Economics 201A Arrow's Impossibility Theorem

Steve Goldman

Abstract

This note reporduces Sen's proof of Arrow's Theorem from Collective Choice and Social Welfare.

We shall consider a Social Welfare Function $f: R^{1} \times R^{2} \times \ldots R^{N} \rightarrow R$, where $R^{i}=R$ denotes the space of complete and transitive preference orderings over a set of mutually exclusive alternatives $\{x, y, z, \ldots\}$. The assumption that R includes all possible orderings is called Universal Domain.

Definitions:

If, for some group of individuals $V, \forall i \in V, x P^{i} y$ and $\forall j \notin V, y P^{j} x$ imply $x P y$, then V is said to be almost decisive for alternative x against alternative y (written $\left.D_{V}(x, y)\right)$.

If, for some group of individuals $V, \forall i \in V, x P^{i} y$ implies $x P y$, then V is said to be decisive for alternative x against alternative y (written $\bar{D}_{V}(x, y)$).

A dictator is an individual J, such that $\forall R^{1}, R^{2}, \ldots R^{N}$ and $\forall x, y$

$$
x P^{J} y \Rightarrow x P y
$$

This is only slightly weaker than saying that f is a projection map. i.e. $f\left(R^{1}, R^{2}, \ldots R^{N}\right) \equiv R^{J}$ (note that if J is indifferent between two outcomes, the projection map would imply social indifference whereas Sen's would not).

Assumptions:
The set of possible members for f is restricted by the following additional assumptions:

Pareto Assumption: If $\forall i \in V, x R^{i} y$ then $x R y$ (or equivalently $x f\left(R^{1}, R^{2}, \ldots R^{N}\right) y$. That is, if everyone prefers x to y then x is socially preferred to y.

Independence Assumption: Consider two alternative sets of individual orderings $R^{1}, R^{2}, \ldots R^{N}$ and $\overline{R^{1}}, \overline{R^{2}}, \ldots \overline{R^{N}}$:

If for a pair of alternatives x and $y, x R^{i} y \longleftrightarrow x \bar{R}^{i} y$ and $y R^{i} x \longleftrightarrow y \bar{R}^{i} x$ then $x R y \longleftrightarrow x \bar{R} y$. That is, all that is relevant in the social ordering of x and y are the individual orderings of x and y.

Lemma 1: If there exist x and y and an individual J such that $D_{J}(x, y)$ then $\forall w, z, \bar{D}_{J}(w, z)$. That is, J is a dictator.

Proof: Suppose $D_{J}(x, y)$ and the following preferences (since f is defined for all possible R 's):
$x P^{J} y$ and $y P^{J} z$
$\forall i \neq J, y P^{i} x$ and $y P^{i} z$
Now $D_{J}(x, y)$ and $x P^{J} y$ and $\forall i \neq J, y P^{i} x$ imply $x P y$ by the definition of D.
Additionally $y P^{J} z$ and $\forall i \neq J, y P^{i} z$ imply $y P z$ by the Pareto Assumption.
$x P y$ and $y P z$ imply $x P z$ by transitivity of f or R .
Now what is known about individual preferences regarding x and z ?
$x P^{J} z$ by assumption, but nothing is known about the preferences between x and z for anyone else. By the Independence Assumption, the relative positioning of y is irrelevant and so whenever $x P^{J} z$ the outcome must be the same. Therefore, $\bar{D}_{J}(x, z)$ and $D_{J}(x, z)$. That is, whenever J prefers x to z then x is socially preferred to z.

Suppose $z P^{J} x$ and $x P^{J} y$ while $\forall i \neq J, z P^{i} x$ and $y P^{i} x$.
Reasoning similarly, $z P x$ (by Pareto) and $x P y$ (since J is almost decisive), so $z P y$ (by transitivity).

Therefore $\bar{D}_{J}(z, y)$ and hence $D_{J}(z, y)$.
In this manner we have shown that if J is almost decisive for x against y then J is almost decisive for x against anything and for anything against y. Sequentially applying these arguments, J is decisive for anything against anything else.

Lemma 2: There must exist an almost decisive individual.
Proof: Let V denote the smallest almost decisive group, say for x against y. V exists since the entire group is trivially almost decisive. Divide V into a single individual J and the remainder \widehat{V} and the remaining population (perhaps null) as W.

Suppose the following preferences:
$x P^{J} y$ and $y P^{J} z$
$\forall i \in \widehat{V}, z P^{i} x$ and $x P^{i} y$
$\forall k \in W, y P^{k} z$ and $z P^{k} x$.

Now, $x P y$ since everyone in V prefers x to y and everyone in W prefers y to x and $D_{V}(x, y)$.

If $z P y$ then since only members of \widehat{V} have these preferences and everyone else has the opposite, \widehat{V} would be a smaller almost decisive group than V - a contradiction. So, since R must be complete, $y R z$. By transitivity this along with $x P y$ (from $D_{V}(x, y)$ and the preferences $x P^{J} y$ and $\forall i \in \widehat{V}, x P^{i} y$) implies $x P z$. But only J prefers x to z while everyone else prefers the opposite. So J is almost decisive and \widehat{V} must be null. Therefore the smallest almost decisive set has but one member.

Theorem: The assumptions of Universal Domain, Pareto and Independence of Irrelevant Alternatives are consistent only with Dictatorship.

