
A Simultaneous Routing Tree Construction and
Fanout OptimizationAlgorithm*

Amir H. Salek, Jinan Lou, Massoud Pedram
Department of Electrical Engineering - Systems

University of Southern California

Los Angeles, CA 90089

{amir, jlou, massoud}@zugros. usc.edu

MSTMCT - This paper presents an optimal algorithm
for solving the problem of simultaneous fanout optimka-
tion and routing tree construction for an ordered set of
critical sinks. The algorithm, which is based on dynamic
programming, generates a rectilinear Steiner tree routing
solution containing appropriately shed and placed buff-
ers. The resulting solution, }vhich inherits the topology of
LT-Trees and the detailed structure of P-Trees, maxi-
mhes the signal required time at the driver of the given
set of sinks. Experimental results on benchmark circuits
demonstrate the effectiveness of this simultaneous
approach compared to the sequential methods.

1. ~TRODUCTION
The current deep-submicron @S~ process technologies
have increased the contribution of the interconnect delay to
the total path delay in digital circuits. At the same time, the
existing design flo!vs and tools have had limite~ and ody
marginal, success in incorporating interconnect planning and
optiation early in the design process. This situation has
forced IC designers to re-evaluate the existing computer-
aided design (CAD) methodologies and techniques.

To address the DSM design chaUenges, one can either
increase the Iookahead capabfity of high-level tools or
develop ne~v algorithms for solving larger portions of the
overall design problem simultaneously. This latter
unl~cation-bmed approach is, in our vie~v,more promising.
kdee~ the nature of IC design problems and the current
state of CAD solutions have reached a point \vhere it is both
necessary and possible to combine some steps of the
synthesis and physical design processes. The unification-
based algorib are capable of capturing existing
interactions among the ‘merged’ design steps and producing
higher-quality implementations by systematically searching
a much larger solution space (see [SLP9S] and ~SP97]).

The algorithm proposed in this paper integrates NO major
design steps: fanout optiation and routing tree
generation. Each of these WO optiation steps has been
very effective in reducing the circuit delay, in one case by
boosting the transmitted signals via insertion of stied buffers

*~s }vork)VOSfundedin part by SRC under contract no. 9S-DJ-606and by
a NSF PECASE a~vard(contract no. MIP-962S999).

Petis$ion to mke d~ti or hard copim of aUor part of this ~~,orkfor peraod or
&sroom use& &=ntti ~%tithoutfw prmidd that copies are not made or &@W
utti for profit or comrnerti adt,antage and that copi~ b- this notice nd the frd3
dtahon on &e fist pase. To copy othen>ti, to repubkh, to posi on sewers or to
red~tibute to kts, rqties pfior s@c peticsion arrd/or a fee. “
ICC~3, Sm lose, C& USA
@1%s Amf 1-5s113a$zg8/MI I.$5.m

and in the other case by generating suitable tie structures.
The goal of this \vork is to optimaUy integrate these hvo
steps and thereby provide a dorm fie~vork for
optiing the nets of a placed circuit to achieve faster
implementations.

The proposed dynamic programming based algorithm
generates and propagates a set of buffered routing tree
structures in the form of ~vo dimensional (required time
versus input load) solution curves. The resuking ~g
structure is guaranteed to Merit the topology of LT-Trees
[To90] and the detaded physical implementation of P-Trees
&CLH96]. This algorithm takes a given order for the sinks
and, starting from the higher indexed sinks, combines them
into groups \vhich are to be driven by buffers. For each
group, proper routing structures and buffer locations are
examined to generate a set of possible solutions for that
subset of ordered sinks. Ody the solutions \vhich are not
dominated by otier solutions are kept. These hvo steps are
repeated in a dynamic programming fashion until the \vhole
set of sinks are combined together. Expetiental results
reported in this paper demonstrate the effectiveness of this
method versus the conventional flo~vs that sequentially
perform routing tree generation and faout optiation.

The remainder of the paper is orgtied as foUo\vs. k
section 2, background and motivation are given. Section 3
inkoduces the proposed algorithm. h sections 4 and 5, our
experimental results and concluding remarks are presented.

2. BACKGROUND AND MOTWATION

2.1 Fanout Optimtiation
Fanout optiation, an operation perfomed in the logic
domain, addresses the problem of distributing a signal to a
set of sinks \vith kno~vn loads and required times so as to
matie the required time at the signal driver. hterconuect
delay is not incorporated in this operation because the
locations of the buffers are not kno~vn at this stage. The
general fanout optiation problem is N-hard [To90],
ho~veverits restriction to some special famities of topologies
is kn~~vnto have polynomial complexi~.

Among the many existing \vorks on fanout optiation
proble~ \ve are interested in the algorithm proposed by
[To90]. That \vork introduces a specird class of tree
topologies, caUed LT-Trees, for \vhich the fanout problem is
solved tith polynomial complexity. The LT-Tree of ~e-I
(in this paper referred to as LT-Tree) is a tree that permits at
most one internal node among the immediate chikhen of
every internal node in the tree. Touati in [To90] proposed a
dyamic programming based algorithm for the fanout
optiation problem \vhere the buffer structure is restricted
to the LT-Tree topology and sinks \vith larger required times

625

are placed Mer horn the root of the tree. His algorithm
fist sorts the sinks in non-decreasing required time order
and then starting from the least critical SU it enumerates
all rightmost groupings of the sinks to be driven by a buffer.
Finally for each grouping, it enumerates au possible \vays of
adding either zero or one buffer to drive the rightmost
subset of the sinks. Touati gives sufficient conditions for his
LT-Tree construction algoriti LmE, to be optimal.

An internalnode

n•/~\a
Fig. 1: A simple LT-Tree

Lemma 1: LTTREE \vorks optimally \vith respect to the
signal required time at the root (driver) if all the sinks have
equal load capacitances and are sorted in non-decreasing
required times [To90].

Lemma 2: LmE has O(n~) polynomial complexity
~vheren is the number of sti nodes [To90].

2.2 Routing Tree Generation
Performance-driven interconnect design, an operation
performed in the physical domati addresses the problem of
connecting a source driver to a set of sinks ~vith knolvn
loads, required times and positions so as to maximize the
required time at the driver. The inherent complexity of this
problem has forced researchers to either solve it
heuristically or to impose constraints on the smcture of the
resulting interconnect. For an overvie}v of the existing
performance-driven interconnect design techmque,
interested readers are referred to [C=96].

Lillis et al. in [LCLH96] proposed the Permutation-
Constrained Routing Tree or P-Tree structure as a solution
to the above mentioned problem. Their approach consists of
hvo major phases: Finding a proper ordering for the sinks,
and then generating the routing structure based on the
calculated ordering. The second phase of the algoriti
called PTREE throughout this paper, is employed in the
present paper. Given an ordering of the sink nodes, PTREE
finds the optimal embedding of the net into the Hanan grid
(the set of points formed by the intersection of hotiontal
and vertical lines through the terminals of a net ~a66]) by a
dynamic prograrmning approach. h PTREE, the
(intermediate) routing solutions are stored in the form of
NVOdimensional, non-dominated solution curves of total
area versus required time for every Hanan point.

The \vorst case complefi~ of PTREE is rather hig& O(n~,
ho~vever,the runtime for practical purposes remains \vithin
an acceptable range [LCLH96]. Ftiermoret by applying
some techniques such as controlling the mwum number
of Hanan points, the complefi~ of PTREE is considerably
reduced ~vithoutlosing much in terms of the quality.

Lemma 3: For a given order on the sinks and \vith the
restriction that the Steiner points lie on the Hanan Grid,
PTREE computes the set of all rectilinear Steiner trees \vith
non-dominated required time and total capacitance
~CLH96].

Lemma 4: K the individual capacitive values are polynomi-
ally bounded integers or can be mapped to such \vith suffi-

cient precision, PTREE has
complexity \vhere n is tie
[GJ79][LCLH96].

[
1

O(n~ pseudo-polynomial
number of sink nodes

$

Note: Later in section 4, it \vould be helpfil to kno~vthat
O(n~ portion of 0(n5) complexity of PTREE is due to the
etistance of n2Hanan points.

~ 1
1.)

o ~ ~ =-0
Fig. 2: An output o; P-Tree;or “dcba” order

2.3 Other Works
Okamoto and Cong in [OC96a] proposed a combination of
A-Tree routing generation [CLZ93] and van Ginneken’s
buffer insertion [Gi90] as a solution to the problem of
buffered Steiner tree construction. They later extended their
\vork in [OC96b] to include \vire stiing as \veU. Their
algorithm takes the placement information of the source and
the sinks in addition to the signal required arrival times and
then heuristically generates a buffered routing s~cture
such that it maties the required time at the source of the
net. This technique consists of WO phases: bottom up tree
construction \vith non-inferior solution computation and top
do~vn buffer insertion. The non-tienor solution \vhich
gives the mafium required time at the root is chose% and
then it is traced back through the computations pefiormed
during the f~st phase that led to this solution. During the
backtrace, the buffer positions are determined.

During the bottom up phase, the subtrees are combined
using a \veighted addition fiction ~vith a user specified
parameter to heuristica~y decide \vhich hvo subtrees are to
be merged. Although this method employs the A-Tree
construction algori~ it cannot guarantee that the restiting
structie remains an A-Tree. Furthermore, the fanout
optiation algorithm \vhich is based on critical sink
isolation is ad-hoc. The overaU algorithm has no guarantee
of optimality. h contrast our proposed method produces a
buffered rectiltiear Steiner tree \vhich is optimal subject to
the given order of the sinks, the topology of LT-Trees and
the detailed structure of P-Trees.

3. THE F~OUT fiGONT~
FA~O~, simultaneous @out and &ing tree
optimization algorithm, is a dynamic pro-g based
algoriti which cons~cts a buffered routing structure for a
given ne~ based on the available placemen; loading, and
timing information. The goal is to m-e the required
time at the driver of the net.

3.1 Problem Formulation
A given net N=(s,S), detehes the set of sink nodes,
s={s,,s~, . . .,sn), ~vhichare to be driven by the driver of the
ne~ called s. h addition to the input net, the fo~o~ving
information is required and used by F~O~

I. Position of the source s=(#,s~), \vhere ~ and SYare the
hotiontal and vertical coordinates ofs.

U. hput data for each sink node si=(s~,s&s/,s~) for I<i*,
\vhere s: and s? are the hotiontal and vertical

626

coortiates, s~ is the capacitive loa~ ands; is the signal
required time at node Sfi

~. A tibrary, L=@, , b,., ..., bm), containing m buffers
\vith dfierent strengths.

~. A hear ordefig of the sinks.

3.2 T\vo Dimensional Solution Curves
Although the objective is to fmd an implementation \vith the
maximum required time at s, during every step of
FANROUT, load versus required time curves are generated
and the solutions are compared and evaluated \vith respect
to these bvo parameters. Comparison of WO sub-solutiom
based on ordy the required time is an invafid comparison
and may result in dropping the optimal solution. This is due
to the fact that the loading imposed by a sub-solution on the
next level of the LT-Tree may cause a large increase in the
overa~ delay such that the difference behveen the required
times is more than that \vhich \vas compensated for.
Therefore, both the required time and the input load are
needed to evaluate the effect of a sub-solution on the overall
structure.

Definition 1: Suppose o, and Cz are hvo buffered routing
structures for a source and a set of sinks. Czis called inferior
to c,, ifload(oJSload(~J and reqfime(~~&eqEme(oJ.

3.3 Detailed Approach
FANROUT incorporates LT-Tree and P-Tree construction
techniques into a tiled frame~vork such that the resulting
routing structure is both an LT-Tree, in terms of the overafl
topology, and a P-Tree, in terms of the detiiled physical
s~cture. FANROUT requires an ordering of the sinks and
guarantees the optirnality of the solution \vith respect to this
ordering ody.

k line 1 of Fig. 3, FANROUT loads the subject ne~ N,
~vhich includes a driver, s, and n sinks ordered in some
fashion (e.g. based on their placement locations, required
times, or a combination thereo~. h he 2, it loads the
library of the buffers, L, consisting of m buffers \vith
different design parameters, including driving strength,
in~ic delay, and input load. k line 3, HG@) is loaded
~vith maximum n2 Hanan nodes \vhich are formed by the
intersection of hotiontal and vertical lines through the
terminals of net M,see Fig. 5.

At every step, z is the index sho~ving that the n-z+l
rightmost sinks (in the ordered list of sinks) are being
combined into a group driven by a buffer; see Fig. 4. The
LT-Tree topology a~o~vs the use of an akeady processed
sub-group of last n-h+l sinks tvhere h is a number bebveen
z and n. ~s guarantees that in the fial solution, each
buffer drives direcdy at most one other buffer.

For every Hanan nodes and every index z, r(z,v) is a hvo-
dirnensional solution curve including all the non-tierior
buffered routing structures each connecting sinks SZthrough
Sn}vithits root located on v.

k line 4, these solution curves are initialized to the set of all
non-inferior buffered paths connecting v to s.. The code in
lines 5 through 16 is for calculating all the buffered routing
structures for r(z,v) using the solutions available in r(h,v)
as described next. Corresponding to group h, therk exist rt2
r’s each for a Hanan node. k be 7, all tie H~~ nodes are

enumerated by a variable, v and in he 8, all the solutions in
r(h, v) are retrieved one by one by a variable, y. SO,y is a
routing structure comecting Sk through Sn \vith its root
driven by a buffer located at v. h he 9, PTREE is called on
the set of sti nodes (i.e. s= through SA-,)to be combined
\vith y ; see Fig. 5. Note that for PTREE, y acts me a sti
node \vith its corresponding required time and load (\vhere
the load is equal to the input capacitance of the buffer

algorithm FANROW {
l.-

2.
3.
4.

5.
6.
7.
s.
9.
10.

read N = (s, S) ~vheres ISme source and
S=(S1, S2,..., Sn} is an ordered list of sink;

read L= {bl ,bz,... , bin), the library of buffers;
set HG(N) = all the Hanan @.dpoints of N;
for~ch v E HG(N) set r(n, v) = {me set of all

non-inferiorpaths horn v to sn};
forz=nto]{

forh=zton
for~ch v e HG(N)

foreach y ~r(h, V) {

set D = P~E(HG~, {~ s=, Sh-l},~);
forwch A ED {

11. set u = Hanan node correspondingto A;
12. foreach S EA
13. for~ch b c L {
14. drive S by b and calculate the required

time, z at the input of b;
15. set G = (<inputLoad@), r>, S, b);
16. add G to r(z, U);

}
}

}
17. foreach v e HG(N) prune r(z , V);

1
1S. ~nd (<l,r>, S, b) er(l, v) \vhich results in the largest required

time at the input of the driver, call it batSolufion;
19. retrieve fanroutTree by follo~vingthe pointers starting

from the besfSolution;
20. return fanroutTr~;

}

Fig. 3: Pseudo code of F-OUT

PTREE returns a co~ection of solution curves each
corresponding to a distinct Hanan node. The collection of
curves is stored in D by PTREE. Then in tie 10, these
solution curves are selected one by one using a variable, A.
Recall that each A corresponds uniquely to a Hanan node
\vhich is referred to as u in line 11. Once a A is in hand, its
encapsulated routing structures are retrieved one by one by
a variable, 6. For all these routing structures, afl possible
buffers are tried in lines 13 through 16, and for each choice
the required time at the input of the buffer is calctiated
using the specified delay model. k he 15, for every match
a solutio~ u, is generated (\vhile saving pointers to its sub-
solutions, for later use in the top-do~vn haceback phase)
\vhich corresponds to a routing structure (i.e., S) and a
buffer (i.e., b). This solution is added to r(z, u) because the
root of c is located at u . The solution curves r(z, v) are
calculated in this ~va~ ho~vever, these curves may contain
inferior solutions \vhich are pruned,in tie 16.

FinaUy, FANROUT buflds the r(l, v) solution curves (for
every v) }vhich contain buffered routing s~ctures
connected to au the sink nodes. The~ for every v and for
every solution of r(l, v), the root of the buffered routing
structure is connected to the driver and the required time at
the input of the driver is calculated in line 1S. The structure
\vhich results in the largest required time is chosen and is

627

traced do}vn through the stored pointers. The buffered
routing structure is retrieved and returned in lines 19 and 20.

r(F2, v)

o1,L.0r
Fig. 4: Processing the nodes

Note that the operations performed in lines 10 through 16,
in fact can be performed internally by a modfled P~E
~vithno increase in the \vorst case complexity of PTREE.
Therefore, in the follo~tig complexity analysis !ve do not
tie into account tie complexity of that part of the pseudo-
code.

~$.+~

\
v Y Y Q

Fig. 5: Call PTME on the current sink nodes

4. DISCUSSION

4.1 Quali@ and Complexi@ of F~OUT
The proposed algorithm is an optimal polynomial algorithm
based on a set of assumptions. The follo~vingset of lemmas
and theorems forma~y prove these claims.

Theorem 1: The solution space of FANROUT is the
product of those of PTREE and LmE.

Proofi Any P-Tree structure \vith inserted buffers such that
no buffer immediately drives more than one other buffer can
be visited by F~OUT. Also, any LT-Tree such that the
output nets of its buffers are implemented using PTREE can
be visited by FA~OUT.

Lemma 5: For any arbitrary routing \vith no buffer, W,
\vhich connects the source to the sinks, ~vehave:
I. By decreasing the load of any SW the capacitance

observed at the root of R does not increase.
~. By increasing the required time of any sink, the required

time at the root of w does not decrease.
Proofi For case I, decreasing the load of a sink decreases
the amount of the charge needed to bring the voltage of x to
a certain level. For case H, if that particular sink is on the
critical path, the statement is trivially true. Othenvise, the
required time of the driver is determined by the required

time of the other sinks and remains unchanged.

Lemma 6: PTREE is monotone with respect to the load and
the required time of the sinks.

Proofi Suppose n is a routing structure generated by
PTREE. Reducing the capacitance an~or increasing the
required time of a sink \vhile preserving x results in the
decrease of the capacitance and increase of the required
time at the root of m. Therefore, if PNE is run after
changing the load and the required time of the sinks in this
\vay, the resulting structure is non-inferior Ivith respect to R
and P-E \vould store it in the curve (cf. Lemma 1).

Lemma 7: The use of the pruning operation by FANROUT
does not result in the loss of any non-inferior solution.

Proofi Assume that Ozis inferior \v.r.t. o,. By induction, if
a2 is the \vhole net and its input is direcfly connected to the
net driver, then the required time does not decrease and the
load does not increase by replacing 02 tith al. If 02 is a
solution to a sub-proble~ its input is driven by another
internal node, call it g. Due to the monotone behavior of
PTREE (cf. Lemma 6), at g the required time and the input
load of the implementation including ~z is guaranteed to be
no better than those of the implementation containing cl. A
similar argument is then vafid for g and the rest of the
internal nodes do~vnto the leaf nodes.

Theorem 2: FANROUT is an optimal algontbm \v.r.t.
required time, subject to a set of constraints.

proofi h examination of the dynamic programming
structure of FANROUT sho~vs that if no pruning is
performed, all the possible solutions \vodd be considered.
Therefore, to prove the optimafity of the algorithm it is
enough to prove that for an optimal solution, replacing a
non-infefior solution \vith an inferior solution cannot
improve the \vhole implementation; This, ho~vever, \vas
proved in Lemma 7.

Lemma 8: The number of solutions in any solution curve is
bounded by the number of the buffers in the hbrary, IL1.

Proofi The load of any solution is equal to the input
capacitance of the driving buffer. Ho\vever, the number of
distinct input capacitances of the buffers is bounded by the
total number of the avaflable buffers in the library, IL1.For
each load value the solution \vith the maximum required
time is stored and the rest \vill be pruned out.

Theorem 3: FANROUT has O(n~ memory complexity.

Proofi There are nz Hanan points and for each of them n
solution curves are stored. Each solution curves stores no
more than IL I solutions. Therefore, the claim is proved.

Theorem 4: FANROUT has O(n~ runtime complexity.

Proofi PTREE has 0(n5) \vorst case runtime complexity
(cf. Lemma 4). Lines 5 and 6 of the pseudo-code, each
introduce O(n) complexity and he 7 introduces another
O(n~ complexity. Therefore the overa~ \vorst case
complexity is O(n~.

4.2 Reducing the Complexi~
Undoubtedly, the \vorst case complexity of FANROUT is

628

too high for use in many practical cases. Ho\vever, that
complexity can be considerably reduced by applying some
simple heuristics. h the follo~ving,a couple of heuristics are
introduced ~vhich are proved to be higMy effective \vith
little compromise in terms of the quality of the final results.

I. R@trict the number of Hanan pointi: h the exact version
of FA~OUT, there are n2 Hanan points }vhich is a major
source of excessive runtime. We may, ho~vever, not a~o~v
more than g Hanan points and change the complexity of line
7 to O(Q and the complexity of P~E to O(W? (cf. the
note given at the end of sub-section 2.2). Consequently, the
\vorst case complexity of F~OUT is changed to O(g’n~.

D. Bound the nl~ximum number of fanouts driven by a
bufer: We may impose a practical upper bound on the
number of fanouts that a buffer drives. Using that value, say
1,~vedo not allotv FMOUT to connect a buffer to more
than 1 fanouts. F-OUT can easily hande this case by
changing n in line 6 of the pseudo-code to z+l-I. b this case
the complexity introduced by hes 6 and 9 are changed to
O@)and 0(n213)(c.fl the note given at the end of sub-section
2.2), respectively. Consequently, the \vorst case complexity
of F~OUT is changed to 0~4n~.

~. Fast method: By applying both of the above technique
the complexity of F~OUT is changed to 0(~14n) }vhich
results in a hear worst-case complexity \vhen g and 1 are
assumed to be independent of n.

5. E~E~ENTAL ~SULTS
~ order to veri& the effectiveness of FA~OUT, a set of
experimental resdts are reported here. h the presented
conventional flo~vs @elo\v), \ve do not impose any
restrictions on the ordering for the sti. k other ~vords,
every fmout optiation and routing tree generation
methods are independently free to choose their o~vn
appropriate ordering for the S* (if any needed).

h Table 1, the results are presented for a set of nets tken
from a number of benchmarh \vhere the S* are placed
randody. For these examples, hvo conventional flo~vsare
compared against FA~OUT \vhere FA~OUT has been
used for hvo different orderings:

I. Ordering \vith respect to the sti required times, =Q.

H. Ordering generated by solving the travefing salesman
problem on the set of s~, TSR

The f~st conventional flo~v setup, conv-~ uses S1S
[SSLM92] for fanout optimization, follo~ved by using
P~E for routing tree generation. For each net different
fanout optiation methods available in S1S are used and
for each net ody the best result in terms of the required time
is reported. The second conventional flo~v setup, conv-11,
uses P~E for routing tree generation follo~vedby using
the buffer insertion method introduced in [Gi90]. Note that
b Table 1, “total-area”, “req-tirne” and “~v-leng~ s~d for
the sum of the area of buffers, the required time at the input
of the driver and the total \vire len~ respectively.

Our next set of experiments (cf. Table 2) compares the
performance of the conventional design flo~vs ~ainst our
proposed simultaneous algorithm on a number of
benchmark using a CASCADE standard cell fibrary (0.5u
HP CMOS process). Gate and \vire delays are calculated

using a 4-parameter delay equation
[LSP971) and the Ekore delav model

(sMar to that in ~
~14S], respectively. ~

Also, tie fast F~OUT (c.~ sub-section 4.2.) has been
run \vith TSP orderings f;r the experiments reported in
Table 2. These experiments sho~vedthat the runtime of the
fast F~OUT is in the order of fe~vminutes comparable
to the runtirnes of the conventional flo~vs.Note that the area
and delay reported in this table are total chip area and delay
afier detail routing.

These experiments \vere run in the S1S environment on an
Wtra-2 Sun Spare \vorbtation (sahand.usc.edu) ~vith
256MB memory.

6. CONCLUSIONS
This paper presents a novel algorithm, F~OUT, ~vhich
performs simultaneous routing and fanout optimization. It is
a dynamic-pro~m g based algorithm \vhich properly
uses LT-Tree and P-Tree construction algorithms in order to
generate buffer routing structures \vith ~ximurn signal
required time. It computes load versus required time
solution curves for every point on the Hanan grid and
propagates them Jvtie groupbg more sti according to the
given order. Merge and prune operations are defined on the
solution curves to propagate the solution curves through the
steps of the algoriti and drop the Io\v quality solutions to
maintain the polynomial complexity. FA~OUT is an
optimal algonti for matiing the required time
problem for a given order on the sm. It also inherits all the
restrictions that LT-Tree and P-Tree construction
algorithms have. F~OUT is a polynomial algorithm as
\vell. This ne~v tied design steps yields high quality
circuits in terms of post layout chip area and delay.

7. AC~O~EDGEWENTS
We \vould Ike to thd Dr. John Lillis of the University of
fllinois at Chicago for providing the implementation of the
P~E algoritbrn and for helpfil discussions about the
complexity of P~E.

8. ~FEWNCES
[CHKM96] J. Cong, L. He, C. Koh, and P. Madden, “Performanceoptirrd-

zation of VLSI interconnect layouL”In Integration, the WSZJournal
2Z, pp. 1-94, 1996.

[CLZ93]J: Cong, K. Leung, and D. Zhou, “Performance4rivcrr intercon-
nect design based on distributed RC delay model: In Proceedings of
the 30th D~i~ Automation Conference, pp. 606-611, 1993.

~14S] JV. C. Elmore, “The transient response of damped linear ne~vork
\vith paficular regard to \videband amplifiem: In Jouma/ of Applied
Physim 19,pp. 55-63. 194S.

[Gi90] L.P.P.P. ~~ Ginneken, “Buffer placement in distributed RC-tree
nehvorks for minimsl Elmore delay,” In Proce&ings ofZnternational
Symposium on Circuits and Systems, pp. S65-S6S, 1990.

[GJ79] [M. R Garey and D. S. Johnson, ~mpuiers and Zntracfability: A
Guide to the ~eory of NP-Completeness, lV. H. Freemm, San Fran-
cisco, 1979.

[Ha66] M. Hanan, “On Steiner’s problem \vith rectilinear distancefl SIAJf
Journal ofAppliedMathemati~, No. 14, pp. 255-265,1966.

[LCLH96]J. Lillis, C. K. Cheng, T. Y. Lin, and C. Ho, ‘Neiv performance
driven routing techniques tith explicit aretidelay tmdeoff and simul-
taneous tire sizing: In Proceedings of the 33rh Design Automation
Conference, DD. 3g~~O~. 1996.

[NP97] J. Lou, A~-H.Salek, and M. Pedram, “An exact solution to simrd-
taneous technology mapping and linear placement problem: In Pro
ceedings of Znlernationa[Conference on Computer-Aided Deign,
pages 671-675,1997.

[OC96a] T. Okamoto, and J. Cong, ‘Buffered Steiner tree construction
\vith \vire sizing for interconnect layout optimi~tion~ In Proceed-

629

,

,

1 Conventional I F~ROUT
conv-1 1 conv-11 REO 1 TSP I

I
__%

nets # ofsinh req-time area w-length req-time area w-length req-time aru w-length req-time ara w-length

35.23 219.12 83.07 21.52 149.93 63.15 21.83 165.66 63.41 17.0s 165.66 55.49

net2 10 33.50 329.12 135.15 29.74 297.66 118.64 2S.05 222.20 93.22 24.46 222.20 113.11

36.23 329.12 101.2s 25.12 297.66 S7.09 32.14 195.47 9s.44 29.46 195.47 96.57

net4 9 34.23 3S2.5S 116.94 30.33 26S.1S 116.5S 2S.7S 195.47 109.74 26.65 61.S2 110.31

C3540 netS 35 3s.70 457.49 119.17 3S.20 1147.30 152.62 32.16 270.3S 122.s2 32.01 270.3S 132.27

59.44 S36.99 535.5s 59.7s S36.99 549.36 54.75 649.ss 549.30 54.69 649.ss 5s3.05

C5315 net7 12 24.94 516.23 6S.22 12.21 26S.1S 42.89 21.S3 24S.93 71.40 17.23 24S.93 70.15

net8 21 33.10 542.96 195.17 35.59 533.50 254.74 32.61 409.31 206.01 25.32 409.31 200.46

C6288 net9 16 4s.33 516.23 144.30 43.75 415.5s 16S.95 40.3s 222.20 157.6S 2S.96 222.20 160.35

net10 62.49 436.04 146.61 95.96 23S.70 175.93 51.67 222.20 136.42 42.S6 222,20 145.90

C75S2 netll 16 4s.57 516.23 179.16 30.2S 504.02 211.3S 37.s3 222.20 1S2.51 21.9S 222.20 171.69

net12 41.6S 245.S5 1S5.45 54.ss 503.69 261.70 33.00 272.5S 157.30 31.62 272.5S 1S9.66

Average Ratios: conv-I 0.84 0.63 0.9s 0.71 0.61 0.98
I m ! I

I conv-11 I 1.00 0.70 0.94 033 I 0.66 I o.% I

Table 1: F~ROUT vs. conventional flo}vs for single nets

F~ROUT I RatiosConventional

conv-1 conv-11 TSP I FANROUT/conv-I [F~ROUT/conv-~

Circuit Area Delay Area Delay Ar= De

C17 400.50 0.s7 400.50 0.s7 416.50 0
m

C13SS 35539.54 10.39 35225.19 10.20 25215.25 7.49 0.71 0.72 0.72 0.73

rl qn~ 51936.70 16.34 4S694.77 1s.54

?Iay I Arm Delay I Area Delay

1.90I 1.041 1.03 I I.M I 1.03

----- r ----- 43705.90 I 11.03t 0.s4] 0.6S I 0.90 I 0.59m I m h
C432 I 21947.10 I 11.59 I 19179.60 I 13.54 I 22241.46 I 11.63 I 1.01 I 1.00 I 1.16 I 0.S6

C499 29203.65 I 9.27 I 2920s.99 I S.99 I 31201.45 \ 7~
CS31S

C880

I 19.31 I 127776.26 I

I 297S6.25 I 10.53

ahs2 I 30199.15

1.17 1.07 0.77 1.07 0.s0

10.ss 0.s4 0.56 0.ss 0.54

10.01 0.70 0.95 0.73 0.9s

10.53 0.7s 0.72 0.s4’ 0.61

alu4 509s5.15 21.60 46912.67 23.S9 51SC1.75 I 17.34 I 1.02 I 0.s0 I 1.10 I 0.73

ap&x6 44626.00 7.12 44514.75 6.67 39516.96 I 5.27 I

cmlSla 2042.32 2.ss 1753.01 3.21 1560.4:

0.s9 0.74 0.s9 0.79

5 1.s3 0.76 0.64 0.s9 0.57

dalu 95323.54 23.65 53424.14 26.47 SS595.S6 23.92 0.93 1.01 1.66 0.90

misexl 4015.55 4.25 3166.56 5.27 3097.44 2.S7 0.77 0.6S 0.9s 0.54

Ial 5S10.46 3.7s 5931.42 4.10 4942.99 2.s0 0.s5 0.74 0.s3 0.6S

frgl 6319.74 3.61 @25.50 3.54 5467.56 2.69 0.s7 0.75 0.s5 0.76

pcle 4775.31 3.51 4644.03 3.53 4161.S3 1.s9 0.s7 0.54 0.90 0.54

rd73 3519.67 3.62 3594.s7 3.50 3676.39 3.67 1.04 1.01 1.02 1.05

\’@ 5264.19 3.69 5334.03 3.62 50S6.35 2.52 0.97 0.6S 0.95 0.70

Average Ratios: 0%9 0.78 0.97 0.75

Table 2:

ings of International Conference on Computer-Aided Design, pp. 44- A. Sald~ha, H. Savoj, P. R Stephan, R K. B?yton, and A. Sangio-
49,1996. vanni-Vmcentelli, “S1S: A system for sequential circuit Synthesis

[OC96b] T. Obmoto, and J. Cong, “Interconnect layout optimi=tion by Memorandum No. UCB/ERL M92/41, Electronics Research hbora-
simultarreousSteiner tree construction and buffer insertion,” In Pro- tory, College of Engineering, Universi& of California, Berkeley, CA
cetiings of the 5 th AChflSIGDAphysical D~ign ~Vorbhop, pp. I-6, 94720, May 1992.
1996. ~090] H. Touati, “Performarrce@rientedtechnology mapping; Ph.D. the-

[SLP9S]A. H. Salek, J. Lou, and M. Pedram, “A DSM design flo~wPutting sis, Universi~ of Call~ornia, Berklq, Technical Report UCB[Eti

!loorplarming,technology-mapping,and gate-placementtogether: In M901109, November 1990.
Proce&ings of the 351h D~iSn Automation Conference, 199S.

[SSLh192]E. hi. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R Murgai,

630

I

