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Abstract

Twitter is used extensively in the United States as well as globally, creat-

ing many opportunities to augment decision support systems with Twitter-

driven predictive analytics. Twitter is an ideal data source for decision

support: its users, who number in the millions, publicly discuss events, emo-

tions, and innumerable other topics; its content is authored and distributed

in real time at no charge; and individual messages (also known as tweets)

are often tagged with precise spatial and temporal coordinates. This article

presents research investigating the use of spatiotemporally tagged tweets for

crime prediction. We use Twitter-specific linguistic analysis and statistical

topic modeling to automatically identify discussion topics across a major

city in the United States. We then incorporate these topics into a crime

prediction model and show that, for 19 of the 25 crime types we studied,

the addition of Twitter data improves crime prediction performance versus

a standard approach based on kernel density estimation. We identify a num-

ber of performance bottlenecks that could impact the use of Twitter in an

actual decision support system. We also point out important areas of future

work for this research, including deeper semantic analysis of message con-

∗Email address: msg8u@virginia.edu; Tel.: 1+ 434 924 5397; Fax: 1+ 434 982 2972

Preprint submitted to Decision Support Systems January 14, 2014



tent, temporal modeling, and incorporation of auxiliary data sources. This

research has implications specifically for criminal justice decision makers in

charge of resource allocation for crime prevention. More generally, this re-

search has implications for decision makers concerned with geographic spaces

occupied by Twitter-using individuals.
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1. Introduction

Twitter currently serves approximately 140 million worldwide users post-

ing a combined 340 million messages (or tweets) per day [1]. Within the

United States in 2012, 15% of online adults used the Twitter service and

8% did so on a typical day, with the latter number quadrupling since late

2010 [2]. The service’s extensive use, both in the United States as well as

globally, creates many opportunities to augment decision support systems

with Twitter-driven predictive analytics. Recent research has shown that

tweets can be used to predict various large-scale events like elections [3],

infectious disease outbreaks [4], and national revolutions [5]. The essential

hypothesis is that the location, timing, and content of tweets are informative

with regard to future events.

Motivated by these prior studies, this article presents research answering

the following question: can we use the tweets posted by residents in a major

U.S. city to predict local criminal activity? This is an important question

because tweets are public information and they are easy to obtain via the

official Twitter service. Combined with Twitter’s widespread use around

the globe, an affirmative answer to this question could have implications

for a large population of criminal justice decision makers. For example,

improved crime prediction performance could allow such decision makers to
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more efficiently allocate police patrols and officer time, which are expensive

and thus scarce for many jurisdictions.

However, there are many challenges to using Twitter as an information

source for crime prediction. Tweets are notorious for (un)intentional mis-

spellings, on-the-fly word invention, symbol use, and syntactic structures

that often defy even the simplest computational treatments (e.g., word

boundary identification) [6]. To make matters worse, Twitter imposes a

140-character limit on the length of each tweet, encouraging the use of these

and other message shortening devices. Lastly, we are interested in predict-

ing crime at a city-block resolution or finer, and it is not clear how tweets

should be aggregated to support such analyses (prior work has investigated

broader resolutions, for example, at the city or country levels). These fac-

tors conspire to produce a data source that is simultaneously attractive –

owing to its real time, personalized content – but also difficult to process.

Thus, despite recent advances in all stages of the automatic text processing

pipeline (e.g., word boundary identification through semantic analysis) as

well as advances in crime prediction techniques (e.g., hot-spot mapping),

the answer to our primary research question has remained unclear.

We pursued three objectives: (1) quantify the crime prediction gains

achieved by adding Twitter-derived information to a standard crime pre-

diction approach based on kernel density estimation (KDE), (2) identify

existing text processing tools and associated parameterizations that can

be employed effectively in the analysis of tweets for the purpose of crime

prediction, and (3) identify performance bottlenecks that most affect the

Twitter-based crime prediction approach. Our results indicate progress to-

ward each objective. We have achieved crime prediction performance gains

across 19 of the 25 different crime types in our study using a novel applica-
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tion of statistical language processing and spatial modeling. In doing so, we

have identified a small number of major performance bottlenecks, solutions

to which would benefit future work in this area.

The rest of this article is structured as follows: in Section 2, we survey

recent work on using Twitter data for predictive analytics. In Section 3,

we describe our datasets and how we obtained them. In Section 4, we

present our analytic approach for Twitter-based crime prediction, which we

evaluate in Section 5. In Section 6, we discuss our results and the runtime

characteristics of our approach. We conclude, in Section 7, with a summary

of our contributions and pointers toward future work in this area.

2. Related Work

2.1. Crime prediction

Hot-spot maps are a traditional method of analyzing and visualizing

the distribution of crimes across space and time [7]. Relevant techniques

include kernel density estimation (KDE), which fits a two-dimensional spa-

tial probability density function to a historical crime record. This approach

allows the analyst to rapidly visualize and identify areas with historically

high crime concentrations. Future crimes often occur in the vicinity of past

crimes, making hot-spot maps a valuable crime prediction tool. More ad-

vanced techniques like self-exciting point process models also capture the

spatiotemporal clustering of criminal events [8]. These techniques are useful

but carry specific limitations. First, they are locally descriptive, meaning

that a hot-spot model for one geographic area cannot be used to characterize

a different geographic area. Second, they require historical crime data for

the area of interest, meaning they cannot be constructed for areas that lack
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such data. Third, they do not consider the rich social media landscape of

an area when analyzing crime patterns.

Researchers have addressed the first two limitations of hot-spot maps by

projecting the criminal point process into a feature space that describes each

point in terms of its proximity to, for example, local roadways and police

headquarters [9]. This space is then modeled using simple techniques such

as generalized additive models or logistic regression. The benefits of this

approach are clear: it can simultaneously consider a wide variety of historical

and spatial variables when making predictions; furthermore, predictions can

be made for geographic areas that lack historical crime records, so long as the

areas are associated with the requisite spatial information (e.g., locations of

roadways and police headquarters). The third limitation of traditional hot-

spot maps – the lack of consideration for social media – has been partially

addressed by models discussed in the following section.

2.2. Prediction via Social Media

In a forthcoming survey of social-media-based predictive modeling, Kalam-

pokis et al. identify seven application areas represented by 52 published

articles [10]. As shown, researchers have attempted to use social media to

predict or detect disease outbreaks [11], election results [12], macroeconomic

processes (including crime) [13], box office performance of movies [14], nat-

ural phenomena such as earthquakes [15], product sales [16], and financial

markets [17]. A primary difference between nearly all of these studies and

the present research concerns spatial resolution. Whereas processes like dis-

ease outbreaks and election results can be addressed at a spatial resolution

that covers an entire city with a single prediction, criminal processes can

vary dramatically between individual city blocks. The work by Wang et al.
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comes closest to the present research by using tweets drawn from local news

agencies [13]. The authors found preliminary evidence that such tweets

can be used to predict hit-and-run vehicular accidents and breaking-and-

entering crimes; however, their study did not address several key aspects

of social-media-based crime prediction. First, they used tweets solely from

hand-selected news agencies. These tweets, being written by professional

journalists, were relatively easy to process using current text analysis tech-

niques; however, this was done at the expense of ignoring hundreds of thou-

sands of potentially important messages. Second, the tweets used by Wang

et al. were not associated with GPS location information, which is often

attached to Twitter messages and indicates the user’s location when post-

ing the message. Thus, the authors were unable to explore deeper issues

concerning the geographic origin of Twitter messages and the correlation

between message origin and criminal processes. Third, the authors only in-

vestigated two of the many crime types tracked by police organizations, and

they did not compare their models with traditional hot-spot maps.

The present research addresses all limitations discussed above. We com-

bine historical crime records with Twitter data harvested from all available

Twitter users in the geographic area of interest. We address some of the

difficult textual issues described previously (e.g., symbols and nonstandard

vocabulary) using statistical language processing techniques, and we take full

advantage of GPS location information embedded in many tweets. Further-

more, we demonstrate the performance of our approach on a comprehensive

set of 25 crime types, and we compare our results with those obtained using

standard hot-spot mapping techniques.

6



Figure 1: Number of tweets collected daily between January 1, 2013 and March 31, 2013.

The sharp spike on day 34 coincided with the United States Super Bowl. The three large

drops resulted from a failure in our data collection software on those days.

3. Data Collection

Chicago, Illinois ranks third in the United States in population (2.7

million), second in the categories of total murders, robberies, aggravated

assaults, property crimes, and burglaries, and first in total motor vehicle

thefts (January - June, 2012 [18]). In addition to its large population and

high crime rates, Chicago maintains a rich data portal containing, among

other things, a complete listing of crimes documented by the Chicago Police

Department.1 Using the Data Portal, we collected information on all crimes

documented between January 1, 2013 and March 31, 2013 (n = 60, 876).

Each crime record in our subset contained a timestamp of occurrence, lat-

itude/longitude coordinates of the crime at the city-block level, and one of

27 types (e.g., ASSAULT and THEFT). Table 1 shows the frequency of each

crime type in our subset.

1City of Chicago Data Portal: https://data.cityofchicago.org
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Crime type Frequency (%)

THEFT 12,498 (20.53%)

BATTERY 10,222 (16.79%)

NARCOTICS 7,948 (13.06%)

CRIMINAL DAMAGE 5,517 (9.06%)

OTHER OFFENSE 4,183 (6.87%)

BURGLARY 3,600 (5.91%)

MOTOR VEHICLE THEFT 3,430 (5.63%)

ASSAULT 3,374 (5.54%)

DECEPTIVE PRACTICE 2,671 (4.39%)

ROBBERY 2,333 (3.83%)

CRIMINAL TRESPASS 1,745 (2.87%)

WEAPONS VIOLATION 635 (1.04%)

OFFENSE INVOLVING CHILDREN 593 (0.97%)

PUBLIC PEACE VIOLATION 583 (0.96%)

PROSTITUTION 418 (0.69%)

CRIM SEXUAL ASSAULT 264 (0.43%)

INTERFERENCE WITH PUBLIC OFFICER 244 (0.40%)

SEX OFFENSE 207 (0.34%)

LIQUOR LAW VIOLATION 121 (0.20%)

ARSON 79 (0.13%)

HOMICIDE 68 (0.11%)

KIDNAPPING 58 (0.10%)

GAMBLING 27 (0.04%)

STALKING 26 (0.04%)

INTIMIDATION 25 (0.04%)

OBSCENITY* 5 (0.01%)

NON-CRIMINAL* 2 (0.00%)

Total 60,876

Table 1: Frequency of crime types in Chicago documented between January 1, 2013 and

March 31, 2013. We excluded asterisked crimes from our study due to infrequency.
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Figure 2: KDE for GPS-tagged Tweets that originated within the city limits of Chicago,

Illinois between January 1, 2013 and March 31, 2013.

During the same time period, we also collected tweets tagged with GPS

coordinates falling within the city limits of Chicago, Illinois (n = 1, 528, 184).

We did this using the official Twitter Streaming API, defining a collection

bounding box with coordinates [-87.94011,41.64454] (lower-left corner) and

[-87.52413,42.02303] (upper-right corner). Figure 1 shows a time series of

the tweets collected during this period and Figure 2 shows a graphical KDE

of the tweets within the city limits of Chicago. As shown in Figure 2, most

GPS-tagged tweets are posted in the downtown area of Chicago.
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4. Analytic Approach

To predict the occurrence of crime type T , we first defined a one-month

training window (January 1, 2013 – January 31, 2013). We then put down

labeled points (latitude/longitude pairs) across the city limits of Chicago.

These points came from two sources: (1) from the locations of known crimes

of type T within the training window (these points received a label T ), and

(2) from a grid of evenly spaced points at 200-meter intervals, not coinciding

with points from the first set (these points received a label NONE ). Using

all points, we trained a binary classifier with the following general form:

Pr(Labelp = T |f1(p), f2(p), ..., fn(p)) = F (f1(p), f2(p), ..., fn(p)) (1)

In words, Equation 1 says that the probability of a crime of type T oc-

curring at a spatial point p equals some function F of the the n features

f1(p), f2(p), ..., fn(p) used to characterize p. We set F to be the logistic

function, leaving only the fi(p) features to be specified. In the next section,

we present feature f1(p), which quantifies the historical crime density at

point p. Next, in Section 4.2, we present features f2(p), ..., fn(p), which are

derived from Twitter messages posted by users in the spatial vicinity of p.

In Section 4.3, we present the model in full mathematical detail and explain

how we produced threat surfaces from the point estimates of threat.

4.1. Historical Crime Density: Feature f1(p)

To quantify the historical density of crime type T at a point p, we set

f1(p) to be the KDE at p:

f1(p) = k(p, h) =
1

Ph

P
∑

j=1

K

(

||p− pj||

h

)

(2)

10



Figure 3: Neighborhood boundaries for computing tweet-based topics. We only used the

green neighborhoods (i.e., those within the city boundary) in our analysis.

In Equation 2, p is the point at which a density estimate is needed, h is

a parameter – known as the bandwidth – that controls the smoothness of

the density estimate, P is the total number of crimes of type T that oc-

curred during the training window, j indexes a single crime location from

the training window, K is a density function (we used the standard normal

density function), || · || is the Euclidean norm, and pj is the location of crime

j. We used the ks package within the R statistical software environment

to estimate k(p, h), and we used the default plug-in bandwidth estimator

(Hpi) with a dscalar pilot to obtain an optimal value for h. This standard

approach is widely used by crime analysts to estimate crime densities [7].
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Figure 4: Plate notation for LDA, the parameters of which are as follows: β is the hy-

perparameter for a Dirichlet distribution, from which the multinomial word distribution

φ(z) is drawn (1 ≤ z ≤ T ), T is the number of topics to model, α is the hyperparameter

for a Dirichlet distribution, from which the multinomial topic distribution θ(d) is drawn

(1 ≤ d ≤ D), D is the number of documents, z is a draw from θ(d) that identifies topic φ(z),

from which an observed word w is drawn. z and w are drawn Nd times independently.

4.2. Information from Twitter Messages: Features f2, ..., fn

The primary contribution of this article is an exploration of Equation

1 for n > 1. That is, the novelty of this research lies in the combina-

tion of the standard kernel density estimate f1(p) with additional features

f2(p), ..., fn(p) that describe point p using Twitter content. Intuitively, one

can think of each fi(p) (for i > 1) as representing the importance of topic

i− 1 in the discussion that is transpiring among Twitter users in the spatial

neighborhood of p, with the total number of topics being n−1 (n is analogous

to k in k-means clustering, and we describe our approach for determining

its value in Section 5). We defined spatial neighborhoods in Chicago by
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laying down evenly spaced cells 1000 meters on each side. Figure 3 shows

the resulting neighborhood boundaries.

Given the neighborhoods defined above, the problem reduces to estimat-

ing the n−1 topic importance values for each neighborhood given the tweets

posted by users in each neighborhood. We used latent Dirichlet allocation

(LDA) for this purpose [19]. LDA is a generative probabilistic model of tex-

tual content that identifies coherent topics of discussion within document

collections. Figure 4 shows the traditional plate notation for LDA, and we

summarize the inputs and outputs below:

Documents: a collection of D textual documents with word boundaries.

Number of topics (T ): number of topics to model.

Using these inputs, the topic modeling process automatically infers optimal

settings for the following multinomial distributions:

Word distribution of topics (φ(z)): the probability that each word be-

longs to (or defines) a topic z.

Topic distribution of documents (θ(d)): the probability that each topic

belongs to (or defines) a document d.

Returning to Chicago and Equation 1, imagine compiling into a single

“document” all tweets posted during the training window within a single

neighborhood (see Figure 3). The map of Chicago then defines a collection

of such documents, and the topic modeling process estimates the strength of

each topic in each neighborhood – precisely what we need for our crime pre-

diction model. For example, in the neighborhood covering Chicago O’Hare

Airport, the strongest topic (with probability 0.34) contains the following

words:
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(3) flight, plane, gate, terminal, airport, airlines, delayed, american, ...

This is an intuitive result, since people often post tweets about traveling

while in an airport. Thus, for any point p falling into this neighborhood,

there exists a feature fi(p) = 0.34. The same point p is also associated with

the other T − 1 topic probabilities, producing the full set of topic features

{f2(p), ..., fi(p) = 0.34, ..., fn(p)} for point p. Points in other areas of the

city will also have a value for fi (the “airport topic”), but this value will

generally be much lower since people in such areas will be less focused on

discussing airports and travel.

LDA topic modeling is completely unsupervised, requiring no human

effort to define topics or identify topic probabilities within neighborhoods.

Similar to unsupervised clustering, topics do not have textual labels. Above,

we labeled fi the “airport topic” for explanation purposes only – such labels

do not exist in our models. LDA also does not capture word order, making

each topic an unordered set of words. For our purposes, the key output of

LDA is the probability of each topic in each neighborhood. We hypothe-

sized that these probabilities would add information to f1(p) (the historical

density) by injecting personalized descriptions from people’s everyday lives

into the model. Before showing the final model formulation and describing

its application, we provide additional implementation details describing how

we transformed raw tweets into the topic probabilities discussed above.

Implementing Topic Modeling for Tweets. Twitter is an inherently chal-

lenging source of textual information for reasons discussed earlier. Thus,

deep semantic analysis of tweets via traditional methods [20] is unlikely to

work well. Such methods suffer dramatic performance degradations when

switching from their training domain of newswire text to the relatively clean
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domain of general written English [21]. We eschewed deep semantic analy-

sis in favor of shallower analysis via topic modeling; however, we were still

confronted with the problems of word boundary detection and filtering out

irrelevant words (e.g., “the” and other so-called stop words). We addressed

these problems using the Twitter-specific tokenizer and part-of-speech tag-

ger developed by Owoputi et al. [22]. We processed each Tweet using this

software, and we retained all tokens marked with one of the following syn-

tactic categories:

common noun, pronoun, proper noun, nominal + possessive,

proper noun + possessive, verb, adjective, adverb, interjection,

hashtag*, emoticon*, nominal + verbal, proper noun + verbal,

existential ‘there’ + verbal

The list of retained syntactic categories is typical for filtering out stop words,

with the exception of the asterisked categories, which are unique to the so-

cial media domain. It is particularly important to use appropriate tokeniza-

tion for emoticons (e.g., “:)”), which would probably be treated as separate

tokens by a traditional tokenizer but carry important semantic content de-

scribing the user’s emotional state.

Once the tweets had been tokenized and filtered, we applied the MALLET

toolkit [23], which outputs the following probabilities:

Pr(t|r) 1 ≤ t ≤ T = #topics

1 ≤ r ≤ R = #neighborhoods (4)

In words, Equation 4 denotes the proportion of the discussion within neigh-

borhood r that is devoted to topic t. Each of the R neighborhoods is de-

scribed in terms of its T topic probabilities, as discussed previously. A full
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description of the topic modeling algorithm is beyond the scope of this ar-

ticle, and we refer the interested reader to the seminal presentation [19] as

well as the official MALLET documentation [23].

4.3. Full Model Formulation and Application

The full form of our crime prediction model (Equation 1) for crime type

T , including coefficients, is defined as follows:

Pr(Labelp = T |f1(p), f2(p), ..., fn(p)) =
1

1 + e

−






β0+

n
∏

i=1

βifi(p)







(5)

For i = 1, fi(p) equals the KDE k(p, h). For i > 1, fi(p) equals Pr(i− 1|r)

from Equation 4, where r is the unique topic neighborhood that spatially

contains p. Recall that, during training, we have a set of points that are

labeled with the crime type T and a set of points that are labeled as NONE.

Thus, building the binary logistic regression model in Equation 5 can proceed

in the standard way once the density estimates and topic modeling outputs

are obtained.

For any model trained according to Equation 5, we sought predictions

for crimes of type T for the first day following the training period. We

obtained these predictions by evaluating Equation 5 at spatial points across

the prediction area. The set of prediction points included those obtained by

evenly spacing points at 200-meter intervals across the prediction area. We

also added to the set of prediction points all points where crimes of type

T occurred during the training window. We added these points to force

higher-resolution predictions in areas where we had observed more crime in

the past. In any case, a prediction point was simply a latitude-longitude

pair containing no ground-truth information about future crime.
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(a) Predicted threat surface using only the

KDE feature.

(b) Predicted threat surface using the

KDE feature and the Twitter features.

Figure 5: Threat surfaces without (5a) and with (5b) Twitter topics.

For a prediction point p, we obtained feature value f1(p) by inspect-

ing the density of crime T observed in the 31 days prior. We obtained

feature values f2(p), ..., fn(p) by inspecting the topic modeling output for

tweets observed in the 31 days prior within the neighborhood covering p.

At this point, the model had already been trained and the coefficients βi

were known, so estimating the probability of crime type T at point p was

simply a matter of plugging in the feature values and calculating the result.

Note that this only produced point estimates of threat across the prediction

area. Since an individual point does not cover any geographic space, it was

necessary to translate the point estimates into surface estimates. To do this,

we simply recovered the 200-meter by 200-meter squares formed by the pre-

diction points spaced at 200-meter intervals and averaged the predictions in
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Figure 6: Spatially interpolated surface derived from Figure 5b according to Equation 6.

.

each square to calculate the threat for each square.

Figure 5a shows a threat surface produced by using only the KDE fea-

ture f1(p), and Figure 5b shows a threat surface produced by adding 100

Twitter topic features f2(p), ..., f101(p) to the KDE. The former appears to

be smooth, since it comprises 200-meter threat squares. The latter also uses

200-meter threat squares, but any two points residing in the same 1000-

meter by 1000-meter topic neighborhood will have identical topic-based fea-

ture values. Thus, most of the topic neighborhoods in Figure 5b appear to be

uniformly colored. They are not, however, as can be seen in the downtown

Chicago area:2 note the graded threat levels within many of the downtown

topic neighborhoods in Figure 5b. Such gradations are produced by changes
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in the KDE feature.

Intuitively, the boundary between a safe neighborhood and a danger-

ous neighborhood in Figure 5b should not be crisp, at least not under our

neighborhood definition, which does not correlate with physical barriers that

might induce such a boundary. To operationalize this intuition, we applied

distance-weighted spatial interpolation to each prediction point p in the

topic-based models as follows:

PrI(Labelp = T,W ) =

|N(p,W )|
∑

i=1

W −D(p, ni)
|N(p,W )|
∑

j=1

W −D(p, nj)

∗ Pr(Labelni
= T )

(6)

In Equation 6, PrI is the probability interpolation function, W is a window-

ing parameter of, for example 500 meters, N(p,W ) is the set of p’s neighbors

within a distance of W (this set includes p itself), D(p, ni) is the straight-

line distance between p and one of its neighbors ni, and Pr(Labelni
= T )

is the non-interpolated probability given in Equation 5. Thus, the spatially

interpolated probability at point p is the weighted average of its neighbors’

probabilities (including p itself), and the weights are inversely proportional

to the distance between p and its neighbors. Figure 6 shows the visual result

of applying this smoothing operation to the threat surface in Figure 5b. In

the following section, we present a formal evaluation of various parameteri-

zations of the models described above.

2The downtown Chicago area is the one that features most prominently in Figure 5a.
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5. Evaluation and Results

For each crime type T , we compared the model using only the KDE fea-

ture f1(p) to a model combining f1(p) with features f2(p), ..., fn(p) derived

from Twitter topics. We used MALLET to identify topic probabilities, con-

figured with 5000 Gibbs sampling iterations and an optimization interval

(how often to reestimate the α and β hyperparameters, see Figure 4) of 10,

but otherwise used the default MALLET parameters. We used LibLinear

[24] to estimate coefficients within the logistic regression model. To counter

the effects of class imbalance (there are far more negative points than pos-

itive points), we set LibLinear’s C parameter to N
P
, with N and P being

the counts of negative and positive points in the training set, respectively.

Model execution entailed (1) training the model on a 31-day window for

crime type T , (2) making T predictions for the first day following the train-

ing window, and (3) sliding one day into the future and repeating. This

mirrors a practical setup where a new prediction for T is run each day.

We evaluated the performance of each day’s prediction using surveillance

plots, an example of which is shown in Figure 7. A surveillance plot mea-

sures the percentage of true T crimes during the prediction window (y-axis)

that occur within the x% most threatened area according to the model’s

prediction for T . The surveillance plot in Figure 7 says that, if one were

to monitor the top 20% most threatened area according to the prediction

for T , one would observe approximately 45% of T crimes. We produced

scalar summaries for surveillance curves by calculating the total area under

the curve (AUC). Better prediction performance is indicated by curves that

approach the upper-left corner of the plot area or, equivalently, by curves

with higher AUC scores. An optimal prediction sorts the 200-meter pre-
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Figure 7: Example surveillance plot showing the number of true crimes captured (y-axis)

in the x% most threatened area according to the model’s prediction. AUC indicates total

area under the surveillance curve.

diction squares in descending order of how many future crimes they will

contain. This property makes surveillance plots appropriate for decision

makers, who must allocate scarce resources (e.g., police patrols) across the

geographic space. Lastly, because each model execution produced a series

of surveillance plots for crime type T , one for each prediction day, we aggre-

gated the plots to measure a model’s overall performance. For example, to

compute a model’s aggregate y-value for crime type T at an x-value of 5%,

we first summed the number of true T crimes occurring in the top 5% most

threatened area for each prediction day. We then divided that sum by the
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total number of true T crimes occurring across all prediction days. Doing

this for each possible x-value produced an aggregate curve and aggregate

AUC score, which we report in this article.

Evaluation proceeded in two phases. First, for each crime type, we op-

timized the number of topics and smoothing window in the Twitter-based

model during a development phase. We experimented with 100, 300, 500,

700, and 900 topics and smoothing windows of -1 (no smoothing), 500, 1000,

1500, and 2000 meters. We executed each Twitter-based model parameter-

ization for each crime type using the sliding window approach described

above with an initial training period of January 1, 2013 – January 31, 2013.

We aggregated the evaluation results for the predicted days in February, and

we used the aggregate AUC to select the optimal topic count and smoothing

window for each crime type. In a second evaluation phase, we executed the

KDE-only model and the Twitter-based model (with development-optimized

parameters) for each crime type using the sliding window approach described

above with an initial training period of February 1, 2013 – February 28, 2013.

We then aggregated the evaluation results for the predicted days in March.

The following pages show the resulting surveillance plots for the 25 crime

types in our Chicago dataset. In these plots, series identifiers are formatted

as “[# topics] [smoothing W ]”, with the first value indicating the number of

topics and the second value indicating the smoothing parameter. Thus, the

first series “0 -1” is produced using the KDE-only model, and the second

series is produced by a Twitter-based model with smoothing. The third

series shows gains from adding Twitter topics, and the identifier for this

series indicates the location of peak gain, which is shown using crosshairs

at the coordinates specified. The plots are sorted by improvement in AUC

achieved by the Twitter-based model versus the KDE-only model.
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Figure 8: Surveillance plots using KDE-only (series 1) and KDE + Twitter (series 2)

models. Series identifier format: [# topics] [smoothing W ]. Series 3 shows gains from

adding Twitter topics. Peak gain is shown using crosshairs at the coordinates specified.
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Figure 8: Surveillance plots using KDE-only (series 1) and KDE + Twitter (series 2)

models. Series identifier format: [# topics] [smoothing W ]. Series 3 shows gains from

adding Twitter topics. Peak gain is shown using crosshairs at the coordinates specified.
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Figure 8: Surveillance plots using KDE-only (series 1) and KDE + Twitter (series 2)

models. Series identifier format: [# topics] [smoothing W ]. Series 3 shows gains from

adding Twitter topics. Peak gain is shown using crosshairs at the coordinates specified.
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6. Discussion

6.1. Prediction Performance and Interpretation

Of the 25 crime types, 19 showed improvements in AUC when adding

Twitter topics to the KDE-only model. Crime types STALKING, CRIM-

INAL DAMAGE, and GAMBLING showed the greatest increase in AUC

(average increase: 6.6 points absolute, average peak improvement: 23 points

absolute), whereas ARSON, KIDNAPPING, and INTIMIDATION showed

the greatest decrease in AUC (average decrease: 12 points absolute). The av-

erage peak improvement across all crime types was approximately 10 points

absolute. When interpreting the results in Figure 8, it is important to bear in

mind that, practically speaking, not all of the surveillance area (the x-axis)

is equally important. Security forces cannot typically surveil all or even a

large part of an area, making curve segments closer to x = 0 more relevant.

Consider, for example, the crime types THEFT and NARCOTICS. Each ex-

hibited a peak improvement of seven points absolute when adding Twitter

topics and smoothing to the KDE-only model; however, this improvement

was realized much earlier for NARCOTICS than THEFT (11% surveillance

versus 30% surveillance, respectively).

6.2. The Composition of Predictive Topics

In general, it is difficult to explain why crime types benefited more or less

from the addition of Twitter topics. The topic modeling process is opaque

and, similar to unsupervised clustering, it can be difficult to interpret the

output. However, we did notice trends in our results. Looking at the first

12 crime types in Figure 8 (i.e., those with highest AUC improvements for

the Twitter-based models versus KDE-only models), we see that 9 used
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either 700 or 900 (the maximum) topics. We found that it was easier to

interpret the topics in these finer-grained models. For example, below we list

topics that were given large positive and negative coefficients for CRIMINAL

DAMAGE (700 topics) and THEFT (900 topics), respectively:

CRIM. DAM. t. 128 (β129 = 2.79): center united blackhawks bulls ...

THEFT t. 659 (β660 = −1.22): aquarium shedd adler planetarium ...

These two topics are easy to interpret as sports-oriented and museum-

oriented.3 We found it more difficult to interpret highly weighted topics

in models with fewer topics, for example, PROSTITUTION (500 topics):

PROS. t. 25 (β26 = 4.60): lounge studios continental village ukrainian ...

These anecdotal observations suggest that using more topics may improve

interpretability of the topic modeling output for crime prediction; however,

future investigations will be needed to confirm this.

Lastly, Figure 9 plots the absolute value of coefficients (y-axis) for topic

features as a function of topic rank (x-axis), with topics along the x-axis

being sorted by absolute value of their coefficients. Three crime types are

shown: PROSTITUTION (500 topics), CRIMINAL DAMAGE (700 topics),

and BURGLARY (900 topics). The weights are quite skewed in each series,

but less so when using fewer topics. For each crime type, the most important

topics receive weights that are close in magnitude to the weights assigned to

the KDE features (compare the endpoints on the y-axis to the KDE feature

coefficients shown in the legend).

3The United Center is a large sports arena in Chicago, and the Blackhawks and Bulls

are Chicago sports teams. Shedd and Adler are an aquarium and planetarium, respectively.
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Figure 9: Logistic regression coefficients assigned to Twitter topics for three crime types.

The x-axis denotes the rank of the topics when sorted by absolute value of their coefficients

(the y-axis). The legend indicates the number of topics used for the crime type as well as

the absolute value of the coefficient assigned to the KDE feature.

6.3. Computational Efficiency

The topic-based prediction model has a number of computational bottle-

necks. A minor one is the tokenization and part-of-speech tagging of tweets

using the Twitter-specific tagger created by Owoputi et al. [22]. This tagger

is capable of tagging 1,000 tweets per second on a single 3GHz CPU core and

uses less than 500MB of RAM. Thus, we were typically able to process an

entire month of GPS-tagged tweets (approximately 800,000) in three min-

utes using five CPU cores. A more serious performance bottleneck was the

topic modeling process carried out by MALLET. This toolkit has been op-
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timized for performance; however, building a topic model from a month of

tweets typically took 1-2 hours, and we could not find a good way to par-

allelize the process since the model depends on all input tweets. Another

major performance bottleneck was observed in the extraction of Twitter

topic probabilities at each prediction point. We used PostgreSQL/PostGIS

to store topic probabilities for each neighborhood, and even with a heavily

optimized table index structure, extracting 900 topic probabilities for each

of 15,000 prediction points (a single prediction) proved to be an expensive

operation involving the retrieval of 13.5 million database values. This re-

trieval was faster than the 1-2 hours required to build the topic model, but

it remained a significant contributor to the system’s runtime. Our aim in

this article has been to explain the modeling techniques we used and the

results we obtained. We have not conducted formal runtime performance

evaluations, which we leave for future work.

7. Conclusions and Future Work

Prior to this research, the benefits of Twitter messages (or tweets) for

crime prediction were largely unknown. Specifically, the implications of

GPS-tagged tweets had not been addressed, and very few of the many pos-

sible crime types had been investigated. Moreover, performance comparisons

with standard hot-spot models had not been performed. We have filled in

these gaps. We have shown that the addition of Twitter-derived features

improves prediction performance for 19 of 25 crime types and does so sub-

stantially for certain surveillance ranges. These results indicate potential

gains for criminal justice decision makers: better crime predictions should

improve the allocation of scarce resources such as police patrols and officer
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time, leading to a reduction in wasted effort and decrease in crime response

times, for example. Future work should focus on the following areas:

Tweet and network analysis: We have not analyzed the textual content

of tweets beyond tokenization, part-of-speech tagging, and topic modeling.

Digging deeper into the semantics of tweets could provide performance im-

provements compared to the models we have presented. For example, it

would be interesting to analyze the predicate-argument structure of tweets

in order to extract the events they describe and the actors in those events.

We are not aware of such analyzers specifically designed for tweets, but many

exist for standard newswire text and could be adapted to the Twitter do-

main [25]. We also did not investigate the various network structures within

Twitter (e.g., follower-followee and @-mentions). Analyzing these networks

might facilitate the anticipation of events (e.g., parties) that are known to

correlate with criminal activity.

Temporal modeling: Our models do not properly account for tempo-

ral effects such as trends, lags, and periodicity. Intuitively, it makes sense

that crime patterns could exhibit these behaviors and that Twitter con-

tent might be more predictive when message timestamps are taken into

account. For example, one could identify trends within the topic propor-

tions for a neighborhood and incorporate a trend variable (e.g., magnitude

of increase or decrease) into the model. One could also allow for delayed

effects of Twitter topics, the intuition being that Twitter users often antic-

ipate crime-correlated events (e.g., parties) when they compose their mes-

sages. Lastly, we did not explore alternative modeling techniques like ran-

dom forests, which are capable of handling non-linear threats.
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Incorporation of auxiliary data: Our modeling paradigm is able to ac-

commodate an arbitrary number of additional features. For example, prior

work has investigated various spatial and socioeconomic features [13], which

might complement the KDE and Twitter-based features we used in our mod-

els. The City of Chicago maintains a large, public repository of auxiliary

datasets that could be incorporated into the models. Given the number

of available auxiliary datasets, future work will need to focus on scalabil-

ity. We do not expect our PostgreSQL/PostGIS configuration to support

feature extraction from hundreds of spatial datasets for thousands of pre-

diction points. Newer, non-relational data management techniques (e.g.,

NoSQL) could provide a more scalable solution.
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