
���������
	�����
������

SMP scaling considered harmful
Revision 1.4

Larr y McVoy

BitMover, Inc.
San Francisco, Califor nia

415-821-5758
lm@bitmover.com

ABSTRACT

We put for th the controversial idea that scaling can be a harmful thing to
a general purpose OS if carried to far. The level of har m is directly proportional
to the amount of scaling and is worse than linear in the number of processors.
We claim that converting a uniprocessor OS to a 4 way SMP OS introduces
only a small amount of damage, but converting the 4 way SMP OS to a 32 way
SMP OS does a much larger amount of damage. We call this phenomenon
the ‘‘locking cliff.’ ’

The point of this paper is not to say that scaling is a bad idea. Running
on large machines is a requirement for many users, which means it is not an
option to say that we’ll just give up on anything past 4 processors. The real
points of the paper are to (a) remind people that scaling comes with a cost,
and (b) to set the stage for a follow on paper which describes techniques which
can be used to get to larger numbers of processors.

1. Outline

• What is scaling?

• Scaling is good, right?

• How is it accomplished?

• Run queues: an example

• The locking cliff

• Costs

• Benefit

• Cost / benefit comparison

• What should we do?

2. What is scaling?

When we want to achieve higher perfor-
mance than is possible from a single CPU,
we add more CPUs. In order to use them
for anything but user level problems, we
need to modify the OS to be multi threaded,
that is, allow multiple CPUs in the OS at the
same, possibly looking at and/or modifying
the same data. These modifications allow

© 1999 BitMover, Inc. Version 1.4 printed on 22 July 1999 1

SMP scaling considered harmful

all CPUs to wor k in parallel, even when the
work is all in the ker nel. For I/O bound wor k
loads, multi threading is a critical perfor-
mance feature.

2.1. Scaling definition

There are many definitions of scaling, here
is the one we are using. Assume N CPUs
in a balanced system (balanced means
there is a reasonable balance between I/O
and CPU, for example, a 128 CPU system
with one I/O slot is extremely unbalanced).
Plug in an even mix of disk and networ king
I/O devices. Run wor kloads through the
system (web benchmarks are a good
choice, they do both networ k and disk I/O).
As long as there are CPU cycles and bus
bandwidth available, the system has not
reach the scaling limit until all the I/O
devices are saturated. In other words, the
I/O devices should be the bottleneck, not
the CPU devices.

3. Scaling is good, right?

Ever yone likes the idea of their system
being faster than any other. This has been
tr ue of everything from horse drawn char iots
to race cars, and computer systems are no
different.

The wor ld tends to accept without
question that scaling is a good thing. After
all, faster is better, right? Maybe not. The
media and marketing folks certainly use
scaling as a marketing tool. Consider the
recent Mindcraft NT vs. Linux benchmarks.1

Leaving aside whether the benchmarks
measured anything useful or not, the more
interesting point is that for the load gener-
ated, instead of using a single 4 way SMP

1 http://www.mindcraft.com/whitepa-
pers/nts4rhlinux.html

machine, 4 uniprocessor machines with a
DNS round robin (or better) load balancing
scheme would have solved the same prob-
lem with higher perfor mance, and would
require no change to the OS to achieve the
increased perfor mance.

The point is not to say that high perfor-
mance is a bad goal, it isn’t. The point is to
question whether SMP scaling is the only
and/or best way to reach that goal. This
paper will attempt to show that SMP scaling
is not healthy after a ver y small number of
CPUs (around 4), and that there are other
ways to achieve high perfor mance.

4. How is scaling accomplished?

The basic problem in making an MP system
scale is that the OS itself must scale. That
means that multiple CPUs will want to be in
the OS at the same time, possibly access-
ing and/or modifying the same data struc-
tures. Scaling is the process of allowing this
to happen without allowing more than one
CPU to modify data at the same. There is a
great deal of literature on this, both at the
hardware level and the software level.
Readers interested in this area might want
to read about the var ious hardware consis-
tency models, they for m a good basis for
understanding the issues. Hennessy and
Patterson’s Computer Architecture book is a
good starting point.

One may think that the multiple CPU
problem is new, but it is not. Even on a
uniprocessor, the OS must protect itself
from itself. Multiple threads of control can
be in the OS at the same due what is known
as bottom half/top half concurrency. Device
interr upts can cause the OS to execute OS
code while there is already a process in the
OS processing a system call.

© 1999 BitMover, Inc. Version 1.4 printed on 22 July 1999 2

SMP scaling considered harmful

4.1. Threading the kernel

The process of scaling the operating system
is deceptively simple in concept. Star t out
with one lock around the whole operating
system, figure out why it is a contested lock,
split it into two locks, each of which protects
different sections, and repeat until the sys-
tem scales.

The goal is to end up with a system
which never collides on a lock. It is OK to
get there right after some other CPU has
released lock, the cost of taking that lock is
on the order of a microsecond (a few cache
misses at most). It is not so good to have to
wait for a lock; that means that the process
wanting the lock has to be put to sleep and
woken up later when the lock becomes
available. That can take 1000 times longer
than just getting a lock. It is so expensive,
in fact, that many systems use spin locks,
where they just repeatedly try for the lock
until they get it (smarter systems only spin a
fe w times and then give up; tuning the num-
ber of times is hard).

4.2. Run queues: an e xample

Consider the problem of scheduling multiple
processes on multiple CPUs. The simple
implementation, which wor ks well for some
work loads, is to have a queue of waiting
processes. When a CPU becomes avail-
able, the next process is removed from the
queue, context switched onto that CPU, and
allowed to run. Since all CPUs will be modi-
fying the run queue, the queue is protected
by a lock.

This simplistic implementation actually
works reasonably well for certain types of
jobs. The perfect sort of job for this imple-
mentation would be one which is CPU
bound and runs for exactly one time slice
and then exits. Jobs which are I/O bound

do not fare well because they tend to run for
shor t per iods to schedule the I/O and then
go to sleep waiting for it to finish. Their ratio
of run time to reschedule time is poor, which
increases the contention for the run queue
lock. Longer running jobs don’t fair so well
for a different reason, known as the cache
affinity problem. A global run queue does
not take into consideration the ‘‘cache foot-
pr int’’ which a process builds during its
timeslice. If a process is switched from one
CPU to another CPU, the cache footpr int
must be rebuilt in the new CPU’s cache. A
global run queue can do a pretty good job of
making the system caches appear to be
1/Nth of their actual size, where N is the
number of CPUs. Not good.

To solve the scaling problems in the
run queue, most designers will create one
run queue per CPU. The scheduler will try
hard to put a process on a particular run
queue and never move the process
between processors. The design leads to
better scaling through less lock contention.
The same design goals which eliminate lock
contention also result in the processes mov-
ing around less; this yields more benefits in
the for m of cache affinity.

In a well-implemented MP scheduler,
the simple run queue abstraction is main-
tained, but there are N instances of it, trying
hard not to talk to each other. The goal is to
successfully partition the CPUs from one
another so that there is a minimal amount of
lock contention. The CPUs still have to talk
to each other when moving processes from
one CPU’s queue to another (to load bal-
ance), but the goal is to avoid that for two
reasons: the cross CPU lock traffic and the
loss of the cache footpr int that occurs when
a process is moved.

© 1999 BitMover, Inc. Version 1.4 printed on 22 July 1999 3

SMP scaling considered harmful

5. The loc king c liff

The locking cliff is the point at which it
becomes easier for a programmer to just
add another lock rather than determine if
there already is a lock cover ing the data
str ucture in question.

To understand the locking cliff, we
need to look at the different kinds of locking
models, the level of difficulty of each model
from the programmer’s point of view, and
then consider the typical actions of a rea-
sonable programmer wor king in each
model.

5.1. Loc king models

There are a number of different locking
models. Even uniprocessor machines have
locking issues.2 The following sections con-
tain a brief review of the most common lock-
ing/threading models.

5.1.1. Single loc k

One way to get asymmetric multi process-
ing, which is better than nothing, is to put
one big lock around the whole ker nel.
Ever yone takes this lock, whether entering
from the top or the bottom. Most uniproces-
sor operating systems try out this model
when they are trying to run on MP hard-
ware. This model results in ver y little or no
scaling of the operating system on MP hard-
ware. User processes, such as compute
bound jobs, can scale quite well so long as
they stay out of the ker nel.

2 Uniprocessor operating systems use
disabling interrupts as their locking model.

5.1.2. Coarse grained loc ks

In order to get concurrency in the operating
system, the operating system must allow
more than one process (or interrupt) to
execute in the operating system at the same
time. To do this, we divide the OS into sec-
tions and give each section a lock. For a
small number of processors, we only need a
small number of locks, each covering a fair ly
large region of the OS.

This model of coarse grained locking
will provide good scaling on small numbers
of processors, but poor scaling on large
numbers of processors.

5.1.3. Fine grained loc ks

As the number of processors increases, the
number of locks must also increase if we
wish to scale up the OS. The limit, as the
number of processors goes to infinity, is
probably about one lock per cache line. In
other words, a lot of locks. Solar is, around
the 2.1 release, had over 3000 statically
allocated locks, with many more allocated
dynamically with data structures (i.e., open
a file, get another lock, create a socket, get
another lock or three).

Fine grained locking can result in near
perfect scaling, although it is not without
some cost. All those locks add instructions
and data. The larger machines benefit from
this but the smaller machines pay a price.

5.2. Loc king requirements f or pr ogram-
mers

Each of the locking models require the pro-
grammer to understand the model and obey
the model’s constraints. The following sec-
tions briefly describe what the programmer
has to understand and do in order to wor k

© 1999 BitMover, Inc. Version 1.4 printed on 22 July 1999 4

SMP scaling considered harmful

within each model.

5.2.1. Single loc k

The single lock is an easy model for the pro-
grammer to understand because there is
exactly one lock. If you want to be in the
kernel, you have to wait until no one else is
there. The only thing a programmer needs
to do is to remember to take this lock if
enter ing the ker nel. Since adding entry
points to the ker nel is a rare event, this
model is almost free from the programmer’s
point of view.

5.2.2. Coarse grained loc king

Programmers find this model somewhat dif-
ficult, but doable after a short ramp up
per iod. The classes of locks are small and
cover broad areas of the ker nel; adding a
lock to the ker nel is a rare event, so the task
of the programmer is typically limited to
making sure that there is a lock somewhere
which is covering the data at hand. So long
as the number of locks (or lock classes such
as a file lock, or socket lock) is small, the
time it takes to find the right lock is also
small.

The wor k that a programmer does in
this model is mostly ‘‘up front thinking.’’ In
other words, the programmer must under-
stand the dozen or so different lock classes
in the system and the parts of the system
covered by each. Locks are not added to
the system as a normal part of enhance-
ment or maintenance, locks are added only
when a new ‘‘object class,’ ’ such as a file or
a socket, is added to the system. Since
adding new classes is a rare event, adding
new locks is also a rare event. The pro-
grammer needs to learn which lock it is that
protects the area in which she is wor king,

and make sure that lock is taken.

This is essentially a slight refinement
of the single lock model. In a coarse
grained locking model, we have a single
lock per class or region in/of the ker nel.
New locking calls are added only when new
entr y points to that class/region are added.

5.2.3. Fine grained loc king

A fine grained system will have a large num-
ber of locks: Solaris and IRIX are good
examples of such systems. In these sys-
tems, locking can be (and frequently is) at
the individual data structure level, i.e., each
element of a list.

Programmers usually think that this is
going to be easy, only to find out it is quite
hard. The problem is that as the number of
locks goes up, the chances for deadlocking
also goes up (i.e., there is a chain of locks
to get to point A, then the code wants to go
to point B but one of the locks on the way to
point A is also on the way to point B, so the
process will hang forever waiting for a lock it
already has; this is actually not that hard to
work around, but the two process case of
this can be impossible to wor k around).

Working in such a system requires
substantially more knowledge and care on
the part of the programmer. The program-
mer has to avoid deadlocks - a non trivial
task since the number of locks can
approach 10,000. The programmer also
has to maintain scaling, i.e., adding an
impor tant code path that is only slightly
scalable is a no-no in a fine grained system.

5.3. Programmer loc king tendencies

The real question, with respect to locking, is
what do programmers tend to do in each of
the models? The answer to this question

© 1999 BitMover, Inc. Version 1.4 printed on 22 July 1999 5

SMP scaling considered harmful

will lead us to the so called locking cliff.
This section examines what an average pro-
grammer will do in most of locking models.

5.3.1. Single loc k

The natural tendency will to be to do no
locking, it’s been done already. As previ-
ously mentioned, all they need to do is to
make sure they don’t add an entry point
without taking the lock as par t of the entry
point.

5.3.2. Coarse grained loc king

The natural tendency will to be to do no
locking, it’s been done already. New locks
are added only for new objects.

5.3.3. Fine grained loc king

The programmer’s natural tendency in this
system will be to add a lock at every step. It
is far easier to add the lock and hope that it
doesn’t create a dead lock than to figure out
if a lock already exists and covers this data
str ucture at a higher level, which leads us
over the cliff.

6. The loc king c liff

The locking cliff is the point at which it
becomes easier to add another lock to the
system instead of determining which exist-
ing lock is already protecting the data struc-
tures in question. Once the cliff is reached,
average (and even above average) pro-
grammers will add locks every time any sor t
of data structure is added to the system.

Once this cliff is reached, the number of
locks in the ker nel will increase at a

dramatic rate, vir tually guaranteeing no
retur n from the cliff. In fact, we know of no
OS which has ever reached the cliff and
then moved back from the cliff.

Since locks are not free, an exponential
increase in the number locks will have a
noticeable affect on perfor mance and com-
plexity. It is this affect which is the basis for
the claim that SMP scaling can be consid-
ered harmful. The next section tries to
quantify that harm.

7. Cost vs. benefit of scaling

Since the benefits of scaling are widely
known, we only briefly touch on them here.
The costs of scaling are nowhere near as
widely known so they are discussed in more
detail.

7.1. Benefits

The benefit of scaling has always been
clear : larger problems can be solved more
quickly on one machine. The classes of
problems which require the OS to scale
include databases, web serving, software
development (make), and scientific comput-
ing - and this list is by no means complete.

In the competitive wor ld of computing, it is a
substantial marketing advantage to be able
to say that your OS scales on a 256 proces-
sor system and the competition’s does not.

7.2. Costs

7.2.1. Performance cost

It seems strange to say that there is a per-
formance cost associated with scaling up,
but there is. The scaling can (and does)

© 1999 BitMover, Inc. Version 1.4 printed on 22 July 1999 6

SMP scaling considered harmful

negatively impact the perfor mance of the
smaller machines. Consider a 2 processor
system.3 In order to scale up a 2 processor
system, only a few locks are needed to
achieve perfect scaling. The same OS
needs dramatically more locks to scale to
256 processors. Since those locks are
unnecessar y for the smaller machines, the
smaller machines are penalized for the ben-
efit of the larger machines. Given that one
and two processor machines make up over
99% of the market, the OS is penalizing the
common case for the benefit of the
extremely uncommon case.

The effects of scaling on smaller machines
are measurable, but it is not easy to quantify
these effects - in order to do that correctly,
we would need the same OS with and with-
out the locks necessary for scaling up to
many processors. The closest we have to
that is Linux running on MIPS or SPARC
hardware and being compared to IRIX or
Solar is on the same hardware. Micro
benchmar ks, such as lmbench, have shown
the commercial operating systems to be
substantially slower than Linux, but that is
only somewhat interesting - micro bench-
mar ks are not always the best measure of
application perfor mance. In one real test,
running the BitKeeper regression test4 one
of the above operating systems was shown
to be 5 times slower than Linux when run-
ning the same test.

7.2.2. Software cost

There is widespread agreement in the
industr y that multi threading an operating
system is a difficult task, and that it gets
more difficult as time goes on (and the

3 Or a uniprocessor system if the MP OS
is run on the uniprocessor.

4 http://www.bitkeeper.com - the test is a
large shell script which creates, modifies,
deletes many small files.

number of locks go up). Getting Solaris to
work reasonably well as a multi threaded
OS, for example, took about 6 years.

The locking related complexity leads to
longer development schedules. We can’t
quantify this - there is no data for the same
OS with and without locking. However, we
can look at how long it takes to fix the same
sor ts of problems in Linux vs. the commer-
cial operating systems. In both, trivial bugs
can be fixed quickly;5 complicated bugs,
however, tend to take substantially longer to
fix in the commercial operating systems.
This author, as a ker nel developer in both
Solar is and IRIX, can provide personal sup-
por t for the idea that locking adds complex-
ity and development time.

7.2.3. Hardware cost

One frequently overlooked area is the effect
of scaling on the hardware. Scaling is not
free - scaling requires more locks and those
locks generate coherency traffic through the
coherency fabr ic (which could be a snoopy
bus or something else, such as SGI’s direc-
tor y based NUMA design). When the lock-
ing traffic goes up, the user application has
to share the coherency fabr ic with the ker-
nel’s lock traffic, resulting in less useful wor k
done for the user.

A crucial point to realize is that most
of the lock traffic is unnecessary. Think
back to the run queue example: the goal
there was to partition the problem such that
there was never a lock which could not be
taken - in other words, the problem was split
up into N smaller problems with little or no
communication amongst the sub sections.
If the partitioning is perfect, then each sub
section has a CPU and that CPU’s locks are
only interesting to itself - no other CPU will

5 SGI is known for being able to go from
a bug report to patch in less than a day.

© 1999 BitMover, Inc. Version 1.4 printed on 22 July 1999 7

SMP scaling considered harmful

ev er attempt to take those locks. Unfor tu-
nately, the locks participate in the coherency
protocols whether the OS likes that or not -
there currently is no way to say ‘‘this mem-
or y is specific to this CPU only6’’

The point of this section is to make people
realize that the coherency traffic is required
but much of it is unnecessary due to parti-
tioning. The hardware people talk about
‘‘false sharing’’ to descr ibe a similar con-
cept, I suppose this could be called ‘‘false
coherency.’ ’

7.3. Cost / benefit comparison

The first thing to realize is that regardless of
the exact cost of scaling, it benefits a tiny
percentage of the total user base. If we
could say that scaling is 90% of the wor k
and that large scale MP hardware repre-
sents 1% of the user base, then that means
90% of the wor k is getting done for 1% of
the users of the operating system. That
might be acceptable if the wor k had no neg-
ative impact on the other 99% of the user
base. There is a measurable effect on the
rest of the users; the locks hurt perfor mance
as well as time to market (due to complexity
issues).

In an ideal wor ld, the amount of wor k done
would be proportional to the number of peo-
ple benefiting from that wor k.

6 But one hardware vendor has hinted
strongly that they are building hardware with
at least two lev els of coherency to solve this
problem.

8. What should we do?

We can’t abandon the big systems, they are
far too important, and those 1% customers
have a lot of money. It is not acceptable to
say ‘‘just stop doing any more threading
when you get to 4 processors.’ ’

Scaling via the conventional multi threaded
OS is not the only way to use big hardware.
Another way might be to scale the OS up to
a small number of processors, and then
cluster multiple copies of that OS on one
machine. The OS would have to be
extended to wor k well on a one machine
‘‘cluster.’ ’ The details of how to do that are
beyond the scope of this paper, but are
available as a clustering roadmap found in a
companion paper.

© 1999 BitMover, Inc. Version 1.4 printed on 22 July 1999 8

