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Abstract 

Process technology advances tell us that the one-million gate 
Field-Programmable Gate Array (FFGA) will soon be here, 
and larger devices shortly after that. We feel that current 
architectures will not estend directly to this scale because: 
they do not handle routing delays effectively; they require 
cscessive compile/place/route times; and because they do not 
csploit new opportunities are presented by the increase in 
available transistors and wiring. In this paper we describe sev- 
cral challenges that will need to be solved for these large-scale 
FPGAs to realize their full potential. 

1. Introduction 

As 0.25pm CMOS processes arrive, we anticipate that FPGAs 
will have gate capacities in excess of 250K gates, ’ and once 
process feature sizes progress below the 0.13ltm mark (‘per- 
haps by the year 2001) the one-million gate FPGA will 
hecome a technical feasibility. Having the ability to make 
such a chip, however, is different from having the architec- 
tural and algorithmic knowledge to esploit this potential to its 
CUllCSL 

Although one-million gate Mask-Programmed Gate Arrays 
(LIPGAs) are available today, the physical design of these 
devices is difficult due to their sheer size and the fact that the 
delay of the routing is a much larger portion of the critical path 
delay than has been the case in the past. A one-million gate 
FPGA will have these problems and more, due to the pro- 
grammable nature of the interconnect. 

A\s the quantity of silicon available for FPGAs grows, it also 
makes sense to question if the devices should look the same or 
if some radical change in architecture is beneficial. 

In the following sections we outline challenges that we fore- 
XC in the creation of the architecture of a one-million gate 
FPGA, and in the placement and routing of these large 
dcviccs. We also suggest possible directions for architecture 
and challenges involved in those directions. 

I. Here we assume that one 4-input lookup table plus one D flip-flop are 

equivalent to 12 “gates.” 
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2. Core Routing Architectures for Speed and Density 

As process technologies advance, gate switching speeds 
improve because of short channel effects, but wiring delays 
due to the capacitance and resistance of routing wires tcnti to 
become proportionally greater. Even if the dcvicc sizes wcrc 
not shrinking, the huge increase in the number of gates per 
chip make the relative distances that a signal must travel much 
greater. This is true in mask programmed parts, and these fac- 
tors are often sited as part of the “deep sub micron” problem. 
It is equally true in FPGA’s. But in FPGA’s, the intrinsic 
delays of the metal routing wires are joined with the delays of 
the programming switches in programmable interconnect. 
The combined effect will cause routing delay to bccomc mom 
significant than it is today. 

The FPGA routing architecture is the manner in which mclal 
wires and programmable switches are placed to provide con- 
nectivity between the pins of the FPGA logic blocks. The 
routing architecture must be designed to provide paths with 
greatest possible speed without sacrificing too much arca. 
Three key architectural parameters that have strong effect on 
delay and density are buffering, segmcntalion distribution and 
segmentation population. We discuss each of thcsc in the next 
sections. 

2.1. Buffering 

One key issue in creating routing architectures for low ticlay 
is to prevent the occurrence of nets in which one driver must 
charge a large capacitance through a large resistance. This can 
easily occur in an FPGA when a single output buffer drives a 
load through many programmable switches and/or drives 
many loads. One way to reduce the delay of this network is to 
divide networks with large RC time constants into picccs and 
drive them separately with active buffers. 

There are two extremes that describe this spccuum of buffer 
usage. In one extreme every programmable switch could have 
a buffer in series with it (with perhaps a programmable direc- 
tion). This is the case in the Altera Flex SK and IOK 
architectures [3][4]. Although this prevents large RC con- 
stants from “building up” through multiple programmable 
switches, it makes every programmable switch pay the price 
of a relatively high constant delay. The altcmativc, in which 
some connections have no buffers, would make some short 
connections much faster. This could have a significant posi- 
tive effect on the critical path. 

The other extreme is to have no buff’crs at any programmahlc 
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switch. This is the case in the Xilinx 4000 architecture [5]. 
While local short connections will be faster than with the buff- 
crcd case, it is also easy to create large slow RC networks in 
the absence of buffers. It is clear that some mixture of the 
buffered and non-buffered switch is most appropriate. The 
more recent 4000EX architecture provides a set of buffers in 
the routing [6]. 

2.2. Segmentation Distribution 

A second technique to prevent buildup of large series resis- 
tance is to employ wires of differing lengths in what is known 
as a seglnenfed routing architecture[l] [2]. Figure 1 illustrates 
segments of three different lengths. The segmentation distri- 
bution, which is the number of tracks in a channel with 
segments of each length, is a key question that has been stud- 
icd to some degree [7][5][9][10]. If there are too many long 

segments, then the wire will be wasted when used for short 
connections. If there are insuflicient long segments then net- 
works will bc too slow with many series programmable 
switches. 

The determination of appropriate choices in thcsc urchilcclurc 
spaces are affected by the “goodness” mcasurcs of a rouling 
architecture: its delay, density, predictability, “cast” of rout- 
ing, power, and noise properties. Thcsc must typically hc 
measured by experimentation [l] or by fast back-of-the CIIVC- 

lope estimates. 

An associated issue in segmentation design occurs at the point 
that orthogonal channels intersect: should long segments con- 
ncct to other long segments, or other short segments or both? 

2.3. Internal Population of Segments 

We believe a key challenge for the one-million gale FPGA 
and beyond is to make the correct choices in this spitcc 01 
architectures. 

An important issue in segmentation design is whether or not 
there is access to the internal portion of the segment, referred 
to ;1s the internal population of a segment. Figure 2 illustrates 
the two extremes of internal population with two different 
segments of length 4. The top segment is fully internally pop- 
ulated - the segment can connect to both the logic block it 
passes by and the orthogonal channels.The bottom segment is 
completely un-populated, and so can only be connected to at 
its ends. 

In addition, these choices cannot be made in isolation from the 
placement routing algorithms that arc used to map circuits 
into the architecture. A routing architecture is only half the 
solution without a routing algorithm. Dots an itcrativc timing- 
driven maze router do an adequate job of both routing com- 
pletion and timing? Is there some mom clcvcr intcraclion 
between the routing architecture and algorithm that can pro- 
duce significantly faster and more dense FPGAs? 

The population of a segment is important with respect to both 
speed and density: the more programmable switches con- 
nccted to a wire, the greater the parasitic capacitance (and 
hence delay) they add to the wire. From a density perspective, 
more switches provide greater flexibility and perhaps fewer 
routing tracks will be needed overall. However, a completely 
populated long segment requires vastly more area than a un- 
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The largest FPGAs available today have 5000 LUT/flip-llop 
pairs, and the next generation will contain in cxccss of 12,000. 
The 1 million-gate FPGA will contain (by today’s gale counl- 
ing standards) approximately 83,000 LUT-flip-flop pairs, 
There is evidence to suggest that the complexity of most 
placement and routing algorithms is non-linear. Wilh thcsc 
large sized FPGAs, the placement and routing time could CM 
ily exceed 1 day, extrapolating from current tools;. 

m Programmable Switch (which may or may not be buffered) 

Figure 1 -Routing Segmentation 

populated one. As processes with more metal layers bccomc 
common, it will become more desirable to dc-populate scg- 

ments because the wires themselves will bc chcapcr. 

0 0 0 q 
m Series Programmable Switch 

l Parallel Programmable Switch 

Figure 2 - Internal Populafion of (I S~gmwl 

2.4. Putting These Together - The Challenge 

These three design spaces (buffering, scgmcntation distribu- 
tion and internal population) interact with each other in very 
complicated ways. For example, a buffer may be necdcd lo 
simply drive the capacitance of a long segment, dcpcnding on 
how long the segment is. It may also be unncccssary to USC a 
buffer because a long segment reduces scrics rcsistancc by 
removing series programmable switches. 

3. Compile Time 



Fast turnaround devices like FPGAs lose much of their value 
if users have to wait more than a day for the synthesis, place 
and route tools to finish one design. In fact, many customers 
would like to have ail that happen in the same time as it takes 
LO compile and link a typical C-language program. 

This issue can and should be dealt with both in the architec- 
ture and CAD tools. For the architecture, one question is how 
much silicon can we afford to give up to make the compile 
time quicker? It is clear that by adding more routing resources 
(typically the number of tracks per channel) the routing prob- 
lem becomes easier, and therefore quicker, because the place 
and route don’t have to fight so hard to achieve routability. 

On the CAD side, the challenge is to find placement and rout- 
ing algorithms that give up the least quality for the most gain 
in time. 

Only through synergy of the architecture, placement and rout- 
ing systems can significant gains in compile time be achieved. 
One approach to this type of synergy is discussed in the next 
section. 

4. Partitioned Architectures 

IL is extremely unlikely that the million gate FFGA’s will be 
structured as a flat, homogeneous sea of logic blocks and 
switch boses. Rather, they will almost certainly have large 
scale structure. This will add flexibility to their use, but chai- 
icnge to the architects and CAD developers. 

1.1. Higher-Functionality Blocks 

Based on industry experience with standard ASICs and 
embedded arrays, we believe that typical 1Mgate FPGA will 
almost certainly contain reconfigurableRAM blocks [4] [15]. 
The design and use of these will be a major challenge because 
of the performance/flexibility trade-offs involved. 

Going beyond RAM, as FPGAs are used for more computa- 
tion-oriented applications, such as digital signal processing 
and FPGA-based compute engines, it is tempting to suggest 
the use of adders, multipliers, dividers as the basic logic 
block. Are these practical? They give up generality/flexibility 
10 get more speed and density. Can synthesis be made to han- 
die them? We believe the challenge is to architect blocks like 
these so that they retain some flexibility, so that they can be 
used in the widest spectrum of applications possible. 

4.2. Partitioned FPGAs for Speeding up Compilation 

As mentioned above, many designers would like their FPGA 
compilations to be as fast as their C compilations. In order to 
make the software processing faster, FPGA compiling will 
probably have to look more like software compiling. For 
example, a large C program is usually organized as many 
smaller files, and it is generally only necessary to recompile 
only the files that have changed. A fast linking process 
stitches them all together. To carry this into FPGA’s, one 
approach would be to assume that the design is organized as a 
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set of HDL files, stitched together at ihe block level with a 
system level netlist. The content of individual HDL files may 
change frequently, but the overall system organizarion should 
be relatively stable. If the FPGA archhecturc can support this 
type of hierarchy efficiently, it will be casicr for dcsigncrs LO 
work incrementally. 

In ASICs, large chips are typically floorpianncd, where the 
floorplan matches the highest level netiist structure. One 
approach to a million gate FPGA would be to use a partitioned 
FPGA architecture to support the same methodology. The 
essence of a partitioned one million gate FPGA would be to 
break the surface of the die into about a dozen to two dozen 
large sections, each capable of supporting about 1OOK gaits. 
If there were fewer sections than this, the processing Qmc for 
each would be too high. If there were many more than this, 
they would be too small to take a significant block of logic. 
Each physical block would be matched to one or more logical 
blocks. Naturally, if the die is heterogeneous, there may bc 
some restrictions (e.g. RAM blocks from the logical hierarchy 
would have to map onto RAM blocks on the die). To simplify 
the compilation, it would be best not to force a high uliliza- 
tion: the use of an extra 50% to 100% of silicon over whai 
might otherwise be needed would greatly simplify processing 
time. 

Software linking is fast, in part, because Lhcrc is essentially 
infinite bandwidth among the program moduics. In order to 
makeFFGA compiling fast there would have to be many high 
speed connections among the sections of a 1Mgalc chip, per- 
haps on the order of 5K to 20K lines. Archilecting these will 
be a major effort: they could easily dominate the area and 
power of the die. Issues here include the number of “local” 
interblock wires (e.g. wires that connect only adjacent blocks, 
or blocks within a smaller part of the die), and the number of 
global interblock wires. This is essentially the same probicm 
discussed in Section 2, just viewed at a die ievcl instead of ai 
a CLB level. If this is done well, the user can ignore ihc inter- 
module connections problem. If done poorly or wi0loul suffi- 
cient bandwidth, partitioning will continue to bc the 
nightmare it is today. 

On such a partitioned chip the CAD sequence might bc: 

l Map logic blocks onto physical regions. Often scvcrai 
smaller blocks will go into one physical region. This pro- 
cess will probably be interactive. 

l If there is a large logical block that will not l’ii onto a sin- 
gle region, it must be partitioned. 

l Place the ceils within each region, and route each region. 
This process could be performed on multiple worksta- 
tions, as is done today with emulator machines. 

9 Route among regions using the cleverly dcsigncd global 
routing resources mentioned above. 

l If the designer changes a source file, then the CAD tool 



will have to re-synthesize it, place and m-route the 
regions affected. 

The synthesis process itself would be facilitated by keeping 
the technology rules simple, with few special cases. Mapping 
to LUTs, for example, is a relatively well understood problem. 
Mapping to complex micro-grained architectures, where the 
speed of each type of gate is a function of its detailed layout 
is more difficult. But as synthesis technology evolves, the 
dividing line shifts, and the problems that appear difficult 
today may prove less difficult tomorrow. 

Placement within a section would be facilitated by keeping 
the relationship between distance and speed easy to model (a 
quadratic relationship, for example). As discussed in Section 
2, this in itself may be a significant challenge. 

Routing within a section would be simplified by keeping the 
system regular, supporting bus routing by enabling parallel 
signals to turn comers and retain their parallel organization 
(as was done in ORCA [14]) and in general, as discussed in 
Section 3, providing more than sufficient routing resources. 

5. Re-Configuration Time 

A convincing case can be made for using an FPGA pro- 
grammed in several different ways for during one 
computation. A key bottleneck for making that a practical 
reality for one-million gate FPGAs is to make the configura- 
tion time fast enough. As the number of gates increases, the 
number of programming bits will increase quickly, potentially 
increasing the configuration time. Effective partial reconfigu- 
ration strategies, and/or methods of increasing the 
configuration speed are needed. 

6. Yield Enhancement Through Redundancy 

To make very large FPGAs, it seems clear that enhancing sil- 
icon yield through redundancy should provide significant cost 
savings. Altera has demonstrated a workable method with 
their long segment architectures based on column redundancy 
[ 111. An open challenge for island-style architectures[l][5], 
with short-length segments is to determine if there is a practi- 
cal way to do a similar kind of redundancy. Although there 
has been some work on this subject [12][13], none of has yet 
to be proven practical because of routing issues. Specifically, 
short routing segments required significant overhead in area 
to be made redundant. 

7. Conclusions 

In this paper we have presented several challenges that need 
to be met for the one-million gate FPGA to become a usable 
and practical reality. The greatest challenge, however, comes 
from the fact that all of these issues must be dealt with and 
traded off within one device. The FPGA design space is not 
well understood; very few people have even been exposed to 
all of the issues and engineering trade-offs that are possible 
across the spectrum of IC processes, circuit design, architec- 
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ture and CAD. But in order to succeed, all of thcsc factors 
must be balanced with each other effectively. 
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