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ABSTRACT

One of the most crucial emerging challenges in Lithography
is achieving rapid and accurate alignment under a wide
variety of conditions brought about by different processing
steps. Current alignment algorithms assume symmetric
alignment signals. In this paper, we propose a new algorithm
based on subspace decomposition of alignment signals. We
assume that the process-induced asymmetries are small
enough so that only linear effects need to be considered. We
first find the subspace of alignment signals using a set of
signals with pre-known positions. The position of a new
signal is calculated considering  that, if shifted correctly, it
will lie in the same subspace of previous signals. Since this
method exploits the structure of the signals, it results in more
accurate measurement of the position. Simulation results
show that the alignment error is about an order of magnitude
smaller than that achieved with conventional Maximum
Likelihood or phase-fitting approaches.

1. INTRODUCTION

Although the trend towards smaller features has been made
possible by the use of higher resolution exposure tools,
alignment between different process layers limits the
practicality of achieving such small features. The stepper
machines have to expose several layers within the required
accuracy.

One common alignment method is the scanning/imaging
scheme. The marks on the wafer are scanned and the scattered
light is detected. The position of the mark is determined from
its corresponding alignment signal. In the ideal case, the mark
is symmetric, and so is the optical system used for scanning
and detecting it. Therefore, the alignment signal will be
symmetrical  as well, and its center position can be determined
easily[1]. In reality, the alignment signals are never
symmetrical[2]. The factors causing the asymmetry are:

• Aberration and asymmetry in the optical system, which
result in an asymmetric alignment signal even for a
symmetric mark. This factor usually causes a constant
displacement in the perceived position, and therefore
can be corrected through calibration.

• Asymmetry in the mark topography due to asymmetric
processing steps, such as resist coating or Chemical
Mechanical Polishing(CMP). In particular, CMP is
problematic because it also reduces the contrast,
resulting in lower signal to noise ratio. A cross-section
of an alignment mark asymmetrically covered by another

layer, is shown in Fig. 1. Fig. 2 shows a typical
alignment signal.

 

Figure 1. Alignment mark covered with an asymmetric
layer. Asymmetric processing steps, such as CMP,
cause asymmetric overlying layers.

Figure 2. Detected signal, a(x), from scanning the
alignment mark. Since the mark is covered with other
layers asymmetrically, the resulting signal is also
asymmetric.

In this paper, we propose a new algorithm for determining the
center position of alignment signals. We assume that the
process-induced asymmetries are small so that we need to
consider only linear effects. In section 2 we discuss our linear
model for the asymmetry effect. In section 3 we discuss the
algorithm for constructing the model. In section 4 we then
describe our method for measuring the position of alignment
signals based on the linear model. In section 5 we present
some simulation results and compare our performance with



that of current algorithms. Finally we summarize our major
findings and outline some future work.

2.  MODELING

The optical system in the scanning and/or imaging based
alignment schemes behaves as a low-pass filter with
bandwidth proportional to NA/ λ [3],  where λ is the
wavelength of the light, and NA is the numerical aperture.
Therefore, there is an appropriate sampling rate above which
the sampled discrete signal will have no aliasing. In practice,
the signals are always oversampled.

The alignment signal is a function of the topography of the
mark and all the overlying layers, and therefore is a function of
the physical parameters, such as temperature and pressure, of
the processing steps. Since the processes are well-controlled,
we can ignore all the high order effects of the physical
parameter variations. Hence we will have
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where x is the variable along the scanning direction, n(x) i s
the additive noise, which also includes all the higher order
terms, and { }µ i  are the physical parameters, which only have

small variations around their set-points, { }µ i
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By introducing α 0  as a variable, we can also take into

account the varying gain of the optical system in comparing
different alignment signals.

The a xi ( ) , i=0,…,p, only depend on the set-points of the

physical parameters, i.e. µ µ1
0 0,..., p , and the mark shape, which

are  fixed in a well-controlled process. Therefore, any
alignment signal can  be written as
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where δ is the relative position of the signal. We have also
assumed that the additive noise, n(x),  is white. The problem
can now be stated as:

For a given signal a(x), find  minimum p, a x i pi ( ), ,..., = 0 ,

αi i p, ,..., = 0 , and δ, to fit the model in (1).

We divide the problem into two parts. First, we find p and
a x i pi ( ), ,..., = 0  since they depend on the process and not

on a specific alignment signal. Next, for a given alignment
signal, we find αi i p, ,..., = 0  and δ, the latter is the position

of the signal.

3. PART I: EXPLOITING THE
STRUCTURE IN THE MODEL

Suppose that we have m alignment signals along with their
corresponding center positions. The latter data usually come
from metrology measurements. Without loss of generality, we
can also assume that all the signals are centered at the origin.
This could be done by appropriately shifting the data.
Therefore, we might represent these m signals as
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Equation (2) implies that a x j mj( ) ( ), ,...,=1  are m noisy

signals of the subspace  spanned by a x i pi ( ), ,...,= 0

To be more specific, we shall assume that the measurement
signals are also sampled, at above the Nyquist rate. Hence,

n xj( ) ( ) , a x j mj( ) ( ), ,...,=1 , a xi ( ) , i=0,…,p will be replaced

by the vectors n( )j , a( )j , and ai  respectively and (2) can be

written as
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In the following two sections, we first review the Singular
Value Decomposition(SVD) and then apply it to our
problem.

3.1 Singular Value Decomposition

Let F ∈ ×R M m , M>m. Then there exist unitary matrices

U ∈ ×R M M  and V ∈ ×Rm m  such that

U FVT
m

M mR= ≡ ∈ ×diag{ 1σ σ,..., } Σ      (4)

σ k , k=1,…,m, arranged in descending order, are known as the

singular values of F. The corresponding decomposition of the
matrix F is known as the Singular Value
Decomposition(SVD) of F[4]. It has also been shown that  U

is the matrix of eigen vectors of FF T , V is the matrix of eigen

vectors of F FT , and σ k , k=1,…,m are the non-negative
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Note that all the columns of F lie in the subspace spanned  by
ui , i=1,…,m.

The interesting case for us is when rank(F)=l<m, i.e. F is not
full rank. Then, only the first l singular values are non-zero
and the columns of F lie only in the subspace of  ui , i=1,…,l.

Note that the SVD of F finds both the dimension and a basis



for the subspace spanned by its columns. In the next section,
we use this result to find p and ai i p, ,..., = 0 in (3).

3.2         Decomposition Algorithm

Recall from (3) that we have m measurements, a( )j , j=1,…,m,

where a( )j MR∈ , j=1,…,m. If F a a≡ [ ,..., ]( ) ( )1 m  and
assuming that the additive noise terms in (3) are zero, we can
write (3) as
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By comparing (6) and (5) we conclude that

If F a a≡ [ ,..., ]( ) ( )1 m  and F U V= Σ T  is its Singular Value
Decomposition, then  (p+1)=rank(F) and is the number of
non-zero singular values of F, and a ui i= +( )1 , i=0,…,p.

In the presence of the additive noise term, we will not
necessarily have (p+1)=rank(F). In other words, we do not
expect to get only (p+1) non-zero Singular Values. To go

further, suppose that N ∈ ×R M m  is a random matrix with
Gaussian distribution, zero mean with standard deviation σ,
and all its elements are uncorrelated to each other. Then
G=F+N will represent (6) in the presence of noise and we will
have
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Therefore if σ k , k=1,…,m are the singular values of  F, and

ηk , k=1,…,m are the eigenvalues of E G G( )T , we

have η σ σk k= +2 2 , k=1,…,m. Also, since

E GG FF I( )T T= +σ 2 , ai , i=0,…,p, are the first (p+1) eigen

vectors of E GG( )T . We can now summarize the algorithm as
follows:

1. Perform l measurements of m equivalent marks on the
wafer, therefore we have m alignment signals per each
measurement. We also acquire their corresponding center
positions by metrology. Therefore without loss of
generality, we assume that we have shifted all the signal

such that they are centered at the origin. Let Gq
M mR∈ ×

to be the qth measurement set. By choosing l large

enough, we can estimate E GG G G( )T
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2. Find the eigenvalues of E G G( )T , ηk , k=1,…,m,

arranged in descending order. σ η= m , and

σ η σk k= − 2 , k=1,…,m; (p+1) is the number of  σ k ,

k=1,…,m, that are non-zero.

3. a j , j=0,…,p are the first (p+1) eigen vectors of E GG( )T

when their corresponding eigenvalues arranged in
descending order. 

In the next section, we use these basis vectors to find the
position of any new alignment signal coming from the same
process.

4. PART II: POSITIONING THE
SIGNAL

Recall the general model given in (1). This equation can also
be rewritten as
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Therefore assuming n(x) to be white Gaussian noise, we can
define the error as
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where A(f) and A fi ( )  are the Fourier transforms of a(x) and

a xi ( ) , respectively. When the signal is sampled, with

sampling interval ∆, the error will be

E A f e A fp k

j f

i i k
i

p

k

M k
( , ,..., ) ( ) ( )δ α α α

π δ

0

2

0

2

0

1
= − ∑∑

−

==

−
∆   (10)

where M is the length of the sampled signals. Defining A i ,

i=0,…,p, and A as the FFT of ai , i=0,…,p, and a, respectively,

B ≡
− − −

diag{e e
j f j f M2 20 1π δ π δ

∆ ∆,..., } , S A A≡ [ ,..., ]0 p , and

α ≡ [ ,..., ]α α0 p
T , we will have

E(δ, α) = BA S− α 2
  (11)

and by minimizing E with respect to α, we will get

αopt  = ⇒−( )S S S BAT T1 E T T( ) ( ( ) )δ = − −I S S S BA1 2
(12

)



Assume that δ is such that δ
∆ <<1 . This is a valid

assumption since the position of the signal is first found by a
coarse algorithm. In this case, we can linearize B  using
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 and therefore E(δ) will be a 2nd degree

polynomial in δ given by

E T T( ) ( ( ) )δ = − −I S S S B A1
1

2
  (13)

where B1  is the linear approximation of B as mentioned

before. The position of the signal, δopt , is measured by

minimizing E(δ). We can now summarize the algorithm as
follows:

1. Calculate A and A i , i=0,…,p, the Fourier transforms of

a and ai , i=0,…,p, where the latter are calculated from

part I of the algorithm. Also, create S.

2. Initialize δtotal =0.

3. Find δ by minimizing E(δ) given in (13)

4. A=BA, where δ in step 3 is used for constructing B.

5. δ δ δtotal total= + , go to step 3.

The iteration stops when there is no significant change in

δtotal . Also, the iterative part relaxes the constraint δ
∆ <<1 ,

so the algorithm can be applied even for δ
∆  up to unity.

5. IMPLEMENTATION

The algorithm was implemented in MATLAB. p=2, l=20,

m=10, M=128, ∆=250nm, σ=15nm  were used in the
simulation. Also, lowpass-filtered Gaussian functions were
used as basis vectors in generating the simulated measurement
signals. 200 measurement signals were then used in the part I
of the algorithm to find the number of singular values, p+1,
and the basis vectors. The results of part I of the algorithm
were applied to find the positions of 100 new alignment
signals. Since the signals are band-limited, only the frequency
terms in the bandwidth of the signal were considered in
finding the position of signal. This reduces the high
frequency noise effects and also the processing time. In all the
simulation examples, less than six iteration steps were needed
to find the position.

Table 1 shows the mean and standard deviation of the
positioning error and compares them to those for two widely
used methods, Maximum Likelihood and the phase method.
The latter uses the slope of the phase of the Fourier transform
of the signal to find its center of symmetry. 

The time required to compute the position of an alignment
signal directly depends on the order of computation required
by the algorithm. There are two sets of computation in our
proposed algorithm:

1. Part I of the algorithm, which calculates the order of
subspace and the basis vectors in the model. This is done
once for a process and does not need to be repeated as
long as the set-points of the physical parameters do not
change. The computation complexity of this part is

O M m( )2 2 .

2. Part II of the algorithm, which finds the position of a
signal using the model from part I. The computation
complexity of this part is O M M( log( )) .

Proposed
Algorithm

Phase
Detection

Maximum
Likelihood

Mean(nm) 0.67 35.64 21.16

STD(nm) 5.27 38.71 29.82

Table  1. Comparison between our proposed
positioning algorithm and two other common
algorithms. One hundred measurement signals were
used in calculating the mean and standard deviation of
the error. Results show an order of magnitude
improvement in the standard deviation of the error.

6. SUMMARY

In this paper, we presented a new algorithm for positioning of
non-symmetric signals. We assumed only small changes in the
physical parameters contributing to the signals, and exploited
this structure in our linear model. We proposed an algorithm
to construct the model from a set of signals with pre-known
center positions, i.e. training set. We then described an
iterative algorithm to find the center position of a new signal
from the model. Our simulation results indicated that the
performance of this algorithm is about an order of magnitude
better than current algorithms, under the same conditions.

The existence of a well-controlled environment so that (1)
holds is essential for our approach. We would like to confirm
these preliminary simulation results through actual
experiments.
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