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There were three ravens sat on a tree,
Downe a downe, hay downe, hay downe
There were three ravens sat on a tree,
With a downe
There were three ravens sat on a tree,
They were as blacke as they might be.
With a downe derrie, derrie, derrie, downe, downe.

Anonymous, 16th century
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1. Introduction

Bayesian confirmation theory—abbreviated to bct in these notes—is the
predominant approach to confirmation in late twentieth century philosophy
of science. It has many critics, but no rival theory can claim anything like
the same following. The popularity of the Bayesian approach is due to its
flexibility, its apparently effortless handling of various technical problems,
the existence of various a priori arguments for its validity, and its injection
of subjective and contextual elements into the process of confirmation in
just the places where critics of earlier approaches had come to think that
subjectivity and sensitivity to context were necessary.

There are three basic elements to bct. First, it is assumed that the scien-
tist assigns what we will call credences or subjective probabilities to different
competing hypotheses. These credences are numbers between zero and one
reflecting something like the scientist’s level of expectation that a particular
hypothesis will turn out to be true, with a credence of one corresponding to
absolute certainty.

Second, the credences are assumed to behave mathematically like prob-
abilities. Thus they can be legitimately called subjective probabilities (subjec-
tive because they reflect one particular person’s views, however rational).

Third, scientists are assumed to learn from the evidence by what is called
the Bayesian conditionalization rule. Under suitable assumptions the con-
ditionalization rule directs you to update your credences in the light of new
evidence in a quantitatively exact way—that is, it provides precise new cre-
dences to replace the old credences that existed before the evidence came
in—provided only that you had precise credences for the competing hy-
potheses before the evidence arrived. That is, as long as you have some par-
ticular opinion about how plausible each of a set of competing hypotheses
is before you observe any evidence, the conditionalization rule will tell you
exactly how to update your opinions as more and more evidence arrives.

My approach to bct is more pragmatic than a priori, and more in the
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mode of the philosophy of science than that of epistemology or inductive
logic. There is not much emphasis, then, on the considerations, such as
the Dutch book argument (see section 3.4), that purport to show that we
must all become Bayesians. Bayesianism is offered to the reader as a superior
(though far from perfect) choice, rather than as the only alternative to gross
stupidity.

This is, I think, the way that most philosophers of science see things—
you will find the same tone in Horwich (1982) and Earman (1992)—but
you should be warned that it is not the approach of the most prominent
Bayesian proselytizers. These latter tend to be strict apriorists, concerned
to prove above all that there is no rational alternative to Bayesianism. They
would not, on the whole, approve of my methods.

A note to aficionados: Perhaps the most distinctive feature of my ap-
proach overall is an emphasis on the need to set subjective likelihoods ac-
cording to the physical likelihoods, using what is often called Miller’s Prin-
ciple. While Miller’s Principle is not itself especially controversial, I depart
from the usual Bayesian strategy in assuming that, wherever inductive sci-
entific inference is to proceed, a physical likelihood must be found, using
auxiliary hypotheses if necessary, to constrain the subjective likelihood.

A note to all readers: some more technical or incidental material is sep-
arated from the main text in lovely little boxes. I refer to these as tech boxes.
Other advanced material, occurring at the end of sections, is separated from
what precedes it by a horizontal line, like so.

On a first reading, you should skip this material. Unlike the material in tech
boxes, however, it will eventually become relevant.
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2. Credence or Subjective Probability

Bayesianism is built on the notion of credence or subjective probability. We
will use the term credence until we are able to conclude that credences have
the mathematical properties of probability; thereafter, we will call credences
subjective probabilities.

A credence is something like a person’s level of expectation for a hypoth-
esis or event: your credence that it will rain tomorrow, for example, is a mea-
sure of the degree to which you expect rain. If your credence for rain is very
low, you will be surprised if it rains; if it is very high, you will be surprised
if it does not rain. Credence, then, is psychological property. Everyone has
their own credences for various events.

The Bayesian’s first major assumption is that scientists, and other ratio-
nal creatures, have credences not only for mundane occurrences like rain,
but concerning the truth of various scientific hypotheses. If I am very con-
fident about a hypothesis, my credence for that hypothesis is very high. If I
am not at all confident, it is low.

The Bayesian’s model of a scientist’s mind is much richer, then, than the
model typically assumed in classical confirmation theory. In the classical
model, the scientist can have one of three attitudes towards a theory:1 they
accept the theory, they reject the theory, or they neither accept nor reject it.
A theory is accepted once the evidence in its favor is sufficiently strong, and
it is rejected once the evidence against it is sufficiently strong; if the evidence
is strong in neither way, it is neither accepted nor rejected.

On the Bayesian model, by contrast, a scientist’s attitude to a hypothesis
is encapsulated in a level of confidence, or credence, that may take any of a
range of different values from total disbelief to total belief. Rather than lay-
ing down, as does classical confirmation theory, a set of rules dictating when

1. The classical theorist does not necessarily deny the existence of a richer psychology
in individual scientists; what it denies is the relevance of this psychology to questions con-
cerning confirmation.
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the evidence is sufficient to accept or reject a theory, bct lays down a set of
rules dictating how an individual’s credences should change in response to
the evidence.

2.1 Bayesian Theories of Acceptance
Some Bayesian fellow travellers (for example, Levi 1967) add to
the Bayesian infrastructure a set of rules for accepting or reject-
ing hypotheses. The idea is that, once you have decided on your
credences over the range of available hypotheses, you then have
another decision to make, namely, which of those hypotheses, if
any, to accept or reject based on your credences. The conventional
Bayesian reaction to this sort of theory is that the second decision
is unnecessary: your credences express all the relevant facts about
your epistemic commitments.

In order to establish credence as a solid foundation on which to build
a theory of confirmation, the Bayesian must, first, provide a formal mathe-
matical apparatus for manipulating credences, and second, provide a mate-
rial basis for the notion of credence, that is, an argument that credences are
psychologically real.

The formal apparatus comes very easily. Credences are asserted to be,
as the term subjective probability suggests, a kind of probability. That is,
they are real numbers between zero and one, with a credence of one for a
theory meaning that the scientist is practically certain that the theory is true,
and a credence of zero meaning that the scientist is practically certain that
the theory is false. (The difference between practical certainty and absolute
certainty is explained in section 6.3.) Declaring credences to be probabilities
gives bct much of its power: the mathematical properties of probabilities
turn out to be very apt for representing the relation between theory and
evidence.

The psychological reality of credences presents more serious problems
for the Bayesian. While no one denies the existence of levels of expectation
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2.2 What Do Credences Range Over?
In probability mathematics, probabilities may be attached either
to events, such as the event of its raining tomorrow, or to propo-
sitions, such as the proposition “It will rain tomorrow”. It is more
natural to think of a theory as a set of propositions than as an
“event”, for which reason bct is usually presented as a theory in
which probabilities range over propositions. My formal presenta-
tion respects this custom, but the commentary uses the notion of
event wherever it seems natural.

for events such as tomorrow’s rain, what can reasonably be denied is the
existence of a complete set of precisely specified numbers characterizing a
level of expectation for all the various events and theories that play a role in
the scientific process.

The original response to this skeptical attitude was developed by Frank
Ramsey (1931), who suggested that credences are closely connected to dis-
positions to make or accept certain bets. For example, if my credence for
rain tomorrow is 0.5, I will accept anything up to an even money bet on rain
tomorrow. Suppose we decide that, if it rains, you pay me $10, while if it
does not rain, I pay you $5. I will eagerly accept this bet. If I have to pay
you $10, so that we are both putting up the same amount of money, I will
be indifferent to the bet; I may accept it or I may not. If I have to pay you
$15, I will certainly not make the bet. (Some of the formal principles behind
Ramsey’s definition will be laid out more precisely in section 3.4.)

Ramsey’s argued that betting patterns are sufficiently widespread—since
humans can bet on anything—and sufficiently consistent, to underwrite the
existence of credences for all important propositions; one of his major con-
tributions to the topic was to show that only very weak assumptions need be
made to achieve the desired level of consistency.

What, exactly, is the nature of the connection between credences and
betting behavior? The simplest and cleanest answer is to define credences

9



in terms of betting behavior, so that, for example, your having a credence
of one half for a proposition is no more or less than your being prepared to
accept anything up to even odds on the proposition’s turning out to be true.

Many philosophers, however, resist such a definition. They worry, for
example, about the possibility that an aversion to gambling may distort the
relation between a person’s credences and their betting behavior. The idea
underlying this and other such concerns is that credences are not disposi-
tions to bet, but are rather psychological properties in their own right that
are intimately, but not indefeasibly, connected to betting behavior (and, one
might add, to felt levels of expectation). Ramsey himself held such a view.

This picture strikes me as being a satisfactory basis for modern Bayesian
confirmation theory (though some Bayesian apriorists—see below—would
likely disagree). Psychologists may one day tell us that there are no cre-
dences, or at least not enough for the Bayesian; for the sake of these notes on
bct, though, let me assume that we have all the credences that bct requires.

3. Axioms of Probability

3.1 The Axioms

The branch of mathematics that deals with the properties of probabilities is
called the probability calculus. The calculus posits certain axioms that state
properties asserted to be both necessary and sufficient for a set of quantities
to count as probabilities. (Mathematicians normally think of the axioms as
constituting a kind of definition of the notion of probability.)

It is very important to the workings of bct that credences count as prob-
abilities in this mathematical sense, that is, that they satisfy all the axioms of
the probability calculus. This section will spell out the content of the axioms;
section 3.4 asks why it is reasonable to think that the psychological entities
we are calling credences have the necessary mathematical properties.

Begin with an example, a typical statement about a probability, the claim
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that the probability of obtaining heads on a tossed coin is one half. You may
think of this as a credence if you like; for the purposes of this section it does
not matter what sort of probability it is.

The claim about the coin involves two elements: an outcome, heads, and
a corresponding number, 0.5. It is natural to think of the probabilistic facts
about the coin toss as mapping possible outcomes of the toss to probabilities.
These facts, then, would be expressed by a simple function P(·) defined for
just two outcomes, heads and tails:

P(heads) = 0.5;

P(tails) = 0.5.

This is indeed just how mathematicians think of probabilistic information:
they see it as encoded in a function mapping outcomes to numbers that are
the probabilities of those outcomes. The mathematics of probability takes
as basic, then, two entities: a set of outcomes, and a function mapping the
elements of that set to probabilities. The set of outcomes is sometimes called
the outcome space; the whole thing the probability space.

Given such a structure, the axioms of the probability calculus can then
be expressed as constraints on the probability function. There are just three
axioms, which I will first state rather informally.

1. The probability function must map every outcome to a real number
between zero and one.

2. The probability function must map an inevitable outcome (e.g., get-
ting a number less than seven on a toss of a single die) to one, and
an impossible outcome (e.g., getting a seven on a toss of single die) to
zero.

3. If two outcomes are mutually exclusive, meaning that they cannot
both occur at the same time, then the probability of obtaining either
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one or the other is equal to the sum of the probabilities for the two
outcomes occurring separately. For example, since heads and tails are
mutually exclusive—you cannot get both heads and tails on a sin-
gle coin toss—the probability of getting either heads or tails is the
sum of the probability of heads and the probability of tails, that is,
0.5 + 0.5 = 1, as you would expect.

On the most conservative versions of the probability calculus, these are the
only constraints placed on the probability function. As we will see, a surpris-
ing number of properties can be derived from these three simple axioms.

Note that axiom 3 assumes that the probability function ranges over
combinations of outcomes as well as individual outcomes. For example, it is
assumed that there is a probability not just for heads and for tails, but for the
outcome heads or tails. A formal statement of the axioms makes explicit just
what combinations of outcomes must have probabilities assigned to them.
For our purposes, it is enough to know that any simple combination of out-
comes is allowed. For example, if the basic outcomes for a die throw are the
first six integers, then a probability must be assigned to outcomes such as
either an even number other than six, or a �ve (an outcome that occurs if the
die shows two, four, or five). Note that we are allowed to refer to general
properties of the outcomes (e.g., being even), and to use the usual logical
connectives.

It is useful to have a shorthand for these complex outcomes. Let e and
d be two possible outcomes of a die throw. Say that e is the event of getting
an odd number, and d is the event of getting a number less than three. Then
by ed, I mean the event of both e and d occurring (i.e., getting a one), by
e ∨ d I mean the event of either e or d occurring (i.e., getting one of 1, 2, 3,
or 5), and by ¬e I mean the event of e’s not occurring (i.e., getting an even
number).

Using this new formalism, let me write out the axioms of the probability
calculus more formally. Note that in this new version, the axioms appear to
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3.1 Sigma Algebra
The main text’s characterization of the domain of outcomes over
which the probability function must be defined is far too vague for
the formal needs of mathematics. Given a set of basic outcomes
(which are themselves subsets of an even more basic set, though in
simple cases such as a die throw, you may think of them as atomic
elements), mathematicians require that the probability function
be defined over what they call a sigma algebra formed from the
basic set. The sigma algebra is composed by taking the closure of
the basic set under the set operations of union (infinitely many,
though not uncountably many, are allowed), intersection, and
complement. The outcome corresponding to the union of two
other outcomes is deemed to occur if either outcome occurs; the
outcome corresponding to the intersection is deemed to occur
if both outcomes occur; and the outcome corresponding to the
complement of another outcome is deemed to occur if the latter
outcome fails to occur.

contain less information than in the version above. For example, the axioms
do not require explicitly that probabilities are less than one. It is easy to use
the new axioms to derive the old ones, however; in other words, the extra
information is there, but it is implicit. Here are the axioms.

1. For every outcome e, P(e) ≥ 0.

2. For any inevitable outcome e, P(e) = 1.

3. For mutually exclusive outcomes e and d, P(e ∨ d) = P(e) + P(d).

The notions of inevitability and mutual exclusivity are typically given a for-
mal interpretation: an outcome is inevitable if it is logically necessary that it
occur, and two outcomes are mutually exclusive if it is logically impossible
that they both occur.

Now you should use the axioms to prove the following simple theorems
of the probability calculus:

13



3.2 The Axiom of Countable Additivity
Most mathematicians stipulate that axiom 3 should apply to com-
binations of denumerably many mutually exclusive outcomes. (A
set is denumerable if it is infinite but countable.) This additional
stipulation is called the axiom of countable additivity. Some other
mathematicians, and philosophers, concerned to pare the axioms
of the probability calculus to the weakest possible set, do their best
to argue that the axiom of countable additivity is not necessary for
proving any important results.

1. For every outcome e, P(e) + P(¬e) = 1.

2. For every outcome e, P(e) ≤ 1.

3. For any two logically equivalent propositions e and d, P(e) = P(d).
(You might skip this proof the first time through; you will, however,
need to use the theorem in the remaining proofs.)

4. For any two outcomes e and d, P(e) = P(ed) + P(e¬d).

5. For any two outcomes e and d such that e entails d, P(e) ≤ P(d).

6. For any two outcomes e and d such that P(e ⊃ d) = 1 (where ⊃ is
material implication), P(e) ≤ P(d). (Remember that e⊃d ≡ d∨¬e ≡
¬(e¬d).)

Having trouble? The main step in all of these proofs is the invocation of
axiom 3, the only axiom that relates the probabilities for two different out-
comes. In order to invoke axiom 3 in the more complicated proofs, you will
need to break down the possible outcomes into mutually exclusive parts. For
example, when you are dealing with two events e and d, take a look at the
probabilities of the four mutually exclusive events ed, e¬d, d¬e, and ¬e¬d,
one of which must occur. When you are done, compare your proofs with
those at the end of these notes.
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3.2 Conditional Probability

We now make two important additions to the probability calculus. These
additions are conceptual rather than substantive: it is not new axioms that
are introduced, but new definitions.

The first definition is an attempt to capture the notion of a conditional
probability, that is, a probability of some outcome conditional on some other
outcome’s occurrence. For example, I may ask: what is the probability of
obtaining a two on a die roll, given that the number shown on the die is
even? What is the probability of Mariner winning tomorrow’s race, given
that it rains tonight? What is the probability that the third of three coin
tosses landed heads, given that two of the three were tails?

The conditional probability of an outcome e given another outcome d is
written P(e |d). Conditional probabilities are introduced into the probability
calculus by way of the following definition:

P(e |d) =
P(ed)
P(d)

.

(If P(d) is zero, then P(e |d) is undefined.) In the case of the die throw above,
for example, the probability of a two given that the outcome is even is, ac-
cording to the definition, the probability of obtaining a two and an even
number (i.e., the probability of obtaining a two) divided by the probability
of obtaining an even number, that is, 1/6 divided by 1/2, or 1/3, as you might
expect.

The definition can be given the following informal justification. To de-
termine P(e |d), you ought, intuitively, to reason as follows. Restrict your
view to the possible worlds in which the outcome d occurs. Imagine that
these are the only possibilities. Then the probability of e conditional on d is
the probability of e in this imaginary, restricted universe. What you are cal-
culating, if you think about it, is the proportion, probabilistically weighted,
of the probability space corresponding to d that also corresponds to e.

Conditional probabilities play an essential role in bct, due to their ap-
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3.3 Conditional Probability Introduced Axiomatically
There are some good arguments for introducing the notion of
conditional probability as a primitive of the probability calculus
rather than by way of a definition. On this view, the erstwhile def-
inition, or something like it, is to be interpreted as a fourth axiom
of the calculus that acts as a constraint on conditional probabil-
ities P(e |d) in those cases where P(d) is non-zero. When P(d)
is zero, the constraint does not apply. One advantage of the ax-
iomatic approach is that it allows the mathematical treatment of
probabilities conditional on events that have either zero probabil-
ity or an undefined probability.

pearance in two important theorems of which bct makes extensive use. The
first of these theorems is Bayes’ theorem:

P(e |d) =
P(d |e)
P(d)

P(e).

You do not need to understand the philosophical significance of the theorem
yet, but you should be able to prove it. Notice that it follows from the def-
inition of conditional probability alone; you do not need any of the axioms
to prove it. In this sense, it is hardly correct to call it a theorem at all. All the
more reason to marvel at the magic it will work . . .

The second important theorem states that, for an outcome e and a set of
mutually exclusive, exhaustive outcomes d1, d2, . . . that

P(e) = P(e |d1)P(d1) + P(e |d2)P(d2) + · · ·

This is a version of what is called the total probability theorem. A set of out-
comes is exhaustive if at least one of the outcomes must occur. It is mutually
exclusive if at most one can occur. Thus, if a set of outcomes is mutually
exclusive and exhaustive, it is guaranteed that exactly one outcome in the set
will occur.

To prove the total probability theorem, you will need the axioms, and
also the theorem that, if P(k) = 1, then P(ek) = P(e). First show that
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P(e) = P(ed1) + P(ed2) + · · · (this result is itself sometimes called the theo-
rem of total probability). Then use the definition of conditional probability
to obtain the theorem. You can make life a bit easier for yourself if you first
notice that that axiom 3, which on the surface applies to disjunctions of just
two propositions, in fact entails an analogous result for any finite number of
propositions. That is, if propositions e1, . . . , en are mutually exclusive, then
axiom 3 implies that P(e1 ∨ · · · ∨ en) = P(e1) + · · ·+ P(en).

3.3 Probabilistic Independence

Two outcomes e and d are said to be probabilistically independent if

P(ed) = P(e)P(d).

The outcomes of distinct coin tosses are independent, for example, because
the probability of getting, say, two heads in a row, is equal to the probability
for heads squared.

Independence may also be characterized using the notion of conditional
probability: outcomes e and d are independent if P(e |d) = P(e). This char-
acterization, while useful, has two defects. First, it does not apply when the
probability of d is zero. Thus it is strictly speaking only a sufficient condition
for independence; however, it is necessary and sufficient in all the interesting
cases, that is, the cases in which neither probability is zero or one, which is
why it is useful all the same. Second, it does not make transparent the sym-
metry of the independence relation: e is probabilistically independent of d
just in case d is probabilistically independent of e. (Of course, if you hap-
pen to notice that, for non-zero P(e) and P(d), P(e |d) = P(e) just in case
P(d |e) = P(d), then the symmetry can be divined just below the surface.)

In probability mathematics, independence normally appears as an as-
sumption. It is assumed that some set of outcomes is independent, and
some other result is shown to follow. For example, you might show (go
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ahead) that, if e and d are independent, then

P(e) + P(d) = P(e ∨ d) + P(e)P(d).

(Hint: start out by showing, without invoking the independence assump-
tion, that P(e) + P(d) = P(e ∨ d) + P(ed).)

In applying these results to real world problems, it becomes very impor-
tant to know when a pair of outcomes can be safely assumed to be inde-
pendent. An often used rule of thumb assures us that outcomes produced
by causally independent processes are probabilistically independent. (Note
that the word independent appears twice in the statement of the rule, mean-
ing two rather different things: probabilistic independence is a mathematical
relation, relative to a probability function, whereas causal independence is a
physical or metaphysical relation.) The rule is very useful; however, in many
sciences, for example, kinetic theory and population genetics, outcomes are
assumed to be independent even though they are produced by processes that
are not causally independent. For an explanation of why these outcomes
nevertheless tend to be probabilistically independent, run, don’t walk, to the
nearest bookstore to get yourself a copy of Strevens (2003).

In problems concerning confirmation, the probabilistic independence
relation almost never holds between outcomes of interest, for reasons that I
will explain later. Thus, the notion of independence is not so important to
bct, though we have certainly not heard the last of it.

3.4 Justifying the Axioms

We have seen that calling credence a species of mathematical probability is
not just a matter of naming: it imputes to credences certain mathematical
properties that are crucial to the functioning of the Bayesian machinery. We
have, so far, identified credences as psychological properties. We have not
shown that they have any particular mathematical properties. Or rather—
since the aim of confirmation theory is more to prescribe than to describe—
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we have not shown that credences ought to have any particular mathematical
properties, that is, that people ought to ensure that their credences conform
to the axioms of the probability calculus.

To put things more formally, what we want to do is to show that the cre-
dence function—the function C(·) giving a person’s credence for any par-
ticular hypothesis or event—has all the properties specified for a generic
probability function P(·) above. If we succeed, we have shown that C(·) is,
or rather ought to be, a probability function; it will follow that everything
we have proved for P(·) will be true for C(·).

This issue is especially important to those Bayesians who wish to estab-
lish a priori the validity of the Bayesian method. They would like to prove
that credences should obey the axioms of the probability calculus. For this
reason, a prominent strand in the Bayesian literature revolves around at-
tempts to argue that it is irrational to allow your credences to violate the
axioms.

The best known argument for this conclusion is known as the Dutch book
argument. (The relevant mathematical results were motivated and proved
independently by Ramsey and de Finetti, neither a Dutchman.) Recall that
there is a strong relation, on the Bayesian view, between your credence for an
event and your willingness to bet for or against the occurrence of the event
in various circumstances. A Dutch book argument establishes that, if your
credences do not conform to the axioms, it is possible to concoct a series of
gambles that you will accept, yet which is sure to lead to a net loss, however
things turn out. (Such a series is called a Dutch book.) To put yourself into
a state of mind in which you are disposed to make a series of bets that must
lose money is irrational; therefore, to fail to follow the axioms of probability
is irrational.

The Dutch book argument assumes the strong connection between cre-
dence and betting behavior mentioned in section 2. Let me now specify
exactly what the connection is supposed to be.
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If your credence for an outcome e is p, then you should accept odds
of up to p : (1 − p) to bet on e, and odds of up to (1 − p) : p to bet
against e. To accept odds of a : b on e is to accept a bet in which you put an
amount proportional to a into the pot, and your opponent puts an amount
proportional to b into the pot, on the understanding that, if e occurs, you
take the entire pot, while if e does not occur, your opponent takes the pot.
The important fact about the odds, note, is the ratio of a to b: the odds
1 : 1.5, the odds 2 : 3 and the odds 4 : 6 are exactly the same odds. Consider
some examples of the credence/betting relation.

1. Suppose that your credence for an event e is 0.5, as it might be if, say, e
is the event of a tossed coin’s landing heads. Then you will accept odds
of up to 1 : 1 (the same as 0.5 : 0.5) to bet on e. If your opponent puts,
say, $10 into the pot, you will accept a bet that involves your putting
any amount of money up to $10 in the pot yourself, but not more than
$10. (This is the example I used in section 2.)

2. Suppose that your credence for e is 0.8. Then you will accept odds of
up to 4 : 1 (the same as 0.8 : 0.2) to bet on e. If your opponent puts
$10 into the pot, you will accept a bet that involves your putting any
amount of money up to $40 in the pot yourself.

3. Suppose that your credence for e is 1. Then you will accept any odds
on e. Even if you have to put a million dollars in the pot and your
opponent puts in only one dollar, you will take the bet. Why not?
You are sure that you will win a dollar. If your credence for e is 0, by
contrast, you will never bet on e, no matter how favorable the odds.

I will not present the complete Dutch book argument here, but to give
you the flavor of the thing, here is the portion of the argument that shows
how to make a Dutch book against someone whose credences violate ax-
iom 2. Such a person has a credence for an inevitable event e that is less than
1, say, 0.9. They are therefore prepared to bet against e at odds of 1 : 9 or

20



better. But they are sure to lose such a bet. Moral: assign probability one to
inevitable events at all times.

It is worth noting that the Dutch book argument says nothing about
conditional probabilities. This is because conditional probabilities do not
appear in the axioms; they were introduced by definition. Consequently,
any step in mathematical reasoning about credences that involves only the
definition of conditional probabilities need not be justified; not to take the
step would be to reject the definition. Interestingly enough, the mathemati-
cal result about probability that has the greatest significance for bct—Bayes’
theorem—invokes only the definition. Thus the Dutch book argument is
not needed to justify Bayes’ theorem!

The Dutch book argument has been subjected to a number of criticisms,
of which I will mention two. The first objection questions the very strong
connection between credence and betting behavior required by the argu-
ment. As I noted in section 2, the tactic of defining credence so as to es-
tablish the connection as a matter of definition has fallen out of favor, but a
connection that is any weaker seems to result in a conclusion, not that the
violator of the axioms is guaranteed to accept a Dutch book, but that they
have a tendency, all other things being equal, in the right circumstances, to
accept a Dutch book. That is good enough for me, but it is not good enough
for many aprioristic Bayesians.

The second objection to the Dutch book argument is that it seeks to es-
tablish too much. No one can be blamed for failing in some ways to arrange
their credences in accordance with the axioms. Consider, for example, the
second axiom. In order to follow the axiom, you would have to know which
outcomes are inevitable. The axiom is normally interpreted fairly narrowly,
so that an outcome is regarded as inevitable only if its non-occurrence is a
conceptual impossibility (as opposed to, say, a physical impossibility). But
even so, conforming to the axiom would involve your being aware of all the
conceptual possibilities, which means, among other things, being aware of
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all the theorems of logic. If only we could have such knowledge! The implau-
sibility of Bayesianism’s assumption that we are aware of all the conceptual
possibilities, or as is sometimes said, that we are logically omniscient, will be
a theme of the discussion of the problem of old evidence in section 11.

Bayesians have offered a number of modifications of and alternatives to
the Dutch book argument. All are attempts to establish the irrationality of
violating the probability axioms. All, then, are affected by the second, logical
omniscience objection; but each hopes in its own way to accommodate a
weaker link between credence and subjective probability, and so to avoid at
least the first objection.

Enough. Let us from this point on assume that a scientist’s credences
tend to, or ought to, behave in accordance with the axioms of probability.
For this reason, I will now call credences, as promised, subjective probabili-
ties.

4. Bayesian Conditionalization

4.1 Bayes' Rule

We have now gone as far in the direction of bct as the axioms of probability
can take us. The final step is to introduce the Bayesian conditionalization
rule, a rule that, however intuitive, does not follow from any purely mathe-
matical precepts about the nature of probability.

Suppose that your probability for rain tomorrow, conditional on a sud-
den drop in temperature tonight, is 0.8, whereas your probability for rain
given no temperature drop is 0.3. The temperature drops. What should be
your new subjective probability for rain? It seems intuitively obvious that it
ought to be 0.8.

The Bayesian conditionalization rule simply formalizes this intuition. It
dictates that, if your subjective probability for some outcome d conditional
on another outcome e is p, and if you learn that e has in fact occurred (and
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you do not learn anything else), you should set your unconditional subjec-
tive probability for d, that is, C(d), equal to p.

Bayes’ rule, then, relates subjective probabilities at two different times,
an earlier time when either e has not occurred or you do not know that e
has occurred, and a later time when you learn that e has indeed occurred.
To write down the rule formally, we need a notation that distinguishes a
person’s subjective probability distribution at two different times. I write a
subjective probability at the earlier time as C(·), and a subjective probability
at the later time as C+(·). Then Bayes’ rule for conditionalization can be
written:

C+(d) = C(d |e),

on the understanding that the sole piece of information learned in the inter-
val between the two times is that e has occurred. More generally, if e1 . . . en

are all the pieces of information learned between the two times, then Bayes’
rule takes the form

C+(d) = C(d |e1 . . . en).

If you think of what is learned, that is e1 . . . en, as the evidence, then Bayes’
rule tells you how to update your beliefs in the light of the evidence, and thus
constitutes a theory of confirmation. Before I move on to the application of
Bayes’ rule to confirmation theory in section 5, however, I have a number of
important observations to make about conditionalization in itself.

4.2 Observation

Let me begin by saying some more about what a Bayesian considers to be
the kind of event that prompts the application of Bayes’ rule. I have said
that a Bayesian conditionalizes on e—that is, applies Bayes’ rule to e—just
when they “learn that e has occurred”. In classical Bayesianism, to learn e
is to have one’s subjective probability for e go to one as the result of some
kind of observation. This observation-driven change of e’s probability is
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not, note, due to an application of Bayes’ rule. It is, as it were, prompted by
a perception, not an inference.

The Bayesian, then, postulates two mechanisms by means of which sub-
jective probabilities may justifiably change:

1. An observation process, which has the effect of sending the subjec-
tive probability for some observable state of affairs (or if you prefer, of
some observation sentence) to one. The process is not itself a reason-
ing process, and affects only individual subjective probabilities.

2. A reasoning process, governed by Bayes’ rule. The reasoning process
is reactive, in that it must be triggered by a probability change due to
some other process; normally, the only such process envisaged by the
Bayesian is observation.

That the Bayesian relies on observation to provide the impetus to Bayes-
ian conditionalization prompts two questions. First, what if observation
raises the probability of some e, but not all the way to one? Second, what
kind of justification can be given for our relying on the probability changes
induced by observation?

To the first question, there is a standard answer. If observation changes
the credence for some e to a value x not equal to one, use the following rule
instead of Bayes’ rule:

C+(d) = C(d |e)x + C(d |¬e)(1− x).

You will see that this rule is equivalent to Bayes’ rule in the case where x is
one. The more general rule is called Jeffrey conditionalization, after Jeffrey
(1983).

The second question, concerning the justification of our reliance on ob-
servation, is not provided with any special answer by bct. Indeed, philoso-
phers of science typically leave this question to the epistemologists, and take
the epistemic status of observation as given.
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4.3 Background Knowledge

When I observe e, I am, according to Bayes’ rule, to set my new probability
for d equal to C(d |e). But C(d |e), it seems, only expresses the relation be-
tween e and d in isolation. What if e is, on its own, irrelevant to d, but is
highly relevant when other information is taken into account? It seems that
I ought to set C+(d) equal not to C(d |e), but to C(d |ek), where k is all my
background knowledge.

Let me give an example. Suppose that d is the proposition “The room
contains at least two philosophy professors” and e is the proposition “Pro-
fessor Wittgenstein is in the room”. Then C(d |e) should be, it seems, moder-
ately large, or at least, greater than C(d). But suppose that I know indepen-
dently that Professor Wittgenstein despises other philosophers and will leave
the room immediately if another philosopher enters. The conditional proba-
bility that takes into account this background knowledge, C(d |ek), will then
be close to zero. Clearly, upon seeing Professor Wittgenstein in the room, I
should take my background knowledge into account, setting C(d) equal to
this latter probability. Thus Bayes’ rule must incorporate k.

In fact, although there is no harm in incorporating background knowl-
edge explicitly into Bayes’ rule, it is not necessary. The reason is that any
relevant background knowledge is already figured into the subjective prob-
ability C(d |e); in other words, at all times, C(d |e) = C(d |ek).2 This follows
from the assumption that we assign our background knowledge subjective
probability one and the following theorem of the probability calculus:

If P(k) = 1, then P(d |ek) = P(d |e).

which follows in turn from another theorem: if P(k) = 1, then P(ek) = P(e).
I misled you in the example above by suggesting that C(d |e) is moder-

ately large. In fact, it is equal to C(d |ek) and therefore close to zero. Precisely

2. This is only true of subjective probability, not of other varieties of probability you
may come across, such as physical probability and logical probability.
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because it is easy to be misled in this way, however, it is in some circum-
stances worth putting the background knowledge explicitly into Bayes’ rule,
just to remind yourself and others that it is always there regardless.

4.4 Justifying Bayes' Rule

Bayes’ rule does not follow from the axioms of the probability calculus. You
can see this at a glance by noting that the rule relates two different proba-
bility functions, C(·) and C+(·), whereas the axioms concern only a single
function. Less formally, the axioms put a constraint on the form of the as-
signment of subjective probabilities at a particular time, whereas Bayes’ rule
dictates a relation between subjective probability assignments at two differ-
ent times.

To get a better feel for this claim, imagine that we have a number of
cognitively diverse people whose subjective probabilities obey, at all times,
the axioms of the probability calculus, and who conditionalize according to
Bayes’ rule. Construct a kind of mental Frankenstein’s monster, by cutting
each persons stream of thoughts into pieces, and stitching them together
haphazardly. At any particular moment in the hybrid stream, the subjective
probability assignments will obey the calculus, because they belong to the
mind of some individual, who by assumption obeys the calculus at all times.
But the stream will not obey Bayes’ rule, since the value of C(d |e) at one
time may belong to a different person than the value of C(d) at a later time.
Indeed, there is no coherence at all to the hybrid stream; the moral is that a
stream of thoughts that at all times satisfies the probability calculus can be
as messed up as you like when examined for consistency through time.

To justify Bayes’ rule, then, you need to posit some kind of connection
between a person’s thoughts at different times. A number of Bayesians have
tried to find a connection secure enough to participate as a premise in an
a priori argument for Bayes’ rule. One suggestion, due to David Lewis, is
to postulate a connection between subjective probabilities at one time and
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4.1 What the Apriorist Must Do
Let me summarize the things that the Bayesian apriorist must
prove in order to establish the apparatus of bct as compulsory
for any rational being. It must be shown that:

1. Everyone has, or ought to have, subjective probabilities for
all the elements that play a part in scientific confirmation,
in particular, hypotheses and outcomes that would count
as evidence.

2. The subjective probabilities ought to conform to the ax-
ioms of the probability calculus.

3. The subjective probabilities ought to change in accordance
with Bayes’ rule. (The exceptions are probability changes
due to observation; see section 4.2.)

The “old-fashioned” apriorist tries to get (1) and (2) together by
defining subjective probability in terms of betting behavior. In
note 3 I suggested trying to get (2) and (3) with a stricter defini-
tion of subjective probability; the drawback to this is that the def-
inition, being much more stringent, would no longer be satisfied
by a person’s betting behavior under the rather weak conditions
shown by Ramsey to be sufficient for the existence of subjective
probabilities on the “old-fashioned” definition. Thus a definition
in terms of extended betting behavior would weaken the argu-
ment for the existence of subjective probabilities, to some extent
undermining (1).

Two other conclusions that we have not encountered yet may
also be the object of the apriorist’s desire:

4. Subjective probabilities ought to conform to the probabil-
ity coordination principle (see section 5.2). To show this is
not compulsory, but it is highly desirable.

5. Initial probabilities over hypotheses ought to conform to
some kind of symmetry principle (see section 9.4). To
show this is not compulsory; many would regard it as com-
pletely unnecessary.
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betting behavior at a later time, and to run a kind of Dutch book argument.
The connection in question is just what you are thinking: if a person has

subjective probability p for d conditional on e, and if e (and nothing else)
is observed at some later time, then at that later time, the person should
accept odds of up to p : 1− p on d. Note that this is not the connection be-
tween subjective probability and betting behavior used in section 3.4 to run
the conventional Dutch book argument. That connection relates subjective
probabilities at a time and betting behavior at the same point in time; the
new principle relates subjective probabilities at a time and betting behavior
at a strictly later time, once new evidence has come in.

This raises a problem for an old-fashioned apriorist. The old-fashioned
apriorist justifies the old connection between subjective probability and bet-
ting behavior by defining one in terms of the other. But the definitional ma-
neuver cannot be used twice. Once necessary and sufficient conditions are
given for having a subjective probability at time t in terms of betting behav-
ior at time t, additional necessary conditions cannot be given in terms of
betting behavior at time t′.3

There are other approaches to justifying Bayes’ rule, but let me move on.

5. The Machinery of Modern Bayesianism

5.1 From Conditionalization to Con�rmation

In two short steps we will turn Bayesianism into a theory of confirmation.
The first step—really just a change of attitude—is to focus on the use of
Bayes’ rule to update subjective probabilities concerning scientific hypothe-
ses. To mark this newfound focus I will from this point on write Bayes’ rule

3. Exercise to the reader: what are the pitfalls of defining subjective probability so that
having a certain subjective probability entails both present and future betting behavior? The
answer is in tech box 4.1.
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as follows:
C+(h) = C(h |e).

The rule tells you what your new subjective probability for a hypothesis h
should be, upon observation of the evidence e.

In this context, it is no longer natural to call the argument h of the prob-
ability function an “outcome” (though if you insist, you can think of the
outcome as the hypothesis's being true). It is far more natural to think of it
as a proposition. At the same time, it is more natural to think of most kinds
of evidence as events; consider, for example, the event of the litmus paper’s
turning blue. For this reason, most expositors of bct talk apparently incon-
sistently as if subjective probability functions range over both propositions
and events. There is no harm in this custom (see tech box 2.2), and I will
follow it with relish.

The second step in the transformation of Bayesianism into a theory of
confirmation is, I think, the maximally revelatory moment in all of bct.
So far, Bayes’ rule does not appear to be especially useful. It says that you
should, upon observing e, set your new probability for h equal to your old
probability for h conditional on e. But what ought that old probability to
be? It seems that there are very few constraints on a probability such as
C(h |e), and so that Bayes’ rule is not giving you terribly helpful advice. A
skeptic might even suggest reading the rule backwards: C(h |e) is just the
probability that you would assign to h, if you were to learn that e. (But this
would be a mistake: see tech box 5.1.)

The power of bct consists in its ability to tell you, these appearances to
the contrary, what your value for C(h |e) should be, given only information
about your probabilities for h and its competitors, that is, given only values
of the form C(h). It will take some time (the remainder of this section) to
explain exactly how this is done.

I have promised you a revelatory moment, and now it is time to deliver.
Bayes’ rule sets C+(h) equal to C(h |e). We encountered, in section 3.2, a
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5.1 Conditional Probability Characterized Dispositionally
There are some interesting counterexamples to the view that
C(h |e) is the probability that I would assign to h, if I were to
learn that e (due to Richmond Thomason). Suppose that h is
the proposition that I am philosophically without talent, and e is
some piece of (purely hypothetical!) evidence that incontrovert-
ibly shows that I am philosophically untalented. Then my C(h |e)
is very high. But I may be vain enough that, were I to learn that e, I
would resist the conclusion that h. Of course, I would be violating
Bayes’ rule, and (Bayesians would say “therefore”) I would be rea-
soning irrationally. But the scenario is quite possible—plausible,
even—and shows that human psychology is such that a disposi-
tional interpretation of conditional probability in these terms is
not realistic. The example does not, of course, rule out the pos-
sibility, mentioned above, of defining C(h |e) as the probability I
ought to have for h on learning that e.

result that I called Bayes’ theorem:

C(d |e) =
C(e |d)

C(e)
C(d).

Writing h instead of d, substitute this into Bayes’ rule, obtaining

C+(h) =
C(e |h)

C(e)
C(h).

In this formulation, Bayes’ rule is suddenly full of possibilities. I had no
idea what value to give to C(h |e), but I know exactly what value to give to
C(e |h): it is just the probability that h itself ascribes to a phenomenon such
as e. The value of C(e) is perhaps less certain, but for an observable event e,
it seems that I am likely to have some opinion or other. (We will see shortly
that I have a more definite opinion than I may suppose.) Now, given values
for C(e |h) and C(e), I have determined a value for what you might call the
Bayesian multiplier, the value by which I multiply my old probability for h to
arrive at my new probability for h after observing e. What more could you
ask from a theory of confirmation?
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To better appreciate the virtues of bct, before I tax you with the details of
the same, let me show how bct deals with a special case, namely, the case in
which a hypothesis h entails an observed phenomenon e. I assume that C(e)
is less than one, that is, that it was an open question, in the circumstances,
whether e would be observed. Because h entails e, C(e |h) is equal to one.
(You proved this back in section 3.1.) On the observation of e, then, your
old subjective probability for h is multiplied by the Bayesian multiplier

C(e |h)
C(e)

which is, because C(e) is less than one, greater than one. Thus the obser-
vation of e will increase your subjective probability for h, confirming the
hypothesis, as you would expect.

This simple calculation, then, has reproduced the central principle of
hypothetico-deductivism, and—what hd itself never does—given an argu-
ment for the principle. (We will later see how Bayesianism avoids some of
the pitfalls of hd.) What’s more, the argument does not turn on any of the
subjective aspects of your assignment of subjective probabilities. All that
matters is that C(e |h) is equal to one, an assignment which is forced upon
all reasoners by the axioms of probability. You should now be starting to
appreciate the miracle of Bayesianism.

5.2 Constraining the Likelihood

You have begun to see, and will later see far more clearly, that the power of
bct lies to a great extent in the fact that it can appeal to certain powerful
constraints on the way that we set the subjective probabilities of the form
C(e |h).

I will call these probabilities the subjective likelihoods. (A likelihood is
any probability of the form P(e |h), where h is some hypothesis and e a piece
of potential evidence.)
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5.2 Logical Probability
Properly constrained subjective probability, or credence, is now
the almost universal choice for providing a probabilistic formu-
lation of inductive reasoning. But it was not always so. The first
half of the twentieth century saw the ascendancy of what is often
called logical probability (Keynes 1921; Carnap 1950).

A logical probability relates two propositions, which might be
called the hypothesis and the evidence. Like any probability, it is
a number between zero and one. Logical probabilists hold that
their probabilities quantify the evidential relation between the ev-
idence and the hypothesis, meaning roughly that a logical proba-
bility quantifies the degree to which the evidence supports or un-
dermines the hypothesis. When the probability of the hypothesis
on the evidence is equal to one, the evidence establishes the truth
of the hypothesis for sure. When it is equal to zero, the evidence
establishes the falsehood of the hypothesis for sure. When it is be-
tween zero and one, the evidence has some lesser effect, positive
or negative. (For one particular value, the evidence is irrelevant
to the hypothesis. This value is of necessity equal to the probabil-
ity of the hypothesis on the empty set of evidence. It will differ
for different hypotheses.) The degree of support quantified by a
logical probability is supposed to be an objective matter—the ob-
jective logic in question being, naturally, inductive logic. (The
sense of objective varies: Carnap’s logical probabilities are relative
to a “linguistic framework”, and so may differ from framework to
framework.)

Logical probability has fallen out of favor for the most part
because its assumption that there is always a fully determined,
objectively correct degree of support between a given body of ev-
idence and a given hypothesis has come to be seen as unrealistic.
Yet it should be noted that when bct is combined with pcp and an
objectivist approach to the priors (section 9.4), we are back in a
world that is not too different from that of the logical probabilists.
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At the end of the last section, I appealed to a very simple constraint on
the subjective likelihood C(e |h): if h entails e, then the subjective likelihood
must be equal to one. This is a theorem of the probability calculus, and so all
who are playing the Bayesian game must conform to the constraint. (Apri-
orist Bayesians would threaten to inflict Dutch books on non-conformists.)

If the hypothesis in question does not entail the evidence e (and does not
entail ¬e), however, this constraint does not apply. There are two reasons
that h might not make a definitive pronouncement on the occurrence of e.
Either

1. The hypothesis concerns physical probabilities of events such as e; it
assigns a probability greater than zero but less than one to e, or

2. The hypothesis has nothing definite to say about e at all.

I will discuss the first possibility in this section, and the second in section 6.4.
If h assigns a definite probability to e, then it seems obviously correct to

set the subjective likelihood equal to the probability assigned by h, which
I will call the physical likelihood. For example, if e is the event of a tossed
coin’s landing heads and h is the hypothesis that tossed coins land heads
with a probability of one half, then C(e |h) should also be set to one half.
Writing Ph(e) for the probability that h ascribes to e, the rule that we seem
tacitly to be following is:

C(e |h) = Ph(e).

That is, your subjective probability for e conditional on h’s turning out to be
correct should be the physical probability that h assigns to e. Call this rule
the probability coordination principle, or pcp.

The principle has an important implication for bct: if pcp is true, then
bct always favors, relatively speaking, hypotheses that ascribe higher physi-
cal probabilities to the observed evidence.
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5.3 The Probability Coordination Principle
The rule that subjective likelihoods ought to be set equal to the
corresponding physical probabilities is sometimes called Miller’s
Principle, after David Miller. The name is not particularly apt,
since Miller thought that the rule was incoherent (his naming
rights are due to his having emphasized its importance in bct,
which he wished to refute). Later, David Lewis (1980) proposed a
very influential version of the principle that he called the Principal
Principle. Lewis later decided (due to issues involving admissibil-
ity; see tech box 5.5) that the Principal Principle was false, and
ought to be replaced with a new rule of probability coordination
called the New Principle (Lewis 1994). It seems useful to have a
way to talk about all of these principles without favoring any par-
ticular one; for this reason, I have introduced the term probability
coordination principle. In these notes, what I mean by pcp is what-
ever probability coordination principle turns out to be correct.

I cannot emphasize strongly enough that C(e |h) and Ph(e) are two quite
different kinds of things. The first is a subjective probability, a psychological
fact about a scientist. The second is a physical probability of the sort that
might be prescribed by the laws of nature; intuitively, it is a feature of the
world that might be present even if there were no sentient beings in the
world and so no psychological facts at all. We have beliefs about the values
of different physical probabilities; the strength of these beliefs is given by our
subjective probabilities.

Because subjective probability and physical probability are such differ-
ent things, it is an open question why we ought to constrain our subjective
probabilities in accordance with pcp. Though Bayesians have offered many
proofs that one ought to conform to the constraints imposed by the axioms
of probability and Bayes’ rule, there has been much less work on pcp.

Before I continue, I ought to tell you two important things about pcp.
First, not all Bayesians insist that subjective probabilities conform to pcp:

34



5.4 Subjectivism about Physical Probability
An important view about the nature of physical probability holds
that the probabilities apparently imputed to the physical world by
scientific theories are nothing but projections of scientists’ own
subjective probabilities. This thesis is usually called subjectivism,
though confusingly, sometimes when people say subjectivism they
mean Bayesianism. The idea that drives subjectivism, due orig-
inally to Bruno de Finetti, is that certain subjective probabilities
are especially robust, in the sense that conditionalizing on most
information does not affect the value of the probabilities. An ex-
ample might be our subjective probability that a tossed coin lands
heads: conditionalizing on almost anything we know about the
world (except for some fairly specific information about the ini-
tial conditions of the coin toss) will not alter the probability of one
half. (Actually, the robustness is more subtle than this; Strevens
(2006) provides a more complete picture.) According to the sub-
jectivists, this robustness gives the probabilities an objective as-
pect that is usually interpreted literally, but mistakenly so. Almost
all subjectivists are Bayesians, but Bayesians certainly need not be
subjectivists.

Subjectivists do not have to worry about justifying pcp; since
subjectivism more or less identifies physical probabilities with cer-
tain subjective likelihoods, pcp is trivially true.
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the radical personalists are quite happy for the subjective likelihoods to be,
well, subjective. Radical personalism, which has strong ties to the subjec-
tivist interpretation of probability (see tech box 5.4), will be discussed in
section 9.3.

Second, the formulation of pcp stated above, though adequate for the ev-
eryday workings of Bayesian confirmation theory, cannot be entirely right.
In some circumstances, it is irrational for me to set my subjective likelihood
equal to the corresponding physical probability. The physical probability of
obtaining heads on a coin toss is one half. But suppose I know the exact
velocity and trajectory of a certain tossed coin. Then I can use this infor-
mation to calculate whether or not it will land heads. Let’s say that I figure
it will land heads. Then I should set my subjective probability for heads to
one, not one half. (Remember that this subjective probability takes into ac-
count tacitly all my background knowledge, including my knowledge of the
toss’s initial conditions and their consequences, as explained in section 4.2.)
David Lewis’s now classic paper on the probability coordination principle is,
in part, an attempt to frame the principle so that it recuses itself when we
have information of the sort just described, which Lewis calls inadmissible
information. You will find more on this problem in tech box 5.5.

The probability coordination principle is a powerful constraint on the
subjective likelihoods, but, as I noted above, it seems that it can only brought
to bear when the hypotheses under consideration assign specific physical
probabilities to the evidence. Some ways around this limitation will be ex-
plored in section 6.4.

5.3 Constraining the Probability of the Evidence

How should you set a value for C(e), the probability of observing a particu-
lar piece of evidence? A very helpful answer is to be found in a theorem of
the probability calculus presented in section 3.2, the theorem of total prob-
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5.5 Inadmissible Information
David Lewis’s version of pcp says that you should set C(e |h) equal
to Ph(e) provided that your background knowledge includes no
inadmissible information about e. Lewis does not provide a defi-
nition of inadmissibility, but suggests the following heuristic: nor-
mally, all information about the world up until the time that the
process producing e begins is admissible. (My talk of the process
producing e is a fairly crude paraphrase of Lewis’s actual view.)

The heuristic is supposed to be foolproof: Lewis mentions, as
an exception, the fact that a reading from a crystal ball predict-
ing whether or not e occurs is inadmissible. There are less outré
examples of inadmissible information about the past than this,
however: the example in the main text, of information about the
initial conditions of a coin toss, is a case in point. Cases such as
these make it very difficult to provide a good definition of inad-
missibility, except to say: evidence is inadmissible relative to some
Ph(e) if it contains information relevant to e that is not contained
in the physical probability h ascribes to e. But then how to decide
what information is relevant to e? Perhaps you look to confirma-
tion theory . . . oh.

By the way, Lewis would not sanction the application of pcp
to the probability of heads, because he would not count it as a
“real” probability, due to the fact that the process that determines
the outcome of a coin toss is, at root, deterministic, or nearly so.
(This means that he does not need to worry about the inadmis-
sibility of information about initial conditions.) There may be
some metaphysical justification for this view, but it is not very
helpful to students of confirmation theory. Many scientific theo-
ries concern probabilities that Lewis would regard as unreal, sta-
tistical mechanics and population genetics (more generally, mod-
ern evolutionary biology) being perhaps the two most notable ex-
amples. If we want to use bct to make judgments about theories
of this sort, we will want to constrain the subjective likelihoods
using the physical probabilities and we will need a probability co-
ordination principle to do so.
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ability, which states that for mutually exclusive and exhaustive d1, d2, . . . ,

C(e) = C(e |d1)C(d1) + C(e |d2)C(d2) + · · · .

Suppose that the dis are a set of competing hypotheses. Let us change their
name to reflect this supposition: henceforth, they shall be the hi. This small
change in notation gives the theorem the following suggestive formulation:

C(e) = C(e |h1)C(h1) + C(e |h2)C(h2) + · · · .

If you use pcp to set the likelihoods C(e |hi), then the total probability theo-
rem prescribes a technique for setting C(e) that depends only on your prob-
abilities over the hypotheses hi, that is, only on the C(hi).

In order to use the total probability theorem in this way, your set of com-
peting hypotheses must satisfy three requirements:

1. The hypotheses each assign an explicit physical probability to events
of e’s kind,

2. The hypotheses are mutually exclusive, and

3. The hypotheses are exhaustive.

Of these, assumption (1) has already been made (section 5.2) in order to
set a value for the subjective likelihood that constitutes the numerator of the
Bayesian multiplier. Assumption (2), that no two of the competing hypothe-
ses could both be true, may seem obviously satisfied in virtue of the meaning
of “competing”. A little thought, however, shows that often hypotheses com-
pete in science although they are strictly speaking consistent, as in the case
of competing Darwinian explanations of a trait that pick out different prop-
erties of the trait as selectively advantageous. (Perhaps the competitors can
be reformulated so that they are mutually exclusive, however.)

Assumption (3) is perhaps the shakiest of the three. The hypotheses are
exhaustive only if there is not some further theory that is incompatible with
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each of the his. To be sure that there is no such theory, it seems, I would
have to have at least some passing acquaintance with all the possible theories
that claim to predict events like e. But this is unrealistic. The most striking
examples of scientific progress are those where an entirely new explanation
of the evidence comes to light.

This problem, it turns out, not only undermines a certain application of
the theorem of total probability, but goes to the very root of Bayesianism,
for the reason that the whole apparatus of subjective probability assumes
that the individual puts a probability distribution over all possibilities. The
issues arising will be examined in section 11.4. Until then, put these worries
aside.

5.4 Modern Bayesianism: A Summary

We have come a long way. Back in section 5.1, Bayes’ rule seemed to be
telling you, rather unhelpfully, to set your probabilities after the observation
of e equal to your earlier probabilities conditional on e. With the help of
Bayes’ theorem, this was seen to amount to multiplying your earlier proba-
bility for h by the Bayesian multiplier:

C(e |h)
C(e)

Given the constraints imposed by pcp and the theorem of total probability,
the Bayesian multiplier turns out to depend entirely on your earlier proba-
bilities for h and its rivals. It is equal to

Ph(e)
Ph1(e)C(h1) + Ph2(e)C(h2) + · · ·

(where h is, by assumption, one of the his).
Once you have set subjective probabilities for all of a set of competing

hypotheses h1, h2, . . . , then, the Bayesian apparatus tells you, given the as-
sumptions stated in the previous two sections, how to update these proba-

39



bilities upon observation of any piece of evidence e. In other words, pro-
vided that you have some initial view about the relative plausibility of a set
of competing hypotheses, bct prescribes the exact, quantitative changes you
must make to these on the observation of any set of evidence. The Bayesian
apparatus, it seems, is a complete guide to how your beliefs must change in
response to the evidence.

The probabilities that are assigned to various hypotheses before any ev-
idence comes in are referred to as prior probabilities (see tech box 5.6 for
an important terminological note). If you manage to set your prior prob-
abilities to some values before any evidence comes in, then, bct will take
care of the rest. This should be enough to make you acquire a set of prior
probabilities even if you do not already have them!

5.6 Prior Probabilities
The term prior probability is used in three distinct ways in the
Bayesian literature. First, it can mean, as in the main text, your
subjective probability for a hypothesis before you have received
any evidence. Second, it can mean your subjective probability for
a hypothesis before some particular piece of evidence e comes in.
The probability after receipt of e is then called your posterior prob-
ability. In this sense, the term is entirely relative: your posterior
probability for a hypothesis relative to one piece of evidence will
be your prior probability for the hypothesis relative to the next.
In the third sense, a prior probability is any subjective probabil-
ity that is unconditioned by evidence. Your prior probabilities
for the hypotheses are priors in this sense, but they are not the
only priors. Your probabilities that you will see various kinds of
evidence, for example, also count as priors, as do subjective like-
lihoods (probabilities of the form C(e |h)). The achievement of
modern Bayesianism might then be stated as follows: of all the
prior probabilities in the third sense, only the priors in the first
sense really matter.

It is as well to enumerate the more important assumptions that were
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made in order to reach the dramatic conclusion that the prior probabilities
for a set of hypotheses determine the pattern of all subsequent inductive
reasoning concerning those hypotheses:

1. You ought to set your subjective probabilities in accordance with pcp.

2. Each of the hypotheses ascribes an exact physical probability to any
relevant evidence.

3. The hypotheses are mutually exclusive and exhaustive.

As noted in the previous two sections, ways to relax assumptions (2) and (3)
will be explored later in these notes.

6. Modern Bayesianism in Action

6.1 A Worked Example

Although there is much to say about the abstract properties of bct, let us
first look at an example of bct in action.

Suppose that we have on the table just three hypotheses, concerning the
physical probability that any given raven is black.

h1 The probability that any given raven is black is one (thus, all ravens
are black).

h2 The probability that any given raven is black is one half (thus, it is
overwhelmingly likely that about one half of all ravens are black).

h3 The probability that any given raven is black is zero (thus, no ravens
are black).

We have yet to observe any ravens. Let us therefore assign equal prior
probabilities to these three hypotheses of 1/3 each. (There is nothing in
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bct, as presented so far, to constrain this choice, but it does seem rather
reasonable; more on this in section 9.4.)

Now we observe a black raven. We apply the Bayesian conditionalization
formula to see how our subjective probabilities change upon receiving this
evidence. The formula is:

C+(h) =
Ph(e)
C(e)

C(h)

where Ph1(e) is 1, Ph2(e) is 1/2, Ph3(e) is 0, and

C(e) = Ph1(e)C(h1) + Ph2(e)C(h2) + Ph3(e)C(h3)

= 1/3 + 1/6 + 0

= 1/2

(Why can we apply the theorem of total evidence, when the three hypotheses
clearly fail to exhaust the possibilities? It is enough that the probabilities of
the hypotheses sum to one, that is, that I, the amateur ornithologist, think
that the probabilities exhaust the possibilities. This ornithological belief is
rather artificial, but the simplicity is welcome.)

Applying the conditionalization rule, we find that the probability of h1

is doubled, going to 2/3, that of h2 remains the same, at 1/3, and that of h3

is multiplied by zero, going to zero. There are now only two hypotheses in
the running, h1 and h2. Of the two, h1 is ahead, due to its having assigned
a higher physical probability to the observed evidence, the fact of a certain
raven’s being black.

Now suppose that another black raven is observed. Is the probability of
h1 doubled again? One would hope not, or it would be greater than one. It
is not, because C(e) has taken on a new value closer to one, reflecting our
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n C(h1) C(h2) C(h3) C(e)
0 1/3 1/3 1/3 1/2
1 2/3 1/3 0 5/6
2 4/5 1/5 0 9/10
3 8/9 1/9 0 ?

Table 1: Change in the probabilities for e, the event of the next raven’s being
black, and the three raven hypotheses h1, h2 and h3 (see main text for mean-
ings) as more and more black ravens are observed, where n is the number
of ravens observed so far

increased confidence in h1. Let us do the calculation:

C(e) = Ph1(e)C(h1) + Ph2(e)C(h2)

= 2/3 + 1/6

= 5/6

where C(·), note, now represents our subjective probability distribution after
observing the first black raven but before observing the second.

On observing the second raven, then, the probability of h1 is multiplied
by 6/5, and that of h2 by 3/5, yielding probabilities of 4/5 and 1/5 respectively.
Our subjective probability of a third raven’s being black is now 9/10 (since
we think that h1 is very likely correct). If the third raven is indeed black, our
probabilities for h1 and h2 will go to 8/9 and 1/9. To be sure you understand
what is going on, calculate the new value for C(e), the probability that a
fourth raven will be black, and the probabilities for h1 and h2 if the fourth
raven is as black as we expect. The evolution of the subjective probabilities
as ravens are observed is shown in table 1.

This simple example illustrates a number of facts about bct:

1. If a hypothesis is logically inconsistent with the evidence, upon con-
ditionalization its probability goes to zero.
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2. Once a hypothesis’s probability goes to zero, it can never come back.
The hypothesis is eliminated.

3. The hypothesis that assigns the highest probability to the observed ev-
idence (h1 in the example) receives the biggest probability boost from
the observation of the evidence. A hypothesis that assigns probabil-
ity one to the evidence will receive the largest boost possible in the
circumstances.

4. If a hypothesis is consistent with the evidence, its probability can never
go to zero, though it can go as near zero as you like (as would h2’s
probability if nothing but black ravens were observed).

5. After conditionalization, your subjective probabilities for a set of mu-
tually exclusive, exhaustive hypotheses (such as h1, h2, and h3) will
always sum to one.

6. As a certain hypothesis becomes dominant, in the sense that its prob-
ability approaches one, its probability boost from further successful
predictions declines (though there is always a boost).

6.2 General Properties of Bayesian Con�rmation

Now to generalize from the last section’s example. First, a little terminology.
When the observation of e causes the probability of h to increase, say that h is
con�rmed. When the observation of e causes the probability of h to decrease,
say that h is discon�rmed. When the observation of e causes the probability
of h1 to increase by a greater proportion than does the probability of h2, say
that h1 is more strongly con�rmed than h2. This is not the only measure of
strength of confirmation that may be used within a Bayesian context—some
other possibilities are mentioned in tech box 6.1—but it is the most useful
for my present expository purposes.
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6.1 Weight of Evidence
The degree to which a piece of evidence confirms a hypothesis
can be quantified in various ways using the Bayesian framework
of subjective probabilities. The difference measure of relevance
equates the degree of confirmation with the difference between
the relevant posterior and prior probabilities, so that the degree
to which e confirms h is equal to C(h |e) − C(h). The ratio mea-
sure equates it with the ratio of the same two probabilities, that is,
with the Bayesian multiplier; this is the measure used in the main
text. The likelihood ratio measure sets the degree of relevance to
C(e |h)/C(e |¬h), and the log likelihood ratio measure to the log-
arithm of this quantity (which has the effect of making degree of
confirmation additive). Each of these measures has its uses.

Some writers argue that there is a single, correct way to mea-
sure degree of confirmation that gives sense to our everyday talk
about the weight of evidence. Most Bayesians take a more plu-
ralistic and pragmatic line, noting that unlike some systems of
inductive logic, bct does not give a notion of weight of evidence
any crucial role to play.
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Let me define the same terms more compactly. As above, let the Bayesian
multiplier be Ph(e)/C(e), the amount by which the probability of h is mul-
tiplied when conditionalizing on e. Then, first, e confirms h if the Bayesian
multiplier is greater than one and disconfirms h if the multiplier is less than
one. Second, e confirms h1 more strongly than it confirms h2 if the Bayesian
multiplier for h1 is greater than the multiplier for h2.

I will state some generalizations about bct in the form of five “princi-
ples”, followed by two “remarks”.

The Hypothetico-Deductive Principle

If h entails e, then the observation of e con�rms h.
We have already seen that this is true. If h entails e, then Ph(e) is equal to

one, so the Bayesian multiplier must be greater than one, on the assumption
that C(e) is less than one.

The smaller the value of C(e), the greater will be the value of the multi-
plier. Thus surprising predictions confirm a hypothesis more strongly than
unsurprising predictions. The exception to the hypothetico-deductive prin-
ciple that occurs when C(e) = 1 is an extreme case of this observation: ev-
idence that is expected with certainty has no confirmatory (or disconfirma-
tory) weight whatsoever. You might think that in practice, this could never
happen; but in a certain sense it often does, as we will see in section 11.

The Likelihood Lover's Principle

The higher the physical probability that h assigns to e, the more strongly h is
con�rmed by the observation of e.4

The denominator of the Bayesian multiplier is the same, at any given
time, for all competing hypotheses, equal to C(e). The numerator is Ph(e).

4. The principle requires that the hypotheses have non-zero priors, and that the back-
ground knowledge includes no inadmissible evidence (see tech box 5.5 for inadmissibility).
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Therefore the Bayesian multiplier varies among competing hypotheses in
proportion to Ph(e), the physical probability that they assign to the evidence.

Some more specific claims along the lines of the likelihood lover’s prin-
ciple:

1. If a hypothesis assigns a physical probability to e that is higher than
C(e), it is confirmed by the observation of e (obviously!). To put it
more qualitatively, if h predicts e with a higher probability than (the
probabilistically weighted) average, it is confirmed by the observation
of e.

2. If there are only two hypotheses in the running, and one ascribes e
a higher probability than the other, then e confirms the one and dis-
confirms the other. This is because, as a consequence of the theorem
of total probability, C(e) is always somewhere between the physical
probability assigned by one hypothesis and that assigned by the other.

(The likelihood lover’s principle should not be confused with what some
philosophers call the likelihood principle, according to which subjective like-
lihoods (and only subjective likelihoods) are responsible for a piece of evi-
dence’s differential impact on two or more different hypotheses. The like-
lihood principle differs from the likelihood lover’s principle in two ways:
it concerns subjective, not physical, likelihoods (and thus does not depend
on pcp), and it says not only that strength of confirmation varies with the
likelihoods, but that it is entirely determined, relatively speaking, by the like-
lihoods.)

The Equal Probability Principle

Hypotheses that assign equal physical probabilities to a body of evidence are
equally strongly con�rmed by that evidence.

It is easy to see that such hypotheses have equal Bayesian multipliers.
Though it is trivially true, the equal probability principle is essential for an
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understanding of what bct can and cannot do; see, in particular, section 7.

The Good Housekeeping Principle

No matter what evidence is observed, the probabilities of a set of mutually ex-
clusive, exhaustive hypotheses will always sum to one.

Bayesianism’s ability to keep all of your subjective probabilities in good
order as you conditionalize your way through the evidence can seem quite
miraculous, not least when you are in the middle of a complex Bayesian
calculation. The reason that the good housekeeping principle holds true,
though, is easy to see. Consider the case in which there are just two compet-
ing hypotheses h1 and h2. The probabilities of h1 and h2 after conditional-
ization on some e are

C+(h1) =
Ph1(e)C(h1)

Ph1(e)C(h1) + Ph2(e)C(h2)
and

C+(h2) =
Ph2(e)C(h2)

Ph1(e)C(h1) + Ph2(e)C(h2)
.

These probabilities have the form

a
a + b

and
b

a + b
and so they must sum to one.5 You should have no trouble seeing, first, that
the result generalizes to the case where there are any number of competing
hypotheses, and second, that the fact that the subjective likelihoods are set
in accordance with pcp makes no difference to this result.

The Commutativity Principle

The order in which the evidence is observed does not alter the cumulative effect
on the probability of a hypothesis.

5. It is not necessary, note, to assume that C(h1) and C(h2) sum to one. Conditional-
ization actually repairs subjective probabilities that are out of whack! (But of course, you
would have no reason to apply the theorem of total probability in a case such as this.)
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For example, conditionalizing on e and then on d will leave you with
the same probability for h as conditionalizing on d and then on e, or as
conditionalizing on e and d at the same time.

This result is a straightforward consequence of the definition of condi-
tional probability, but it can be difficult to represent multiple conditional-
izations in just the right way to see how. Here is one approach. Define Cd(·)
to mean C(· |d). Then upon conditionalizing on d, one’s new probability
for h ought to be equal to the old Cd(h). Further conditionalizing on e will
result in a probability for h equal to the original Cd(h |e). Now

Cd(h |e) =
Cd(he)
Cd(e)

=
C(hed)/C(d)
C(ed)/C(d)

=
C(hed)
C(ed)

= C(h |ed)

as desired. By symmetrical reasoning, Ce(h |d) = C(h |ed).6

Remark: The Contrastive Aspect of Bayesian Con�rmation Theory

Observe that a hypothesis’s degree of confirmation depends not only its own
predictions, but on the predictions of its competitors. One notable conse-
quence of this property of bct is that a hypothesis that is quite inaccurate
can be assigned a subjective probability as near one as you like if its com-
petitors are even more inaccurate. To take a very simple example, if the only
hypotheses about raven blackness that have non-zero subjective probability

6. It is an open question whether commutativity holds for Jeffrey conditionalization
(Field 1978). (Jeffrey conditionalization is described in section 4.2.) The difficulty is more
philosophical than mathematical: it is unclear what would count as making the same ob-
servations in two different orders. On one interpretation, Jeffrey conditionalization is com-
mutative, but on others, not.
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are are One half of all ravens are black and No ravens are black, then if all
observed ravens are black, the first hypothesis will come to have subjective
probability one. Similarly, a hypothesis that is very accurate can have its
subjective probability greatly decrease (though slowly) if its competitors are
even more accurate. There is only a limited amount of subjective probabil-
ity; it flows towards those hypotheses with the physical likelihoods that are
relatively the highest, regardless of their absolute size.

Remark: The Contextual Aspect of Bayesian Con�rmation Theory

In the Bayesian scheme, any piece of knowledge can, potentially, affect the
impact of a piece of evidence on a hypothesis. Relative to one set of back-
ground knowledge, a piece of evidence may confirm a hypothesis a great
deal, while relative to another, it may confirm it not at all. This is in part
because the background can make a difference to whether or not the hy-
pothesis entails the evidence, or to what physical probability it assigns the
hypothesis (some examples are given in section 8.1). But only in part: in
principle, almost any kind of information might affect your subjective like-
lihood C(e |h).

This contextual sensitivity of bct has been generally regarded as a good
thing, since it has long been accepted that inductive reasoning has a certain
holistic aspect. But it also makes it more difficult to establish that bct will
be well behaved and that it will lead to some kind of scientific consensus (see
section 9).

6.3 Working with In�nitely Many Hypotheses

In the example of the ravens in section 6.1, I assumed that there were just
three hypotheses under serious consideration, hypotheses assigning proba-
bilities of zero, one half, and one, to the event of the next observed raven’s
being black. In reality, I would want to consider all the possible probabilities
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for blackness, which is to say that I would seriously entertain all hypotheses
of the form The probability of the next raven's being black is p.

There are infinitely many such hypotheses. This creates some rather
tricky problems for the Bayesian. Most worrying, the only way to assign
probabilities to an infinite set of mutually exclusive hypotheses so that the
probabilities sum to one (as the axioms insist they must) is to assign almost
every hypothesis a probability of zero. But a hypothesis that is assigned a
prior probability of zero can never have its probability increase. So it seems
that I must rule almost every hypothesis out of the running before I even
begin to collect evidence. Nevermore indeed!

There is a purely technical solution to these problems that will be fa-
miliar to anyone who has done a little work on probability or statistics. It
is to introduce the notion of a probability density. Even those of you who
know no statistics have very likely seen at least one example of a probability
density: the normal curve.

The fundamental idea behind a probability density is that, in a case
where there are infinitely many possibilities, I should assign subjective prob-
abilities not to individual possibilities, but to sets of possibilities. For exam-
ple, in the case of the ravens, I may not have an interesting (that is, non-zero)
subjective probability for the hypothesis that the probability of black raven
is exactly 0.875, but I may have a subjective probability for the hypothesis
that the probability of a black raven is somewhere between 0.8 and 0.9. That
is, I may have a subjective probability for the set of hypotheses of the form

{The probability of the next raven’s being black is x : 0.8 < x < 0.9 }

Provided that I have enough subjective probabilities of this sort (in a well-
defined sense of enough), I can take advantage of all that the Bayesian has to
offer by applying conditionalization to the probabilities over sets.

It turns out that there is a very simple way for me to assign subjective
probabilities to all the relevant sets. What I can do is to adopt a probability
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density over the competing hypotheses. The properties of a probability den-
sity are easiest to appreciate in graphical form. Consider a two-dimensional
graph on which the points along the x-axis between zero and one each rep-
resent the corresponding raven hypothesis, that is, on which the point x = p
represents the hypothesis The probability of the next raven's being black is p.

A probability density can then be represented by a well-behaved func-
tion f (x) defined for arguments between zero and one, such as the function
shown in figure 1. The assignment of subjective probabilities inherent in

a b
x

f�x�

Figure 1: A probability density over the raven hypotheses. The area of the
shaded region is by definition equal to the subjective probability that the
physical probability of raven blackness is somewhere between a and b.

f (x) is to be interpreted as follows: the subjective probability that the phys-
ical probability of raven blackness is between a and b is equal to the area
under f (x) between a and b. (The area under f (x) between zero and one,
then, had better be equal to one.)

Before I observe any ravens, then, I can set my prior probabilities over
the infinitely many hypotheses about the physical probability of blackness
by adopting a subjective probability density. If I think that all hypotheses
are equally likely, I will adopt a flat density like that shown in figure 2a. If I
think that middling probabilities for blackness are more likely, I will adopt a
humped density like that shown in figure 2b. If I think that higher probabil-
ities are more likely, my density might look like the density in figure 2c. And
so on.
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Figure 2: Some choices of prior probability density for the raven blackness
hypotheses

How to conditionalize? Very conveniently, I can conditionalize by pre-
tending that f (x) for any x is a probability. That is, when I observe e, my
new probability density over the hypotheses f +(x) should be related to my
old density f (x) by the following familiar-looking relation:

f +(x) =
Phx (e)
C(e)

f (x).

The probability Phx (e) is the probability assigned to the evidence by the hy-
pothesis that the probability of a black raven is x. If e is the observation of a
black raven, then Phx (e) = x.

The theorem of total probability can be applied by using the integral
calculus. You do not need to understand this. For those of you who do,

C(e) =
∫ 1

0
Phx (e) f (x) dx.

In the case where e is the observation of a black raven, then,

C(e) =
∫ 1

0
xf (x) dx.

Now we can crunch some numbers. Suppose that I begin with a flat prior
over the raven probability hypotheses (figure 3a). After the observation of
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a black raven, my new density is that shown in figure 3b. After two black
ravens, my density is as in figure 3c. After three and four black ravens, it is
as in figures 3d and 3e. After ten black ravens, it is as in figure 3f.

0.2 0.4 0.6 0.8 1

�e�

0.2 0.4 0.6 0.8 1

�f�0.2 0.4 0.6 0.8 1

�c�

0.2 0.4 0.6 0.8 1

�d�0.2 0.4 0.6 0.8 1

�a�

0.2 0.4 0.6 0.8 1

�b�

Figure 3: The change in my subjective probability density as more and more
black ravens are observed

By way of contrast, figure 4 shows the change in my prior if only some of
the observed ravens are black. The prior is shown in (a), then (b)–(f) show
the density after observing 2, 6, 10, 20, and 36 ravens respectively, in each
case assuming that only one half of the observed ravens are black.

As you can see, my density becomes heaped fairly quickly around those
hypotheses that ascribe a physical probability to blackness that is close to
the observed frequency of blackness. As more and more evidence comes in,
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Figure 4: The change in my subjective probability density as more and more
ravens are observed, if half of all observed ravens at any stage are black
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my subjective probability density will (with very high physical probability)
become more and more heaped around the true hypothesis. (For more on
the mathematics of convergence, see tech box 6.2. For more on the use of
convergence results to undergird bct, see section 9.2.) After observing 100
ravens, exactly 50 of which are black, for example, my density will be close
to zero for any hypothesis that assigns a probability to blackness that differs
from one half by more than about 0.1.

6.2 The Law of Large Numbers
The heaping, over time, of subjective probability around the cor-
rect hypothesis concerning raven blackness, depends on a mathe-
matical result called the law of large numbers. The law concerns a
series of experiments each of which produces an outcome e with a
probability x. It states that, as more and more experiments are
performed, the proportion of experiments that produce e will,
with high probability, converge on x. For example, if the prob-
ability of observing a black raven is 0.7, then, as more and more
ravens are observed, the proportion of observed ravens that are
black will converge to 70% with very high probability. Note that
there is always a small probability that the proportion of black
ravens is quite different from 70%; this probability, though, be-
comes smaller and smaller as more and more ravens are observed,
tending to zero in the long run.

There is more than one version of the law of large numbers.
The result that I stated informally in the last paragraph is called
the weak law of large numbers. It may be stated more formally as
follows. Let b be the proportion of observed ravens that are black,
and x the probability that any given raven is black. Assume that
the observations are probabilistically independent (section 3.3).
Then, as the number of ravens observed tends to infinity, for any
small quantity e, the probability that b differs from x by more than
e tends to zero.

What, in this case, is my subjective probability for the hypothesis that
the probability of blackness is exactly one half? It is zero! It is zero even after
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I observe two million ravens, exactly one million of which are black. This
is because, although almost all my subjective probability is piled in the area
very, very close to x = 0.5, there are infinitely many hypotheses even in this
tiny area, and the large but finite quantity of probability piled in the area
must be shared between these infinitely many hypotheses.

As a consequence, no matter how much evidence I accumulate, I am
never in a position to say: I am very confident that the probability of black-
ness is one half. The best I can do is to say: I am very confident that the
probability of blackness is very close to one half. Quite reasonably, most
Bayesians would say.

You might think that if I have a subjective probability of zero for a hy-
pothesis, I am certain that it is false. But as the raven case shows, this is
not correct. When I have the sort of probability density over the rival raven
hypotheses shown in figures 2, 3, and 4, I assign each of them a zero proba-
bility. But at the same time, I am sure that one of them is correct. Unless I
contradict myself, my assignment of zero probability cannot entail certainty
of falsehood. It rather represents something that you might call practical
certainty of falsehood. Given one of the raven hypotheses in particular, I
will accept any odds you like that it is false. Yet I acknowledge that it might
turn out to be true.

Assigning probability zero to a hypothesis, then, can mean one of two
things. It can mean that I am absolutely sure that the hypothesis is false, as
when I assign zero probability to an antitautology (a proposition that is false
of logical necessity). Or it can mean mere practical certainty of falsehood,
that is, a willingness to bet against the hypothesis at any odds, coupled with
the belief that it might nevertheless be true. The same is true for probability
one.
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6.4 When Explicit Physical Probabilities Are Not Available

We have proceeded so far on the assumption that our competing hypotheses
each ascribe a definite physical probability to the evidence e. But in many
cases, this assumption is false.

Consider a very simple case. Suppose that our competing hypotheses
concerning raven color specify not a physical probability of blackness, but a
frequency of black ravens. For example, h0.5 says not The next observed raven
will be black with probability 0.5, but rather Half of all ravens are black. This
hypothesis does not entail that the next observed raven will be black with
probability 0.5. It is consistent with the possibility that, for example, all of
the ravens around here are black, but enough ravens elsewhere are white to
compensate for the local predominance of blackness. In such a scenario, the
probability of the next raven’s being black is more or less one. Then again, it
might be that all the local ravens are white, in which case the probability of
the next raven’s being black is about zero. How to apply bct to hypotheses
such as these?7

The usual solution to the problem is to introduce one or more auxiliary
hypotheses. Traditionally, an auxiliary hypothesis is a posit used to extract
from a theory a definite verdict as to whether some piece of evidence e will
be observed or not—to get the theory to entail either e or ¬e—but in the
present context, it is a hypothesis that, in conjunction with a hypothesis h,
assigns a definite physical probability to e.

A simple example of an auxiliary hypothesis suitable for the ravens case
is the hypothesis that raven color is uncorrelated with raven habitat, so that
roughly the same percentage of black ravens live in any locale. Conjoin-
ing this hypothesis with a hypothesis that the frequency of black ravens is x
yields the conclusion that the probability of the next observed raven’s being

7. The Bayesian apparatus does not strictly speaking require a physical probability, only
a subjective likelihood C(e |h). By insisting on physical probabilities now, I make possible a
much stronger response to later worries about the subjectivity of bct (section 9).
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black is x.8
Call the auxiliary hypothesis a. Let h be the thesis that the proportion of

black ravens is x. Then h and a together ascribe a physical probability x to e,
or in symbols, Pha(e) = x. The subjective likelihood C(e |ha) can therefore
be set, in accordance with pcp, to x.

This is not quite what we wanted. It allows us to use pcp to calculate a
shift in our subjective probability for ha, but not in our subjective proba-
bility for h. It turns out that, in certain circumstances, a piece of evidence
can have a qualitatively different effect on h and ha, raising the subjective
probability of one while lowering the subjective probability of the other. Al-
though e’s impact on the subjective probability for ha is regimented by pcp,
then, its impact on h is, in general, not. The problem, and some solutions,
are investigated further in section 10.

It is worth noting that, in some circumstances, you can make your aux-
iliary hypotheses true. This is, in effect, what is done in statistical sampling.
By choosing ravens from a population at random, you ensure that the prob-
ability of the next observed raven’s being black is equal to the proportion of
black ravens in the population as a whole. In this way, you can learn about
the population even if unplanned encounters with population members are
far from random.

More generally, when scientists conduct experiments in carefully con-
trolled circumstances, they are ensuring, as best they can, the truth of aux-
iliary hypotheses that, in combination with the hypotheses being tested, as-
sign definite physical probabilities to the various possible experimental out-
comes.

The prospect for a Bayesian philosophy of science that is mediated en-
tirely by physical likelihoods is for these reasons far better than some writers
(e.g., Earman 1992, §6.3) would have you believe.

8. Strictly speaking, of course, you need in addition the assumption that you are sam-
pling randomly from the local habitat.
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7. Does Bayesianism Solve the Problem of Induction?

7.1 Subjective and Objective In Bayesian Con�rmation Theory

The old-fashioned problem of induction is the problem of finding a priori,
objective grounds for preferring some hypotheses to others on the basis of
what we observe (where the hypotheses have a scope that goes beyond our
observations). Bayesian confirmation theory tells us how to change our de-
grees of belief for the hypotheses given the evidence. Does bct therefore
solve the problem of induction?

Although it is true that bct tells us how to update our subjective prob-
abilities in the light of the evidence, that is not enough in itself to solve the
problem of induction. The recommended changes must be founded in a
priori, objective constraints. Modern Bayesian confirmation theory claims
three such constraints: subjective probabilities should be set in accordance
with

1. The axioms of probability,

2. Bayes’ conditionalization rule, and

3. The probability coordination principle.

Let us grant, for the sake of the argument, that these constraints are indeed
a priori and objective. Now does bct solve the problem of induction?

Not quite. The reason is that bct’s recommendations are determined not
only by the three objective, a priori constraints, but also by your prior prob-
abilities, that is, the subjective probabilities you assign before any evidence
comes in. Assuming, as we have been so far, that the priors are subjectively
determined, it follows from the fact that the priors make an essential con-
tribution to bct’s recommendations that these recommendations are partly
subjectively determined. Thus, the fact that bct makes such recommen-
dations does not qualify it as a solution to the old-fashioned problem of
induction.
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In order to use bct to solve the problem of induction we must do one
of two things. First, we might find some further objective, a priori rule that
constrains the prior probabilities so effectively that bct’s recommendations
are completely determined by the constraints. The subjective element of
Bayesianism would be eliminated entirely. This possibility is investigated
further in section 9.4.

The second option is to find some aspect of bct’s recommendations that
is entirely determined by the constraints. Such an aspect is enunciated by
llp, the likelihood lover’s principle (section 6.2):

The higher the physical probability that a hypothesis h assigns to the
evidence e, the more strongly h is confirmed by the observation of e.9

Although the quantitative details of bct’s recommendations depend on the
subjectively determined priors, no matter how I set my priors, I will respect
llp. That I should follow llp, then, is determined by the axioms of probabil-
ity, Bayes’ rule, and pcp. On our working assumption that these constraints
are all objective and a priori, llp is also, for the Bayesian, objective and a
priori.

It would seem, then, we have made some progress on induction. Bayes-
ian confirmation theory puts a real constraint on inductive reasoning. But
how much, exactly, follows from llp? And how much depends, by contrast,
on the priors?

In what follows, I ask, concerning three features of our inductive rea-
soning, whether they follow from llp or some other objective aspect of the
Bayesian machinery, or whether they depend on the way that one’s prior
probabilities are assigned. The three features are:

1. Our expectation that the future will resemble the past, that is, our
belief in the uniformity of nature,

9. The principle requires that the hypotheses have non-zero priors, and that the back-
ground knowledge includes no inadmissible evidence (see tech box 5.5 for inadmissibility).
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2. Our preference for hypotheses that are not framed using “grue-like”
predicates, and

3. Our preference for simpler over more complex hypotheses, when the
competing hypotheses are otherwise equally successful in accounting
for the data.

In each case, sad to say, it is the assignment of the priors, and not anything
more objective, that accounts, on the Bayesian story, for these elements of
our inductive practice.

7.2 The Uniformity of Nature

Can bct justify a belief—or a high degree of belief—in the uniformity of na-
ture? At first blush, it seems that if I am committed to the likelihood lover’s
principle, I ought to expect the future to be like the past, as illustrated by the
raven case. Suppose that every raven I see is black. Then, if I follow llp, my
subjective probabilities will converge on the hypotheses that assign the high-
est probabilities to these observations, that is, the hypotheses that assign the
highest physical probabilities to blackness in ravens. As the convergence oc-
curs, the probability I assign to any future raven’s being black grows higher
and higher, thanks to the theorem of total probability—as shown by the ex-
amples in section 6.1 (see especially table 1).

More generally, if all my hypotheses have the form The probability of an
r being b is x, and I observe a large number of rs of which a proportion p
are b, then my subjective probability for the next r’s being b will be roughly
equal to p, the more so as more rs are observed. Thus, I will expect the future
proportion of rs that are b to be equal, at least roughly, the past proportion
of the same—which is to say, I will set my expectations in accordance with
the principle of the uniformity of nature.

Did I make any additional assumptions in reaching this conclusion? Un-
fortunately, yes. I made the least acceptable assumption possible: I assumed
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that I started out with a very high subjective probability for the future’s re-
sembling the past.

The assumption came by way of the assumption that all my hypotheses
have the form The probability of an r being b is x, which implies the existence
of a single, unchanging physical probability for raven blackness. To see how
powerful this assumption is, consider the following alternative form for a
hypothesis covering the same phenomena:

The probability of an r first observed before the year 3000’s being b
is x; the probability of an r first observed after the year 3000’s being
b is 1− x.

For the value x = 1, a hypothesis of this form will be strongly confirmed
by all black ravens observed before 3000. Indeed, it will receive precisely
the same Bayesian multiplier as the raven hypothesis, All ravens are black,
thanks to the equal probability principle (section 6.2, and explained further
in section 7.3). If it is assigned the same prior as the raven hypothesis, then it
will have the same posterior probability in the year 3000, and so will count as
heavily against the next observed raven’s being black as the raven hypothesis
counts for it.

Now you see that the argument from llp to an expectation that the fu-
ture will resemble the past depends on my discounting—that is, assigning
very low or zero probability to—hypotheses that explicitly state that the fu-
ture will (very likely) not resemble the past.

The point, that inductive expectations were assumed, not justified, can
be made even more dramatically. Suppose that my hypotheses concerning
the blackness of ravens are h1, . . . , hn. Let u be the proposition that the fu-
ture, with high probability, resembles the past, at least with respect to the
color of ravens. Then

C(u) = C(u |h1)C(h1) + · · ·+ C(u |hn)C(hn).
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But any individual hi having the form assumed above—The probability of an
r being b is x—entails u. Thus

C(u) = C(h1) + · · ·+ C(hn) = 1.

So by assuming that you consider only hypotheses of the given form to be
viable candidates for laws about raven blackness, I assume that you already
assign subjective probability one to the uniformity of nature. It is not bct
that compels your allegiance to uniformity; the passion for order has all
along been burning in your heart.

7.3 Goodman's New Riddle

If you followed the argument in the last section, then you already strongly
suspect that bct will fail to solve Goodman’s new riddle of induction, where
a solution to the riddle is an a priori argument for preferring hypotheses
couched using standard predicates such as black to hypotheses couched us-
ing non-standard predicates such as blite. (An object is blite if it is black and
first observed before the year 3000, or white and first observed after 3000.)

In order to solve the new riddle, we need a reason currently to prefer,
for example, the hypothesis All ravens are black to the hypothesis All ravens
are blite, such that the preference does not depend in any way on the prior
probabilities for the hypotheses. But because both hypotheses assign exactly
the same physical probability to the evidence observed so far (some large
number of ravens, all black), bct cannot discriminate between them.

Let me explain the point in greater detail. Call the observed evidence e.
Your current subjective probability for the first hypothesis, call it h, is

C+(h) =
C(e |h)

C(e)
C(h);

that for the second hypothesis, call it h′, is

C+(h′) =
C(e |h′)

C(e)
C(h′).
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Since both hypotheses predict that all ravens observed until now will be
black, their likelihoods are both equal to one, that is, C(e |h) = C(e |h′) = 1.
So we have

C+(h) =
1

C(e)
C(h); C+(h′) =

1
C(e)

C(h′).

The only difference between these two expressions is in the prior probabil-
ities assigned to each, thus, any preference a Bayesian has for one over the
other must be expressed in the prior probabilities, that is, the probabilities
assigned before any evidence comes in. If you are predisposed against hy-
potheses involving the predicate blite, and you thus assigned a low prior to
h′, then bct will preserve your bias. Equally, if you are predisposed against
hypotheses involving black and in favor of blite, then bct will preserve that
bias, too. If Bayesianism is correct, then, no considerations from confirma-
tion theory alone militate for or against Goodman predicates.

You will see that the source of bct’s even-handedness is the equal prob-
ability principle. This principle is just the flip side of the llp: whereas llp
directs us to change our probabilities in accordance with the likelihoods, the
equal probability principle directs us only to change our probabilities in ac-
cordance with the likelihoods.

7.4 Simplicity

All things being equal, we prefer the simpler to the more complex of two
competing theories. What is the meaning of the ceteris paribus clause, all
things being equal? Something like: if the two theories, in conjunction with the
same auxiliary hypotheses, assign the same physical probabilities to all the phe-
nomena in their domain. Say that two such hypotheses are empirically equiv-
alent. Of course, our preference for simplicity is not confined to cases of
empirical equivalence; we consider theoretical simplicity a virtue wherever
we find it. But confining our attention to the case of empirically equivalent
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theories is like conducting an experiment in a clean room: the influence of
confounding variables is minimized.

You should see straight away that bct does not impose a preference for
simplicity in these circumstances. The argument is, of course, identical to
the argument of the last section. When two theories are empirically equiva-
lent, their likelihoods relative to any given body of evidence are equal. Thus
the difference in anyone’s subjective probabilities for the theories must be
due entirely to the difference in the prior probabilities that were assigned to
the theories before any evidence came in. Bayesian confirmation theory pre-
serves a prior bias towards simplicity, but it implements no additional bias
of its own.

You will find an additional comment about the confirmatory virtues of
simplicity in tech box 11.1.

7.5 Conclusion

Let us take stock. Bayesian confirmation theory does impose an objective
constraint on inductive inference, in the form of the likelihood lover’s prin-
ciple, but this is not sufficient to commit the Bayesian to assuming the uni-
formity of nature, or the superiority of “non-grueish” vocabulary or simple
theories. The first of these failures, in particular, implies that bct does not
solve the problem of induction in its old-fashioned sense.

If the old-fashioned problem of induction cannot be solved, what can
we nevertheless say about bct’s contribution to the justification of induc-
tion? There are two kinds of comments that can be made. First, we can
identify unconditional, though relatively weak, constraints that bct puts on
induction, most notably the likelihood lover’s principle. Second, we can
identify conditional constraints on induction, that is, constraints that hold
given other, reasonable, or at least psychologically compelling, assumptions.
We can say, for example, that if we assign low priors to grueish hypotheses,
bct directs us to expect a future that resembles the past. This is, remember,
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considerably more than we had before we began.

8. Bayesian Con�rmation Theory and the Problems of Con�rmation

One of Bayesian confirmation theory’s many advantages is its ability to solve,
in a principled way, some of the most famous problems of confirmation. It
does not solve every problem, and some of its solutions are open to question,
but it is far ahead of most of its competitors, which, as every good Bayesian
knows, is what really matters (see the remark on the contrastive aspect of
bct in section 6.2).

8.1 The Paradox of the Ravens

Can a non-black non-raven, such as a white shoe, count as evidence for
the hypothesis All ravens are black? Hempel showed that the answer must
be yes, if we accept a few simple and innocent-looking assumptions about
confirmation (see tech box 8.1). This is what he called the paradox of the
ravens (Hempel 1945a).

Bayesianism does not accept all of Hempel’s premises, but it nevertheless
has its own ravens paradox: according to bct, the white shoe would seem,
given a few entirely reasonable assumptions, to confirm the raven hypoth-
esis, with or without Hempel’s equivalence assumption. The reason is as
follows. Suppose I come across a white shoe. The probability of my doing
so, given that all ravens are black, is higher, it can reasonably be argued, than
the probability of my doing so, given that not all ravens are black.

Can you see why? Think of the shoe as a non-black non-raven. If for
all I know, some ravens are white, the next object I came across could have
fallen into any of four classes relevant to the raven hypothesis: it could have
been a black raven, a non-black raven, a black non-raven, or a non-black
non-raven. Suppose that I have subjective probabilities for each of these
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8.1 Hempel's Ravens Paradox
Hempel’s assumptions are:

1. Hypotheses are confirmed by their positive instances; for
example, the hypothesis All Fs are G is confirmed by the
observation of an F that is also a G.

2. The hypothesis All Fs are G is logically equivalent to the
hypothesis All non-G things are non-Fs.

3. A piece of evidence that confirms a hypothesis confirms
anything logically equivalent to the hypothesis.

From (1) it follows that All non-black objects are non-ravens is con-
firmed by the observation of any non-black non-raven, for exam-
ple, by a white shoe. From (2) and (3) it follows that anything
that confirms this hypothesis also confirms the raven hypothesis,
All ravens are black. Thus the observation of a white shoe confirms
the raven hypothesis.

Note that bct rejects Hempel’s first premise (see Good’s
counterexample explained at the end of this section), is agnostic
about his second premise, and accepts his third premise.
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possibilities. I am then told that, in fact, all ravens are black. My subjective
probability for the second possibility must now go to zero. In order that
my subjective probabilities still sum to one, that subjective probability must
then be distributed among the other three possibilities. Assuming that I do
not arbitrarily withhold it from the last possibility, my probability that the
next object I encounter will be a non-black non-raven will go up. Thus, if
e is the event of the next encountered object’s being a non-black non-raven,
and h is the hypothesis that all ravens are black (and I am a Bayesian), then
C(e |h) > C(e). But as you well know, this means that the observation of e—
and my coming across a white shoe constitutes such an observation—will,
according to bct, confirm h.

Goodman famously remarked that the ravens paradox seems to open up
the possibility of indoor ornithology. By rummaging through the contents
of my closet, which is full of non-black non-ravens, it seems that I can con-
firm the raven hypothesis, that is, that I can make some progress on learning
the characteristic color of ravens. This cannot be right—can it?

A standard response to the ravens paradox—I should perhaps say a stan-
dard accommodation of the paradox—was proposed early on by the Polish
logician and philosopher Janina Hosiasson (later Hosiasson-Lindenbaum,
1899–1942). Hosiasson’s view was that, once confirmation is put in a proba-
bilistic framework (applause from the Bayesians), and a few plausible proba-
bilistic assumptions are made, it follows that the white shoe does confirm the
raven hypothesis, but by a negligibly small amount. The Bayesian multiplier
is so close to one that it is simply not worth opening the closet door.

Some philosophers have responded, rightly I think, that this cannot be
the whole story. Rummaging in my closet cannot confirm the raven hy-
pothesis, not even by a negligible amount. What I find in the closet is simply
irrelevant to the hypothesis; equivalently, looking in the closet does not con-
stitute a test of the hypothesis.

A number of Bayesians and their friends (see especially Horwich (1982))
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have pointed out that bct provides the resources to understand this point.
I know for certain that there are no ravens in my closet. Given that as-
sumption, there are only two possibilities as regards the next object in the
closet: it will be a black non-raven or a non-black non-raven. Under these
circumstances, learning that all ravens are black will not close off any live
possibilities, as it did above. There is no probability to redistribute, and so
C(e |h) = C(e). In effect, my background knowledge renders e irrelevant to
h; thus, whatever I find, it will not change my subjective probability for All
ravens are black.

On this way of dealing with the problem, indoor ornithology is impos-
sible, but there are still some white shoes that will confirm the raven hy-
pothesis. There are (those few) white shoes that occur in the wild, where I
might also encounter a raven. In the wild, the probabilistic reasoning that
led to the ravens paradox above goes through in many circumstances, and
the raven hypothesis is confirmed. The best that the Bayesian can say about
this is to repeat Hosiasson’s insight: the amount of confirmation is negligi-
ble.

Is there any more systematic way of assessing the significance of white
shoes, black ravens, and so on, for the ravens hypothesis? A useful tool is the
notion of an auxiliary hypothesis introduced in section 6.4. Perhaps even
a necessary tool: it is very difficult to interpret the significance of a found
object for the raven hypothesis without an auxiliary hypothesis that, in con-
junction with the raven hypothesis, assigns a definite physical probability to
the observation of the object in question. (Exception: a non-black raven will
always send your subjective probability for the raven hypothesis to zero.)

To see how auxiliary hypotheses may clarify questions about confirma-
tion, suppose that a friend sends you a black raven in the mail. How should
the receipt of the bird affect your subjective probabilities for hypotheses in-
volving raven color? That very much depends on how your friend came to
decide to send you the raven. Suppose, for example, you know that your
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friend decided to send you a raven selected at random. As we saw in sec-
tion 6.1, this auxiliary hypothesis, in conjunction with any hypothesis of the
form The proportion of ravens that are black is x, assigns a definite physical
probability x to your receiving a black raven. Receiving a black raven, then,
will confirm the raven hypothesis.

By contrast, if you know that your friend set out from the beginning to
send you a black raven, and that she had the means to do so, then your sub-
jective probability for receiving a black raven is one regardless of the hypoth-
esis. Conjoining this auxiliary hypothesis with any hypothesis h about the
proportion of black ravens yields a probability of one for receiving a black
raven. The auxiliary hypothesis in effect renders the evidence irrelevant to
h. (Note that the auxiliary hypothesis is inconsistent with a raven hypothesis
on which there are no black ravens, for in such a world, your friend would
not have the means to send you a black raven.)

Finally, suppose that your friend has decided to send you a bird ran-
domly selected from all the black birds in the world. Does your receiving a
black raven confirm the raven hypothesis? There is a temptation to surren-
der to a kind of Popperianism here, and to say that there can be no confir-
mation because the object you received in the mail could not possibly have
falsified the raven hypothesis. Thus, opening the package does not consti-
tute a real test of the hypothesis. But this is wrong. Finding a black raven in
the package should, given some plausible background assumptions, increase
your confidence in the raven hypothesis. As an exercise, you should explain
why (and what assumptions figure in the process).10

The same lessons are to be applied if you receive a white shoe in the
mail. Suppose that you know that your friend has sent you a randomly se-
lected non-black object. This auxiliary hypothesis, in conjunction with the
raven hypothesis, assigns a probability to your receiving a non-raven of one.

10. Begin with the question: given that you were going to be sent a black bird, what facts
are relevant to the probability that it would turn out to be a raven?
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Alternatives to the raven hypothesis that allow that some ravens are non-
black assign a probability of less than one. (Only very slightly less than one,
if most objects are not ravens.) Thus the raven hypothesis will receive a
boost, though a very small one, from the observation of the shoe, in partic-
ular, from the observation of the fact that it is not a raven. If, by contrast,
you know that your friend has sent you a random item from her closet, the
probability assigned to receiving a non-black non-raven will depend only
on your beliefs about the ratio of black to non-black items in your friend’s
(ravenless) closet, and not at all on whatever ravens hypothesis it might be
joined with. All ravens hypotheses will therefore assign the same probabil-
ity to the receipt of a non-black non-raven; thus, the object will not change
your subjective probability distribution over the ravens hypotheses.

Given some auxiliaries, a black raven may even disconfirm the raven hy-
pothesis. Suppose, for example, that you believe that your friend, a famous
ornithologist, has a special code in which a black raven in the mail means
that she has discovered that not all ravens are black. Or consider a case (due
to I. J. Good) in which you believe that you are in one of two universes. In
the first universe, there are a million birds, one hundred of which are ravens,
and all ravens are black. In the second universe, there are a million birds,
one hundred thousand of which are ravens, and 90% of ravens are black. A
bird is chosen at random; it is a black raven. Because it is much more likely
that a randomly chosen bird is a black raven in the second universe than it is
in the first, this ought to raise your subjective probability significantly that
you are in the second universe, and so lower your probability that all ravens
are black accordingly.

In summary, we have provided a method for assessing the significance
of any particular found object for the raven hypothesis: find auxiliary hy-
potheses that, in conjunction with the hypothesis, assign a definite physical
probability to the evidence. Conditionalization can then proceed with the
help of pcp.
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This advice is simple to follow when there is one, clearly correct such
auxiliary, for example, if you know exactly what sampling methods your
friend is using. But you can follow it even if you are not so sure what your
friend is up to, by looking to your subjective probability distribution over
the different possible auxiliaries a1, a2, . . . conditional on h, and using the
theorem of total probability to derive a likelihood based on physical proba-
bilities:

C(e |h) = Pha1(e)C(a1 |h) + Pha2(e)C(a2 |h) + · · · 11

As noted in section 6.4, the use of uncertain auxiliary hypotheses brings its
own problems; this issue is discussed further in section 10.

8.2 Variety of Evidence

A theory is better confirmed, or so we think, when the evidence in its favor
is varied, as opposed to all of a very similar kind. If, for example, I want
to know whether all ravens are black, a sampling of ravens from Europe,
Asia, and North America will provide me with much better evidence than a
sampling of the same number of ravens from a small town in France. Various
theorists of confirmation, Bayesians especially, have tried to give a general
explanation for this aspect of confirmation.

Before I discuss the Bayesian strategies for explaining the significance of
evidential diversity, let me explore the question at a more intuitive level. A
variety of evidence seems useful because it puts to the test all the different
aspects or parts of a hypothesis. A very narrow evidential base, by contrast,

11. It would be nice if we could assume the probabilistic indepndence of the ai and h, so
that C(ai |h) = C(ai), but realistically, hypotheses are going to be correlated with the aux-
iliaries in virtue of which they deliver predictions about the data, at least once the evidence
comes in. Imagine, for example, that you have received a black raven in the mail. Then your
subjective probability for the raven hypothesis, conditional on your friend’s having a policy
of sending you a black raven just in case the raven hypothesis is false, will certainly not be
the same as your unconditional subjective probability for the raven hypothesis. This point
is also made in section 10.5.
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seems mainly to test the truth of the hypothesis in one particular locale.
Having seen many black ravens in a French town, I become very confident
that the ravens in the region are all black, but my confidence that the rule
of blackness is equally exceptionless in other parts of the world receives a
much smaller boost. The French ravens are not irrelevant to the broader
hypothesis: if all French ravens are black, that gives me some reason to think
that ravens everywhere are black, but no matter how confident I become
about the French ravens, I will never become quite so confident (perhaps
not anywhere near so confident) about the color of ravens elsewhere.

The guiding idea, then, is that many hypotheses can be broken into parts,
and that a given piece of evidence bears more strongly on the part to which
it belongs than on the other parts. Or perhaps this is not quite right, since
there need not be clear boundaries separating one part from another. The
hypothesis All ravens in Siberia are black is better confirmed by a selection
of black ravens from all parts of Siberia, but in saying this, I do not assume
that there is a division of Siberia into particular parts separated by definite
boundaries. The parts shade into one another. Nevertheless, it is convenient
to talk as though they are discrete.

The question about evidential diversity, then, can be divided into the
following two questions:

1. What distinguishes one part of a hypothesis from another?

2. Why do particular pieces of evidence confirm some parts of a hypoth-
esis more than they confirm others?

You might think that the answers to these questions depend on our high
level theories about the domains in question. For example, the extent to
which I am inclined to generalize the blackness of French ravens to ravens
in other parts of the world will depend on my high level biological beliefs.
Bayesian writers have, however, tried to avoid this issue, either by incorpo-
rating the effects of high level beliefs implicitly, or by focusing on the ques-
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tion as it arises in domains where there are no relevant high level beliefs, or
least, where our high level beliefs are too tentative to rely on.

An example of the first strategy may be found in Paul Horwich’s ap-
proach to the diversity problem. In Horwich’s view, the value of diverse
evidence in supporting a hypothesis lies in its ability to eliminate, or at least
to strongly disconfirm, the hypothesis’s competitors. Consider, for example,
the geographically salient rivals of the hypothesis that all ravens are black.
These might include:

1. All ravens in France are black, but those elsewhere are white,

2. All ravens in Europe are black, but those in Asia and North America
are white,

3. All ravens in France are black, but outside France, the proportion of
black ravens declines as the distance from Paris increases,

and so on.
All of these hypotheses predict that the ravens I observe in France are

black. If I observe many black French ravens, then, all of these hypotheses
will be confirmed, including the raven hypothesis itself, the claim that all
ravens, everywhere, are black. Note two things. First, the total probability
boost due to the French ravens must be shared out among all the afore-
mentioned hypotheses; since Bayesian confirmation is a zero sum game, the
boost received by each individual hypothesis is commensurably small. Sec-
ond, since the above hypotheses all make the same predictions about French
ravens, by the equal probability principle no one of them in particular can
draw ahead of the others in the confirmation stakes. Thus, no matter how
many French ravens I observe, the above hypotheses will always be in the
running, and so I will have to entertain a certain probability that ravens
somewhere else in the world are not black. In short, no number of black
French ravens will come close to convincing me that all ravens, everywhere,
are black.
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A selection of black ravens from around the world has, by contrast, much
more resolving power. It will work against hypotheses (1), (2), and (3) above
as well as all the other plausible rivals to the raven hypothesis. In particular,
first, the raven hypothesis will share its probability boosts with fewer rivals
(and because more rivals are being disconfirmed, there is more to share in
the first place), so that the raven hypothesis receives larger boosts in proba-
bility from each observed raven, and second, when sufficiently many ravens
from sufficiently many places have been observed, all plausible rivals will be
strongly disconfirmed, so that the probability for the raven hypothesis ap-
proaches one. A varied collection of ravens, then, will confirm the raven
hypothesis much faster, and push its probability higher in absolute terms,
than a less varied collection.

Horwich’s view is that a similar explanation is to be given of the confir-
matory virtue of diversity wherever it is to be found. The value of diversity,
then, is its resolving power: diverse evidence eliminates rivals to the truth
more quickly and more completely than non-diverse evidence.

This approach can be seen as an account of how a hypothesis is to be
divided into parts. The parts correspond to the regions over which plausible
rivals disagree. Because there is a hypothesis that all ravens are black, and an-
other that European ravens are black but Asian ravens are not, there is a nat-
ural division of the domain of raven theories into the continents of Europe
and Asia. There is no such division into, say, countries whose names begin
with a vowel and those whose names do not begin with a vowel, because the
disagreements of plausible rivals are not captured by domains individuated
in this way.

What determines the different domains, and thus the different parts of a
theory that ought to be tested, on this view, are the prior probabilities that
determine what theories are plausible and what theories are not. Suppose
that I assign substantive prior probabilities only to the following hypotheses
about raven color:
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1. All ravens are black,

2. All ravens observed on Wednesdays are black; the remainder are white,
and

3. All ravens observed on Sundays are black; the remainder are white.

Then, on the Horwich approach, what would count as a diverse set of evi-
dence is a set of ravens observed on all days of the week (or at least, a set some
of which are observed on Wednesday, some on Sunday, and some on other
days). This set would count as being equally diverse whether all the ravens
were French or whether they were a truly multinational collection. Even a
truly multinational collection would count as non-diverse, by contrast, if all
specimens were observed on, say, the weekend.

You can see that the Horwich view does not lay down absolute standards
for the diversity of evidence. What counts as diverse depends on the assign-
ments of probability you make before you begin observing ravens. These
need not be guesses, or a priori suppositions. You may already know quite a
bit of biology, and this knowledge may be what is primarily responsible for
determining which rivals to the raven hypothesis you consider plausible and
which not.

There is an important lesson here, which is repeated again and again
in the Bayesian literature. Bayesianism is able to implement many features
we would like in a complete theory of confirmation. But the nature of the
implementation is not built into bct itself. Rather, it is determined by the
assignment of prior probabilities to competing hypotheses. This raises the
question as to what restrictions, if any, apply to the assignment of priors, to
be taken up in section 9.

An alternative to Horwich’s approach is what might be called the cor-
relation approach: a set of evidence is more varied the smaller the corre-
lation (in terms of subjective probability) between the individual pieces of
evidence, or in other words, the less one of the pieces of evidence confirms
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the others (Earman 1992, §3.5). The idea is as follows: if I observe a black
raven in a town in France, that gives me greater reason to expect another
raven from the same town to be black than it gives me reason to expect an
Australian raven to be black. So the correlation between two black French
ravens is greater than the correlation between a black French raven and a
black Australian raven. This has immediate implications for the power of the
two raven pairs to confirm the raven hypothesis. Suppose I observe a black
French raven. Then I observe another black raven, either French or Aus-
tralian. The confirming power of this second observation is proportional to
the Bayesian multiplier, given by the formula C(e |h)/C(e). The likelihood
C(e |h) is the same for either a French or an Australian raven (equal to one,
of course). The prior probability of the evidence C(e), however, is—all other
things being equal—higher for the French raven, since it has been bumped
up more by the observation of the first French raven. So, subsequent to the
observation of one black French raven, the observation of a second French
raven offers less confirming power than the observation of an Australian
raven.

The correlation approach does not, I think, offer an especially helpful
gloss of the notion of variety of evidence, since it does not say anything about
the reasons that some kinds of data are more correlated than others. But
technically, the correlation and Horwich approaches have much in common.
You might like to try to show that they are formally equivalent, that is, that
the question which pieces of evidence are correlated and question which
pieces of evidence have greater “resolving power” depend in the same way
on the same facts about the prior probability distribution. (Familiarity with
the themes of section 7 will help.)

8.3 The Problem of Irrelevant Conjuncts

The hypothetico-deductive (hd) theory of confirmation suffers from the
following well-known problem, which I will call the problem of irrelevant
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conjuncts. According to the hd theory, a hypothesis is confirmed by the
observation of any of its logical consequences, or more usefully, by the ob-
servation of any logical consequences of the conjunction of the hypothesis
itself with the known initial conditions, or as some philosophers say, by the
observation of any of the hypothesis’s predictions. Thus on the hd theory,
what I will call the conjunction principle is true:

If e confirms h then e confirms hj, for any hypothesis j.

(The reason: if, according to hd, e confirms h, then h, together with what-
ever initial conditions, must entail e. But then hj and the same initial condi-
tions also entail e, and so e confirms hj.)

This looks odd. We have put no constraint on j at all; it might be some-
thing completely irrelevant to h and e. For example, where h is (what else?)
the raven hypothesis, and e is the observation of a particular black raven, we
might choose j to be the thesis that the Pope is infallible. Then we have the
result that the observation of a black raven confirms the hypothesis that

All ravens are black and the Pope is infallible.

This is not quite disastrous; what would be disastrous is if the black raven
confirmed j itself, that is, confirmed that the Pope is infallible.

Some writers (Hempel 1945a; Glymour 1980) have attempted to nail hd
by arguing that it is a truism of confirmation that

If e confirms h, then e confirms any logical consequence of h.

Hempel called this the special consequence principle (it is special in that it is
a restricted version of Hempel’s more general consequence principle). If the
special consequence principle is, as Hempel claimed, obviously true, then,
because j is a consequence of hj, anything that confirms hj confirms j. The
black raven therefore confirms the Pope’s infallibility. Indeed, it confirms
everything, since we have put no restriction on j whatsoever.
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Naturally, proponents of hd reject the special consequence principle.
They find themselves, then, occupying the following uneasy position: nec-
essarily, if e confirms h, it confirms hj, but it does not necessarily confirm
j. Not necessarily, but not necessarily not. There are an infinitude of con-
firmed conjunctions, on the hd theory, and no guidance as to which of the
conjuncts are separately confirmed. What a relief it would be if there were
some criterion that said, of a certain large class of choices for j, including
hypotheses about papal infallibility, that, although a black raven confirms
hj, it does not confirm j.

Enter bct. Bayesianism shares with hd a commitment to the conjunc-
tion principle, more or less, for the reason that a piece of evidence e that
raises the probability of a hypothesis h will also raise the probability of hj,
for almost any hj. (The exceptions are cases where e disconfirms j as well as
confirming h, or where h itself bears negatively on j.)

As with hd, this poses the question whether e, in confirming hj, also
confirms j. Unlike hd, Bayesian confirmation theory provides an apparently
straightforward way to answer the question: perform the calculations, and
see if the probability of j goes up along with that of hj.

It is straightforward, indeed, to do the calculations for any particular
choice of h, j, e, and background knowledge. But what we would like is a
more general result, to the effect that, for such-and-such a kind of conjunct,
the probability increase will depend on such-and-such factors.

In the case at hand, the general result would concern irrelevant con-
juncts. Let us proceed. One way of capturing the notion of irrelevance in
the probabilistic language of bct is as follows:

A hypothesis j is irrelevant to h and e if j is probabilistically indepen-
dent of h and e (and, you should probably add, of he).

From the irrelevance of j to e it follows immediately that C( j |e) is equal to
C( j), and so that the observation of e does not confirm j. But I think that
this provides much insight into the question why irrelevant conjuncts are
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not confirmed. To assume that j is irrelevant to e just is to assume that e
does not confirm j. This was the relation that was supposed to be explained.

A more helpful result would show that, if j is irrelevant to h, then an e
that confirms h does not also confirm j. This is not a theorem of the prob-
ability calculus, but I conjecture that it is almost true, in the sense that, for
almost any correlation between h and e, it is possible for j to be irrelevant
to h only if e is irrelevant to j. If this is correct, we can conclude that most
irrelevant conjuncts are not confirmed (and in the remainder of cases, we
can at least conclude, with the hd theorists, that the irrelevant conjuncts are
not necessarily confirmed).

9. The Subjectivity of Bayesian Con�rmation Theory

9.1 The Problem of Subjectivity

The discussion of induction in section 7 posed a question that goes far be-
yond the search for an a priori justification for inductive reasoning. It is
the question as to which aspects of a Bayesian reasoner’s inferences are fully
determined by the Bayesian machinery, and so are the same for all Bayesian
reasoners, and which aspects are determined in part by the allocation of the
prior probabilities. As we saw, although bct is capable of accommodating
much (even all) of our inductive behavior, it merely accommodates it: there
is nothing about being a Bayesian that makes this behavior any more natu-
ral than various alternative behaviors, such as expecting the future to break
radically from the past, or preferring more complex to simpler hypotheses.
This worries even philosophers who long ago abandoned the search for an a
priori justification for inductive practices. Let me explain the source of the
worry.

The scientific enterprise requires a certain amount of agreement among
scientists as to how the evidence bears on various competing hypotheses.
The agreement need not be absolute, but without some common ground
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as to what data supports what theories, it seems, there can be no scientific
progress.

Many philosophers worry that bct does not provide enough common
ground, that is, that scientists who learn by Bayesian conditionalization may
disagree on sufficiently many important questions that the consensus re-
quired for scientific progress is undermined.

We saw in section 7 that bct enforces the likelihood lover’s principle, but
that llp alone is not a sufficiently strong constraint to force typical inductive
behaviors—not even an expectation that the future will resemble the past.
In this section, I will focus not on broad inductive behaviors, but on more
specific questions about the impact of evidence on individual hypotheses.

Let me begin with the bad news. Scientists using Bayesian conditional-
ization, and who are therefore committed to the likelihood lover’s principle,
may disagree about any of the following matters.

1. Which of several competing theories is most likely to be true, given a
certain body of evidence.

2. Which of several competing theories received the greatest boost in
its probability from a given piece of evidence, where the boost is the
difference between the relevant prior and the posterior probabilities.
(The llp, though, completely fixes the relative size of the Bayesian
multipliers for competing theories; scientists will agree as to which
theory had the highest Bayesian multiplier: it is the theory with the
highest likelihood on the evidence.)

3. Whether a theory’s probability ought to increase or decrease given—
whether it is confirmed or disconfirmed by—a particular piece of ev-
idence.

This last possibility for disagreement is particularly dismaying. To see
how the disagreement may arise, recall that a hypothesis h’s probability in-
creases on the observation of e just in case the relevant Bayesian multiplier
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is greater than one, which is to say, just in case the physical probability that
h assigns to e is greater than the unconditional subjective probability for
e; in symbols, just in case Ph(e) > C(e). Whether this is so depends on
a scientist’s probability for e, that is, on C(e), which depends in turn—by
way of the theorem of total probability—on the scientist’s prior probability
distribution over the hypotheses. Scientists with different priors will have
different values for C(e). Even though they agree on the likelihood of a hy-
pothesis h, then, they may disagree as to whether the likelihood is greater
or less than C(e), and so they may disagree as to whether h is confirmed or
disconfirmed by e. (There is not complete anarchy, however: if two scien-
tists agree that h is confirmed by e, they will agree that every hypothesis with
a greater physical likelihood than h—every hypothesis that assigns a higher
physical probability to e than h—is confirmed.) How can there be scientific
progress if scientists fail to agree even on whether a piece of evidence con-
firms or disconfirms a given hypothesis? We will explore various answers to
this question in what follows.

Before I continue, let me say something about bct’s rival, the classical
view of statistical inference. The classical view is as solicitous of scientific
consensus as the Bayesian view is indifferent. The aim of the classical view is
to set up a system for assessing the significance of the data in which there is
absolute epistemic unanimity. Everyone who agrees on the data, and assents
to the system, will agree on the impact of the data on the relevant hypothe-
ses.

The price of consensus is that the conclusions that are licensed by the
system are often weak, as when a null hypothesis is rejected, or even non-
existent, as when a result is not “statistically significant”. (For a Bayesian,
there is no such thing as “statistically insignificant” data.) It is a common-
place that scientists supposedly working under the aegis of classical statis-
tics frequently reach conclusions that are stronger than anything officially
licensed by the system, and that their daring seems to advance, rather than
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to hold back, the progress of science. This (along with many other consider-
ations) suggests that classical statistics is too conservative in its judgments of
evidential impact to capture the full range of inductive behavior that makes
science so successful.

9.2 Washing Out and Convergence

The most common and in many ways the most effective Bayesian response
to the subjectivity objection is the convergence response: although in the
short term scientists may disagree on the significance of the evidence, in the
longer term their subjective probabilities will converge on the same hypothe-
ses, and so a consensus will emerge. The differences in scientists’ priors will
be washed out over time, that is, they will become less and less relevant to
scientists’ opinions as more and more evidence comes in. Scientific progress
may not be easy to see on a day by day basis, but with the perspective of
decades or centuries, everyone, the argument goes, can agree on what the
evidence has shown and what it has not shown.

The foundations of the convergence response are certain mathematical
results showing that, with very high probability, opinions will indeed con-
verge. These convergence results can be divided, on philosophical as well as
mathematical grounds, into two classes. The first class assumes that the sub-
jective likelihoods used in conditionalization are set according to the prob-
ability coordination principle, and so correspond to physical probabilities,
and derive a high physical probability of convergence. The second class does
not make this assumption; the likelihoods are not objectively constrained,
and therefore may differ from scientist to scientist and from the correspond-
ing physical probabilities (if there are such). The conclusion is weaker: each
person will (or should) have a high subjective probability their beliefs, and
the beliefs of other scientists, will converge on the truth. Because I have fo-
cused exclusively on a version of bct in which pcp is used at all times, by
invoking auxiliary hypotheses wherever possible, I will focus in what follows
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on the first kind of result; a brief discussion of the second kind of result may
be found at the end of this section.

Suppose we have a set of competing hypotheses and a group of scien-
tists with different prior probability distributions over the hypotheses. We
assume that no hypothesis is ruled out of contention in the priors; in the
simple case where there are a finite number of competing hypotheses, this
means that no hypothesis is assigned probability zero by any scientist. (You
should be able to see immediately why this assumption is necessary for a
convergence result.) Then we can show the following: as more and more
data comes in, the scientists’ subjective probability distributions will, with
very high physical probability, converge, and this convergence will be (again
with very high physical probability) on the true hypothesis.

There are a number of caveats to this result, but let us first try to under-
stand how it works. The three most important facts bearing on convergence
are the following:

1. Bayesian conditionalizers favor the hypotheses with the highest sub-
jective likelihoods,

2. Conditionalizers set the subjective likelihoods equal to the physical
likelihoods, thus, they agree on which hypotheses should be favored
and on the relative magnitude with which one hypothesis should be
favored over another (i.e., the ratio of the Bayesian multipliers, equal
to the ratio of the physical likelihoods), and

3. The more evidence that comes in, the lower the physical likelihood
of the false hypotheses on all the evidence relative to that of the true
hypothesis (with very high probability).

To help you to appreciate this last fact, take a look at the graph of the
physical likelihoods in the ravens case. As in section 6.3, I assume a set of
competing hypotheses each of which posits a different real number between
zero and one as the physical probability of a given raven’s being black; I
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also assume that, at any time, two-thirds of the observed ravens have in fact
turned out to be black. The physical likelihoods for different numbers n
of observed ravens—the physical probabilities ascribed by the hypotheses to
the event that two-thirds of a set of n ravens are black—are shown in figure 5.
As you will see, as n increases, the likelihood for any hypothesis that is not
very close to the hypothesis that attributes a two-thirds probability for raven
blackness approaches zero. If this is indeed the correct hypothesis, then the
likelihood of any hypothesis not very close to the truth approaches zero.

0.2 0.4 0.6 0.8 1

�c�

0.2 0.4 0.6 0.8 1

�d�0.2 0.4 0.6 0.8 1

�a�

0.2 0.4 0.6 0.8 1
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Figure 5: Physical likelihoods for four data sets, consisting respectively of
3, 12, 300 and 3000 ravens, in each of which two-thirds of ravens are black.
Heights are normalized. (Drawn to scale, the spike in (d) would much lower
than the hump in (a)—it is highly unlikely on any of the hypotheses that
exactly 2000 out of 3000 ravens will be black.)

The cumulative effect of many individual pieces of evidence is, because
of the commutativity principle (section 6.2), equivalent to the effect that
the evidence would have if it were all revealed at once. We can therefore
understand the convergence result by thinking about the effect of observing,
in one single ornithological swoop, the color of vast numbers of ravens.
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Let e be the observation of n ravens, then, for some large n. As I have
noted, when n is large, the true hypothesis and a small group of other hy-
potheses near the true hypothesis assign a probability to e that is much
higher than that assigned by the rest. The Bayesian multiplier for hypotheses
near the truth, then, will be much, much greater than the Bayesian multi-
plier for the remainder of the hypotheses. Since the probabilities of all the
hypotheses must sum to one, this will result in a posterior probability distri-
bution that is heaped almost entirely around the truth.

For your edification, the evolution of three rather different prior prob-
ability distributions over the ravens hypotheses is shown in figure 6, under
the assumption that, at each stage, exactly two thirds of all observed ravens
have been black.

How did we get past the fact that scientists with different prior proba-
bilities may disagree about the confirmatory power of evidence, and in par-
ticular, about whether a given piece of evidence confirms or disconfirms a
hypothesis? The problem, recall, was that whether a piece of evidence e con-
firms or disconfirms a hypothesis h depends not only on the physical likeli-
hood of h—that is, the physical probability that h ascribes to e—but also on
the prior probability for e, which depends in turn on the prior probability
distribution over h and its rivals. If the likelihood is greater than the proba-
bility of e, then h is confirmed, if it is less than the probability of e, then h is
disconfirmed.

All of this continues to be true when e comprises a vast number of in-
dividual data points. But in this case, the likelihoods are either relatively
high, for hypotheses that are near the truth, or relatively negligible, for every
other hypothesis. The prior probability of e will be somewhere in between
(because it is a weighted average of the likelihoods). Thus, although the
prior probability for e will vary from scientist to scientist, all scientists will
agree that e confirms a small group of hypotheses, those that are in fact near
the truth, and that it disconfirms the rest.
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Figure 6: Priors are washed out as the data set becomes larger and larger.
From left to right are three different prior probability distributions; from
top to bottom the distributions change as more evidence comes in. At
any given time, about two thirds of the ravens are black. The six data sets,
from top to bottom contain zero ravens (i.e., the unconditioned priors are
shown), one raven, three ravens, six ravens, twelve ravens, and sixty ravens.
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Now let me say something about the limitations of this result. First, as
you already know, no matter how much evidence comes in, Bayesian condi-
tionalization cannot distinguish between two hypotheses each of which as-
signs exactly the same physical probability to the evidence. No convergence
result can guarantee convergence on the truth, then; at best, what you get
is convergence on the true hypothesis and any other hypotheses empirically
equivalent to the true hypothesis.

Second, convergence on the truth is with high probability only. There
will always be some chance that scientists converge on a false hypothesis, or
that they fail to converge at all. You can see this quite easily by thinking
of the case of the ravens. Suppose that the truth is that a given raven has
a two thirds probability of being black. It is possible that, after observing
a million ravens, exactly one third have turned out to be black—extremely
improbable, but possible (see tech box 6.2). Obviously, if this did happen,
scientific opinion would not converge on the true hypothesis. As the ex-
ample suggests, however, the probability of convergence on the truth is very
high, certainly high enough to satisfy most commentators.

Third, the key premise required for convergence, that as more evidence
arrives, the contrast between the likelihood for the true hypothesis and the
likelihoods for the false hypotheses increases, depends on the physical prob-
ability distributions posited by both the true and false hypotheses taking a
certain form. Roughly speaking, they must be the kind of distributions to
which the law of large numbers (tech box 6.2), or certain of its analogs or
extensions, applies.12

In theory, this is a great limitation. In practice, just about every scientific
hypothesis about physical probabilities, past and present, has had the right

12. More specifically, you need the probability distribution to have two properties rel-
ative to the evidence. First, there should be some kind of “long run” result that says that,
given a certain distribution, the probability of the evidence having a certain statistical profile
tends, as more evidence comes in, to 1. Second, the probabilified statistical profile should
be different for different distributions.
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sort of form. In Bayesian terms, your average scientist’s prior probability for
the vast set of “wrong” hypotheses tends to be just about zero.

Fourth, the explanation of convergence turned on the fact that, on the
observation of a vast body of evidence, the Bayesian multiplier for hypothe-
ses near the truth is much, much higher than the Bayesian multiplier for the
remainder of the hypotheses. You may well have noticed that this in itself
will not necessarily get us convergence, if some scientists have a prior prob-
ability for the true hypothesis and its neighbors that is much, much lower
than their prior probability for the remainder of the hypotheses. These sci-
entists have a very strong prior bias, then, against the hypothesis that is in
fact true, and others like it.

The more evidence that comes in, the more biased against the true hy-
pothesis a scientist will have to be not to be swayed by the evidence in the
same way as all the other scientists.13 For any given level of bias against the
actual truth, there is some quantity of evidence that is sufficient to heap the
biased scientist’s subjective probability distribution around the truth. But
equally, for any given quantity of evidence, there is some level of bias suffi-
cient to resist the pull of the evidence towards the truth.

Fifth, I have been using the notion of hypotheses that are “near the truth”
rather loosely. As you will see from the treatment above, in the context of
a convergence argument, a hypothesis “near” the truth is one that assigns
about the same physical probability to any given set of evidence as the truth
does. In a simple case like that of the competing ravens hypotheses, hy-
potheses that are near the true hypothesis in this sense are also near the
truth in another sense: they are neighbors in parameter space, meaning that

13. There is an additional factor working to push these scientists towards the truth: they
will have a lower prior probability for the evidence than less biased scientists, and so their
Bayesian multipliers for the near true hypotheses—the physical likelihoods of those hy-
potheses divided by the probability of the evidence—will be even higher than their fellows’.
You can see from figure 6, however, that this additional factor is not enough in itself to erase
entirely the effect of the bias.
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they are, for example, physically adjacent in a probability density graph of
the sort pictured in figure 6. This has the very convenient consequence that
a probability density is concentrated on those hypotheses that are near the
truth just in case it is heaped around the truth in the geometric sense. You
should bear in mind that things may not always turn out this nicely.

Sixth, I have so far ignored the question of auxiliary hypotheses, that
is, hypotheses that are needed in order for the main hypotheses to assign
definite physical probabilities to the evidence. How will the introduction of
auxiliary hypotheses affect the convergence result?

Because it is the combination of a hypothesis h and an auxiliary hypoth-
esis a that ascribes a physical probability to a piece of evidence, the conver-
gence result will apply not to the probability distribution over competing
hypotheses, but to the distribution over what might be called competing
models, where each model is a conjunction of a hypothesis and an auxiliary
hypothesis. What we can conclude, then, is that, as the evidence comes in,
scientists’ subjective probabilities will converge on the true model and other
models that assign similar physical probabilities to the evidence as the true
model.

Suppose that we are in the fortunate situation in which no plausible ri-
val to the true model—the true hypothesis h conjoined with whatever true
auxiliary hypothesis a is need to extract physical probabilities from h—is
empirically equivalent to the true model. Then the convergence result tells
us that scientists’ opinion will converge on the true model ha. If there are
only finitely many competing models, the probability of ha will be driven to
near one (scientists will continue to disagree just how near one). Since the
probability of each conjunct must be at least as great as the probability of
the conjunction, it follows that each scientist ascribes a probability near one
to both h and a. We have a conclusion, then, that is just as strong as in the
case where auxiliary hypotheses were not required: scientists will eventually
agree on the true h. What if there are infinitely many competitors? Then the
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probability converges on the true model ha and on nearby models. We may
hope that whenever two models h1a1 and h2a2 are nearby in this sense, h1 is
near to h2 in some useful sense.

It is, however, rather unlikely that there no rivals to the true model. Typ-
ically, there will be one or more theories that paint a very different picture
of the world than the true theory, but which, when supplemented with the
right auxiliaries, deliver the same predictions as the true theory about the
outcomes of some set of experiments. The most you can expect from the ex-
periments in a case such as this is convergence of opinion on the empirically
equivalent models. (The techniques for dealing with auxiliary hypotheses
to be discussed in section 10 are of some use in distinguishing rival models;
however, because they draw on the investigators’ prior probabilities, they
cannot themselves secure any further convergence of opinion.)

Seventh and finally, the convergence result assumes that the true hypoth-
esis has already been formulated and so is among the known alternatives at
the beginning of the investigation. No mere convergence result can guaran-
tee that scientists will construct the true theory in response to the evidence if
they have not already done so. Thus the convergence result should be seen,
not as a guarantee of scientific progress tout court, but only as a guaran-
tee (with the appropriate qualifications) that initial differences in subjective
probability distributions will not significantly impede progress.

Let me conclude with a positive comment about convergence. You will
find in the literature two kinds of convergence results, which might be called
eventual convergence results and constant convergence results. An eventual
convergence result says that there exists some point in the future at which a
certain amount of convergence will have (with high probability) occurred,
without saying how far in the future that point lies. A constant convergence
result says that convergence is occurring (with high probability) at all times.
In other words, pick a time span, and there is a high probability that over that
span, the subjective probability distribution has converged towards, rather
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than diverged from or moved no nearer to, the truth.
On the question of consensus and progress, then, an eventual conver-

gence result says that there is some point in the future, perhaps very far away,
at which there will be a certain amount of consensus, and therefore, if the
convergence is on the truth, a certain amount of progress. Nothing whatso-
ever is guaranteed until that point is reached. A constant convergence result
says (with the usual probabilistic qualification) that consensus is increasing
all the time, and therefore, if the convergence is on the truth, that science is
progressing all the time.

This difference is especially important when it comes to progress. If the
best we have is an eventual convergence result, we can never know, no matter
how much consensus there is, that we have arrived at or near the truth. I
do not mean merely that we cannot be absolutely sure; convergence results
never give us absolute certainty, because of the probabilistic rider. What
I mean is that we never know at all: we know that there exists a point at
which there will have been progress, but never that we have reached that
point. For all we know, conditionalization has carried us further away from
the truth than ever before (albeit temporarily); we can not even say that this
alarming possibility is unlikely. A constant convergence result, by contrast,
tells us that we are always, with high probability, progressing, a fortiori, we
are always at a point where progress has likely occurred. The good news: the
above convergence result is a constant convergence result.

A few words about the subjective convergence results that do not assume
pcp, thus do not assume that different scientists’ subjective likelihoods are
dragooned into agreement by (hypothesized) physical probabilities.

You might think that when subjective likelihoods are allowed to wander
freely (or as freely as the axioms of probability allow), convergence is a pipe
dream. Suppose I believe that if the benevolent, omniscient Christian god
existed, it is very likely that our life on earth would be paradisiacal, a string
of long summer days and nothing to do but to feast on the abundant low-
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hanging fruit. You may think that if such a god existed, our life on earth
would likely be a grim test of faith, overflowing with hunger, disease, war-
fare, and suburban angst. Looking around, I see endless evidence against
this god’s existence; you see the same evidence, but it confirms your belief
in the same god. My subjective probability of the evidence conditional on
the hypothesis of existence is low; yours is high. How can we ever agree?
The observation of further catastrophes can only widen the divide. As more
evidence comes in, our theological beliefs must diverge.

It is rather surprising, then, to learn of the existence of theorems that
guarantee the convergence of opinion on the truth. These results guaran-
tee (with high probability, that is) that whatever our priors, and whatever
our subjective probabilities, we will eventually agree on everything, and the
everything we agree on will be exactly right. The influx of evidence, then,
washes out not only differences in unconditional priors, but differences in
subjective likelihoods.

What kind of magic is this? There is a whiff of Oz, I am afraid: the
subjective convergence theorems turn out to require some version of what
Earman calls an assumption of “observational distinguishability”, according
to which there is, for any pair of competing hypotheses, a piece of evidence
that will decide between them on deductive grounds. That is, for any two
competing hypotheses, there must be some piece of evidence that is implied
to be true by one, and implied to be false by the other (Earman 1992, 167).

Now you can see, very roughly, how the mathematics works. It does an
end-run around the many significant differences in subjective likelihoods
altogether, relying on the small measure of agreement concerning subjective
likelihoods that exists, because of the probability calculus, in the special case
where a hypothesis entails the evidence: if h entails e, then all scientists must
set their subjective likelihood C(e |h) equal to one. As the evidence comes in,
the “observational distinguishers” do their work by way of these likelihoods,
ruling out ever more alternatives to the truth. (This is not to deny that it
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is a mathematical feat to have shown that there is convergence on the truth
as the evidence comes in; the rough sketch in this paragraph does not come
anywhere near to establishing this conclusion. Convergence is, however, not
constant in the sense defined just above the divider.)

The subjective convergence results are, then, less exciting than they first
appear. Another complaint may be lodged against them: what they prove
is that each scientist’s subjective probability for convergence on the truth
should be very high (and should approach one as the quantity of evidence
increases). This gives them what Earman calls a “narcissistic character” (Ear-
man 1992, 147). Is there anything to worry about here? Nothing terribly
important, I think. The probability may be subjective, but it is derived from
the fact (well, the assumption) that there is a complete set of “observational
distinguishers” out there capable of pointing to the truth in the most ob-
jective possible way, by ruling out deductively the untrue hypotheses. It is,
then, one of those objectively-based subjective probabilities that give mod-
ern Bayesianism its satisfyingly normative edge.

9.3 Radical Personalism

Under the heading of radical personalism I class any attempt to embrace,
rather than to wriggle out of, the subjective aspect of bct. A radical person-
alist admits that many properties of bct are determined by the way in which
the priors are set, but argues that this is acceptable, or even good.

Let me briefly describe two lines of thought in the radical personalist
vein. The first addresses the fear that the prior probabilities that shape a
Bayesian’s inductive inferences are without ground. Meditation on the fact
of this groundlessness may give rise to a Hamlet-like indecision, in which the
Bayesian reasoner is unable to summon up the will to conditionalize on the
evidence, because he knows that the conclusions drawn will owe so much
to his subjective, therefore groundless, priors. Radical personalists urge the
reasoner to have “the courage of his convictions”, that is, to reason on the
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9.1 Why Radical?
Is there such a thing as moderate personalism? Yes; all Bayesians
are called personalists: think of personal probability as being a syn-
onym for subjective probability. In the same way, Bayesians are
often called subjectivists.

There is, however, a radical air to the writings of many radical
personalists (Howson being a notable exception). These writers
see their work as in part revisionary: rather than capturing our
pre-existing intuitions about confirmation, bct is seen as a cor-
rective to those intuitions. The a priori arguments for bct are
supposed to lead one to embrace Bayesianism; the subjective el-
ements of Bayesianism are then to be understood as discoveries
about the true nature of confirmation. If bct turns out to be
more subjective than we had expected a theory of confirmation
to be, then so much the worse for our expectations.

basis of the priors just because they are his priors and they therefore reflect
his complete present judgment as to how things stand.

Of course, if subjective probabilities are defined as dispositions to act in
certain ways in certain circumstances, then this exhortation comes too late:
the waverer, by wavering, no longer determinately has the subjective prob-
abilities that he once did. (Maybe the right sort of therapy, say a thespian
event, could restore the disposition to act and so the probabilities, but it is
hard to know how to persuade a reasoner to want to restore the dispositions/
probabilities, unless by way of, perhaps, a supernatural experience.)

If you do succeed in finding the courage of your convictions, a certain
kind of intellectual paralysis is avoided. But whatever solace lies in action
is not enough, I think, to quell the worry about scientific consensus with
which I introduced the problem of subjectivity. That scientists conditional-
ize swiftly and unequivocally is no doubt, on the whole, a good thing, but it
is insufficiently good in itself to establish a consensus, or even the probabil-
ity of a consensus. As we saw in sections 7.2 and 7.3, Professors Rosencrantz
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and Guildenstern may agree on all the evidence—say, on all the outcomes of
all the coin tosses they have seen so far—yet, if their priors differ in a certain
way, they may disagree as much as you like on the most probable outcome
of the next coin toss.

The second line of thought proposes that bct is a less ambitious under-
taking than these notes have so far supposed. Howson (2001) argues that we
ought to regard bct not as a system of inductive reasoning, but as a frame-
work for implementing a system of inductive reasoning. Bayesianism is, on
this view, not itself a theory of confirmation, but rather a meta-theory of
confirmation, that is, a theory of what theories of confirmation should look
like. Under Bayesianism’s tolerant rule, many different approaches to con-
firmation may flourish together in friendly competition. These theories will
differ in what Howson calls their inductive commitments.

An example of an inductive commitment is the principle of the unifor-
mity of nature. As we saw in section 7.2, you can, while conforming entirely
to all the strictures of bct, either reason in accordance with or in viola-
tion of the uniformity principle. Howson’s thesis is that Bayesianism shows
you how to do either—it is your choice as to which—in a consistent man-
ner. Bayesianism does not supply inductive commitments, then; it tells you
how to apply whatever inductive commitments you happen to fancy, consis-
tently.14 Other writers have talked of Bayesianism as being purely a theory
of coherence, meaning by this more or less the same thing as Howson.

Howson compares the rules imposed by Bayesianism to the rules of de-
ductive logic. Both sets of rules, Howson claims, are intended to keep the
reasoner from a certain kind of inconsistency: deductive logic protects you
from contradiction, while Bayesian reasoning protects you from the kind of
inconsistency that is exposed by Dutch book arguments. There is at least

14. Readers familiar with Carnap’s system of inductive logic will note a parallel: Carnap
provides a framework with a single parameter k which, depending on its value, results in a
wide range of inductive behaviors, or if you like, in a wide range of inductive logics (Carnap
1950).
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one disanalogy, however: whereas all disciples of deductive logic will reach
the same deductive conclusions given the same evidence (insofar as any de-
ductive conclusion can be drawn at all), Bayesians will not reach the same
inductive conclusions given the same evidence. It seems reasonable to say
that all deductive reasoners share the same deductive commitments; by con-
trast, as we have seen, even by Howson’s own lights, not all Bayesians share
the same inductive commitments.

Howson’s reply is that your priors, and thus all the inductive commit-
ments implicit in your priors, should be considered on a par with the prem-
ises in a deductive argument. Then all Bayesians will reach the same con-
clusions given the same premises, because the premises will include the in-
ductive commitments. (The “premises”, on this view of things, extend far
beyond what we have been calling the evidence.)

This is, I suggest, tendentious. Certainly, it seems reasonable to equate
some aspects of the priors with the premises of a deductive argument—
perhaps, for example, the ratio of my probability for All ravens are black
to that for 50% of ravens are black. But other aspects of the priors—I am
thinking, of course, of those aspects that bear directly on a reasoner’s induc-
tive commitments—seem to have no parallel in deductive logic’s premises.
An example, I think, would be the ratio of my probability for All ravens are
black to that for All ravens observed before the year 3000 are black, the rest
white.

Howson, no doubt, would point to the similarity between these two ex-
amples as a reason to think my distinction invidious. But in making use of
the notion of an inductive commitment, he himself acknowledges that the
ratio in the second example gets at something inductively deeper than that
in the first—something that belongs to the subject matter of inductive logic
itself, and that is therefore more than a mere premise.

In summary, the arguments of the radical personalists, though they do
convey some insights into the nature of bct, do not—and really, could not—
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assuage the worry that bct provides no ground for scientific consensus, let
alone scientific progress. At best, the radical personalist can persuade us
that no such grounds are needed, or at least, that none are available. As
you might expect, this has not satisfied those who see Bayesianism as one
among several viable approaches to confirmation, rather than as the one
true religion.

9.4 Constraining the Priors

Varieties of Constraint

So far we have assumed that Bayesian reasoners are free to set their priors in
any way that they like, subject only to the axioms of probability. But surely
some assignments of priors are more reasonable than others? Or at the very
least, surely a few are downright pathological? If so, then we can add to the
Bayesian cocktail a new ingredient, some sort of objective constraint on the
way in which the priors may be set. There are many ways to concoct this
particular mixture, some involving just a dash and some a healthy dollop of
constraint; there are at least as many justifications for the constraint, what-
ever it may be. We will survey some of the more popular suggestions.

Begin with the kinds of justification you might advance for your pre-
ferred constraint. Here are three flavors, arranged in order of decreasing
Bayesian purity.

1. The argument for the constraint may be a putatively rigorous a priori
argument, that is, it may have the same virtues as the arguments for
the other parts of bct.

2. The constraints may be constructed so as to enhance the power of the
convergence argument, that is, they may be justified on the grounds
that they make convergence to the truth faster and more likely.

3. In real life, by contrast with the Bayesian fairy tale, priors are not set
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in a vacuum. The third approach to constraining the priors takes into
account the milieu in which the priors are set in such a way as to in-
fluence their setting.

Of these three approaches, constraints derived in the first way tend to be
very strong, those derived in the second way rather weak, and those derived
in the third way range from weak to strong.

The A Priori Purist Approach

The classic a priori constraint on prior probabilities is the principle of indif-
ference (sometimes called the principle of insuf�cient reason), which enjoins
you to set equal probabilities for mutually exclusive alternatives concerning
which you have no distinguishing information. In the case of the ravens, for
example, you should assign the same probability to each hypothesis of the
form x% of ravens are black, which is to say, you should assign a uniform
(i.e., flat) probability density over the different values of x, resulting in the
density shown in figure 2a.

9.2 Origins of the Principle of Indifference
The principle of indifference is closely associated with Leibniz
(1646–1716) and Laplace (1749–1847), and through them with
what is called the classical interpretation of probability. On the
classical interpretation, indifference plays a part in the very defini-
tion of probability. The definition of subjective or physical proba-
bility, you ask? Neither, exactly: the classical interpretation fails to
clearly distinguish between these two kinds of probability (Hack-
ing 1975). The standard view among modern proponents of the
principle is that, while it plays no role in determining physical
probabilities, it is an important constraint on subjective probabil-
ities. (In the earlier twentieth century, it was seen as a constraint
on what is called logical probability; see tech box 5.2.)

What does it mean to say that you have no distinguishing information
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about two alternatives? It means that the alternatives are relevantly similar,
or that they differ only in a respect which is epistemically irrelevant. (If you
see problems looming, you see clearly.) The justification for the principle is
that, if there is no relevant difference between two outcomes or hypotheses,
then you have no reason (“insufficient reason”) to expect one over the other,
and so you should assign them equal probabilities.

If the principle of indifference functioned as it is supposed to, then every-
one would have the same prior probability distribution for, say, the ravens
hypotheses. Thus, provided that everyone saw the same evidence and condi-
tionalized on it in the Bayesian way, everyone would have the same probabil-
ity distribution over the ravens hypotheses at any later time. This provides all
the scientific consensus one might want, and perhaps more than one might
reasonably want. The convergence results are no longer needed to promise
consensus (though they are needed to promise that the consensus will likely
move towards the truth).

In the later part of the nineteenth century,15 decisive arguments against
the principle of indifference in its initial form were formulated, notably by
Joseph Bertrand. The problem is that the principle does not dictate, as it
claims to, a unique prior probability distribution over a set of hypotheses. To
see how Bertrand's paradox undercuts the principle, consider the following
example of van Fraassen’s. There is a factory that produces cubes with sides
of a length between one and three centimeters. You must choose a prior
probability distribution over the competing hypotheses of the form The next
cube produced by the factory will have a side of length x cm. It seems that the
indifference principle commands you, in the absence of any information
distinguishing the different hypotheses, to put a uniform probability over
the side length x. As a result, your subjective probability that, say, the next
cube has a side of length less than 2 cm will be 0.5.

15. By which time, perhaps relevantly, the classical interpretation of probability (see tech
box 9.2) was already dead.
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But now consider the competing hypotheses of the form The next cube
produced by the factory will have a volume of v cm3. Each of these is logically
equivalent to a hypothesis about side length; for example, the hypothesis
that the volume of the next cube will be 8 cm3 is equivalent to the hypoth-
esis that the side length of the next cube will be 2 cm. The principle of
indifference, as applied to this set of hypotheses, commands us, it would
seem, to put a uniform distribution over v. But a uniform probability dis-
tribution over v is a different distribution than a uniform probability distri-
bution over x. As a result of a uniform distribution over v, for example, the
probability that a cube has a side of length less than 2 cm is the probability
that it has a volume of less that 8 cm3, which, since the volumes range from
1 cm3 (i.e., 13) to 27 cm3 (i.e., 33), is 7/26, or about 0.27. Depending on
how we formulate the competing hypotheses about the next cube, then, the
principle of indifference seems to offer conflicting advice: on the one hand,
to set the probability of a cube of side length less than 2 cm to 0.5, but on
the other hand, using the volume formulation, to set the probability for the
same outcome to 0.27.

The principle of indifference also offers no help with grue; in fact, it
makes the grue problem as bad as it could possibly be. Consider the rival
hypotheses of the form All ravens observed before time t are black, and all
others are non-black for the range of times t extending from now to infinity.
(When t = ∞, the hypothesis becomes the raven hypothesis All ravens are
black.) In a state of total ignorance, it seems that we should put a uniform
probability distribution over t. But then, even if all ravens observed until
now have been black, we will assign a negligible probability to the raven hy-
pothesis, and a probability of effectively one that, at some time in the future,
we will begin to observe non-black ravens.16 The principle of indifference,
then, appears to force us to take seriously grueish hypotheses that, if our
priors were unconstrained, we would have the freedom (though not an obli-

16. In this simple example we will, however, always expect the next raven to be black.
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gation) to ignore.
Proponents of the principle of indifference have reacted to Bertrand’s

paradox and to other complaints by refining the principle so that it delivers
univocal judgments about the proper probability distribution in as many
cases as possible. They have had less to say about the grue problem. Most
Bayesians have given up on the indifference approach to constraining priors
as both technically infeasible and overweening, the latter in the sense that
it seeks to constrain the priors far too much, eliminating one of bct’s most
attractive features, its ability to accommodate diversity of opinion.

The Convergence Approach

Suppose that the best defense against the subjectivity inherent in bct is the
convergence argument. Then you have an ambivalent attitude to your pri-
ors. On the one hand, they reflect your feeling about the plausibility of var-
ious different hypotheses, and a commitment to act on that feeling. On the
other hand, your reason for adopting the Bayesian machinery, and so tak-
ing the priors seriously in the first place, is that they will, ultimately, have
no influence on your views. Given such a mindset, it might be reasonable
to adopt a set of priors not because they reflect your judgments about var-
ious hypotheses’ plausibility, but because they are especially conducive to
convergence.

Consider, for example, the following very modest proposal. A hypoth-
esis that is assigned a prior probability of zero is doomed always to have a
probability of zero. Likewise, in the case of infinitely many hypotheses, a
region of hypotheses that is assigned a prior probability of zero—a region
where the prior probability density is zero—will always have zero probabil-
ity. Consequently, if you are so unfortunate as to assign a prior of zero to
the true hypothesis, or in the infinite case, to the region containing the true
hypothesis, your subjective probabilities can never converge on the truth.

If convergence on the truth is the paramount Bayesian imperative, then,
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it seems that you should do your best to avoid assigning a prior of zero to the
truth. The only way to be sure of doing this, it seems, is to assign non-zero
priors to every hypothesis, or in the infinite case, to assign a prior probability
density that never touches zero. This policy of not ruling out any hypothesis
altogether from the start is sometimes called open-mindedness. You need not
care about convergence to be open-minded, of course, but if you care about
convergence, it seems that you ought to be open-minded.

How open-minded ought you to be about hypotheses involving grue and
its brethren? You ought to assign them a probability greater than zero—in
the infinite case, a probability density that does not touch zero—but you
may otherwise discriminate against them as much as you like. For example,
you might assign your priors over the various raven hypotheses, grueish and
non-grueish, so that 99% goes to the non-grueish hypotheses of form x% of
ravens are black and only 1% to all the grueish hypotheses (and there are a lot
of them!) combined. This gives the grueish hypotheses enough of a toehold
that, in the event that ravens observed after, say, 3000 are all white, your
subjective probabilities can converge on the appropriate grueish options.

But why stop there? The more you discriminate against the hypothe-
sis that turns out to be true, the longer it will take for your probabilities to
converge on the truth (though you will have to be highly discriminatory to
hold out against the evidence for long). So why not, as well as being open-
minded, be somewhat fair-minded, that is, why not assign a prior probabil-
ity distribution that does not discriminate too much against any particular
group of hypotheses?

Fair-mindedness will have to have its limits. We most likely want to allow
continued discrimination against grueish hypotheses. But this can be done
while still allowing grueish hypotheses enough of a chance that convergence
to such hypotheses, if we start to observe white ravens, is adequately fast.
(Adequately here means about as fast as you would want to converge on the
grueish options, in the circumstances.) It takes only a little fairness to con-
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verge on the truth in a tolerably short time. Even the bigoted can be saved,
if they have an eye for the evidence.

A fair-minded approach to the priors is similar to an indifference-driven
approach, insofar as it results in reasonably smooth or flat priors over the
usual suspects. There are, however, two important differences between the
fair-minded and indifference approaches. First, fair-mindedness allows for
quite a bit of diversity in the priors, while indifference, as it is usually un-
derstood, requires complete conformity. Second, the motivations for the
two approaches are entirely different. The apriorist proponent of indiffer-
ence regards a flat distribution as an end in itself, a uniquely rational set
of opinions, given the paucity of evidence, whereas the proponent of fair-
mindedness regards a flat distribution only as a means to an end, namely,
convergence on the truth. The appeal of the fair-minded approach, then, is
that it allows for a range of opinions when knowledge is hard to come by,
while at the same time upholding the ideal of consensus when the evidence
is decisive.

The Contextual Approach

The contextual approach encompasses a number of different ways of think-
ing about the priors, though all have a pragmatic feel. Let me consider one
particular contextual line of thought.

Certain kinds of hypotheses have better track records than others. Grue-
ish hypotheses, for example, have tended not to be as useful to science, so
far, as their non-grueish counterparts. Why not use this, then, as reason to
prefer non-grueish to grueish hypotheses when setting priors? The proposal,
note, is not to prefer a non-grueish hypothesis h to a grueish hypothesis g
on the grounds that h itself has been more useful than g. Since we are set-
ting priors for h and g, we have, by assumption, no evidence as yet bearing
on either hypothesis. Rather, it is other grueish hypotheses that have dis-
appointed in the past (not least in the philosophy of induction’s watershed
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year 2000); this previous disappointment is taken to reflect unfavorably on
grueishness in general, and therefore on g in particular.

To take another example, we may use the past success of simple over
complex hypotheses as a reason to set priors in a new realm of inquiry that
favor simple hypotheses in that realm over their more complex competitors.
More generally, the idea goes, we can use the information we have about
what kinds of hypotheses have been right in the past to set our priors for
new hypotheses that have, as yet, no track record themselves.

At first, this suggestion might appear to be utterly confused. Clearly,
using a past track record to set expectations for future success is a kind of
inductive reasoning. But the prior probabilities are supposed to precede
any inductive reasoning; inductive reasoning is, if you are a Bayesian, to be
carried out by way of the conditionalization rule, which requires preexisting
priors.

Contextualists are well aware of this. What they are suggesting is, in ef-
fect, a second inductive method to supplement bct. This second method
is less sophisticated than bct—it is, more or less, what is sometimes called
straight induction, in which expectations are based purely on frequencies—
but by the same token it is independent of bct. The contextualist prescrip-
tion is: set your priors using straight induction, then learn from the evidence
using bct. Straight induction acts, then, as a kind of boot-strapping mech-
anism, to get bct up and running as efficiently as possible.

The failure of contextualism to exert a hold on the Bayesian imagination
is, surely, its construction of a second inductive edifice to stand alongside
bct. Why two inductive methods, if you can get by with just one?

The contextualist reply is as follows. When we set the priors for a set of
hypotheses in a new realm of inquiry, we surely do have information that is
inductively relevant to the task, for example, information that suggests that
the laws of nature tend to be on the whole vastly more simple than the phe-
nomena they describe. To ignore such information would be perverse. Yet
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bct provides no easy way to incorporate it: Bayesians learn by conditional-
ization, and conditionalization requires that priors are already set.17 Thus,
like it or not, there is a need for a non-Bayesian inductive procedure to take
the information into account.

Note that this reply depends on the observation that we formulate new
theories as we go along and in the light of the existing evidence, rather than
all at once before inquiry begins. Some notorious consequences that this
commonplace has for bct are examined in section 11.

10. Bayesianism, Holism, and Auxiliary Hypotheses

10.1 Auxiliary Hypotheses

Modern Bayesianism deals in hypotheses that assign precise physical prob-
abilities to the evidence. Most scientific theories assign such probabilities
only in conjunction with auxiliary hypotheses. By an auxiliary hypothesis
for a theory h, I mean any hypothesis that helps h to fix a particular physical
probability for the evidence. No hypothesis is intrinsically auxiliary, then;
rather, to be auxiliary is play, relative to what I will call the main hypothesis,
a particular inferential role.

Typically, auxiliary hypotheses will do one of the following:

1. State that certain background conditions obtain, or state that there is a
certain probability distribution over background or initial conditions,

2. Assert a certain relationship between the readings on a piece of instru-
mentation and the unobserved properties that the instrumentation is
supposed to measure,

17. Exercise for the reader: could the Bayesian introduce “prior priors”, and then con-
ditionalize on the information about simplicity and so on, to reach the priors that will be
used once the evidence begins to come in? What difficulties will have to be surmounted to
implement such a scheme?
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3. Help to derive, from the instantiation of some theoretical properties
(presumably the subject of the main hypothesis) the instantiation of
certain other, easier to observe properties. An example is the use of
general relativity to determine the magnitude of the gravitational lens-
ing effects that would be present if the universe’s dark matter were to
consist mainly of large, dark, star-like entities (machos). Here gen-
eral relativity plays an auxiliary role, helping a certain theory of dark
matter to make predictions about observable phenomena.18

As these examples show, an auxiliary hypothesis may be anything from a low
level empirical generalization to a high level theory.

10.2 The Bayesian's Quine-Duhem Problem

The ubiquity of auxiliary hypotheses creates a problem in confirmation the-
ory called the Quine-Duhem problem.19 Given that a main hypothesis makes
predictions about observable phenomena only in conjunction with its aux-
iliary hypotheses, how to distribute the epistemic bounty among the in-
dividual hypotheses when the predictions are borne out, and (this side of
the question has always attracted more attention) how to distribute blame
when the predictions fail? The old workhorse of theoretical confirmation,
hypothetico-deductivism, provides no mechanism for sharing out either the
credit or the blame. The Quine-Duhem thesis holds that there is no such
method: what is confirmed or disconfirmed will always be a conglomerate
of main theory and auxiliary hypotheses. It has as a consequence what is
often called epistemological holism, the doctrine that it is (almost) never
correct to say of a bare theory, such as the general theory of relativity or the
theory of evolution, that it is confirmed or disconfirmed.

18. Of course, gravitational lensing itself is not directly observable; still other auxiliaries
must be used to deduce, from images of the stars, that it is happening.

19. The hyphenated eponymy presumably reflects a reluctance to distribute praise or
blame among the individuals named.
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The analog of the Quine-Duhem problem for bct (a difficulty first en-
countered in section 6.4) is as follows. The heart of bct is Bayes’ rule, which
tells us how to adjust our subjective probabilities for a hypothesis in the light
of the evidence. But as is evident from the rule, the hypothesis whose prob-
ability is in the first instance adjusted is the hypothesis that bestows the par-
ticular physical probability on the evidence—the likelihood—that is used for
conditionalization. This is not the main hypothesis itself, but the main hy-
pothesis conjoined with one more more auxiliary hypotheses. Thus, Bayes’
rule tells you how your probability for this conjunction should change, but
what about the probability for the hypothesis itself?

There is some good news and some bad news. The good news is that,
provided all the appropriate priors are well defined, Bayesian conditional-
ization on a piece of evidence has definite implications for the subjective
probability of every hypothesis (indeed, every proposition) in the condition-
alizer’s head space. Even though my main hypothesis h does not assign a
definite physical probability to the evidence e, then, conditionalizing on e
will result in some definite posterior probability for h. (This is because,
although there is no well-defined physical likelihood Ph(e), there is a well-
defined subjective likelihood C(e |h); or at least, there is if all the necessary
priors are well defined.)

The bad news is that, although the posterior for h is well defined, the dy-
namics of this probability—the way that it changes over time as the evidence
comes in—does not necessarily have any of the features that make modern
Bayesianism so attractive. Suppose, for example, that the main hypothesis h
when conjoined with an auxiliary hypothesis a predicts a piece of observed
evidence e. The conjunction ha is duly confirmed by e: your probability for
ha increases. But, depending on your other priors, your probability for h
may change in a number of ways. It may even decrease. (The reasons for
this will be laid out in section 10.5.) The likelihood lover’s principle does
not apply to the individual constituents of a hypothesis-auxiliary conjunc-

109



tion, then, so neither do any of the consequences of the principle, not least
the convergence results.20

Perhaps above all else, it is no longer true that fixing the prior proba-
bilities for the individual hypotheses is sufficient, by way of the probability
coordination principle and the total probability theorem, to determine the
way your probabilities should change. Other subjective probabilities will
make a difference to probability updates (see section 10.5).

Is there any way to get back the clockwork behavior of modern Bayesian-
ism? We cannot have the transcendent simplicity promised back in sections
5 and 6, but if certain limits are placed on the theories in play—if certain
assumptions are made about the prior probabilities over various combina-
tions of main and auxiliary hypotheses—a nice, approximately clockwork
aspect will emerge. At the very least, there are conditions under which the
subjective probability of h will behave in the same decent and forthright way
as the subjective probability of ha, increasing when ha predicts well and de-
creasing when ha predicts badly. I will sketch some of this work, presented
in Strevens (2001), later in this section.

10.3 The Problem of Ad Hoc Reasoning

Let me introduce a particular problem in confirmation theory for the solu-
tion of which it seems especially important to have a solution to the Quine-
Duhem problem—a method for distributing praise and blame differentially
across main/auxiliary conglomerates—and where it seems that considerable
scientific progress has in fact been made by knowing which allocation of
praise and blame is correct. We will view Quine-Duhem through the lens of
this problem, the problem of how to judge ad hoc reasoning.

20. There is one important convergence result that is unaffected (see §9.2): as the proba-
bility of the true main/auxiliary conglomerate ha approaches one, it drives the probabilities
of h and a, which must each be greater than the probability of ha, before it.
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Suppose that a hypothesis-auxiliary conglomerate—what I earlier called
a scientific model—is falsified. The model makes a prediction that is at odds
with the evidence. At least one hypothesis in the model must therefore be
false.

A proponent of the model’s main hypothesis may be tempted to tweak its
auxiliaries so that they no longer yield the false prediction, or even better, so
that they yield a new version of the prediction that, unlike the old, accords
with the data. Tweaking the auxiliaries in this way is what I call ad hoc
reasoning. (There may be other kinds of ad hoc reasoning, but I will not
discuss them here.)

Some writers have come close to condemning ad hoc reasoning outright.
But there are some famous historical examples of ad hoc reasoning that not
only turned out to be very good science, but were recognized as such at the
time. The most famous of all, at least in philosophical circles, is the episode
that may justly be called the discovery of Neptune.

In 1800 only seven planets were known to exist, the outermost of which
was Uranus. Astronomers observed certain irregularities in the orbit of
Uranus, which were at odds with the model consisting of, first, the Newto-
nian theory of gravitation, and second, the prevailing view of the structure
of the solar system, in which Uranus was the outermost planet. Adams and
Le Verrier independently postulated the existence of a planet orbiting the
sun beyond Uranus, which would account for the apparent perturbations
in Uranus’s orbit. When they showed that a particular choice of orbit for
such a planet would exactly account for Uranus’s apparently unNewtonian
excursions, the eminent astronomer John Herschel declared that Neptune’s
existence had been demonstrated “with a certainty hardly inferior to that of
ocular demonstration”. Not only did the ad hoc tweaking of the solar system
model save Newtonian theory, then, the tweaked auxiliary hypothesis was
itself elevated to a position of supreme epistemic standing.

Other episodes of ad hoc reasoning have served to damn rather than
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to save the theories involved. Howson and Urbach (1993) cite an example
from Velikovsky’s Worlds in Collision, a book that sought to explain vari-
ous ancient myths and dramatic biblical events such as the parting of the
Red Sea as real events caused by giant comets passing close to the earth.
In answer to the question why we have only reports of isolated “miracles”
at such times, when the comets were supposed to have caused planet-wide
upheavals, Velikovsky appeals to the hypothesis of collective amnesia: the
events were so terrible that almost all memory of them has been repressed.
(The repressed memories, by the way, emerge in the form of stories about
the gods, which turn out to be simple allegories of astronomical events—
the myth of Athena’s birth from the head of Zeus, for example, refers to
a “comet” being ejected from the planet Jupiter, almost colliding with the
earth, and later settling into a stable orbit as the planet Venus. Velikovsky
described himself as psychoanalyzing the entire human race.) Why does this
auxiliary maneuver elicit sniggers, rather than Herschelian paeans?

One answer: in the Velikovsky case, the auxiliary hypothesis is extremely
self-serving. But is the positing of an additional planet to rescue your hy-
potheses about the laws of celestial mechanics any less self-serving? Another
answer: the hypothesis of collective amnesia is highly implausible, or as a
Bayesian would say, would have had a very low subjective probability. But so
would the Neptune hypothesis: bear in mind that to save Newtonian theory,
it was necessary to assume not only the existence of an extra planet, but that
the planet had a very particular orbit. No one would have bet on finding a
planet in that orbit before the work of Adams and Le Verrier.21 Could there
be social forces at work? The central characters involved in the discovery
of Neptune were highly respected mathematicians and scientists, occupy-

21. This is not to say that the probability of the tweaked auxiliary is always irrelevant:
in the case where it is high even before the falsifying data was observed, there will be no
problem endorsing the new auxiliary—indeed, in Bayesian terms, it has been endorsed all
along.
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ing central roles in their fields.22 Velikovsky was a psychiatrist who had no
standing in the world of astronomy. In a sense, social standing did play an
important role in distinguishing these two cases, on the Bayesian approach;
not the social standing of an individual, however, but the hard-won social
standing of a theory.

Before I turn to the Bayesian treatment of ad hoc reasoning, let me pro-
vide one more example, and then reestablish the link between the problem
of ad hoc reasoning and the more general Quine-Duhem problem. First, the
example. Observations of galactic dynamics—the way that galaxies move
and change—are at odds with current gravitational theory. Or rather, they
are at odds unless large amounts of “dark matter” exist in the universe. This
dark matter, though unobservable, would have to constitute about 90% of
the mass of a typical galaxy. The dark matter hypothesis (or rather hypothe-
ses, since as mentioned above, there are competing views about the nature
of dark matter) are recognizably auxiliary tweaks very similar to the tweak
that initiated the discovery of Neptune. Interestingly, there is an alternative,
though less well known, account of the galactic aberrations that revises the
theory of gravity itself, so that it is no longer valid for bodies undergoing
acceleration very near zero. Which tweak is on the right track? Is it the main
hypothesis, gravitational theory, or the auxiliary, concerning the constitu-
tion of galaxies, that needs to be revised?

This is a matter of controversy. Dark matter theory is more popular, but
the physical revisionists are by no means regarded as cranks.23 In this third
case, then, tweaking the auxiliary is neither clearly the right thing to do nor
clearly a sign of impending theoretical implosion.

22. Actually, Adams was still an undergraduate when he did his calculations (and what
have you calculated recently?). But his contribution was at first ignored; it was only when Le
Verrier’s work became known a few months later that he received the attention he deserved.

23. The principal author of the theory, Mordehai Milgrom, wrote it up recently for Sci-
enti�c American (August 2002). At the time of these notes’ most recent revision (August
2006), evidence has emerged that casts doubt on Milgrom’s theory and seems to point to
the existence of dark matter. The work is not yet published.
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What does this have to do with Quine-Duhem? If there were a solution
to the Quine-Duhem problem, we would know, when a main hypothesis
and an auxiliary hypothesis jointly issued a false prediction, which of the
two to blame (or more subtly, which to blame more). If the auxiliary is to be
blamed, then it is right and proper to tweak it, that is to discard it in favor
of another, revised version, to save the irreproachable main hypothesis from
the stigma of empirical inadequacy. If it is the main hypothesis, tweaking
the auxiliary will seem to be the last resort of the scientific charlatan—or at
least, of the scientist who loved too much.

When the auxiliary deserves the blame, and so is rightly replaced by a
new, tweaked version, say that the main hypothesis has been subject to a
glorious rescue. When the main hypothesis deserves the blame, and so the
replacement of the auxiliary by a tweaked version is the wrong move, say that
the main hypothesis has been subject to a desperate rescue. The discovery
of Neptune, then, constitutes a glorious rescue of Newton’s laws, the glory
accruing not so much to the laws themselves as to the rescuing auxiliary, the
posited existence of a ninth planet in a certain orbit, which sees its epistemic
status raised from outside possibility to near certitude. Velikovsky’s use of
the hypothesis of collective amnesia is, by contrast, a desperate rescue of
his theory of planetary Ping-Pong. The rest of this section will explore a
Bayesian approach to distinguishing glorious from desperate rescues.

10.4 The Old Bayesian Approach to the Quine-Duhem Problem

Begin with what might be called the standard Bayesian approach to the
Quine-Duhem Problem. The standard Bayesian I have in mind was intro-
duced in section 10.2. They solve the problem simply by noting that condi-
tionalization on the critical piece of evidence will result in some well-defined
posterior probability or other for each of the main hypothesis, the auxiliary
hypothesis, and the tweaked auxiliary.

Since we are about to start pushing some probabilities around, let me
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put this into the Bayesian formalism. As above, call the main hypothesis
h and the auxiliary hypothesis a. Call the tweaked version of the auxiliary
hypothesis a′. The piece of evidence that is inconsistent with the predictions
of ha I call e. In the scenario under consideration, ha entails ¬e, whereas
ha′ is consistent with e, and perhaps even predicts it. I will assume that ha′

indeed entails e, as it does in the examples described above. Finally, I assume
that a and a′ are mutually exclusive; thus, ha and ha′ are mutually exclusive.

Then the Bayesian approach is as follows. Upon conditionalizing on e,
the probability of ha will go to zero. The probabilities of the rival models that
predict the evidence, including ha′, will increase. That is all we can say for
sure. The probabilities of h, a, and a′ will all change in some way. Their new
values will be well defined, but it is impossible to say in general whether they
will increase or decrease. That will depend on various priors. What, then, is
the difference between a glorious and a desperate rescue? A glorious rescue
is one in which the probability of h does not decrease much or at all, and
the probability of a′ becomes quite high itself. The epistemic credibility of
the main hypothesis is preserved, then, and the tweaked hypothesis a′ gains
credibility that it did not have any more—it is “discovered to be true”. A
desperate rescue is one in which the probability of h falls and the probability
of a′ does not increase to any great degree.

Is this a solution to the problem of ad hoc reasoning? It sounds more like
a redescription of the problem. We have asked: in what circumstances is a
rescue glorious, rather than desperate? The standard Bayesian has answered:
when it is glorious, rather than desperate. The reason that the standard
Bayesian can say no more is, of course, that bct in itself puts no constraints
on the way that the probabilities of h and a change when ha is refuted by a
piece of evidence e—the same reason, as explained in section 10.2, that bct
provides a rather unhelpful solution to the Quine-Duhem problem.
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10.5 A New Bayesian Approach to the Quine-Duhem Problem

To do better than the standard Bayesian, we must make some additional
assumptions about the epistemic situation. To see the form that these as-
sumptions will take, consider why, when e refutes ha, the probability of h
may nevertheless go up.

There are two features of the Bayesian scenario that leave open this pos-
sibility. First, there may be a negative correlation between h and a, in which
case (ceteris paribus), as the probability of one increases, the other will de-
crease; they cannot, then, both increase. Second, and more importantly, the
evidence e may bear on h in other ways than its refutation of ha. (Perhaps h
is a part of other models that make predictions about e, possibly playing the
role of the auxiliary rather than the main hypothesis.) These other ways may
have much more impact on the posterior for h than does the refutation of ha,
and whether the impact is positive or negative is left entirely undetermined
by the description of the situation.

Put the first possibility aside for now. The second possibility can be
avoided by limiting the scope of the investigation to cases where it does not
eventuate, that is, to cases where the impact of e on h and a goes entirely by
way of the falsification of ha. In what follows I will suppose, then, that

C(h |e) = C(h |¬(ha))

In the cases of ad hoc reasoning presented above, this seems to be a rea-
sonable assumption. Insofar as the observed perturbations in the orbit of
Uranus impacted Newtonian gravitational theory, they did so by showing
that Newtonian gravitation made the wrong predictions when conjoined
with the then-current model of the solar system, and so on for the other
ad hoc scenarios.24

24. You may wonder if this sort of informal reasoning is not question-begging: in de-
termining that all the evidential impact of e on h is due to the impact of the falsification
of ha on h, am I not assuming that I can follow the flow of confirmation from e to the in-
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If the assumption is allowed, real constraints on the way that e impacts
the probabilities of h and a exist. I will leave the details of the derivation
to you (or you can find them in Strevens (2001)), but the following result
about the posterior probability C+(h) for h after the observation of e can be
derived:

C+(h) = C(h |¬(ha))

=
1− C(a |h)

1− C(a |h)C(h)
C(h)

The change in the probability of the main hypothesis, then, will be de-
termined by the properties of the multiplier—the fractional expression by
which C(h) is multiplied to obtain C+(h).

A careful study of the multiplier shows that it has the following features
(depicted in figure 7).

1. It is always less than one (unless C(h) is already one). Thus, when ha
is falsified, the probability of h must always decrease.

2. The greater the probability of h prior to the observation of e—the
greater the value of C(h)—the smaller the decrease in the probability
of h. Thus main hypotheses that are more credible suffer less from the
falsification of ha.

3. The lower the probability C(a |h) prior to the observation of e, the
smaller the decrease in the probability of h. Roughly speaking, the
less credible the auxiliary hypothesis, the less the main hypothesis will
suffer from the falsification of ha. But only roughly, because C(a |h) is
not the same as C(a). This issue will be addressed shortly.

dividual parts of ha? That is, that I already have a solution to the Quine-Duhem problem
in hand? Touché. For a more careful, but therefore more roundabout, presentation of the
assumption required to secure the above equality, see Strevens (2001). The roundabout pre-
sentation has the advantage that it isolates precisely those features of the examples above in
virtue of which it is reasonable to assume that C(h |e) is equal to, or at least approximately
equal to, C(h |¬(ha)).
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4. Because we could just as well have called h the auxiliary hypothesis
and a the main hypothesis, without affecting the derivation, all of the
above holds for a as well: its probability decreases when ha is falsified,
and the size of the probability drop is smaller as a is more credible and
h is less credible.

C(a|h)

1

1

C+(h)
C(h)

Figure 7: The ratio of the posterior probability C+(h) to the prior C(h) (i.e.,
the Bayesian multiplier), as a function of C(a |h), for three values of C(h).
From top to bottom, C(h) = 0.7, 0.5, 0.3. In each case, as C(a |h) increases,
the multiplier for C(h) decreases, but the higher C(h), the slower the initial
decrease.

In summary, then, when ha is falsified, there is a certain amount of blame
that must be shared between h and a in the form of probability decreases for
both. The blame is distributed, roughly, by comparing the probabilities of h
and a before the falsification: as you might expect, the hypothesis with the
lower probability gets more of the blame. There is a Matthew effect at work
here:25 hypotheses that already have low probability will suffer dispropor-

25. “For to every one who has will more be given, and he will have abundance; but from
him who has not, even what he has will be taken away”, Gospel of Matthew, 25:29. The
original Matthew effect, concerning the assignment of credit for scientific discoveries, was
described by Merton (1968).
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tionately, while hypotheses that have high probability will be relatively well
protected.

There is nothing surprising about this; rather, it is a case of Bayesianism’s
reproducing a piece of conventional wisdom about confirmation. Platitudi-
nous though it may be, however, the observation that the less certain theory
is the likelier culprit in an episode of falsification had become so problema-
tized by Quine and others by the middle of the last century that a little tri-
angulation ought not to be scorned.

However, we have gone too fast. I have been assuming that what can be
said about C(a) can also be said about C(a |h), the expression that actually
occurs in the all-important multiplier, and in particular, that when C(a) is
high, C(a |h) is relatively high and vice-versa. What is the justification for
this?

The mathematics itself puts few constraints on C(a |h). It can be high
when C(a) is low, and low when C(a) is high. In order to impose some
discipline on C(a |h), then, we are going to have to make a substantive as-
sumption about probabilistic situations of interest, an assumption that both
justifies the assumption that the two probabilities move more or less in tan-
dem, and that holds in the kinds of cases of ad hoc reasoning that are under
investigation.

It is sometimes said, in connection with this sort of problem, that since a
and h typically concern rather different kinds of things—auxiliary hypothe-
ses are often about particular matters of fact, whereas main hypotheses are
often abstract theories of the behaviors of things—it is reasonable to assume
that a and h are probabilistically independent, so that C(a |h) is equal to
C(a). It would be very convenient if this reasoning were sound, but it is
not. The two hypotheses’ “being about rather different kinds of things”
might justify independence in the prior probability distribution before any
evidence comes in,26 but once evidence arrives, a main hypothesis and its

26. Though even then, it seems a bit much to assume that the prior distribution over,
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auxiliaries will invariably become probabilistically correlated.
To see this, observe that if the main and auxiliary hypotheses really were

independent, then on learning that the auxiliary was false, your subjective
probability for the main hypothesis would be, by Bayes’ rule, unaffected.
(Independence entails that C(h |a) is equal to C(h), provided that C(a) is
non-zero.) But this is the same auxiliary that has been used in many past
tests of the hypothesis. If it is false, these experiments have little or no
credibility, and your probability for the main hypothesis should be adjusted
(downward, if the tests were confirmatory).

This same argument shows, however, that in the usual case—for typical
pairs of main and auxiliary hypotheses—the probabilities of the pair will be
tethered, and so movements in the probability of a will be broadly reflected
in the movements of C(a |h). The exact relationship will depend on the
content of h and a, but the more plausible a is, the higher C(a |h) will be.
This is what we need for behaviors (1) to (4) above to be typical of cases in
which a main/auxiliary pair is falsified.

So what can we say about ad hoc reasoning? The problem, recall, is to lay
down conditions under which an auxiliary tweak will constitute a glorious
rescue, and conditions under which it will constitute a desperate rescue. In a
glorious rescue, the drop in the probability of h due to the falsification of ha
is small or non-existent; in a desperate rescue, it is substantial. In the light
of the above results, we can then say:

1. A tweak constitutes a glorious rescue when the probability of the main
hypothesis is high relative to the probability of the auxiliary. Most
glorious of all are rescues where the probability of the main hypoth-
esis is not only relatively high but absolutely high, that is, near one.
The Neptune case fits this specification very well: the probability for

say, the different possible arrangements of the planets will be independent of the prior dis-
tribution over the different physical theories characterizing the dynamics of those same
planets.
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Newtonian theory was, at the time, very close to one in the scientific
consciousness.27 The probability of the auxiliary, the prevailing model
of the solar system, was high, but still well short of one: the possibility
of another planet was considered a real one.

2. A tweak constitutes a desperate rescue when the probability of the
main hypothesis is low relative to the probability of the auxiliary. Most
desperate of all are rescues where the probability of the main hypoth-
esis is not only relatively low but absolutely low. It is in these cases
that you have permission to laugh and point.28 The unfortunate Ve-
likovsky illustrates this precept very well: the probability of the main
hypothesis of Worlds in Collision seemed rather low to most people
compared to the probability of the auxiliary, which in this case is the
absence of collective amnesia. Was Velikovsky irrational, then? Per-
haps not: his own subjective probability for the hypothesis of collid-
ing worlds was perhaps much higher than for the auxiliary. There are
Bayesian sirens for every reef . . .

One feature of glorious rescues remains to be explained. Why does the
probability of the tweaked auxiliary jump so high? Why, for example, was
Couch and Le Verrier’s achievement not just to preserve Newtonian theory,
but to discover the existence of Neptune?

In a glorious rescue, the brunt of the falsification of ha is borne by a.
The probability of a, then, will plunge dramatically. Assuming that it was
reasonably high before the falsifying evidence was observed, this leaves a lot
of probability to redistribute among a’s rivals. In many cases, most of the
rival auxiliaries are no better able to predict the falsifying evidence than a
itself. The redistributed probability will be concentrated, then, on a small

27. Real Bayesians do not, of course, talk this way.
28. Bearing in the mind that if the main hypothesis turns out, against all odds, to be

correct, you will go down in history as a reactionary blockhead who stood in the way of
scientific progress—only to become roadkill on the superhighway to truth.
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subset of the rivals, perhaps even on a single possibility, the tweaked auxil-
iary. Hence its sudden ascendancy.

Exercise to the reader: explain why a tweaked auxiliary that, in conjunc-
tion with the main hypothesis, predicts the falsifying evidence, will tend to
do better out of a glorious rescue than a tweaked auxiliary that merely insu-
lates the main hypothesis from the evidence, that is, that in conjunction with
the main hypothesis, has nothing special to say about the falsifying evidence.
(You should look beyond the admittedly relevant fact that the former aux-
iliary, but not the latter, will be confirmed by the falsifying evidence. Think
of some examples.)

Enough about ad hoc reasoning. Consider the Quine-Duhem problem
more generally. You have seen how the blame should be distributed when a
main/auxiliary pair ha is falsified. How should praise be distributed when
ha is confirmed? You know that in the falsification case, the higher the prob-
ability of a, the bigger the drop in the probability of h. How do you think it
goes in the confirmation case? When ha is confirmed, the probability of h
will go up; how will the size of this increase depend on the probability of a?
As the probability of a goes higher, the increase in the probability of h due
to confirmation . . . gets higher or lower?

Answer: it gets higher. That is, the more sure we are about a, the more
strongly h is confirmed when ha is confirmed. This also goes for disconfir-
mation of ha that stops short of falsification: the more sure we are about a,
the more strongly h is disconfirmed when ha is disconfirmed. (These claims
are all justified in Strevens (2001).) In short, the more sure we are of a, the
more we learn about h by either the confirmation or the disconfirmation of
ha. Bayesian plaudits for another platitude: the more secure your auxiliaries,
the more the evidence tells you about your theories.
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11. The Problem of Old Evidence

11.1 The Problem

You are a scientist, and your life’s goal is to explain a mysterious phenome-
non, the Kumquat effect. No known theory is very successful in explaining
the effect. All of them assign (in conjunction with the relevant auxiliary hy-
potheses) a very low physical probability to the effect’s occurring. Yet occur
it does.

Then one happy day, you hit upon a new theory that predicts the effect.
Your theory, let us say, entails the effect; it therefore assigns the effect a phys-
ical probability of one, in contrast to the very low physical probabilities as-
signed by previous theories. Since bct favors theories that assign relatively
high physical probabilities to the evidence, and disfavors those that assign
relatively low probabilities, your theory should immediately become every-
one’s favorite—correct? Surprisingly, it is not at all clear that bct delivers
this verdict.

Indeed, on the Bayesian picture, it looks rather like your theory’s predic-
tion of the Kumquat effect will fail to count in its favor at all. This terrible
embarrassment for Bayesianism, pressed enthusiastically by Clark Glymour,
is called the problem of old evidence.

Let us see how the problem arises. When you first conceive of your new
theory, you must assign it a prior probability. This in itself poses a problem
for the Bayesian, which will be discussed in section 11.4, but let us suppose,
for now, that a prior is successfully determined. Now you wish to update
the prior in the light of the fact that your theory h predicts the Kumquat
effect, the observation of which I will call e. The updating should proceed in
accordance with the conditionalization rule:

C+(h) =
C(e |h)

C(e)
C(h).

Because h entails e, the relevant likelihood C(e |h) is equal to one. The prob-
ability for h, then, will increase by a Bayes multiplier that is the reciprocal of
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C(e). But what is C(e)? We already know that the Kumquat effect occurs.
Thus our subjective probability for e will be one. It follows that the Bayes
multiplier is also one, which is to say that conditionalizing on the Kumquat
effect does not affect our confidence in h at all, despite the fact that h predicts
the effect whereas no rival can.

More generally, whenever we update our subjective probability for a new
theory by conditionalizing on old evidence, we will encounter the same
problem. Because the evidence is already known for certain, our subjec-
tive probability for the evidence is equal to one. Thus conditionalizing on
the evidence cannot increase our subjective probability for the new theory.29
A dire difficulty for bct.

The usual example of the old evidence problem is the confirmation of
Einstein’s theory of general relativity. One of the strongest pieces of evi-
dence for the theory, in the view of physicists then and now, was its predic-
tion of the precession of the perihelion of Mercury. The precession was dis-
covered in the nineteenth century, but Einstein formulated his theory only
in the years between 1905 and 1915. Scientists’ probability for the fact of
the precession was one, or close to one, then, before Einstein began work;
consequently, the precession ought not, on the Bayesian approach, to have
confirmed the theory.

You should be able to see that evidence is often old in the sense that
causes trouble for bct: Darwin knew about his finches before he became an
evolutionist; physicists knew some of the puzzling properties of the specific
heats of gases for decades before quantum mechanics was able to account for
them; and theories of, say, the business cycle in economics have all been for-

29. You might think that if a hypothesis h assigns a probability to a piece of old evidence
e that is less than one, the probability of h would actually decrease when conditionalizing on
e. But this is not so: remember that the subjective likelihood C(e |h) implicitly accommo-
dates background knowledge (section 4.3); for this reason, C(e |h) is equal to one, so that
there is no change in the probability of h. Why does pcp not apply? Because the observation
of e is inadmissible evidence.
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mulated after the behavior of the cycle was already well known. Bayesianism
promises to give you a complete theory of how your evidence should impact
your beliefs. But in the case of old evidence, it fails to do so.

Two remarks. First, it is not quite fair to say that bct gives the wrong
answer the question of how old evidence should affect your subjective prob-
abilities. It is rather that, in its idealizing way, bct assumes that the prob-
lem will never crop up in the first place, because it assumes that you are
aware of all the logical possibilities—in particular, all the possible scientific
theories—in advance of your receiving any evidence at all. The problem,
then, is that there seems to be no straightforward way to relax this assump-
tion. Or more exactly, if you make bctmore realistic by supposing that some
theoretical possibilities will be discovered in the course of investigation, you
seem to be committed to making it at the same time more unrealistic, in
that it declares the impact of old evidence on these new theories to be non-
existent.

Second, a number of writers have tried to make Bayesians feel better
about the problem of old evidence by defining a sense in which it is possible
to say that old evidence “supports” a theory. One way to do this is to say
that the evidence supports a theory if the probability of the theory given the
evidence is higher than the probability of the theory given the negation of
the evidence, according to some probability distribution that (if you think
about it) cannot be your current subjective probability distribution in which
the probability of the evidence is one. Such approaches to the problem do
not actually help you to adjust the probability of a new theory in the light
of the evidence already accumulated, which is to say, they do not do for you
what bct, or at least “clockwork Bayesianism”, is supposed to do for you.
As such, they should be considered palliatives, rather than solutions, to the
problem of old evidence—symptomatic relief, perhaps, but not cures.30

30. They may also be considered as solutions to a distinct problem, that of providing an
ahistorical notion of evidential support—a problem that arises whether the evidence is“old”
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11.2 Replaying History

I will consider two popular attempts to solve the problem of old evidence.
The first, favored by, for example, Howson and Urbach (1993), is motivated
by a wish: if only the evidence had been uncovered after the theory was for-
mulated, or the theory had been formulated before the evidence came to
light, there would have been no problem. Would that it were possible to go
back in time and replay the history of science, but with events reordered so
that the problem of old evidence did not arise! If only, for example, hu-
manity had been so clever as to see all the theoretical possibilities before the
evidence began to accumulate . . .

Howson and Urbach (following a strategy panned in advance by Gly-
mour) suggest that we do just this. More exactly, when we formulate a new
theory for which pertinent evidence e already exists, we should conditional-
ize on e as though we had not yet observed it, using the value for C(e), then,
that we would have had before e came to light. The numerical effect is just
as if the theory really had been formulated before the observation of e.

Most Bayesians regard this as a pretty hairy maneuver. First off, it in-
volves flagrantly violating the Bayesian conditionalization rule, which en-
joins us to use our present subjective probability for e when conditionaliz-
ing, not some other historical or counterfactual probability. Howson and
Urbach defend themselves against this worry by arguing that it can never be
right to conditionalize using your present subjective probability for e since,
by the time you get around to conditionalizing, your probability for e has
already gone to one. You should always conditionalize, then, using your
probability for e before e was observed.31 This argument seems to me to

or not. The distinction between the historical problem of old evidence (the problem tackled
in these notes) and the ahistorical problem of evidential support is introduced by Garber
(1983).

31. What Howson and Urbach require, more precisely, is that you use the subjective
probability for e that is determined by your background knowledge at the time of condi-
tionalization not counting e. This is a peculiar suggestion for a Bayesian to make; the idea
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conflate the merely practical problem raised by having a number of things
to do at one time with a serious theoretical problem.

Second, it is hard to say what your subjective probability for e would be
if you did not already know it. Perhaps e was observed long before you were
born, and has always been a part of your mental firmament. Perhaps the best
you can do is to estimate the subjective probability for e commonly enter-
tained before its discovery—but are such mental exercises really a legitimate
part of the story about confirmation?

Third, even if these other difficulties can be assuaged, we are a long way
from the clockwork Bayesianism of sections 5 and 6. In those sections, recall,
we envisaged a Bayesian theory of confirmation in which the scientist only
had to fix a prior probability distribution over the competing hypotheses,
and everything else was taken care of. As the evidence rolled in, subjective
probabilities were updated to as many places after the decimal point as you
liked. The “replay” solution to problem of old evidence threatens to make
bct just as fuzzy, subjective, and open to human psychological vagaries as
many of its opponents fear.

11.3 Learning about Entailment

An alternative solution to the problem of old evidence, also first suggested
and rejected by Glymour, focuses on the fact that, in many historical exam-
ples of the confirmatory power of old evidence, the moment at which the

that there is some probability for e determined by a certain set of propositions, such as
your background knowledge less e, which has at no point constituted your actual back-
ground knowledge, belongs to the world of logical probability (see section 5.2), not subjec-
tive probability. There is also, of course, the more practical worry that removing the effect
of an ancient observation e from your subjective probabilities would be a technical night-
mare. Howson and Urbach invoke the work of Gärdenfors and others on belief revision, but
this work does not address the case where background knowledge is represented, not only
by a set of propositions, but by a probability distribution over those propositions. Later,
Howson and Urbach invoke the “counterfactual supposition that one does not yet know e”
(p. 405).
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new theory is seen to be supported by the old evidence is the moment at
which it is shown that the new theory predicts the evidence. To keep things
simple, let us say that the theory entails the evidence. Then the critical mo-
ment is the moment at which it becomes apparent that this entailment holds.
This suggests that perhaps, though conditionalizing on the long known old
evidence itself may not have any effect on a new theory’s probability, con-
ditionalizing on the newly learned fact of the entailment may have such an
effect. The proposal, then, is that the probability of a new theory h is raised
not by conditionalizing on e, but by conditionalizing, as it were, on h |− e
(using |− to represent logical entailment).

This approach has two major advantages over the replay approach. First,
it involves the use of the conditionalization rule as always envisaged by bct,
that is, using a real, current subjective probability—the subjective proba-
bility C(h |− e)—rather than historical or counterfactual subjective proba-
bilities. Second, it holds out the promise of a precise technical recipe for
assessing the effect of old evidence on new theories, provided that a good
theory of conditionalizing on facts about entailment can be constructed.

There is a serious obstacle, however, to the construction of such a theory.
According to the axioms of subjective probability, your subjective probabil-
ity for a logical fact such as h |− e should always be one. If your subjective
probabilities conform to the axioms, then, your probability for the entail-
ment will be, like your probability for the old evidence itself, equal to one,
and thus your probability for the new theory will be unaffected by condi-
tionalization.

Yet although it is true that your subjective probabilities ought to conform
to the axioms, and so that, ideally, you should assign a probability of one to
all logical facts, it is not psychologically realistic to expect Bayesian reasoners
to follow this policy at all times. We are not logically omniscient; we do not
perceive of all logical truths that they are in fact logical truths. The Bayesian
apparatus ought to allow for this. In a new Bayesianism with a human face
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(more exactly, with a human mind), a logical truth such as h |− e could have
a subjective probability of less than one, corresponding to the believer’s (in
most cases, no doubt, very low) level of expectation that h will in fact turn
out to entail e.

Suppose that all of this is quite feasible, and that we are equipped with
a new Bayesianism; how much can we then show? A little it turns out, but
less than you might expect—or at least, less than you might hope. There
exist various attempts to demonstrate that conditionalizing on h |− e will,
even if C(e) is one, raise the probability of h. But there is no consensus on
which demonstration is best, nor is there a stronger result showing that the
probability lift is large in cases where the rivals to h have much less to say
about e (Earman 1992, chap. 5). This is something of a disappointment, but
perhaps progress is around the corner.

In any case, there is a deeper worry about the approach described in this
section, voiced by Earman and Howson and Urbach, among others. It seems
quite possible that a theory might be formulated with the express aim that
it predict a piece of old evidence e. In a case such as this, by the time the
theory is complete and we are ready to assess the evidence for the theory,
we already know that the theory entails e. The fact of the entailment itself
is “old evidence”. Then we have the same old problem on our hands. Yet it
seems that the theory’s predicting the evidence ought to count in its favor all
the same (tech box 11.1).

This objection suggests that the entailment-learning approach, however
successfully it may deal with some cases, is not getting at the gist of the prob-
lem. If bct is truly to reflect our practices of confirmation, it must find
another way to handle the impact of old evidence.

11.4 The Problem of Novel Theories

On our way to the problem of old evidence, we encountered a problem
that might be called the problem of novel theories. Suppose that you for-
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11.1 Prediction versus Accommodation
Some writers have doubted that, in the case where a theory h is
explicitly designed to entail e, it ought to receive much of a boost
from e. In such cases, they say, e is merely accommodated, rather
than being predicted.

This view is at odds with scientific practice. Einstein’s spe-
cial theory of relativity was designed to provide a symmetrical
treatment of moving coils and moving magnets, Darwin’s the-
ory to account for speciation, and so on. Surely these theories
received considerable credit for achieving, or partially achieving,
their aims.

What the belittlers of accommodation have in mind, I think,
is a special case in which evidence obtained from an experiment
is accommodated by adjusting the parameters of a theory already
known to have sufficient flexibility to accommodate any kind of
evidence likely to result from the experiment. In such a case the
chosen values of the parameters receive a probability boost, but
the theory itself, considered in abstraction from the parameters,
does not.

This is, by the way, one way in which a theory that is simple in
a certain sense—having few adjustable parameters, and thus little
flexibility in accommodating the evidence—may receive a greater
probability boost than a more complex theory from a given set
of evidence, even though both theories have instantiations (i.e.,
versions with the parameters set to certain specific values) that
entail the evidence.

I leave it as a (fairly involved) exercise to the reader to give a
formal treatment of this phenomenon. An even more involved,
yet worthwhile, exercise, is to generalize to the case where even
the more complex theory could not have accommodated just any
evidence.
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mulate a new theory. If your new theory is to get anywhere in the Bayesian
world, it must receive a prior probability greater than zero. But the the-
ory’s pre-existing competitors have probabilities that, we have been assum-
ing throughout, already sum to one. This leaves nothing over for the new
theory. Where is its prior probability to come from?

There are several possibilities. First, foreseeing the problem, you may
have reserved some prior probability for cases such as this. That is, you may
have included among your rival hypotheses from the very start a hypothesis
that says, in effect, “Some other hypothesis that I haven’t yet thought of is
the true one”. As new competitors are formulated, they may take a share of
this reserve probability. Call this equivalent of “(e) None of the above” in
science’s great multiple choice exam the reserve hypothesis. (It is sometimes
called the catch-all hypothesis.)

Here are two problems with the reserve hypothesis approach. First, our
clockwork Bayesianism is again thrown out of whack. No matter how cre-
ative you are with auxiliary hypotheses, you will not find one that is both
reasonable and that, in combination with the reserve hypothesis, assigns a
definite physical probability to the evidence. Assigning prior probabilities
to all the hypotheses and auxiliary hypotheses is not enough, then, to de-
termine how your subjective probabilities will change on observation of the
evidence.

There are ways around this problem. You might, for example, take as the
physical likelihood of the evidence on the reserve hypothesis the weighted
average of the other physical likelihoods, so that the reserve hypothesis has
no net effect on the probability of the evidence e. This strategy is technically
clean; can it be justified in the Bayesian framework? Do you really suppose
that your unformulated theories will say, concerning the evidence, much the
same thing as the existing theories? If so, why bother to formulate them?

The second problem is simply that, if you have been overly optimistic
in your estimate of your grasp of the theoretical possibilities, then you may
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run out of reserve probability. It is hard to see a conventional Bayesian way
out of this difficulty, except to encourage undue pessimism among scientists.
Perhaps that is what philosophy is for.

There is an unconventional solution to the problem, however: just as
learning a new fact about logical entailment relations might impact your
subjective probability distribution (section 11.3), so learning a new fact about
the space of logical possibilities might rearrange your probabilities. For ex-
ample, learning that a new theory of gravity is possible, quite unlike any-
thing you had previously considered possible, might cause you to reduce
your subjective probability for other theories of gravity. In this way, an ex-
pansion of your conceptual horizons might itself liberate some probability
that was previously tied to other, known theories.

Another approach to the problem of novel theories is to rejuggle your
subjective probabilities every time a new theory is formulated. Preexisting
theories are “taxed” to provide the subjective probability you want to assign
as a prior to the new theory.32 If there is a problem with this approach, it
is that, because your priors for the competing hypotheses at any time sum
to one, you are committed to taking a bet at very unfavorable odds that no
plausible new theory will turn up. Surely no scientist would take this bet,
or at least, not in most circumstances. Thus, the relation between subjective
probabilities and betting is in this respect severed, a rather big deal for the
Bayesian.

One way out of this difficulty is to regard the Bayesian setup as a model of
only part of a scientist’s total epistemic state; their opinions about unknown
theories, in particular, are on this approach simply not represented within
the Bayesian framework. For an example of this sort of use of the apparatus
of bct, see Strevens (forthcoming).

32. Exercise to the reader: suppose that the probability for a new theory h assumes the
prior x. What happens if you Jeffrey conditionalize on this probability change? (Jeffrey
conditionalization was discussed briefly in section 4.2.) You should be pleasantly surprised
at your answer. Assume, as always, that the competing theories are mutually exclusive.
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12. Further Reading

This is very much a work in progress (and is now also a bit out of date). Any
suggestions for making the list less idiosyncratic and more complete (while
bearing in mind the introductory function of these notes) is most welcome!

General Some helpful guides to bct, already referenced many times in the
main text, are Horwich (1982), Earman (1992), and Howson and Urbach
(1993). All three have something useful to say about almost every issue dis-
cussed in the main text.

Mathematical Foundations On the elements of the mathematics of prob-
ability that are most relevant to bct, Howson and Urbach (1993) is perhaps
the best place to start.

On introducing conditional probability as a primitive and treating the
“definition” of conditional probability as an additional axiom of the proba-
bility calculus, see Hájek (2003).

If you are at all interested in the history of the mathematics of prob-
ability, there are a number of excellent books in the area: Hacking (1975,
1990), Porter (1986), Stigler (1986), and Daston (1988) are all strongly rec-
ommended.

Epistemological Foundations A recent presentation of the idea that cre-
dences are psychologically real and related to, but distinct from, betting be-
havior, see Osherson et al. (1994).

There is a huge and ever-increasing literature on Dutch book and other
approaches to arguing for the irrationality of credences that violate the ax-
ioms of the probability calculus. Howson and Urbach (1993) will point you
to some of this work. It all begins with Ramsey (1931) and de Finetti (1964).
For a recent, revealing overview, try Hájek (2005).
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For the extension of Dutch book arguments to Bayes’ rule, see Teller
(1973). Howson and Urbach is also handy here. For a justification of Bayes’
rule that does not make use of Dutch books, see van Fraassen (1989), chap-
ter 13.

On the debate between a priori and pragmatic approaches to justifying
bct, take a look at some of the papers in Maxwell and Anderson (1975).
Most of these writers are philosophers of science who favor the more prag-
matic approach. Reading this volume in the 1970s, you might have predicted
that apriorism was on the wane. Wrong; in the matter of ideology, never bet
against the fanatics.

The question of the justification of the probability coordination princi-
ple was raised by Miller (1966), who argued that it was inconsistent. Lewis
(1980) is a classic formulation of the principle and an equally classic dis-
cussion of its role in Bayesian thinking. For an attempt to justify pcp, see
Howson and Urbach (1993, chap. 13). Strevens (1999) crtiticizes Howson
and Urbach’s strategy and argues that the problem of justifying the prin-
ciple is on a par with the problem of induction. Lewis’s recantation of his
original formulation of the principle may be found in Lewis (1994); Strevens
(1995) argues that there is no need to recant.

The subjectivist theory of physical probability was originally presented
by de Finetti (1964), and has been expanded by Skyrms (1979).

On defining a quantitative measure of evidential relevance or support
using subjective probabilities, see Fitelson (1999).

Bayesianism and Induction For the view that bct does not, and ought
not to, solve the problem of induction, see Howson (2001).

Goodman’s new riddle: Earman (1992), §4.7 presents the modern con-
sensus on bct’s handling of the problem. If you cannot get enough grue,
read Stalker (1994).

The question whether simpler hypotheses should be regarded as more
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plausible has a life of its own outside of bct. There is a nice discussion in the
Stanford Encyclopedia of Philosophy by Alan Baker; http://plato.stanford.
edu/entries/simplicity/.

Problems of Con�rmation Ravens: Hempel introduced the problem and
gave an unpopular solution in Hempel (1945b); he also mentions Hosias-
son’s probabilistic solution, which went on to become very popular. Vranas
(2004) argues that the probabilistic solution has some difficulties, as well as
providing a useful bibliographical resource. The importance of the sampling
procedure is emphasized by Horwich (1982) You will find the famous case
of the black raven that disconfirms the raven hypothesis in Good (1967).

For an argument that variety in evidence is not always a good thing, see
Bovens and Hartmann (2003), §4.4.

Hawthorne and Fitelson (2004) is a recent discussion of irrelevant con-
juncts.

Subjectivity A physical probability version of the convergence result is
presented by Savage (1954) and critiqued by Hesse (1975) (who I think un-
derestimates the scope of such results).

For a good (though at times abstruse) overview of the subjective prob-
ability versions, see Earman (1992), chapter 6 (see also the later comment
on p. 167 on the importance of “observational distinguishability” for such
results).

A recent defense of a fairly radical personalism is Howson and Urbach
(1993), §15i.

On the principle of indifference, van Fraassen (1989), chapter 12 is very
helpful. For more advanced (and more favorable) treatments of the prin-
ciple, see Rosenkrantz (1981) and Jaynes (1983). Strevens (1998) argues
that even today, there is confusion between the principle of indifference and
quite different methods used to infer, on a posteriori grounds, the values of
physical probabilities.
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More pragmatic “convergentist” and “contextualist” motivations of mild
constraints on the priors have long been popular; see for example Shimony
(1970) and, for the view on which frequencies in particular constrain priors,
Salmon (1990).

Auxiliary Hypotheses The Quine-Duhem problem is raised by Duhem
(1954). Quine’s sentiment that the problem is insoluble is supposedly con-
veyed by his famous formulation “our statements about the external world
face the tribunal of sense experience not individually but only as a corporate
body” (Quine 1951); he claims as inspiration Carnap’s Aufbau. A clear and
uncompromising exponent of insolubility is Feyerabend (1975).

Dorling (1979) gave what I call the standard Bayesian solution to the
problem. Bovens and Hartmann (2003), §4.5 investigate the behavior of
auxiliary hypotheses given some very specific assumptions about the struc-
ture of the relevant probabilities.

For other answers to the question of how to evaluate ad hoc hypotheses,
look at Howson and Urbach (1993), §7j.

Old Evidence Glymour (1980), chapter 3 is the classic exposition of the
old evidence problem. Howson and Urbach (1993), §15g suggest a replay so-
lution to the problem, arguing that all Bayesian conditionalization involves
replay of some sort. Earman (1992) provides good coverage of the “learn-
ing entailment” view, with references to the original work of Garber, Jeffrey
and Niiniluoto and others. A very helpful attempt to distinguish various
different issues raised by old evidence can be found in Joyce (1999).

Many Bayesians and others have written about the difference, if any, be-
tween prediction and accommodation. See in particular Horwich (1982),
chapter 5, Earman, §4.8, Howson and Urbach, §15h, and White (2003).

You will find the reserve or catch-all hypothesis characterized and put to
use in Shimony (1970).

136



Other Objections to Bayesian Con�rmation Theory The Bayesian sys-
tem makes a number of epistemic idealizations, such as the assumption of
logical omniscience that became salient in the discussion of the old evidence
problem, or the assumption that all thinkers are sufficiently subtle in their
epistemic musings that they assign a single, well-defined subjective proba-
bility to every possibility. Various writers have investigated the question of
how to relax these assumptions.

Some writers have argued that bct gives no weight to certain relevant
aspects of the methods used to produce the evidence (Mayo 1996).
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Proofs

These theorems should be interpreted as tacitly requiring that all conditional
probabilities mentioned are well defined, that is, that the probability of what
is conditionalized upon is non-zero.

Exercise 1. For every outcome e, P(e) + P(¬e) = 1.

Proof. Because the outcomes e and ¬e are mutually exclusive, by axiom 3,

P(e) + P(¬e) = P(e ∨ ¬e).

Since e∨¬e is a tautology, it is inevitable, and so by axiom 2, P(e∨¬e) = 1,
as desired.

Exercise 2. For every outcome e, P(e) ≤ 1.

Proof. By exercise 1, P(e) + P(¬e) = 1, thus

P(e) = 1− P(¬e).

By axiom 1, P(¬e) is greater than or equal to zero. Thus P(e) is less than or
equal to one.

Exercise 3. If e is logically equivalent to d, then P(e) = P(d).

Proof. Since e and d are logically equivalent, e and¬d are mutually exclusive.
Also, e ∨ ¬d is a tautology. By axioms 2 and 3, then,

P(e ∨ ¬d) = P(e) + P(¬d) = 1.

Thus P(e) = 1− P(¬d). But also, by exercise 1,

P(d) = 1− P(¬d),

so P(e) = P(d).
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Exercise 4. For any two outcomes e and d, P(e) = P(ed) + P(e¬d).

Proof. The outcomes ed and e¬d are mutually exclusive, so by axiom 3,

P(ed) + P(e¬d) = P(ed ∨ e¬d).

The outcome ed∨ e¬d is logically equivalent to e, and so by exercise 3, it has
the same probability as e.

Exercise 5. For any two outcomes e and d such that e entails d, P(e) ≤ P(d).

Proof. By exercise 4,
P(d) = P(de) + P(d¬e).

Because e entails d, de is equivalent to e. Thus by exercise 3,

P(d) = P(e) + P(d¬e).

By axiom 1, P(d¬e) is non-negative, thus P(e) is less than or equal to P(d),
as desired.

Exercise 6. For any two outcomes e and d such that P(e ⊃ d) = 1 (where
⊃ is material implication), P(e) ≤ P(d).

Proof. The proof is as for exercise 5, with the following amendment. It is no
longer true that e is logically equivalent to ed, so we cannot use exercise 3
to deduce that P(e) = P(ed). Instead we deduce the equality as follows. By
exercise 4,

P(e) = P(ed) + P(e¬d).

But if P(e⊃ d) = 1, then, because e⊃ d is logically equivalent to ¬(e¬d), by
exercise 3 and then exercise 1, P(e¬d) = 0. Thus P(e) = P(ed).

Exercise 7. Bayes’ theorem:

P(e |d) =
P(d |e)
P(d)

P(e).
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Proof. As mentioned in the main text, all we need for the proof of Bayes’
theorem is the definition of conditional probability.

P(e |d) =
P(ed)
P(d)

=
P(ed)
P(d)

P(e)
P(e)

=
P(ed)
P(e)

P(e)
P(d)

= P(d |e)
P(e)
P(d)

as desired.

Exercise 8. If P(d) = 1, then P(e) = P(ed).

Proof. By exercise 4,
P(e) = P(ed) + P(e¬d).

We would like to show that P(e¬d) = 0. Since P(d) is one, from exercise 1,
we know that P(¬d) is zero. Because e¬d entails ¬d, we have by exercise 5

P(e¬d) ≤ P(¬d) thus P(e¬d) ≤ 0,

and so by axiom 1, we can conclude that P(e¬d) equals zero, as desired.

Exercise 9. The Bayesian’s favorite version of the theorem of total proba-
bility: for mutually exclusive, exhaustive outcomes di,

P(e) = P(e |d1)P(d1) + P(e |d2)P(d2) + · · ·

where a set of outcomes di is exhaustive if P(d1 ∨ d2 ∨ . . . ) = 1.

Proof. Because the outcomes edi are mutually exclusive,

P(e(d1 ∨ d2 ∨ . . . )) = P(ed1) + P(ed2) + · · ·
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(compare the reasoning used for exercise 4). Then, because P(d1∨d2∨. . . ) =
1, by exercise 8,

P(e) = P(ed1) + P(ed2) + · · · .

From the definition of conditional probability, P(edi) = P(e |di)P(di), we
finally obtain our result.

Exercise 10. P(e) + P(d) = P(e ∨ d) + P(ed).

Proof. The outcome e∨d is logically equivalent to ed∨ e¬d∨d¬e. The three
disjuncts are mutually exclusive, so

P(e ∨ d) = P(ed) ∨ P(e¬d) ∨ P(d¬e).

Meanwhile, by exercise 4,

P(e) = P(ed) + P(e¬d) and P(d) = P(de) + P(d¬e).

Thus

P(e) + P(d) = P(ed) + P(e¬d) + P(de) + P(d¬e)

= P(ed) + P(e ∨ d).

as desired.

Exercise 11. If e and d are independent, then

P(e) + P(d) = P(e ∨ d) + P(e)P(d).

Proof. By exercise 10 and the definition of independence.

Exercise 12. If P(k) = 1, then P(d |ek) = P(d |e).

Proof. First note that by exercise 8, P(ek) = P(e) and P(dek) = P(de). Then

P(d |ek) =
P(dek)
P(ek)

=
P(de)
P(e)

= P(d |e)

as desired.
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Exercise 13. P(e |h) > P(e) just in case P(¬e |h) < P(¬e).

Proof. Assume that the probabilities of h and e are neither zero nor one
(if not, the theorem is trivially true). Then P(e |h) > P(e) just in case
P(he) > P(h)P(e) (in words, h and e are positively correlated). For the same
reason, P(¬e |h) < P(¬e) just in case P(h¬e) < P(h)P(¬e). We will show
that P(he) > P(h)P(e) just in case P(h¬e) < P(h)P(¬e). Observe that

P(he) + P(h¬e) = P(h) (by exercise 4), and

P(h)P(e) + P(h)P(¬e) = P(h)
(
P(e) + P(¬e)

)
= P(h) (by exercise 1)

Thus

P(he) + P(h¬e) = P(h)P(e) + P(h)P(¬e)

If the first term on the left hand side of the equals sign is greater than the first
term on the right hand side, it follows that the second term on the left hand
side must be less than the second term on the right hand side, as desired.
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Glossary

Bayes' Rule When evidence e (and nothing else) is observed, change your
old subjective probability C(h) for a hypothesis h to a new probability C+(h)
equal to C(h |e). Bayes’ rule tells you how your subjective probability distri-
butions at two different times ought to be related; by contrast, Bayes’ the-
orem tells you about the relationship between different elements of your
subjective probability distribution at a single time. See sections 4.1 and 5.1.

Bayes' Theorem C(h |e) = C(e |h)C(h)
/

C(e). Bayes’ theorem tells you
about the relationship between different elements of your subjective prob-
ability distribution at a single time; by contrast, Bayes’ rule tells you how
your subjective probability distributions at two different times ought to be
related. See sections 3.2 and 5.1.

Bayesian Multiplier When a piece of evidence comes in, the old probabil-
ity for each hypothesis is multiplied by the Bayesian multiplier to determine
the new posterior probability. The Bayesian multiplier is the likelihood di-
vided by the probability of the evidence, or C(e |h)

/
C(e). When the likeli-

hood is set using pcp, it is equal to Ph(e)
/

C(e). See section 5.1.

Empirical Equivalence From a Bayesian perspective, two theories are em-
pirically equivalent if they assign the same physical probabilities to any piece
of evidence, or better, if conjoined with the same auxiliary hypotheses, they
assign the same physical probabilities to any piece of evidence.

Inadmissible Evidence Evidence is inadmissible if it invalidates the appli-
cation of the probability coordination principle. If you possess evidence that
is inadmissible relative to e and h, then, you may not, on the basis of pcp,
set the subjective likelihood C(e |h) equal to the physical likelihood Ph(e).
For example, if e is the proposition that a tossed coin lands heads, then in-

143



formation about initial conditions that allows you to deduce the probability
for heads is inadmissible: you should set your subjective probability for e to
one, not to the physical probability for e of one half. See tech box 5.5.

Likelihood The likelihood of some hypothesis on the evidence is the prob-
ability of the evidence given the hypothesis. (Note that although it is normal
to talk of the likelihood of the hypothesis, a likelihood is in fact the proba-
bility of the evidence, not the hypothesis.) A subjective likelihood is a subjec-
tive conditional probability: the subjective likelihood of h on e is C(e |h). A
physical likelihood (some writers might say objective likelihood) is the physi-
cal probability ascribed to the evidence by the hypothesis Ph(e), if any. See
section 5.2.

Likelihood Lover's Principle The principle, entailed by bct, that the de-
gree to which a piece of evidence confirms a hypothesis increases with the
physical likelihood of the hypothesis on the evidence (or the degree to which
the evidence disconfirms the hypothesis increases as the physical likelihood
decreases). The principle asssumes that subjective likelihoods are set equal
to physical likelihoods, thus that there is no inadmissible evidence. See sec-
tion 6.2.

Model The conjunction of a hypothesis and one or more auxiliary hy-
potheses. Of interest when the hypothesis alone does not assign a physical
probability to the evidence, but the hypothesis plus auxiliaries does.

Prior Probability Either (a) the probability that you assign to a hypothesis
before any evidence at all comes in, or (b) the probability you assign to a
hypothesis right before some particular, salient piece of evidence comes in.
See tech box 5.6.
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Probability Coordination Principle The principle that enjoins you to set
your subjective likelihoods equal to the corresponding physical likelihoods,
that is, to set your subjective probability for e conditional on a hypothesis h,
equal to the physical probability that h assigns to e (if any). Example: you
should assign your subjective probability that a coin lands heads, conditional
on the hypothesis that the physical probability of heads is one half, to one
half. The principle does not apply if you have inadmissible evidence. See
section 5.2.
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To-morrow the rediscovery of romantic love,
The photographing of ravens . . .

W. H. Auden, Spain (April 1937)
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