
- - ~li i_-- ---
--

--

Architectural and Physical Design Challenges for One-Million Gate
FPGAs and Beyond

Jonathan Rose’ and Dwight Hill*

Department of Electrical and Computer Engineering, University of Toronto+ and Synopsys*, Inc.

Abstract

Process technology advances tell us that the one-million gate
Field-Programmable Gate Array (FFGA) will soon be here,
and larger devices shortly after that. We feel that current
architectures will not estend directly to this scale because:
they do not handle routing delays effectively; they require
cscessive compile/place/route times; and because they do not
csploit new opportunities are presented by the increase in
available transistors and wiring. In this paper we describe sev-
cral challenges that will need to be solved for these large-scale
FPGAs to realize their full potential.

1. Introduction

As 0.25pm CMOS processes arrive, we anticipate that FPGAs
will have gate capacities in excess of 250K gates, ’ and once
process feature sizes progress below the 0.13ltm mark (‘per-
haps by the year 2001) the one-million gate FPGA will
hecome a technical feasibility. Having the ability to make
such a chip, however, is different from having the architec-
tural and algorithmic knowledge to esploit this potential to its
CUllCSL

Although one-million gate Mask-Programmed Gate Arrays
(LIPGAs) are available today, the physical design of these
devices is difficult due to their sheer size and the fact that the
delay of the routing is a much larger portion of the critical path
delay than has been the case in the past. A one-million gate
FPGA will have these problems and more, due to the pro-
grammable nature of the interconnect.

A\s the quantity of silicon available for FPGAs grows, it also
makes sense to question if the devices should look the same or
if some radical change in architecture is beneficial.

In the following sections we outline challenges that we fore-
XC in the creation of the architecture of a one-million gate
FPGA, and in the placement and routing of these large
dcviccs. We also suggest possible directions for architecture
and challenges involved in those directions.

I. Here we assume that one 4-input lookup table plus one D flip-flop are

equivalent to 12 “gates.”

&mission to make digital/hard copies of all or part ofthis material for
Personal or classroot!I use is granted without fee provided that the copies

a!e not Fade oc distnbuted for profit or commercial advantage, the copy-
rtght nottce, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.
FPGA97, Monterey California USA
‘* 1997 ACM 0-89791-Sol-o/97/02 ..s3.50

2. Core Routing Architectures for Speed and Density

As process technologies advance, gate switching speeds
improve because of short channel effects, but wiring delays
due to the capacitance and resistance of routing wires tcnti to
become proportionally greater. Even if the dcvicc sizes wcrc
not shrinking, the huge increase in the number of gates per
chip make the relative distances that a signal must travel much
greater. This is true in mask programmed parts, and these fac-
tors are often sited as part of the “deep sub micron” problem.
It is equally true in FPGA’s. But in FPGA’s, the intrinsic
delays of the metal routing wires are joined with the delays of
the programming switches in programmable interconnect.
The combined effect will cause routing delay to bccomc mom
significant than it is today.

The FPGA routing architecture is the manner in which mclal
wires and programmable switches are placed to provide con-
nectivity between the pins of the FPGA logic blocks. The
routing architecture must be designed to provide paths with
greatest possible speed without sacrificing too much arca.
Three key architectural parameters that have strong effect on
delay and density are buffering, segmcntalion distribution and
segmentation population. We discuss each of thcsc in the next
sections.

2.1. Buffering

One key issue in creating routing architectures for low ticlay
is to prevent the occurrence of nets in which one driver must
charge a large capacitance through a large resistance. This can
easily occur in an FPGA when a single output buffer drives a
load through many programmable switches and/or drives
many loads. One way to reduce the delay of this network is to
divide networks with large RC time constants into picccs and
drive them separately with active buffers.

There are two extremes that describe this spccuum of buffer
usage. In one extreme every programmable switch could have
a buffer in series with it (with perhaps a programmable direc-
tion). This is the case in the Altera Flex SK and IOK
architectures [3][4]. Although this prevents large RC con-
stants from “building up” through multiple programmable
switches, it makes every programmable switch pay the price
of a relatively high constant delay. The altcmativc, in which
some connections have no buffers, would make some short
connections much faster. This could have a significant posi-
tive effect on the critical path.

The other extreme is to have no buff’crs at any programmahlc

129

~-. - - -

i I

switch. This is the case in the Xilinx 4000 architecture [5].
While local short connections will be faster than with the buff-
crcd case, it is also easy to create large slow RC networks in
the absence of buffers. It is clear that some mixture of the
buffered and non-buffered switch is most appropriate. The
more recent 4000EX architecture provides a set of buffers in
the routing [6].

2.2. Segmentation Distribution

A second technique to prevent buildup of large series resis-
tance is to employ wires of differing lengths in what is known
as a seglnenfed routing architecture[l] [2]. Figure 1 illustrates
segments of three different lengths. The segmentation distri-
bution, which is the number of tracks in a channel with
segments of each length, is a key question that has been stud-
icd to some degree [7][5][9][10]. If there are too many long

segments, then the wire will be wasted when used for short
connections. If there are insuflicient long segments then net-
works will bc too slow with many series programmable
switches.

The determination of appropriate choices in thcsc urchilcclurc
spaces are affected by the “goodness” mcasurcs of a rouling
architecture: its delay, density, predictability, “cast” of rout-
ing, power, and noise properties. Thcsc must typically hc
measured by experimentation [l] or by fast back-of-the CIIVC-

lope estimates.

An associated issue in segmentation design occurs at the point
that orthogonal channels intersect: should long segments con-
ncct to other long segments, or other short segments or both?

2.3. Internal Population of Segments

We believe a key challenge for the one-million gale FPGA
and beyond is to make the correct choices in this spitcc 01
architectures.

An important issue in segmentation design is whether or not
there is access to the internal portion of the segment, referred
to ;1s the internal population of a segment. Figure 2 illustrates
the two extremes of internal population with two different
segments of length 4. The top segment is fully internally pop-
ulated - the segment can connect to both the logic block it
passes by and the orthogonal channels.The bottom segment is
completely un-populated, and so can only be connected to at
its ends.

In addition, these choices cannot be made in isolation from the
placement routing algorithms that arc used to map circuits
into the architecture. A routing architecture is only half the
solution without a routing algorithm. Dots an itcrativc timing-
driven maze router do an adequate job of both routing com-
pletion and timing? Is there some mom clcvcr intcraclion
between the routing architecture and algorithm that can pro-
duce significantly faster and more dense FPGAs?

The population of a segment is important with respect to both
speed and density: the more programmable switches con-
nccted to a wire, the greater the parasitic capacitance (and
hence delay) they add to the wire. From a density perspective,
more switches provide greater flexibility and perhaps fewer
routing tracks will be needed overall. However, a completely
populated long segment requires vastly more area than a un-

130

The largest FPGAs available today have 5000 LUT/flip-llop
pairs, and the next generation will contain in cxccss of 12,000.
The 1 million-gate FPGA will contain (by today’s gale counl-
ing standards) approximately 83,000 LUT-flip-flop pairs,
There is evidence to suggest that the complexity of most
placement and routing algorithms is non-linear. Wilh thcsc
large sized FPGAs, the placement and routing time could CM
ily exceed 1 day, extrapolating from current tools;.

m Programmable Switch (which may or may not be buffered)

Figure 1 -Routing Segmentation

populated one. As processes with more metal layers bccomc
common, it will become more desirable to dc-populate scg-

ments because the wires themselves will bc chcapcr.

0 0 0 q
m Series Programmable Switch

l Parallel Programmable Switch

Figure 2 - Internal Populafion of (I S~gmwl

2.4. Putting These Together - The Challenge

These three design spaces (buffering, scgmcntation distribu-
tion and internal population) interact with each other in very
complicated ways. For example, a buffer may be necdcd lo
simply drive the capacitance of a long segment, dcpcnding on
how long the segment is. It may also be unncccssary to USC a
buffer because a long segment reduces scrics rcsistancc by
removing series programmable switches.

3. Compile Time

Fast turnaround devices like FPGAs lose much of their value
if users have to wait more than a day for the synthesis, place
and route tools to finish one design. In fact, many customers
would like to have ail that happen in the same time as it takes
LO compile and link a typical C-language program.

This issue can and should be dealt with both in the architec-
ture and CAD tools. For the architecture, one question is how
much silicon can we afford to give up to make the compile
time quicker? It is clear that by adding more routing resources
(typically the number of tracks per channel) the routing prob-
lem becomes easier, and therefore quicker, because the place
and route don’t have to fight so hard to achieve routability.

On the CAD side, the challenge is to find placement and rout-
ing algorithms that give up the least quality for the most gain
in time.

Only through synergy of the architecture, placement and rout-
ing systems can significant gains in compile time be achieved.
One approach to this type of synergy is discussed in the next
section.

4. Partitioned Architectures

IL is extremely unlikely that the million gate FFGA’s will be
structured as a flat, homogeneous sea of logic blocks and
switch boses. Rather, they will almost certainly have large
scale structure. This will add flexibility to their use, but chai-
icnge to the architects and CAD developers.

1.1. Higher-Functionality Blocks

Based on industry experience with standard ASICs and
embedded arrays, we believe that typical 1Mgate FPGA will
almost certainly contain reconfigurableRAM blocks [4] [15].
The design and use of these will be a major challenge because
of the performance/flexibility trade-offs involved.

Going beyond RAM, as FPGAs are used for more computa-
tion-oriented applications, such as digital signal processing
and FPGA-based compute engines, it is tempting to suggest
the use of adders, multipliers, dividers as the basic logic
block. Are these practical? They give up generality/flexibility
10 get more speed and density. Can synthesis be made to han-
die them? We believe the challenge is to architect blocks like
these so that they retain some flexibility, so that they can be
used in the widest spectrum of applications possible.

4.2. Partitioned FPGAs for Speeding up Compilation

As mentioned above, many designers would like their FPGA
compilations to be as fast as their C compilations. In order to
make the software processing faster, FPGA compiling will
probably have to look more like software compiling. For
example, a large C program is usually organized as many
smaller files, and it is generally only necessary to recompile
only the files that have changed. A fast linking process
stitches them all together. To carry this into FPGA’s, one
approach would be to assume that the design is organized as a

131

set of HDL files, stitched together at ihe block level with a
system level netlist. The content of individual HDL files may
change frequently, but the overall system organizarion should
be relatively stable. If the FPGA archhecturc can support this
type of hierarchy efficiently, it will be casicr for dcsigncrs LO
work incrementally.

In ASICs, large chips are typically floorpianncd, where the
floorplan matches the highest level netiist structure. One
approach to a million gate FPGA would be to use a partitioned
FPGA architecture to support the same methodology. The
essence of a partitioned one million gate FPGA would be to
break the surface of the die into about a dozen to two dozen
large sections, each capable of supporting about 1OOK gaits.
If there were fewer sections than this, the processing Qmc for
each would be too high. If there were many more than this,
they would be too small to take a significant block of logic.
Each physical block would be matched to one or more logical
blocks. Naturally, if the die is heterogeneous, there may bc
some restrictions (e.g. RAM blocks from the logical hierarchy
would have to map onto RAM blocks on the die). To simplify
the compilation, it would be best not to force a high uliliza-
tion: the use of an extra 50% to 100% of silicon over whai
might otherwise be needed would greatly simplify processing
time.

Software linking is fast, in part, because Lhcrc is essentially
infinite bandwidth among the program moduics. In order to
makeFFGA compiling fast there would have to be many high
speed connections among the sections of a 1Mgalc chip, per-
haps on the order of 5K to 20K lines. Archilecting these will
be a major effort: they could easily dominate the area and
power of the die. Issues here include the number of “local”
interblock wires (e.g. wires that connect only adjacent blocks,
or blocks within a smaller part of the die), and the number of
global interblock wires. This is essentially the same probicm
discussed in Section 2, just viewed at a die ievcl instead of ai
a CLB level. If this is done well, the user can ignore ihc inter-
module connections problem. If done poorly or wi0loul suffi-
cient bandwidth, partitioning will continue to bc the
nightmare it is today.

On such a partitioned chip the CAD sequence might bc:

l Map logic blocks onto physical regions. Often scvcrai
smaller blocks will go into one physical region. This pro-
cess will probably be interactive.

l If there is a large logical block that will not l’ii onto a sin-
gle region, it must be partitioned.

l Place the ceils within each region, and route each region.
This process could be performed on multiple worksta-
tions, as is done today with emulator machines.

9 Route among regions using the cleverly dcsigncd global
routing resources mentioned above.

l If the designer changes a source file, then the CAD tool

will have to re-synthesize it, place and m-route the
regions affected.

The synthesis process itself would be facilitated by keeping
the technology rules simple, with few special cases. Mapping
to LUTs, for example, is a relatively well understood problem.
Mapping to complex micro-grained architectures, where the
speed of each type of gate is a function of its detailed layout
is more difficult. But as synthesis technology evolves, the
dividing line shifts, and the problems that appear difficult
today may prove less difficult tomorrow.

Placement within a section would be facilitated by keeping
the relationship between distance and speed easy to model (a
quadratic relationship, for example). As discussed in Section
2, this in itself may be a significant challenge.

Routing within a section would be simplified by keeping the
system regular, supporting bus routing by enabling parallel
signals to turn comers and retain their parallel organization
(as was done in ORCA [14]) and in general, as discussed in
Section 3, providing more than sufficient routing resources.

5. Re-Configuration Time

A convincing case can be made for using an FPGA pro-
grammed in several different ways for during one
computation. A key bottleneck for making that a practical
reality for one-million gate FPGAs is to make the configura-
tion time fast enough. As the number of gates increases, the
number of programming bits will increase quickly, potentially
increasing the configuration time. Effective partial reconfigu-
ration strategies, and/or methods of increasing the
configuration speed are needed.

6. Yield Enhancement Through Redundancy

To make very large FPGAs, it seems clear that enhancing sil-
icon yield through redundancy should provide significant cost
savings. Altera has demonstrated a workable method with
their long segment architectures based on column redundancy
[111. An open challenge for island-style architectures[l][5],
with short-length segments is to determine if there is a practi-
cal way to do a similar kind of redundancy. Although there
has been some work on this subject [12][13], none of has yet
to be proven practical because of routing issues. Specifically,
short routing segments required significant overhead in area
to be made redundant.

7. Conclusions

In this paper we have presented several challenges that need
to be met for the one-million gate FPGA to become a usable
and practical reality. The greatest challenge, however, comes
from the fact that all of these issues must be dealt with and
traded off within one device. The FPGA design space is not
well understood; very few people have even been exposed to
all of the issues and engineering trade-offs that are possible
across the spectrum of IC processes, circuit design, architec-

132

ture and CAD. But in order to succeed, all of thcsc factors
must be balanced with each other effectively.

Dl

PI

131
[41

I3

WI

r71

[81

PI

WI

[ill

WI

1131

u41

II151

References

S. Brown, R. Francis, J. Rose and 2. Vrancsic, Ficld-
Programmable Gate Arrays, Kluwcr, May 1992.
J. Greene, V. Roychowdhury, S. Kaptanoglu, and A, El
Gamal, “Segmented Channel Routing,” Proc. 27th
Design Automation Conference, pp. 567-572, June
1990.
Altera 1995 Data Book, Altera Corporation.
Altera Corporation, Data sheet, Flex 101S Emlxxldcd
Programmable Logic Family, July 1995.
H. Hsieh, W. Carter, J. Ja, E. Cheung, S. Schrcifcls, C.
Erickson, P. Freidin, L. Tinkey and R. Kanazawa,
“Third-Generation Architecture Boosts Speed and
Density of Field-Programmable Gate Arrays” Proc.
1990 CICC, May 1990, pp. 3 1.2.1 - 3 1.2.7.
S. Trimberger, K. Duong, B. Conn, “Architccturc Issues
and Solutions for a High-Capacity FPGA,” FPGA ‘97,
ACM Int’l Symposium on FPGAs, February 1997.
K. Zhu, D.F. Wong, “On Channel Segmentation Design
for Row-Based FPGAs,” Proc. ICCAD 1992, Novcmbcr
1992, pp. 26-29.
K. Roy and M. Mehendale, “Optimization of Channel
Segmentation for Channelled Archilcclurc FPGAs,”
CICC ‘92, May 1992, pp. 4.4.1-4.4.4.
M. Khellah, S. Brown, and Z. Vrancsic, “Minimizing
Interconnection Delays in Array-based FPGAs,” Proc.
CICC ‘94, May 1994, pp. 181-184.
M. Pedram, B. Nobandegani, B. Prcas, “Design and
Analysis of Segmented Routing Channels for Row-
Based FPGAs,” IEEE Trans. CAD, Vol. 13, No, 12,
December 1994, pp. 1470-1479.
Altera press release, “Altera Unveils pntcntctl
redundancy technology in high-density programmable
logic,” August 16,1996.
NJ. Howard, A.M.Tyrell, N.M. Allinson, “The Yield
Enhancement of FPGAs,” IEEE Trans. VLSI Systems,
Vol. 2, No. 1, March 1994, pp. 115-123.
G.H. Chapman, B. Bufort, “Laser Correcting Dcfccts to
Create Transparent Routing for Large Arca FPGAs”,
FPGA ‘97, ACM Int’l Symposium on FPGAs, Fcbrunry
1997.
D. Hill, B. Britton, W. Oswald, N Woo, S. Singh, CT
Chen, B. Krambeck, “ORCA: A New Architcclurc for
High-Performance FPGAs”, in Field Programmahlc
Gate Arrays: Architecture and Tools for Rapid
Prototyping, Lecture Notes in Computer Scicncc 11705,
H Grunbacer and Hartenstein editors, Springer-Vcrlag,
1992.
S.J.E. Wilton, J. Rose, Z.G. Vrancsic “Mcmory/L.ogic
Interconnect Flexibility in FPGAs with Large
Embedded Memory Arrays,” IEEE Custom Intcgralctl
Circuits Conference, May 1996, pp. 144-l-17.

