each element will depend on the
size of the registers themselves. If the
registers are 2 bytes wide, then a new
value will start every 2 bytes. If the
registers are 4 bytes wide, a new
value will start every 4 bytes. The
maximum length of this array is 2048
bytes.
TRKÐ36 MetroTRK Manual

Understanding MetroTRK
Host Debugger to MetroTRK Requests
WriteRegisters

Command Set Primary Command Set (level 1)

Description Writes data to a sequence of registers

Parameters Parameters are as follows:

Handler
Function

DoWriteRegisters()

Return None

Remarks MetroTRK will attempt to catch and handle any access exceptions
that occur while writing.

options ui8 One of the following value:

¥ kDSRegistersDefault

¥ kDSRegistersFP

¥ kDSRegistersExtended1

¥ kDSRegistersExtended2

(See msgcmd.h for details)

first
Register

ui16 Number of the first register in the se-
quence

last
Register

ui16 Number of the last register in the se-
quence

register
Data

ui32[] An array of register values. The size
of each element will depend on the
size of the registers themselves. If the
registers are 2 bytes wide, then a new
value will start every 2 bytes. If the
registers are 4 bytes wide, a new
value will start every 4 bytes. The
maximum length of this array is 2048
bytes.
MetroTRK Manual TRKÐ37

Understanding MetroTRK
Host Debugger to MetroTRK Requests
See Also ÒDoWriteRegisters()Ó on page 71,

PowerPC m8xxreg.h,

MIPS mips.reg.h,

msgcmd.h

Continue

Command Set Primary Command Set (level 1)

Description Starts target program running

Parameters None

Handler
Function

DoContinue()

Return None

Remarks This request is sent by the host debugger to tell MetroTRK to let the
target program continue execution. This will put MetroTRK back
into its event-waiting mode, where it will let the program run until
something interesting happens. For more information on the Me-
troTRKÕs event-waiting mode, see ÒMetroTRK CoreÓ on page 12.

See Also ÒDoContinue()Ó on page 62

Step

Command Set Extended Command Set (level 2)

Description Request for MetroTRK to let the target program run an arbitrary
number of instructions or, alternatively, until the PC is outside a
given range of values.
TRKÐ38 MetroTRK Manual

Understanding MetroTRK
Host Debugger to MetroTRK Requests
Parameters If the options parameter is kDSStepSingle, the parameters are as
follows

If the options parameter is kDSStepOutOfRange, the parameters
are:

Handler
Function

DoStep()

Return None

Remarks if the options parameter is kDSStepSingle, MetroTRK will step
over count instructions in the target program, and then return con-
trol to the host. If the options parameter is kDSStepOutOfRange,
MetroTRK will continue running the program until it hits an in-
struction whose address is outside the range specified by range-
Start and rangeEnd. It will then return control to the host.

MetroTRK alerts the host that the end condition has been reached
by sending a NotifyStopped notification. For more information
on this notifications, see ÒNotifyStoppedÓ on page 40.

options ui8 One of the following values:

¥ kDSStepSingle

¥ kDSStepOutOfRange

(See msgcmd.h for details on these)

count ui8 Number of instructions to step over

options ui8 One of the following values:

¥ kDSStepSingle

¥ kDSStepOutOfRange

(See msgcmd.h for details on these)

range-
Start

ui32 Start address of memory range

rangeEnd ui32 End address of memory range
MetroTRK Manual TRKÐ39

Understanding MetroTRK
MetroTRK to Host Debugger Notifications
See Also ÒDoStep()Ó on page 67,

ÒNotifyStoppedÓ on page 40,

msgcmd.h

MetroTRK to Host Debugger Notifications
This section lists the notifications that MetroTRK can send to the
host debugger. Each listing gives the following attributes:

¥ Command Set: Either ÒPrimary Command SetÓ or ÒExtended
Command SetÓ. See ÒMetroTRK Debug APIÓ on page 26 for
more information.

¥ Description: A high-level description of the notification

¥ Parameters: An explanation of each formal parameter, if any

¥ Return: An explanation of the value returned by the notifica-
tion, if any (acknowledgments and error codes are omitted,
since they are always returned.)

¥ Remarks: Implementational or other notes about the notifica-
tion

¥ See Also: References to related information

The following notifications are described in this section:

¥ NotifyStopped

¥ NotifyException

¥ Fputs

NotifyStopped

Command Set Primary Command Set (level 1)

Description Used to notify debugger that a breakpoint has been hit or a step
command has completed.
TRKÐ40 MetroTRK Manual

Understanding MetroTRK
MetroTRK to Host Debugger Notifications
Parameters The parameters are as follows

Return None

Remarks None

See Also ÒTargetInterrupt()Ó on page 80,

ÒTargetAddStopInfo()Ó on page 78

NotifyException

Command Set Primary Command Set (level 1)

Description Used to notify debugger that an exception has occurred on the tar-
get processor.

Parameters If the options parameter is kDSStepSingle, the parameters are as
follows

Return None

Remarks None

See Also PowerPC m8xxreg.h,

target
defined
info

target
specific

This variable basically gives state in-
formation about the target. It is differ-
ent for each target processor. It gener-
ally contains information like the PC
and the instruction at the PC. See
TargetAddStopInfo() for details.

target
defined
info

target
specific

This variable basically gives state in-
formation about the target. It may be
different for each target processor, but
generally contains information like
the PC, the instruction at the PC, and
the exception ID. See TargetAddEx-
ceptionInfo() for details.
MetroTRK Manual TRKÐ41

Understanding MetroTRK
MetroTRK to Host Debugger Notifications
MIPS mips.reg.h,

ÒTargetInterrupt()Ó on page 80,

ÒTargetAddExceptionInfo()Ó on page 78

Fputs

Command Set Primary Command Set (level 1)

Description Sends a string to the host debugger to display in a console window.

Parameters The parameters are as follows:

Return None

Remarks None.

See Also ÒDoFputs()Ó on page 63,

msgcmd.h

file
Options

ui8 One of the following values:

¥ kDSStdout

¥ kDSStderr

(See msgcmd.h for details on these)

string
Data

ui8[] A zero-terminated string to be sent to
the host debugger.
TRKÐ42 MetroTRK Manual

3
Customizing
MetroTRK
This chapter describes how you can customize MetroTRK to work
with new board configurations.

Customizing MetroTRK Overview
Certain parts of MetroTRK rely on specific details about the board
configuration you are targeting. Each CodeWarrior embedded
product comes with at least one complete implementation of Me-
troTRK which targets a specific reference board. If you are using
this supported reference board or boards, you donÕt have to modify
MetroTRK. If you are using a board other than the supported refer-
ence board(s), you may need to modify some parts of MetroTRK to
customize it for your specific board configuration. MetroTRK code
is factored with this in mind, so there are relatively few functions
that are board-dependent and need customization.

NOTE: For information on supported reference boards and Me-
troTRK implementations for each, see the Targeting manual for
your CodeWarrior product.

This chapter guides you through the parts of MetroTRK which may
need customization. Each section explains customizations in a spe-
cific area of MetroTRK. The sections in this chapter are:

¥ Customizing MetroTRK Initializations

¥ Customizing Low-Level Communications

¥ Customizing Debug Services
MetroTRK Manual TRKÐ43

Customizing MetroTRK
Customizing MetroTRK Initializations
Customizing MetroTRK Initializations
As discussed in ÒMetroTRK InitializationsÓ on page 23, there are
five steps to the initialization process. Out of these, two are not de-
pendent on board-level specifics, and you should never need to
modify them to customize for your board. They are:

¥ Initialization of the target processorÕs registers

¥ Initialization of all MetroTRK RAM sections

The remaining three steps may need to be customized and are dis-
cussed in the topics which follow:

¥ Initialization of hardware which doesnÕt access MetroTRK
memory

¥ Exception vector initializations

¥ Additional initializations

Customizing Hardware Initializations

You can customize MetroTRK hardware initializations in one of two
places. Initializations which do not depend on MetroTRKÕs RAM
sections being set up should occur within the __init_hardware()
function. Those that may need to access part of MetroTRKÕs RAM
should be within the __init_user() function.

Customizing __init_hardware()

__init_hardware() is called immediately after initializing the
processorÕs register set but before any of MetroTRKÕs RAM sections
are initialized. For this reason, memory access is not safe at the start
of __init_hardware(). In fact, one of the responsibilities of
__init_hardware() is to make memory access safe. By the end of
the function, all memory sub-systems should be initialized.

The __init_hardware() function also performs another step of
MetroTRK initialization sequence. It calls into the
__copy_vectors() function, which copies the exception vectors
from ROM into the appropriate RAM locations for exception han-
dling. Since __copy_vectors() must be called after memory ac-
TRKÐ44 MetroTRK Manual

Customizing MetroTRK
Customizing MetroTRK Initializations
cess has been made safe (because it must be able to write into sys-
tem RAM), you must perform all memory initializations before the
call to __copy_vectors(). See the topic on ÒCustomizing Excep-
tion Vector InitializationsÓ on page 45 for details about the
__copy_vectors() function.

For more explanation of the __init_hardware() function, see
ÒBoard Initializations that donÕt Access MetroTRK MemoryÓ on
page 23, and its entry in the function reference, Ò__init_hardware()Ó
on page 58.

Customizing __init_user()

If you need to perform a hardware initialization that depends on
MetroTRK memory being initialized, use the __init_user() func-
tion. This function is basically the last thing to be executed in the
MetroTRK initialization process.

WARNING! Remember that you can not perform initializations
which access MetroTRK memory from the __init_hardware()
function, because MetroTRK memory is not yet set up at that
point. You should put such initializations in __init_user().

For more explanation of the __init_user() function, see ÒAdditional
initializationsÓ on page 25, and its entry in the function reference,
Ò__init_user()Ó on page 59.

Customizing Exception Vector Initializations

You should not need to customize exception vector initialization.
However, you may want to override the default exception-handling
code to handle certain exceptions. If you want your application to
handle certain exceptions, you must take care that you are not inter-
fering with MetroTRK operation.

The PowerPC version of MetroTRK needs to receive all Program
Error and Trace exceptions. Your application should not over-
write either of these exceptions. Other than that, your target pro-
gram may overwrite whichever exceptions it needs to handle.
MetroTRK Manual TRKÐ45

Customizing MetroTRK
Customizing Low-Level Communications
WARNING! On PowerPC, you must make sure that MetroTRKÕs
exception-handling code gets called for the exception ÒSoftware
Emulation.Ó This exception is used to track breakpoints, and
breakpoints will not work properly if the exception is not handled
by MetroTRK.

The MIPS version of MetroTRK needs to receive all Breakpoint
exceptions. If your application needs to handle either of these excep-
tions, it needs to call into MetroTRKÕs handling code at some point
(you need to share the exception with MetroTRK.) Other than that,
your target program may overwrite whichever exceptions it needs
to handle. See ÒMetroTRKÕs RAM SectionsÓ on page 17 for informa-
tion on where MetroTRKÕs exception vectors are located.

For more information on the __copy_vectors() function, see
ÒException Vector InitializationsÓ on page 24, and its entry in the
function reference, Ò__copy_vectors()Ó on page 56.

Customizing Additional Initializations

You can perform any additional initializations within the
__init_user() function. This function is called after everything
else in MetroTRK has been initialized, immediately before starting
the actual program to be debugged.

For more explanation of the __init_user() function, see ÒAdditional
initializationsÓ on page 25, and its entry in the function reference,
Ò__init_user()Ó on page 59.

Customizing Low-Level Communications
Low-level communications between MetroTRK and the host debug-
ger take place over a standard serial connection. The data transmis-
sion rate of this serial connection is set for MetroTRK at compile-
time and for the host-debugger at debug time.

To make customization easy, the implementation of this serial mes-
saging is completely factored from the rest of MetroTRK. The source
TRKÐ46 MetroTRK Manual

Customizing MetroTRK
Customizing Debug Services
file UART.h declares a set of nine abstract functions which Me-
troTRK uses to send and receive serial messages. These functions
are abstracted away from the main MetroTRK code so that Me-
troTRK can function with new serial drivers easily. To support any
new serial hardware, these nine functions need to be re-implement-
ed to properly control the hardware.

Of the nine UART functions, only five need to be re-implemented
because the other four are derived from the first five. They can all be
found in the function reference at the locations listed below:

¥ ÒInitializeUART()Ó on page 72

¥ ÒTerminateUART()Ó on page 94

¥ ÒReadUARTPoll()Ó on page 73

¥ ÒReadUART1()Ó on page 73

¥ ÒWriteUART1()Ó on page 96

Data Transmission Rate

MetroTRK can communicate with the host debugger at transmis-
sion rates between 300 baud and 230.4k baud. The transmission rate
is set at compile time by setting the constant TRK_BAUD_RATE to a
value of the enumerated type UARTBaudRate (UARTBaudRate is
defined in UART.h.) In the default implementation,
TRK_BAUD_RATE is defined in the file target.h.

In order to work properly, the host debugger must be set to commu-
nicate at the same transmission rate. This attribute can be set in the
preference dialog box in MW Debug. For more information on de-
bugger settings, see the Targeting manual for your target processor.

Customizing Debug Services
Debug services are provided by MetroTRK via a messaging API
outlined in ÒMetroTRK Debug APIÓ on page 26. Several of these
messages may need to be customized for different board configura-
tions. This section goes through each message in the API, discussing
whether or not it is dependent on the configuration of the target
MetroTRK Manual TRKÐ47

Customizing MetroTRK
Customizing Debug Services
board. If it is board-dependent, it describes how to go about custom-
izing it for your board.

Parts of code that are board-specific are generally factored out of the
main message handling code so that they may be modified easily
without having to maneuver through large sections of code which
are not board-specific.

In this section, the following topics are covered:

¥ Customizing Debug Request Handling

¥ Customizing Debug Notifications

Customizing Debug Request Handling

This section discusses customization of each of the debugger re-
quest messages.

Customizing Connect

Upon receiving a Connect request, MetroTRK simply sends a
debug message to the console. It is not board-specific in any way
and should not need any customization.

For more information on the Connect request, see ÒConnectÓ on
page 29.

Customizing Reset

Upon receiving a Reset request, MetroTRK calls into its own reset
code. This is not board-specific in any way and should not need any
customization.

For more information on the Reset request, see ÒResetÓ on page 30.

Customizing GetVersions

Upon receiving a GetVersions request, MetroTRK looks up ver-
sion numbers and returns them to the host debugger. This function
is not board-specific in any way and should not need any customi-
zation.
TRKÐ48 MetroTRK Manual

Customizing MetroTRK
Customizing Debug Services
For more information on the GetVersions request, see ÒGetVer-
sionsÓ on page 30.

Customizing SupportMask

Upon receiving a SupportMask request, MetroTRK looks up which
debug API messages are supported by calling the TargetSup-
portMask() function. This function itself is not board-specific and
should not need to be changed, but it does rely on a set of board-
specific variables that you may need to change in customizing Me-
troTRK. These compile-time variables, defined in the file target.h,
specify exactly which debug API messages are supported by your
custom version of MetroTRK.

Each variable is 8 bits wide, and there are 32 such variables. Each is
a bit-vector where each bit represents one message in the MetroTRK
debug API. The first variable, DS_SUPPORT_MASK_00_07, repre-
sents the first 8 messages, those with numbers 0x00 through 0x7.
The second variable, DS_SUPPORT_MASK_08_0F, represents the
next 8 messages and so on until you get to
DS_SUPPORT_MASK_F8_FF, which represents messages 248
through 255.

WARNING! In the original implementation of MetroTRK, the sup-
port mask variables were mislabled. Each that should have been
labeled DS_SUPPORT_MASK_?0_?7 was mislabled
DS_SUPPORT_MASK_?0_?8, and each that should have been la-
beled DS_SUPPORT_MASK_?8_?F was mislabled
DS_SUPPORT_MASK_?9_?F. If you are using an older version of
MetroTRK, be careful not to interpret values by these variablesÕ in-
correct naming.

By changing the values of these variables, you can remove support
for any messages that you havenÕt implemented in your version of
MetroTRK. Likewise, if you add support for any optional messages
not supported by the default MetroTRK, you need to change these
variables accordingly.
MetroTRK Manual TRKÐ49

Customizing MetroTRK
Customizing Debug Services
For more information, see ÒTargetSupportMask()Ó on page 87 and
for more information on the SupportMask request, see ÒSupport-
MaskÓ on page 31.

Customizing ReadMemory

Upon receiving a ReadMemory request, MetroTRK reads the speci-
fied section of memory and returns the result. To carry out this task,
MetroTRK calls the function TargetReadMemory() to read memo-
ry from the board. This function itself is not board-specific, but it
calls into another function that is: ValidMemory32().

ValidMemory32() is the only part of the ReadMemory message
which is board-specific. The job of this function is to check whether
the addresses to be read are valid on the target board configuration.

On the MIPS version of MetroTRK, ValidMemory32() is not itself
board-specific. It instead relies on a global, gMemMap, to make infer-
ences about which ranges are valid and which are invalid. All you
should need to do to customize memory checks is to redefine gMem-
Map in the file memmap.h.

On the PowerPC version of MetroTRK, ValidMemory32() is a
board-specific function, in other words it relies on the specific mem-
ory layout of the board you are using. You will need to customize
this function to properly represent the memory configuration of
your board.

For more information on TargetReadMemory(), see ÒTargetRead-
Memory()Ó on page 85. For more information on
ValidMemory32(), see ÒValidMemory32()Ó on page 95. For more
information on the ReadMemory request, see ÒReadMemoryÓ on
page 32.

Customizing WriteMemory

Upon receiving a WriteMemory request, MetroTRK writes the spec-
ified data into memory at the specified address. To carry out this
task, MetroTRK calls the function TargetWriteMemory() to write
to memory on the board. This function itself is not board-specific,
but it calls into another function that is, ValidMemory32().
TRKÐ50 MetroTRK Manual

Customizing MetroTRK
Customizing Debug Services
ValidMemory32() is the only part of the WriteMemory message
which is board-specific. The job of this function is to check whether
the addresses to be written to are valid on the target board configu-
ration.

On the MIPS version of MetroTRK, ValidMemory32() is not
board-specific. It instead relies on a global, gMemMap, to make infer-
ences about which ranges are valid and which are invalid. All you
should need to do to customize memory checks is to redefine gMem-
Map in the file memmap.h.

On the PowerPC version of MetroTRK, ValidMemory32() is a
board-specific function, in other words it relies on the specific mem-
ory layout of the board you are using. You will need to customize
this function to properly represent the memory configuration of
your board.

For more information on TargetWriteMemory(), see ÒTarget-
WriteMemory()Ó on page 93. For more information on
ValidMemory32(), see ÒValidMemory32()Ó on page 95. For more
information on the WriteMemory request, see ÒWriteMemoryÓ on
page 34.

Customizing ReadRegisters

Upon receiving a ReadRegisters request, MetroTRK reads the
specified sequence of registers from the processor, returning the re-
sulting values to the host debugger. Reading registers is not a
board-specific task, so you should not need to customize this func-
tion for new board configurations.

For more information on the ReadRegisters request, see
ÒReadRegistersÓ on page 35.

Customizing WriteRegisters

Upon receiving a WriteRegisters request, MetroTRK writes the
specified data into the specified register sequence. Writing to regis-
ters is not a board-specific task, so you should not need to customize
this function for new board configurations.
MetroTRK Manual TRKÐ51

Customizing MetroTRK
Customizing Debug Services
For more information on the WriteRegisters request, see ÒWrit-
eRegistersÓ on page 37.

Customizing Continue

Upon receiving a Continue request, MetroTRK swaps in the con-
text of the target program and begins it executing. This is not a
board-specific task, so you should not need to customize this func-
tion for new board configurations.

For more information on the Continue request, see ÒContinueÓ on
page 38.

Customizing Step

Upon receiving a Step request, MetroTRK steps through a particu-
lar number of instructions. This is not a board-specific task, so you
should not need to customize this function for new board configura-
tions.

For more information on the Step request, see ÒStepÓ on page 38.

Customizing Debug Notifications

This section discusses customization of each of the MetroTRK notifi-
cation messages.

Customizing NotifyStopped

MetroTRK notifies the host debugger that the target program has
been stopped by sending a NotifyStopped notification. Building
this notification is not a board-specific task, so you should not need
to customize this function for new board configurations.

For more information on the NotifyStopped request, see ÒNoti-
fyStoppedÓ on page 40.

Customizing NotifyException

MetroTRK notifies the host debugger that an exception has occurred
on the target processor by sending a NotifyException notifica-
TRKÐ52 MetroTRK Manual

Customizing MetroTRK
Customizing Debug Services
tion. Building this notification is not a board-specific task, so you
should not need to customize this function for new board configura-
tions.

For more information on the NotifyException request, see ÒNoti-
fyExceptionÓ on page 41.

Customizing Fputs

MetroTRK outputs a string on the host debugger side by sending a
Fputs notification. Building this notification is not a board-specific
task, so you should not need to customize this function for new
board configurations.

For more information on the Fputs request, see ÒFputsÓ on page 42.
MetroTRK Manual TRKÐ53

Customizing MetroTRK
Customizing Debug Services
TRKÐ54 MetroTRK Manual

A
MetroTRK Function
Reference
This is a reference for all MetroTRK functions mentioned in the text
of this manual.

MetroTRK Function Reference Overview
This appendix discusses every function appearing in the text of this
manual, along with other functions you might encounter in the Me-
troTRK source code. The discussion of each function includes the
following attributes:

¥ Description: A high-level description of the function

¥ Source File: The name of the file in which the function ap-
pears

¥ Prototype: The entire C prototype for the function

¥ Parameters: An explanation of each formal parameter, if any

¥ Return: An explanation of the value returned by the function,
if any

¥ Remarks: Implementational or other notes about the function

¥ Board-specific: Specifies whether or not the function relies on
specifics about the board configuration. If this attribute is
ÒyesÓ, the function may need modifications for new board
configurations.

¥ See Also: References to related functions

The functions described in this chapter are:

__copy_vectors() __init_data()

__init_hardware() __init_registers()
MetroTRK Manual TRKÐ55

MetroTRK Function Reference
MetroTRK Function Reference Overview
__copy_vectors()

Description Copies exception vectors into the appropriate spot in RAM.

__init_user() __reset

__start() DoConnect()

DoContinue() DoFputs()

DoNotifyStopped() DoReadMemory()

DoReadRegisters() DoReset()

DoStep() DoSupportMask()

DoVersions() DoWriteMemory()

DoWriteRegisters() InitializeUART()

ReadUARTPoll() ReadUART1()

ReadUARTN() ReadUARTString()

TargetAccessMemory() TargetAddExceptionInfo()

TargetAddStopInfo() TargetContinue()

TargetInterrupt() TargetReadDefault()

TargetReadExtended1() TargetWriteExtended2()

TargetReadFP() TargetReadMemory()

TargetSingleStep() TargetStepOutOfRange()

TargetSupportMask() TargetVersions()

TargetWriteDefault() TargetWriteExtended1()

TargetWriteExtended2() TargetWriteFP()

TargetWriteMemory() TerminateUART()

ValidMemory32() WriteUART1()

WriteUARTN() WriteUARTString()
TRKÐ56 MetroTRK Manual

MetroTRK Function Reference
MetroTRK Function Reference Overview
Source File PowerPC __ppc_eabi_init.c

MIPS __mips_eabi_init.c

Prototype void __copy_vectors (void);

Parameters None.

Return None.

Remarks This function initializes the processor exception vectors in their cor-
rect locations in RAM. This location is not configurable since it is
specified by the target processor. Vectors are copied from Me-
troTRKÕs ROM or RAM data section.

__copy_vectors() depends on safe memory access, so the memo-
ry system must be initialized before calling __copy_vectors().

This function is called only once, by the __init_hardware() func-
tion.

Board-specific No.

See Also Ò__init_hardware()Ó on page 58

__init_data()

Description Initializes MetroTRK data sections.

Source File __start.c

Prototype static void __init_data (void);

Parameters None.

Return None.

Remarks This function performs two kinds of initializations. First, it zero-ini-
tializes all data sections. Second, in the case where MetroTRK is run-
MetroTRK Manual TRKÐ57

MetroTRK Function Reference
MetroTRK Function Reference Overview
ning from ROM memory, it copies all read/write data sections into
the correct section of RAM.

This function is called only once, by the __start() function.

Board-specific No.

See Also Ò__start()Ó on page 60

__init_hardware()

Description Performs hardware initializations.

Source File PowerPC __ppc_eabi_init.c

MIPS __mips_eabi_init.c

Prototype void __init_hardware (void);

Parameters None.

Return None.

Remarks This function performs all hardware initializations which do not de-
pend on accessing TRK (data) memory sections. TRK data sections
are set up after __init_hardware() is called.

__init_hardware() must perform the following two tasks, in or-
der:

1. Set up the memory system so that memory access is safe.

2. Call into __copy_vectors(), which copies exception vectors
into their proper place in memory. This must be performed
after step 1 because it accesses memory.

This function is called only once, by the __start() function.

Board-specific Yes.

See Also Ò__copy_vectors()Ó on page 56,
TRKÐ58 MetroTRK Manual

MetroTRK Function Reference
MetroTRK Function Reference Overview
Ò__start()Ó on page 60

__init_registers()

Description Initializes important processor registers.

Source File __start.c

Prototype static void __init_registers (void);

Parameters None.

Return None.

Remarks This function initializes the EABI (Embedded Application Binary
Inteface) registers.

On the PowerPC processor, this would include the Òr1Ó, or stack
pointer register, and the small data area pointers, Òr2Ó and Òr13Ó.

On a MIPS processor, this would include the ÒspÓ, or stack pointer
register, and the ÒgpÓ, or global pointer register.

This function is called only once, by the __start() function.

Board-specific No.

See Also Ò__start()Ó on page 60

__init_user()

Description Performs any last-minute initializations.

Source File PowerPC __ppc_eabi_init.c

MIPS __mips_eabi_init.c

Prototype void __init_user (void);
MetroTRK Manual TRKÐ59

MetroTRK Function Reference
MetroTRK Function Reference Overview
Parameters None.

Return None.

Remarks In the default implementation of MetroTRK, this function does
nothing. When customizing for new board configurations, you can
use this function to do any Òlast-minuteÓ initializations that depend
on the rest of MetroTRK being initialized.

This function is called only once, by the __start() function.

Board-specific Yes.

See Also Ò__start()Ó on page 60

__reset

Description Resets the boards and re-starts MetroTRK.

Source File __reset.s

Prototype Not a function, this is simply labeled assembly code.

Remarks This code may have processor-specific or board-specific aspects to
reset the board.

The final action of this code is to re-start MetroTRK by calling into
the __start() function.

Board-specific Could be.

See Also Ò__start()Ó on page 60

__start()

Description Initializes important processor registers.

Source File __start.c
TRKÐ60 MetroTRK Manual

MetroTRK Function Reference
MetroTRK Function Reference Overview
Prototype void __start (void);

Parameters None.

Return None.

Remarks This function initializes the EABI runtime environment as well as
MetroTRK data. It performs the following tasks, in order:

1. Register initializations: __init_registers()

2. Hardware initializations (this step sets up memory system
and makes memory access safe): __init_hardware()

3. MetroTRK data initializations: __init_data()

4. Additional customized initializations: __init_user()

This function is the very first code executed upon board reset.

Board-specific No.

See Also Ò__init_data()Ó on page 57,

Ò__init_hardware()Ó on page 58,

Ò__init_registers()Ó on page 59,

Ò__init_user()Ó on page 59

DoConnect()

Description Responds to the Connect request from the host debugger.

Source File msghndlr.c

Prototype DSError DoConnect (MessageBuffer* b);

Parameters Parameters for this function are:
MetroTRK Manual TRKÐ61

MetroTRK Function Reference
MetroTRK Function Reference Overview
Return Returns a DSError error code.

Remarks All this procedure does is send an acknowledgment back to the host
debugger.

Board-specific No.

DoContinue()

Description Responds to the Continue request from the host debugger.

Source File msghndlr.c

Prototype DSError DoContinue (MessageBuffer* b);

Parameters Parameters for this function are:

Return Returns a DSError error code.

Remarks This procedure is responsible for swapping in the context of the tar-
get program and then starting it running again. Since it is processor-
specific, most of the work is done in the board-level function Tar-
getContinue().

Board-specific No.

See Also ÒTargetContinue()Ó on page 79

b Message-
Buffer*

The message buffer which contains
the original request (input) and the
reply (output.) This message contains
no input arguments.

b Message-
Buffer*

The message buffer which contains
the original request (input) and the
reply (output.) This message contains
no input arguments.
TRKÐ62 MetroTRK Manual

MetroTRK Function Reference
MetroTRK Function Reference Overview
DoFputs()

Description Creates and sends a Fputs message to the host debugger. This mes-
sage tells the host debugger to output a string.

Source File support.c

Prototype DSError DoFputs (DSFputsFileOptions options,
char* s, bool needACK);

Parameters Parameters for this function are:

Return Returns a DSError error code.

Remarks None.

Board-specific No.

See Also msgcmd.h

DoNotifyStopped()

Description MetroTRK uses this function to send notification to the host debug-
ger that the target program has been stopped.

Source File notify.c

options DSFputs
File
Options

One of the following values:

¥ kDSStdout

¥ kDSStderr

(See msgcmd.h for details on these)

s char* The zero-terminated character string
to be output by the host debugger.

needACK bool If TRUE, the procedure doesnÕt return
until it gets acknowledgment from the
host debugger (or it gets an error.)
MetroTRK Manual TRKÐ63

MetroTRK Function Reference
MetroTRK Function Reference Overview
Prototype DSError DoNotifyStopped (MessageCommandID command
);

Parameters Parameters for this function are:

Return Returns a DSError error code.

Remarks To build the actual notification message, this function calls Tar-
getAddStopInfo() or TargetAddExceptionInfo(), depending
on which kind of notification is being sent.

Board-specific No.

See Also ÒTargetAddStopInfo()Ó on page 78,

ÒTargetAddExceptionInfo()Ó on page 78,

msgcmd.h

DoReadMemory()

Description Responds to the ReadMemory request from the host debugger.
Reads a section of memory from the target board.

Source File msghndlr.c

Prototype DSError DoReadMemory (MessageBuffer* b);

Parameters Parameters for this function are:

command Message-
Command-
ID

The type of message to be sent to the
debugger. This can be one of the fol-
lowing values:

¥ kDSNotifyStopped

¥ kDSNotifyException

See msgcmd.h for more information
about these messages.
TRKÐ64 MetroTRK Manual

MetroTRK Function Reference
MetroTRK Function Reference Overview
Return Returns a DSError error code.

Remarks This procedure reads a section of memory from the target board.
The first thing it does is to check that the memory addresses are
within the 32-bit range (extended memory is not yet supported). It
then reads from memory, checking first to make sure the range of
addresses is valid. Most of the work is actually done in the proces-
sor-specific function TargetReadMemory().

Board-specific No.

See Also ÒTargetReadMemory()Ó on page 85

DoReadRegisters()

Description Responds to the ReadRegisters request from the host debugger.
Reads a sequence of registers from the target board.

Source File msghndlr.c

Prototype DSError DoReadRegisters (MessageBuffer* b);

Parameters Parameters for this function are:

Return Returns a DSError error code.

b Message-
Buffer*

The message buffer which contains
the original request (input) and the
reply (output.) For information on the
arguments contained in this message,
see ÒReadMemoryÓ on page 32.

b Message-
Buffer*

The message buffer which contains
the original request (input) and the
reply (output.) For information on the
arguments contained in this message,
see ÒReadRegistersÓ on page 35.
MetroTRK Manual TRKÐ65

MetroTRK Function Reference
MetroTRK Function Reference Overview
Remarks This procedure reads a sequence of registers from the target board.
The first thing it does is to check that the input sequence is valid
(first index smaller than last.) To actually read the register values, it
first checks which type of registers are desired. Depending on the
type of registers it is dealing with, it calls one of the following func-
tions:

kDSRegistersDefault: Calls TargetReadDefault()

kDSRegistersFP: Calls TargetReadFP()

kDSRegistersExtended1: Calls TargetReadExtended1()

kDSRegistersExtended2: Calls TargetReadExtended2()

These ÒtypeÓ register constants are defined in msgcmd.h.

PowerPC All registers with mnemonic names are defined in the
file m8xxreg.h. This file also defines the sizes (bit-lengths) of regis-
ters in the different register blocks.

MIPS All registers with mnemonic names are defined in the file
mips_reg.h. This file also defines the sizes (bit-lengths) of registers
in the different register blocks.

Board-specific No.

See Also ÒTargetReadDefault()Ó on page 81,

ÒTargetReadFP()Ó on page 84,

ÒTargetReadExtended1()Ó on page 82,

ÒTargetReadExtended2()Ó on page 83,

msgcmd.h

DoReset()

Description Responds to the Reset request from the host debugger. This proce-
dure re-initializes MetroTRK and resets board hardware.
TRKÐ66 MetroTRK Manual

MetroTRK Function Reference
MetroTRK Function Reference Overview
Source File msghndlr.c

Prototype DSError DoReset (MessageBuffer* b);

Parameters Parameters for this function are:

Return DoesnÕt really return anything since it never actually returns.

Remarks Calls the __reset code segment, which is the starting point for Me-
troTRK initialization. Sends an acknowledgment to the host debug-
ger before resetting, since control wonÕt be returned once __reset
is called.

Board-specific No.

See Also Ò__resetÓ on page 60,

DoStep()

Description Responds to the Step request from the host debugger. This proce-
dure steps through an arbitrary number of instructions in the host
program or, alternatively, until the PC (Program Counter) is outside
a given range of values.

Source File msghndlr.c

Prototype DSError DoStep (MessageBuffer* b);

Parameters Parameters for this function are:

b Message-
Buffer*

The message buffer which contains
the original request (input) and the
reply (output.) This message contains
no input arguments.
MetroTRK Manual TRKÐ67

MetroTRK Function Reference
MetroTRK Function Reference Overview
Return Returns a DSError error code.

Remarks Checks the options input argument, which can have one of the fol-
lowing values: kDSStepSingle or kDSStepOutOfRange. if the
value is kDSStepSingle, it calls the processor-specific function
TargetSingleStep(). This function will step the number of steps
specified in the message. If the value is kDSStepOutOfRange, it
calls the processor-specific function TargetStepOutOfRange().
This function will run the code until the PC is outside the range of
values specified in the message.

Board-specific No.

See Also ÒTargetSingleStep()Ó on page 86,

ÒTargetStepOutOfRange()Ó on page 86

DoSupportMask()

Description Responds to the SupportMask request from the host debugger.
This function basically replies to the message by sending a vector
representing the messages that we support.

Source File msghndlr.c

Prototype DSError DoSupportMask (MessageBuffer* b);

Parameters Parameters for this function are:

b Message-
Buffer*

The message buffer which contains
the original request (input) and the
reply (output.) For information on the
arguments contained in this message,
see ÒStepÓ on page 38.

b Message-
Buffer*

The message buffer which contains
the original request (input) and the
reply (output.) This message contains
no input arguments.
TRKÐ68 MetroTRK Manual

MetroTRK Function Reference
MetroTRK Function Reference Overview
Return Returns a DSError error code.

Remarks This procedure calls into the processor/board-specific function
TargetSupportMask(), which returns a 256-bit bit-vector describ-
ing which of the messaging API calls are supported. It then puts this
vector into a reply message that gets sent to the host debugger. If
you are customizing MetroTRK, you may need to change this func-
tion if you are adding support for any new messages or removing
support for any existing messages.

Within the bit-vector returned, each bit corresponds to the message
(type MessageCommandID) with an ID matching the position of the
bit in the array. If the bit value is 1, it signiÞes that the message is
available. If the value is 0, it signiÞes that the message is not avail-
able.

As an example, if kDSReset were available, then the 4th bit of mask
would be 1 since kDSReset is the 4th message (its value is actually
3, but we start counting from 0.)

Board-specific No.

See Also ÒTargetSupportMask()Ó on page 87

DoVersions()

Description Responds to the GetVersions request from the host debugger. Re-
plies with a set of four version numbers.

Source File msghndlr.c

Prototype DSError DoVersions (MessageBuffer* b);

Parameters Parameters for this function are:

b Message-
Buffer*

The message buffer which contains
the original request (input) and the
reply (output.) This message contains
no input arguments.
MetroTRK Manual TRKÐ69

MetroTRK Function Reference
MetroTRK Function Reference Overview
Return Returns a DSError error code.

Remarks This function replies to the host debugger with a set of four version
numbers. These represent two attributes, kernel and protocol, and
each attribute has a major and a minor version number.

The kernel attribute represents the version of the MetroTRK build. It
should change anytime any part of MetroTRK is changed.

The protocol attribute represents the version of the messaging API
and low-level serial protocols used by MetroTRK. This attribute
should change whenever one of these protocols is altered.

Most of the actual work of this function is done in the function Tar-
getVersions().

Board-specific No.

See Also ÒTargetVersions()Ó on page 88

DoWriteMemory()

Description Responds to the WriteMemory request from the host debugger.
Writes values to a segment of memory on the target board.

Source File msghndlr.c

Prototype DSError DoWriteMemory (MessageBuffer* b);

Parameters Parameters for this function are:

Return Returns a DSError error code.

b Message-
Buffer*

The message buffer which contains
the original request (input) and the
reply (output.) For information on the
arguments contained in this message,
see ÒWriteMemoryÓ on page 34.
TRKÐ70 MetroTRK Manual

MetroTRK Function Reference
MetroTRK Function Reference Overview
Remarks This procedure writes values to a segment of memory on the target
board. The first thing it does is to check that the memory addresses
are within the 32-bit range (extended memory is not yet supported).
It then writes to memory, checking first to make sure the range of
addresses is valid on the target hardware. Most of the work is actu-
ally done in the processor-specific function TargetWriteMemo-
ry().

Board-specific No.

See Also ÒTargetWriteMemory()Ó on page 93

DoWriteRegisters()

Description Responds to the WriteRegisters request from the host debugger.
Writes values to a sequence of registers on the target board.

Source File msghndlr.c

Prototype DSError DoWriteRegisters (MessageBuffer* b);

Parameters Parameters for this function are:

Return Returns a DSError error code.

Remarks This procedure writes values to a sequence of registers on the target
board. The first thing it does is to check that the input sequence is
valid (first index smaller than last.) To actually write the register
values, it first checks which type of registers are being written to. De-
pending on the type of registers it is dealing with, it calls one of the
following functions:

kDSRegistersDefault: Calls TargetWriteDefault()

b Message-
Buffer*

The message buffer which contains
the original request (input) and the
reply (output.) For information on the
arguments contained in this message,
see ÒWriteRegistersÓ on page 37.
MetroTRK Manual TRKÐ71

MetroTRK Function Reference
MetroTRK Function Reference Overview
kDSRegistersFP: Calls TargetWriteFP()

kDSRegistersExtended1: Calls TargetWriteExtended1()

kDSRegistersExtended2: Calls TargetWriteExtended2()

These type register constants are defined in msgcmd.h.

PowerPC All registers with mnemonic names are defined in the
file m8xxreg.h. This file also defines the sizes (bit-lengths) of regis-
ters in the different register blocks.

MIPS All registers with mnemonic names are defined in the file
mips_reg.h. This file also defines the sizes (bit-lengths) of registers
in the different register blocks.

Board-specific No.

See Also ÒTargetWriteDefault()Ó on page 89,

ÒTargetWriteFP()Ó on page 92,

ÒTargetWriteExtended1()Ó on page 90,

ÒTargetWriteExtended2()Ó on page 91,

msgcmd.h

InitializeUART()

Description Initializes the serial hardware on the target board.

Source File uart.c

Prototype UARTError InitializeUART (UARTBaudRate baudRate);

Parameters Parameters for this function are:

baudRate UARTBaud
Rate

The rate at which MetroTRK commu-
nicates with the host debugger. The
type UARTBaudRate is defined in
UART.h.
TRKÐ72 MetroTRK Manual

MetroTRK Function Reference
MetroTRK Function Reference Overview
Return Returns a UARTError error code.

Remarks None.

Board-specific Yes.

ReadUARTPoll()

Description Polls the serial device to see if there is a character to be read. If there
is, it reads it; otherwise, it returns an error.

Source File uart.c

Prototype UARTError ReadUARTPoll (char* c);

Parameters Parameters for this function are:

Return Returns a UARTError error code. If there was no character ready for
reading, it returns kUARTNoData, otherwise it returns kUARTNoEr-
ror.

Remarks None.

Board-specific Yes.

ReadUART1()

Description Reads one byte from the serial device.

Source File uart.c

Prototype UARTError ReadUART1 (char* c);

Parameters Parameters for this function are:

c char* Pointer to the output variable for the
character read.
MetroTRK Manual TRKÐ73

MetroTRK Function Reference
MetroTRK Function Reference Overview
Return Returns a UARTError error code.

Remarks Will wait until a character is available (or an error occurs.)

Board-specific Yes.

ReadUARTN()

Description Reads N bytes from the serial device.

Source File uart.c

Prototype UARTError ReadUARTN (void* bytes, unsigned long
limit);

Parameters Parameters for this function are:

Return Returns a UARTError error code.

Remarks Will not return until the specified number of bytes have been read
(or an error occurs.)

This function is wholly derived from ReadUART1().

Board-specific No.

See Also ÒReadUART1()Ó on page 73

c char* Pointer to the output variable for the
character read.

bytes void* Pointer to the output buffer for the
data read.

limit unsigned
long

Number of bytes to read and size of
output buffer.
TRKÐ74 MetroTRK Manual

MetroTRK Function Reference
MetroTRK Function Reference Overview
ReadUARTString()

Description Reads a terminated string from the serial device.

Source File uart.c

Prototype UARTError ReadUARTString (char* s, unsigned long
limit, char termChar);

Parameters Parameters for this function are:

Return Returns a UARTError error code.

Remarks This function always terminates the string (in the output buffer)
with a null (\0) character. This means that the buffer must be one
byte longer than the actual length of the string.

This function will not return until a terminating character is read
from the input or the buffer is overflowed. It will not time-out if the
input stream stops.

This function is wholly derived from ReadUART1().

Board-specific No.

See Also ÒReadUART1()Ó on page 73

TargetAccessMemory()

Description Used to read from or write to memory. Read or write operation is
selected with a boolean input parameter. The function performs a

s char* Pointer to the output buffer for the
string read.

limit unsigned
long

Size of output buffer.

termChar char Character that signals the end of the
string (in the input stream.)
MetroTRK Manual TRKÐ75

MetroTRK Function Reference
MetroTRK Function Reference Overview
check to make sure specified memory addresses are within valid
range for target board.

Source File targimpl.c

Prototype DSError TargetAccessMemory (void* data, void*
virtualAddress, size_t* memorySize,
MemoryAccessOptions accessOptions, bool read);

Parameters Parameters for this function are:

data void* In the case of a read operation, this is
where the output of the read goes. In
the case of a write operation, this is a
pointer to the data to write.

virtual-
Address

void* This is the starting address in memory
for the read or write operation.

memory-
Size

size_t* In the case of a read operation this is,
on input, the size of the area to be
read and, on output, the size of the
area actually read.

In the case of a write operation this is,
on input, the amount of data to be
written and, on output, the amount of
data actually read.
TRKÐ76 MetroTRK Manual

MetroTRK Function Reference
MetroTRK Function Reference Overview
Return Returns a DSError error code.

Remarks This procedure does not depend on specifics of the board memory
configuration. It checks board-level specifics by calling into
ValidMemory32(), which is board-specific and checks the validity
of the target addresses based on the boardÕs memory configuration.

Both DoReadMemory() and DoWriteMemory() funnel into this
function to do the actual memory accessing.

Board-specific No.

See Also ÒDoReadMemory()Ó on page 64,

ÒDoWriteMemory()Ó on page 70,

ÒValidMemory32()Ó on page 95,

msgcmd.h,

access-
Options

Memory-
Access-
Options

One of the following values:

¥ kUserMemory: When reading
code with debugging break-
points, hide breakpoints.

¥ kDebuggerMemory: When
reading code with debugging
breakpoints, show break-
points.

This enumerated type is defined in
targimpl.h. It directly corresponds
to the DS_MSG_MEMORY_USERVIEW
message option as defined in msgc-
md.h (used with the ReadMemory
and WriteMemory messages.)

read bool This argument selects whether to do a
read operation or a write operation. If
the value is TRUE, a read is per-
formed, else a write is performed.
MetroTRK Manual TRKÐ77

MetroTRK Function Reference
MetroTRK Function Reference Overview
targimpl.h

TargetAddExceptionInfo()

Description Used to build a NotifyException message when notifying the
host debugger that an exception has occurred on the board.

Source File targimpl.c

Prototype DSError TargetAddExceptionInfo (MessageBuffer* b);

Parameters Parameters for this function are:

Return Returns a DSError error code.

Remarks The information written into the message may differ from processor
to processor, but generally contains information like the PC (Pro-
gram Counter) at the time the exception was generated, the instruc-
tion at that PC, and the exception ID. See the actual source code to
find out the specifics for the processor you are targeting.

PowerPC For PowerPC, see the file m8xxxcpt.h in the export\
directory.

MIPS For MIPS, see the file mips_except.h in the export\ di-
rectory.

Board-specific No.

TargetAddStopInfo()

Description Used to build a NotifyStopped message when notifying the host
debugger that the target program has been stopped.

b Message-
Buffer*

The message buffer which will be the
NotifyException notification. For
information on the arguments con-
tained in this message, see ÒNotifyEx-
ceptionÓ on page 41.
TRKÐ78 MetroTRK Manual

MetroTRK Function Reference
MetroTRK Function Reference Overview
Source File targimpl.c

Prototype DSError TargetAddStopInfo (MessageBuffer* b);

Parameters Parameters for this function are:

Return Returns a DSError error code.

Remarks The information written into the message may differ from processor
to processor, but generally contains information like the PC (Pro-
gram Counter) at the time the exception was generated, the instruc-
tion at that PC, and the exception ID. See the actual source code to
find out the specifics for the processor you are targeting.

PowerPC For PowerPC, see the file m8xxxcpt.h in the export\
directory.

MIPS For MIPS, see the file mips_except.h in the export\ di-
rectory.

Board-specific No.

TargetContinue()

Description Responds to the Continue request from the host debugger. This
function basically starts the target program running and then blocks
until MetroTRK gets control back (because a relevant exception oc-
curred.)

Source File targimpl.c

Prototype DSError TargetContinue (MessageBuffer* b);

Parameters Parameters for this function are:

b Message-
Buffer*

The message buffer which will be the
NotifyStopped notification. For in-
formation on the arguments con-
tained in this message, see ÒNotifyS-
toppedÓ on page 40.
MetroTRK Manual TRKÐ79

MetroTRK Function Reference
MetroTRK Function Reference Overview
Return Returns a DSError error code.

Remarks This function starts the program running by calling the SwapAnd-
Go() function. When MetroTRK regains control (because of an un-
handled exception or a breakpoint), control will fall out of Target-
Continue() and back into the MetroTRK core, where the exception
will be handled properly.

Board-specific No.

TargetInterrupt()

Description Handles an exception by notifying the host debugger.

Source File targimpl.c

Prototype DSError TargetContinue (NubEvent* event);

Parameters Parameters for this function are:

Return Returns a DSError error code.

Remarks This function is called when an exception or breakpoint occurs. It
basically just calls DoNotifyStopped() to notify the host debug-
ger.

Board-specific No.

See Also ÒDoNotifyStopped()Ó on page 63

b Message-
Buffer*

The message buffer which contains
the original request (input.) This mes-
sage buffer is actually not used at all
since there are no input parameters
and no reply message.

event Nub-
Event*

This is the original event triggered by
the exception or breakpoint.
TRKÐ80 MetroTRK Manual

MetroTRK Function Reference
MetroTRK Function Reference Overview
TargetReadDefault()

Description Reads a sequence of registers from the default register block.

Source File targimpl.c

Prototype DSError TargetReadDefault (unsigned int
firstRegister, unsigned int lastRegister,
MessageBuffer* b, size_t* registerStorageSize);

Parameters Parameters for this function are:

Return Returns a DSError error code.

Remarks This function checks the validity of the range of registers before ac-
tually trying to access them. It also tries to catch exceptions that
occur while reading the registers.

PowerPC All registers with mnemonic names are defined in the
file m8xxreg.h. This file also defines the sizes (bit-lengths) of regis-
ters in the different register blocks.

MIPS All registers with mnemonic names are defined in the file
mips_reg.h. This file also defines the sizes (bit-lengths) of registers
in the different register blocks.

Board-specific No.

first-
Register

unsigned
int

The number of the first register in the
sequence to read.

last-
Register

unsigned
int

The number of the last register in the
sequence to read.

b Message-
Buffer*

The message buffer which contains
the original request (input), as well as
the reply message (output.)

register
Storage
Size

size_t* On output, the number of bytes actu-
ally read (maximum of 2048 bytes.)
MetroTRK Manual TRKÐ81

MetroTRK Function Reference
MetroTRK Function Reference Overview
TargetReadExtended1()

Description Reads a sequence of registers from the extended1 register block.

Source File targimpl.c

Prototype DSError TargetReadExtended1 (unsigned int
firstRegister, unsigned int lastRegister,
MessageBuffer* b, size_t* registerStorageSize);

Parameters Parameters for this function are:

Return Returns a DSError error code.

Remarks This function checks the validity of the range of registers before ac-
tually trying to access them. It also tries to catch exceptions that
occur while reading the registers.

PowerPC All registers with mnemonic names are defined in the
file m8xxreg.h. This file also defines the sizes (bit-lengths) of regis-
ters in the different register blocks.

MIPS All registers with mnemonic names are defined in the file
mips_reg.h. This file also defines the sizes (bit-lengths) of registers
in the different register blocks.

Board-specific No.

first-
Register

unsigned
int

The number of the first register in the
sequence to read.

last-
Register

unsigned
int

The number of the last register in the
sequence to read.

b Message-
Buffer*

The message buffer which contains
the original request (input), as well as
the reply message (output.)

register
Storage
Size

size_t* On output, the number of bytes actu-
ally read (maximum of 2048 bytes.)
TRKÐ82 MetroTRK Manual

MetroTRK Function Reference
MetroTRK Function Reference Overview
TargetReadExtended2()

Description Reads a sequence of registers from the extended2 register block.

Source File targimpl.c

Prototype DSError TargetReadExtended2 (unsigned int
firstRegister, unsigned int lastRegister,
MessageBuffer* b, size_t* registerStorageSize);

Parameters Parameters for this function are:

Return Returns a DSError error code.

Remarks This function checks the validity of the range of registers before ac-
tually trying to access them. It also tries to catch exceptions that
occur while reading the registers.

PowerPC All registers with mnemonic names are defined in the
file m8xxreg.h. This file also defines the sizes (bit-lengths) of regis-
ters in the different register blocks.

MIPS All registers with mnemonic names are defined in the file
mips_reg.h. This file also defines the sizes (bit-lengths) of registers
in the different register blocks.

Board-specific No.

first-
Register

unsigned
int

The number of the first register in the
sequence to read.

last-
Register

unsigned
int

The number of the last register in the
sequence to read.

b Message-
Buffer*

The message buffer which contains
the original request (input), as well as
the reply message (output.)

register
Storage
Size

size_t* On output, the number of bytes actu-
ally read (maximum of 2048 bytes.)
MetroTRK Manual TRKÐ83

MetroTRK Function Reference
MetroTRK Function Reference Overview
TargetReadFP()

Description Reads a sequence of registers from the floating point register block.

Source File targimpl.c

Prototype DSError TargetReadFP (unsigned int firstRegister,
unsigned int lastRegister, MessageBuffer* b,
size_t* registerStorageSize);

Parameters Parameters for this function are:

Return Returns a DSError error code.

Remarks This function checks the validity of the range of registers before ac-
tually trying to access them. It also tries to catch exceptions that
occur while reading the registers.

PowerPC All registers with mnemonic names are defined in the
file m8xxreg.h. This file also defines the sizes (bit-lengths) of regis-
ters in the different register blocks.

MIPS All registers with mnemonic names are defined in the file
mips_reg.h. This file also defines the sizes (bit-lengths) of registers
in the different register blocks.

Board-specific No.

first-
Register

unsigned
int

The number of the first register in the
sequence to read.

last-
Register

unsigned
int

The number of the last register in the
sequence to read.

b Message-
Buffer*

The message buffer which contains
the original request (input), as well as
the reply message (output.)

register
Storage
Size

size_t* On output, the number of bytes actu-
ally read (maximum of 2048 bytes.)
TRKÐ84 MetroTRK Manual

MetroTRK Function Reference
MetroTRK Function Reference Overview
TargetReadMemory()

Description Handles the ReadMemory request from host debugger. This func-
tion reads a contiguous section of memory from the target board. It
performs a validity check on the desired addresses before attempt-
ing the read.

Source File targimpl.c

Prototype DSError TargetReadMemory (void* data, void*
virtualAddress, size_t* memorySize,
MemoryAccessOptions accessOptions);

Parameters Parameters for this function are:

data void* The data read from memory gets cop-
ied into this buffer.

virtual-
Address

void* This is the starting address in memory
for the read operation.

memory-
Size

size_t* This is, on input, the size of the area to
be read and, on output, the size of the
area actually read.

access-
Options

Memory-
Access-
Options

One of the following values:

¥ kUserMemory: When reading
code with debugging break-
points, hide breakpoints.

¥ kDebuggerMemory: When
reading code with debugging
breakpoints, show break-
points.

This enumerated type is defined in
targimpl.h. It directly corresponds
to the DS_MSG_MEMORY_USERVIEW
message option as defined in msgc-
md.h (used with the ReadMemory
and WriteMemory messages.)
MetroTRK Manual TRKÐ85

MetroTRK Function Reference
MetroTRK Function Reference Overview
Return Returns a DSError error code.

Remarks This function actually doesnÕt do any real work. It just calls into the
function TargetAccessMemory().

Board-specific No.

See Also ÒTargetAccessMemory()Ó on page 75,

msgcmd.h,

targimpl.h

TargetSingleStep()

Description Steps through a specified number of instructions.

Source File targimpl.c

Prototype DSError TargetSingleStep (unsigned count);

Parameters Parameters for this function are:

Return Returns a DSError error code.

Remarks This function works by setting up the trace exception, and then
checking after each instruction whether it has completed the desired
number of steps.

Board-specific No.

TargetStepOutOfRange()

Description Runs the target program until the PC (Program Counter) is outside
a given range of values.

count unsigned
int

The number of lines to step across.
TRKÐ86 MetroTRK Manual

MetroTRK Function Reference
MetroTRK Function Reference Overview
Source File targimpl.c

Prototype DSError TargetStepOutOfRange (ui32 start, ui32
end);

Parameters Parameters for this function are:

Return Returns a DSError error code.

Remarks This function works by setting up the trace exception, and then
checking after each instruction whether the PC is outside the given
range of values.

Board-specific No.

TargetSupportMask()

Description Returns a mask which indicates which debug messages the current
MetroTRK supports.

Source File targimpl.c

Prototype DSError TargetSupportMask (DSSupportMask *mask)

start ui32 The starting address of the range.

end ui32 The ending address of the range.
MetroTRK Manual TRKÐ87

MetroTRK Function Reference
MetroTRK Function Reference Overview
Parameters Parameters for this function are:

Return None.

Remarks None.

Board-specific Yes.

See Also msgcmd.h

TargetVersions()

Description Returns a set of four version numbers for the running MetroTRK
build.

Source File targimpl.c

Prototype DSError TargetVersions (DSVersions* versions);

Parameters Parameters for this function are:

Name Type Description

mask DSSupport
Mask

A bit-array of 32 bytes, where each bit
corresponds to the message (type Mes-
sageCommandID) with an ID matching
the position of the bit in the array. If the
bit value is 1, it signiÞes that the mes-
sage is available. If the value is 0, it sig-
niÞes that the message is not available.

As an example, if kDSReset were
available, then the 4th bit of mask
would be 1 since kDSReset is the 4th
message (its value is actually 3, but we
start counting from 0.)

See the documentation in msgcmd.h
for details. Also see how the default
values are set in target.h
TRKÐ88 MetroTRK Manual

MetroTRK Function Reference
MetroTRK Function Reference Overview
Return Returns a DSError error code (always returns kNoError.)

Remarks This function returns in the output variable versions a set of four
version numbers. These represent two attributes, kernel and protocol,
and each attribute has a major and a minor version number.

The kernel attribute represents the version of the MetroTRK build. It
should change anytime any part of MetroTRK is changed.

The protocol attribute represents the version of the messaging API
and low-level serial protocols used by MetroTRK. This attribute
should change whenever one of these protocols is altered.

The default implementation of this function uses compile-time con-
stants which, by default, are defined in the board-specific file tar-
get.h. In order to customize MetroTRK, you shouldnÕt need to
modify the function TargetVersions(), only these four con-
stants. They are:

¥ DS_KERNEL_MAJOR_VERSION

¥ DS_KERNEL_MINOR_VERSION

¥ DS_PROTOCOL_MAJOR_VERSION

¥ DS_PROTOCOL_MINOR_VERSION

Board-specific Yes (Indirectly in that you may want to change the version numbers
if you modify MetroTRK for your board configuration.)

See Also target.h

TargetWriteDefault()

Description Writes data to a sequence of registers in the default register block.

Source File targimpl.c

versions DSVer-
sions*

Output variable containing version
information for the running Me-
troTRK build.
MetroTRK Manual TRKÐ89

MetroTRK Function Reference
MetroTRK Function Reference Overview
Prototype DSError TargetWriteDefault (unsigned int
firstRegister, unsigned int lastRegister,
MessageBuffer* b, size_t* registerStorageSize);

Parameters Parameters for this function are:

Return Returns a DSError error code.

Remarks This function checks the validity of the range of registers before ac-
tually trying to access them. It also tries to catch exceptions that
occur while writing to the registers.

PowerPC All registers with mnemonic names are defined in the
file m8xxreg.h. This file also defines the sizes (bit-lengths) of regis-
ters in the different register blocks.

MIPS All registers with mnemonic names are defined in the file
mips_reg.h. This file also defines the sizes (bit-lengths) of registers
in the different register blocks.

Board-specific No.

TargetWriteExtended1()

Description Writes data to a sequence of registers in the extended1 register
block.

Source File targimpl.c

first-
Register

unsigned
int

The number of the first register in the
sequence to write to.

last-
Register

unsigned
int

The number of the last register in the
sequence to write to.

b Message-
Buffer*

The message buffer which contains
the original request (input), as well as
the reply message (output.)

register
Storage
Size

size_t* On output, the number of bytes actu-
ally written (maximum of 2048 bytes.)
TRKÐ90 MetroTRK Manual

MetroTRK Function Reference
MetroTRK Function Reference Overview
Prototype DSError TargetWriteExtended1 (unsigned int
firstRegister, unsigned int lastRegister,
MessageBuffer* b, size_t* registerStorageSize);

Parameters Parameters for this function are:

Return Returns a DSError error code.

Remarks This function checks the validity of the range of registers before ac-
tually trying to access them. It also tries to catch exceptions that
occur while writing to the registers.

PowerPC All registers with mnemonic names are defined in the
file m8xxreg.h. This file also defines the sizes (bit-lengths) of regis-
ters in the different register blocks.

MIPS All registers with mnemonic names are defined in the file
mips_reg.h. This file also defines the sizes (bit-lengths) of registers
in the different register blocks.

Board-specific No.

TargetWriteExtended2()

Description Writes data to a sequence of registers in the extended2 register
block.

Source File targimpl.c

first-
Register

unsigned
int

The number of the first register in the
sequence to write to.

last-
Register

unsigned
int

The number of the last register in the
sequence to write to.

b Message-
Buffer*

The message buffer which contains
the original request (input), as well as
the reply message (output.)

register
Storage
Size

size_t* On output, the number of bytes actu-
ally written (maximum of 2048 bytes.)
MetroTRK Manual TRKÐ91

MetroTRK Function Reference
MetroTRK Function Reference Overview
Prototype DSError TargetWriteExtended2 (unsigned int
firstRegister, unsigned int lastRegister,
MessageBuffer* b, size_t* registerStorageSize);

Parameters Parameters for this function are:

Return Returns a DSError error code.

Remarks This function checks the validity of the range of registers before ac-
tually trying to access them. It also tries to catch exceptions that
occur while writing to the registers.

PowerPC All registers with mnemonic names are defined in the
file m8xxreg.h. This file also defines the sizes (bit-lengths) of regis-
ters in the different register blocks.

MIPS All registers with mnemonic names are defined in the file
mips_reg.h. This file also defines the sizes (bit-lengths) of registers
in the different register blocks.

Board-specific No.

TargetWriteFP()

Description Writes data to a sequence of registers in the floating point register
block.

Source File targimpl.c

first-
Register

unsigned
int

The number of the first register in the
sequence to write to.

last-
Register

unsigned
int

The number of the last register in the
sequence to write to.

b Message-
Buffer*

The message buffer which contains
the original request (input), as well as
the reply message (output.)

register
Storage
Size

size_t* On output, the number of bytes actu-
ally written (maximum of 2048 bytes.)
TRKÐ92 MetroTRK Manual

MetroTRK Function Reference
MetroTRK Function Reference Overview
Prototype DSError TargetWriteFP (unsigned int
firstRegister, unsigned int lastRegister,
MessageBuffer* b, size_t* registerStorageSize);

Parameters Parameters for this function are:

Return Returns a DSError error code.

Remarks This function checks the validity of the range of registers before ac-
tually trying to access them. It also tries to catch exceptions that
occur while writing to the registers.

PowerPC All registers with mnemonic names are defined in the
file m8xxreg.h. This file also defines the sizes (bit-lengths) of regis-
ters in the different register blocks.

MIPS All registers with mnemonic names are defined in the file
mips_reg.h. This file also defines the sizes (bit-lengths) of registers
in the different register blocks.

Board-specific No.

TargetWriteMemory()

Description Handles the WriteMemory request from host debugger. This func-
tion writes data to a contiguous section of memory on the target
board. It performs a validity check on the desired addresses before
attempting the write.

first-
Register

unsigned
int

The number of the first register in the
sequence to write to.

last-
Register

unsigned
int

The number of the last register in the
sequence to write to.

b Message-
Buffer*

The message buffer which contains
the original request (input), as well as
the reply message (output.)

register
Storage
Size

size_t* On output, the number of bytes actu-
ally written (maximum of 2048 bytes.)
MetroTRK Manual TRKÐ93

MetroTRK Function Reference
MetroTRK Function Reference Overview
Source File targimpl.c

Prototype DSError TargetWriteMemory (void* data, void*
virtualAddress, size_t* memorySize,
MemoryAccessOptions accessOptions);

Parameters Parameters for this function are:

Return Returns a DSError error code.

Remarks This function actually doesnÕt do any real work. It just calls into the
function TargetAccessMemory().

Board-specific No.

See Also ÒTargetAccessMemory()Ó on page 75,

msgcmd.h,

targimpl.h

TerminateUART()

Description Deactivate the serial device, as necessary.

Source File uart.c

data void* A pointer to the data to be written.

virtual-
Address

void* This is the destination starting ad-
dress (on the target board) for the
write operation.

memory-
Size

size_t* This is, on input, the size of the data to
be written and, on output, the amount
actually written.

access-
Options

Memory-
Access-
Options

Has no effect on this function. It has
an effect on the read version.
TRKÐ94 MetroTRK Manual

MetroTRK Function Reference
MetroTRK Function Reference Overview
Prototype UARTError TerminateUART (void);

Parameters None.

Return Returns a UARTError error code.

Remarks This function often does nothing. In fact, in the current MetroTRK
implementation, it isnÕt even called.

Board-specific Yes.

ValidMemory32()

Description Called when MetroTRK reads or writes to memory. This function
checks whether the range of addresses is valid on the target board.

Source File targimpl.c

Prototype DSError ValidMemory32 (const void* addr, size_t
length, ValidMemoryOptions readWriteable);

Parameters Parameters for this function are:

Return Returns a DSError error code. If the memory segment is valid, re-
turns kNoError, else returns kInvalidMemory.

Remarks On the PowerPC version of MetroTRK, this function is board-specif-
ic, relying on information about the memory layout of the target
board. To customize for a new board configuration, you need to
change the values within this function.

addr const
void*

The starting address of the memory
segment.

length size_t The length of the memory segment.

read
Write-
able

Valid
Memory
Options

One of the following values:

¥ kValidMemoryReadable

¥ kValidMemoryWriteable
MetroTRK Manual TRKÐ95

MetroTRK Function Reference
MetroTRK Function Reference Overview
On the MIPS version of MetroTRK, this function is not board-specif-
ic. It instead relies on a board-specific variable, gMemMap, to get in-
formation about the memory layout of the target board. To custom-
ize for a new board configuration, you need to change the value of
gMemMap, which is defined in the file memmap.h.

Board-specific PowerPC Yes.

MIPS No.

See Also memmap.h

WriteUART1()

Description Writes one byte to the serial device.

Source File uart.c

Prototype UARTError WriteUART1 (char c);

Parameters Parameters for this function are:

Return Returns a UARTError error code.

Remarks None.

Board-specific Yes.

WriteUARTN()

Description Writes N bytes to the serial device.

Source File uart.c

Prototype UARTError WriteUARTN (const void *bytes, unsigned
long length);

c char The character to be written.
TRKÐ96 MetroTRK Manual

MetroTRK Function Reference
MetroTRK Function Reference Overview
Parameters Parameters for this function are:

Return Returns a UARTError error code.

Remarks This function is wholly derived from WriteUART1().

Board-specific No.

WriteUARTString()

Description Writes a character string to the serial device.

Source File uart.c

Prototype UARTError WriteUARTString (const char* string);

Parameters Parameters for this function are:

Return Returns a UARTError error code.

Remarks The input string must have a null termination character (\0), but
this terminating null character is not written to the serial device.

This function is wholly derived from WriteUART1().

Board-specific No.

See Also ÒWriteUART1()Ó on page 96

bytes const
void*

Pointer to the input data.

length unsigned
long

The number of bytes to be written.

string const
char*

Pointer to the input data.
MetroTRK Manual TRKÐ97

MetroTRK Function Reference
MetroTRK Function Reference Overview
TRKÐ98 MetroTRK Manual

Index
Symbols
__copy_vectors() 25, 44, 46, 56, 58
__init_data() 25, 57, 61
__init_hardware() 23, 44, 57, 58, 61
__init_registers() 23, 59, 61
__init_user() 25, 45, 46, 59, 61
__reset 60
__start() 58, 59, 60

A
architecture

diagram 16
MetroTRK Core 12
overview 11, 14

B
baud rate 26

customizing 47
board

initializations 23

C
commands, MW Debug

handling 14
communication levels

Debug API level 13, 26
Transport level 13, 26

communications with host debugger 13, 26
compatibility

memory requirements 9
serial IO controller 9

Connect 29
customizing 48
WriteRegisters 51

Continue 38
customizing 52

Core component 12
customizing

baud rate 47
exception vector initializations 45
hardware initializations 44, 46
low-level communications 46
MetroTRK initializations 44

customizing MetroTRK 43

D
Debug API 13
DoConnect() 30, 61
DoContinue() 38, 62
DoFputs() 63
DoNotifyStopped() 63
DoReadMemory() 33, 64, 77
DoReadRegisters() 36, 65
DoReset() 30, 66
DoStep() 39, 67
DoSupportMask() 31, 68
DoVersions() 31, 69
DoWriteMemory() 35, 70, 77
DoWriteRegisters() 37, 71

E
Event-waiting state 12
exception handling 12
exception vectors 17

initialization 24, 45
overwriting 24, 45

exceptions
handling 24
handling your own 45

extended command set 27

F
Fputs 42

customizing 53
function reference 55

G
GetVersions 30

customizing 48

I
initializations 23

board 23
exception vector copy 24
MetroTRK RAM 25
register 23

InitializeUART() 72
interrupt handling 12
MetroTRK Manual TRKÐ99

Index
L
level 1 commands 27
level 2 commands 27

M
m8xxreg.h 66, 72
m8xxxcpt.h 78, 79
memory

code section layout (MIPS) 18
code section layout (PowerPC) 19
data sections layout (MIPS) 18
data sections layout (PowerPC) 19
exception vector layout (MIPS) 18
exception vector layout (PowerPC) 19
exception vector section 17
initialization 25
map (MIPS) 21
map (PowerPC) 22
MetroTRK code section 17
MetroTRK data section 17
MetroTRK memory profile 16
MetroTRK RAM sections 17
stack layout 19, 20
stack, the 17
target (debugged) program layout 20

memory requirements 9
MetroTRK Core 12
MetroTRK Debug API 13, 26

customizing 47, 48
levels 27

mips_except.h 78, 79
mips_reg.h 66, 72
MW Debug 8, 13

manual 10

N
Notifications

Fputs 42
customizing 53

NotifyException 41
customizing 52

NotifyStopped 40
customizing 52

notifications, debugger 28
NotifyException 41

customizing 52
NotifyStopped 40

customizing 52

P
porting

baud rate 47
exception vector initializations 45
hardware initializations 44, 46
low-level communications 46
MetroTRK initializations 44

porting MetroTRK 43
primary command set 27
protocol, debug 13, 26

customizing 47
levels 27

Q
Queues

incoming message queue 13
Message queues 13

queues
outgoing message queue 13

R
RAM

data sections layout (MIPS) 18
data sections layout (PowerPC) 19
exception vector layout (MIPS) 18
exception vector layout (PowerPC) 19
exception vector section 17
footprint 9
initialization 25
map (MIPS) 21
map (PowerPC) 22
MetroTRK code section 17
MetroTRK memory profile 16
MetroTRK RAM sections 17
stack layout 19, 20
stack, the 17
target (debugged) program layout 20

RAM MetroTRK data section 17
ReadMemory 32

customizing 50
ReadRegisters 35

customizing 51
TRKÐ100 MetroTRK Manual

Index
ReadUART1() 73, 74, 75
ReadUARTN() 74
ReadUARTPoll() 73
ReadUARTString() 75
register

initialization 23
reply message 27
Request-handling state 12
requests

Connect 29
customizing 48

Continue 38
customizing 52

GetVersions 30
customizing 48

handling
customizing handlers 48

ReadMemory 32
customizing 50

ReadRegisters 35
customizing 51

Reset 30
customizing 48

Step 38
customizing 52

SupportMask 31
customizing 49

WriteMemory 34
customizing 50

WriteRegisters 37
customizing 51

requests, customizing 48
requests, MW Debug

handling 14, 27
Reset 30

customizing 48

S
serial IO

customizing 46
stack

memory aspects 17
stack, the 19, 20
state

diagram 15

Event-waiting 12, 15
Request-handling 12, 14

Step 38
customizing 52

SupportMask 31
customizing 49

T
TargetAccessMemory() 75
TargetAddExceptionInfo() 41, 78
TargetAddStopInfo() 41
Targeting manual 10
TargetReadDefault() 66
TargetReadExtended1() 66
TargetReadExtended2() 66
TargetReadFP() 66
TargetReadMemory() 50, 65
TargetSingleStep() 68
TargetStepOutOfRange() 68
TargetSupportMask() 49, 69
TargetVersions() 70
TargetWriteDefault() 71
TargetWriteExtended1() 72
TargetWriteExtended2() 72
TargetWriteFP() 72
TargetWriteMemory() 50, 71
transmission rate 26

customizing 47
Transport communication level 13
TRK_BAUD_RATE variable 47

U
UART 26, 47

V
ValidMemory32() 50, 77

W
WriteMemory 34

customizing 50
WriteRegisters 37
MetroTRK Manual TRKÐ101

Index
TRKÐ102 MetroTRK Manual

CodeWarrior

MetroTRK Manual

Credits

writing lead: Benjamin Berman

other writers: Jim Trudeau

engineering: Steve Moore, Lawrence You, Khurram
Qureshi

frontline warriors: L. Frank Turovich, Todd McDaniel, Jean-
na Stavas, and CodeWarrior users every-
where!

Guide to CodeWarrior Documentation

CodeWarrior documentation is modular, like the underlying tools. There are manuals
for the core tools, languages, libraries, and targets. The exact documentation provided
with any CodeWarrior product is tailored to the tools included with the product. Your
product will not have every manual listed here. However, you will probably have addi-
tional manuals (not listed here) for utilities or other software specific to your product.

Core Documentation

IDE User Guide How to use the CodeWarrior IDE

Debugger User Guide How to use the CodeWarrior debugger

CodeWarrior Core Tutorials Step-by-step introduction to IDE components

Language/Compiler Documentation

C Compilers Reference Information on the C and C++ compilers

Pascal Compilers Reference Information on the Pascal and Object Pascal compilers

Error Reference Comprehensive list of compiler/linker error messages, with many Þxes

Pascal Language Reference The Metrowerks implementation of ANS Pascal

Assembler Guide Stand-alone assembler manual

Command-Line Tools Reference Command-line options for Mac OS and Be compilers

Plugin API Manual The CodeWarrior plugin compiler/linker API

Library Documentation

MSL C Reference Function reference for the Metrowerks standard C library

MSL C++ Reference Function reference for the Metrowerks standard C++ library

Pascal Library Reference Function reference for the Metrowerks ANS Pascal library

The PowerPlant Book Guide to the Metrowerks application framework for Mac OS

PowerPlant Advanced Topics Advanced topics in PowerPlant programming for Mac OS

MFC Reference Reference for the Microsoft Foundation Classes for Win32

Win32 SDK Reference MicrosoftÕs Reference for the Win32 API

Targeting Manuals

Targeting BeOS How to use CodeWarrior to program for BeOS

Targeting the Java VM How to use CodeWarrior to program for the Java virtual machine

Targeting Mac OS How to use CodeWarrior to program for Mac OS

Targeting MIPS How to use CodeWarrior to program for MIPS embedded processors

Targeting Palm OS How to use CodeWarrior to program for PalmPilot

Targeting PlayStation OS How to use CodeWarrior to program for the PlayStation game console

Targeting PowerPC Embedded Systems How to use CodeWarrior to program for PPC embedded processors

Targeting Win32 How to use CodeWarrior to program for Windows 95/NT

	Introduction
	Read the Release Notes!
	About the MetroTRK Manual
	What is MetroTRK?
	MetroTRK Compatibility
	Starting Points
	Where to Learn More
	Code Warrior Documentation

	Understanding MetroTRK
	Understanding MetroTRK Overview
	How Does MetroTRK Work?
	MetroTRK Architecture Overview
	MetroTRK Core
	Communications Between MetroTRK and the Host Debug...
	Message Queues
	Command and Request Handling
	Putting it all Together

	Where MetroTRK Lives in Memory
	MetroTRK’s RAM Sections
	Locations of MetroTRK RAM Sections (on MIPS)
	Locations of MetroTRK RAM Sections (on PowerPC)
	Locations of Target Application RAM Sections
	TRK Memory Map (MIPS)
	TRK Memory Map (PowerPC)
	Loading MetroTRK onto Your Hardware

	MetroTRK Initializations
	Low-Level Communication with Host Debugger
	MetroTRK Debug API
	Servicing Requests from the Host Debugger
	Sending Notifications to the Host Debugger

	Host Debugger to MetroTRK Requests
	Connect
	Reset
	GetVersions
	SupportMask
	ReadMemory
	WriteMemory
	ReadRegisters
	WriteRegisters
	Continue
	Step

	MetroTRK to Host Debugger Notifications
	NotifyStopped
	NotifyException
	Fputs

	Customizing MetroTRK
	Customizing MetroTRK Overview
	Customizing MetroTRK Initializations
	Customizing Hardware Initializations
	Customizing Exception Vector Initializations
	Customizing Additional Initializations

	Customizing Low-Level Communications
	Customizing Debug Services
	Customizing Debug Request Handling
	Customizing Debug Notifications

	MetroTRK Function Reference
	MetroTRK Function Reference Overview
	__copy_vectors()
	__init_data()
	__init_hardware()
	__init_registers()
	__init_user()
	__reset
	__start()
	DoConnect()
	DoContinue()
	DoFputs()
	DoNotifyStopped()
	DoReadMemory()
	DoReadRegisters()
	DoReset()
	DoStep()
	DoSupportMask()
	DoVersions()
	DoWriteMemory()
	DoWriteRegisters()
	InitializeUART()
	ReadUARTPoll()
	ReadUART1()
	ReadUARTN()
	ReadUARTString()
	TargetAccessMemory()
	TargetAddExceptionInfo()
	TargetAddStopInfo()
	TargetContinue()
	TargetInterrupt()
	TargetReadDefault()
	TargetReadExtended1()
	TargetReadExtended2()
	TargetReadFP()
	TargetReadMemory()
	TargetSingleStep()
	TargetStepOutOfRange()
	TargetSupportMask()
	TargetVersions()
	TargetWriteDefault()
	TargetWriteExtended1()
	TargetWriteExtended2()
	TargetWriteFP()
	TargetWriteMemory()
	TerminateUART()
	ValidMemory32()
	WriteUART1()
	WriteUARTN()
	WriteUARTString()

	Index

