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Abstract

Conventional stereo algorithms often fail in accurately reconstructing a 3D object
because the image data do not provide enough information about the geometry of
the object. We propose a way to incorporate a priori information in a reconstruc-
tion process from a sequence of calibrated face images. A 3D mesh modeling the
face is iteratively deformed in order to minimize an energy function. Di�erential
information extracted from the object shape is used to generate an adaptive mesh.
We also propose to explicitly incorporate a priori constraints related to the di�eren-
tial properties of the surface where the image information cannot yield an accurate
shape recovery.

1 Introduction

3D face reconstruction is currently receiving a lot of attention in the Computer
Vision and Computer Graphics communities. It is a thriving research �eld with
many applications such as virtual reality, animation, face recognition, etc... In
all these cases, the recovered model must be compact and accurate, especially
around signi�cant areas like the nose, the mouth, the orbits, etc... These areas
can often be characterized in terms of their di�erential properties. Several at-
tempts to deal with that problem have been made. In [DF94], the di�erential
properties of the surface are inferred from a disparity map and used to modify
the shape of a correlation window. In [LFM96], crest line extraction is per-
formed on a 3D model and used to improve the reconstruction around sharp
ridges. These methods improve the accuracy of the reconstruction but do not
su�ce if the initial 3D model is not reliable. For instance, it is well known that
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bad lighting conditions or lack of texture can make correlation-based stereo
fail. Consequently, the image information alone is not always su�cient to re-
cover 3D shape. In [FB96], constraints on the depth of a given set of points
on a surface mesh are applied in order to improve terrain reconstruction. In
[LMF97], curvature information and structural features such as crest lines are
extracted from the 3D model or interactively speci�ed in order to generate
an anisotropic surface mesh that reects the geometric properties of the ob-
ject. In this paper, we propose a further step towards incorporating a priori
information in the reconstruction process from sets of sequences of calibrated
face images. Di�erential information is used to constrain the topology of a
mesh modeling the surface and the parameters of an analytical surface model,
through the speci�cation of low(high)-curvature areas, or structural features.
Mathematically, this is achieved by constrained mesh optimization. We show
preliminary results of this ongoing work, whose goal is to build 3D face models
using entirely passive techniques.

2 The reconstruction process

2.1 An energy minimization scheme

Our reconstruction process is based on the iterative deformation of a 3D trian-
gular mesh (i.e. a collection of vertices, triangular faces and edges) modeling
the face in order to minimize an energy function E. The reconstruction pro-
cess is thus treated as a snake-like process ([KWT88],[FL95],[LFM96]).
The initial mesh is computed by �tting a generic animation mesh to 3-D points
derived from a correlation-based disparity map ([FM98]). It is then re�ned by
minimizing an energy function that is the weighted sum of two terms: one
stereo term Eext, whose minimization makes the model �t to the image data
(see [FL95] or [LFM96] for more details), and one regularization term Eint.
The stereo term is based upon the Lambertian assumption, which implies that
the intensities of the two projections of a given 3D point onto the images are
the same. If M1 and M2 denote the projections of a 3D point X on the left
and the right image and if I1 and I2 denote the intensities of these projections,
then the stereo term attached to X is de�ned as:

Eext(X) =
(I1 � I2)

2

4
(1)

Each facet is sampled into 3D points and the global stereo term is the sum of
all the stereo terms attached to each point. This term can also be expressed in
case of multi-image stereo. It is in fact slightly modi�ed in order to only take
into account the facets that are visible from the viewpoints of the image planes.
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This term reects the di�erence between these two intensities. Minimizing the
stereo term will thus move the 3D point towards its right location in space.
This process is based on correlation; consequently, in many well-known cases
(lack of texture, lighting problems,...), it will fail in accurately recovering the
3D shape.
In order to convexify the energy function and to prevent it from being too
wrinkly, we must add include a regularization term in this energy function.
The regularization term is quadratic, which helps the convergence of the pro-
cess. It is de�ned as:

Eint =
Z Z
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and expressed as Eint = StKS, where K is a sti�ness matrix.
This optimization uses a �nite-element scheme. The depth z of each surface
point is expressed as a piecewise polynomial function of the two other coor-
dinates x and y. This polynomial is of degree 5, which guarantees that the
surface is piecewise C1 (see [Neuen95], [ZT88]). The parameters of the op-
timization process are the depths of each vertex, as well as the 5 �rst and
second-order partial derivatives of the depth with respect to x and y. Conse-
quently, if the mesh is composed of n vertices, we come up with a 6n-variable
state vector:
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To compute the initial values of the partial derivatives, we have locally approx-
imated the surface by a quadric and set the partial derivatives of the surface
to the partial derivatives of the corresponding quadric.

The minimization of the total energy E = �intEint + �extEext is then per-
formed by di�erentiating E with respect to S, and embedding the system in
a viscous medium, which leads to iteratively solving the dynamics equation
@E

@S
+ �

dS

dt
= 0, which can be rewritten as:

(K + �I)St = �St�1 �
@E

@S

�����
St�1

(3)

where I is the identity matrix, � is the viscosity of the medium, and St is the
state vector computed at time t.
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2.2 Adaptive meshes

The computation time can be very high if we keep a very large number of ver-
tices. On the other hand, some typical features of the object must be recovered
with high accuracy. Therefore, we have to reduce the number of vertices in fea-
tureless areas and to keep many points in the most signi�cant areas of the face.
Furthermore, this has to be achieved with as much automation as possible.
For instance, we would like to keep many points in the nose area, the orbits,
the mouth, i.e. areas which are likely to act as landmarks in an animation
or a recognition process. All these areas can be characterized by geometrical
properties of the surface, especially di�erential properties. Indeed, areas like
the nose ridge or the orbits can be expressed in terms of high curvature ar-
eas or crest lines, whereas the cheeks or the forehead (where we would like
a small number of facets) can be described as low curvature areas. We have
thus chosen to re�ne the 3D model according to the di�erential properties of
the surface that can be easily inferred from the analytical expression of the
surface or estimated by a local quadric approximation.

2.2.1 The computation of curvature �elds

Information about the computation of di�erential properties can be found in
[DoCar76]. We briey summarize the algorithm we use to compute the prin-
cipal curvatures and the principal curvature directions. Here, we compute the
curvature �eld at each vertex of the mesh by �tting a quadric to the neigh-
borhood of this vertex with a least-square method using the points of the
neighborhood and the normals to the surface at these points([Monga91]). The
size of the neighborhood used for quadric-�tting is an important parameter of
the crest line extraction algorithm, since increasing the neighborhood implies
further smoothing of the surface.
In the quadric-�tting approximation, the depth z of vertex V (x; y; z) is ex-
pressed as a function z(x; y) of the x and y coordinates such that

z(x; y) = ax2 + bxy + cy2 + dx + ey + f

The tangent plane to the surface at point V = (x; y; z(x; y)) is de�ned by

the two vectors ~v1 =
@V

@x
and ~v2 =

@V

@y
. The normal to the tangent plane is

de�ned as ~n = ~v1 ^ ~v2. We compute the matrices of the two fundamental forms
of the surface �1 and �2 (see [DoCar76] for more details) and the matrix
of the Weingarten endomorphism W = ���1

1 �2. The eigenvalues and the
eigenvectors of W are respectively the principal curvatures k1 and k2 and the
principal curvature directions ~t1 and ~t2 of the surface at vertex V .
In order to ensure the consistency of the orientation of the principal frame
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(~n; ~t1; ~t2), we enforce:

det(~n; ~t1; ~t2) > 0

The maximum curvature is de�ned as the principal curvature with the highest
absolute value, and the maximum curvature direction is the principal curva-
ture direction attached to the maximum curvature.

2.2.2 Crest line extraction

An accurate crest line extraction requires the computation of di�erential prop-
erties of order 3, since a crest line is de�ned as the set of zero-crossings of the
derivative of the maximum curvature in the maximum curvature direction
[Monga92]. If kmax and ~tmax respectively denote the maximum curvature and
the maximum curvature direction, a crest point is thus de�ned by the equa-
tion :

dkmax =< ~rkmax; ~tmax >= 0

where < :; : > denotes the inner product and ~r is the gradient operator. The
extraction of the zero-crossings of dkmax is performed using a tracking algo-
rithm inspired by the Marching Lines algorithm [Thir92]. Among the neighbors

of vertex V , we choose the vertex V1 that maximizes <
��!
V V1; ~tmax >. Then, we

estimate the derivative of the maximum curvature in the maximum curvature
direction by �nite di�erences, and set:

dkmax(V ) = kmax(V1)� kmax(V )

On each facet F of the mesh, we apply the following algorithm :

� for each vertex V of F , determine the sign of the derivative dkmax(V ).
� if, for two neighbors V1 and V2, dkmax(V1):dkmax(V2) < 0, there is a crest
point on the edge (V1V2). Interpolate linearly dkmax along the edge (V1V2)
and �nd the location of the zero-crossing of dkmax.

� another zero-crossing must appear on one of the two other edges of the facet.
Locate it on the appropriate edge.

� draw a segment across the facet.

By applying this scheme to all the facets of the mesh, we can draw lines on
the triangulation which are guaranteed to be continuous.
Figure 1 shows the tracking of the crest points over three facets. The + and -
signs on the vertices indicate the signs of dkmax.

We typically threshold the result of crest line extraction according to the
maximum curvature value in order to only keep signi�cant lines. Moreover,
we apply here a multiscale crest line extraction strategy, where the scale is set
to the size of the neighborhood used to compute the di�erential properties.
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Fig. 1. The zero-crossing extraction algorithm

According to the multi-scale theory developed in [Wit82], the most signi�cant
features are detected at the coarsest scale (i.e. using the largest neighbor-
hood, which is equivalent to further smoothing the underlying surface) and
their most reliable locations are found at the �nest scale (i.e. the smallest
neighborhood). Moving in the scale space towards the coarsest scales implies
a higher degree of smoothing of the data, thus displacing the zero-crossings
from their true locations, while moving towards the �nest scales can generate
spurious extrema. Therefore, we detect signi�cant crest lines at a coarse scale
according to their lengths and the values of the maximum curvature along the
lines, and track them down to the �nest scale with �nding the correspondent
of each line at scale n in the set of lines at scale n� 1.

2.2.3 The mesh generation algorithm

As described in [LMF97], we generate an adaptive mesh governed by the
di�erential properties of the surface, that can be either the curvature �elds or
structural information such as crest lines.
If we generate a new mesh using curvature information, the algorithm can be
summarized as follows:

� compute on the initial mesh the principal curvatures kmax and kmin and the
principal curvature directions ~tmax and ~tmin.

� specify for each vertex of the initial mesh the three parameters (two scalar
values h1 and h2 and an angle �) of an ellipse centered on the vertex which
governs the generation of a new mesh.

� optimize the new mesh by minimizing the energy function E = �extEext +
�intEint.

The algorithm completely remeshes a 2D domain (which is taken here to
be a frontal projection of the face) according to the values of h1, h2 and
�. These values govern the local topology of the new mesh in the vicinity
of the old vertex they are attached to. As shown in �gure 2, the angle �

determines in which direction the new facet in the remeshed surface will be
\elongated". This direction will be given by ~tmin. In other terms, the edges
of the new facets will be longer in the minimum curvature direction than in
the maximum curvature direction (those two directions are orthogonal). This
is rather intuitive: for instance, in the case of the nose ridge, the minimum
curvature direction lies along this ridge. We want to capture as many details
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Fig. 2. The ellipse de�ning the local topology of the new mesh.

as possible in the direction orthogonal to this ridge, since there is a high
curvature variation in that direction. Consequently, it is natural to generate
longer edges in the minimum curvature direction (i.e. along the ridge) than
in the maximum curvature direction (i.e. across the ridge). The scalar values
h1 and h2 determine the average lengths of the edges in those two directions.
They are decreasing functions of kmax and kmin, since we want more facets in
low curvature areas. Typically, they are chosen as inverses of a second order
polynomial function. h1 is determined by the minimum curvature and h2 is
determined by the maximum curvature. This procedure uses a mesh generation
software developed for the Computational Field Simulations ([BCGHM96]).

This scheme can also be used if we want to remesh the surface according to
structural information such as crest lines than can be automatically detected
or interactively speci�ed. In this case, the angle � is thus determined by the
direction of the crest line, and h1 and h2 are �xed parameters.

Figure 3 shows a stereo pair of a face and the initial model obtained by the
deformation of an animation mask. Our purpose is thus to capture more de-
tails in signi�cant areas of the face, while preserving a reasonable number
of vertices. Figure 4 shows an optimized anisotropic mesh of the face gov-
erned by curvature information. The nose ridge is well recovered since we
have extracted high curvature values in this area and the principal curvature
directions have oriented the facets along the ridge. However, the mouth is not
very well recovered. Figure 5 shows a map of automatically extracted crest
lines and the optimized mesh governed by crest line information. The crest
line extraction algorithm ([LMF97]) ensures that the crest line lies inside a
facet. The mesh of the face model has edges on the nose ridge. This is why
this ridge has not been detected at the exact location by the crest line extrac-
tion algorithm. However, the purpose of this extraction is to specify areas of
interest on the face and re�ne them, so we do not need a very accurate crest
line extraction. In the example, we show the automatic extraction of the nose
ridge, orbits, some lines on the lips and other lines that are not as intuitive
but that can also describe the face geometry, such as cheek or forehead lines.
In this case, the mouth is better recovered than using curvature information.
We show in Figure 6 that an interactive outline of some crests can also help
the reconstruction of key areas such as the orbits. We have shown examples
where mesh topologies driven by curvature, automatically extracted crest lines
and manually speci�ed crest lines have been generated separately. An optimal
reconstruction algorithm would merge all these kinds of information. This is

7



Fig. 3. A stereo pair of a face. The generic animation model �tted to correlation
data: the mesh and a shaded view.

Fig. 4. The reconstructed surface using an anisotropic mesh governed by curvature
information: the mesh and two shaded views.

Fig. 5. The most signi�cant crest lines automatically detected on the face model
using a multi-scale extraction algorithm, and the reconstructed surface using an
anisotropic mesh governed by crest line information: the mesh and two shaded
views.

part of the software we are currently developing.

Governing the mesh topology by surface di�erential properties and running a
correlation-based optimization algorithm on the adaptive mesh is sometimes
not su�cient to accurately recover 3D shapes. For instance, in the above ex-
ample, the shape of the eyes cannot be recovered accurately from stereo infor-
mation alone because of specularity (see also �gure 7). Similarly, the lips have
not been reconstructed properly. Therefore, it seems necessary to incorporate
in the reconstruction process extra information.
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Fig. 6. The reconstructed surface using an anisotropic mesh governed by a priori
knowledge about crest lines: the locations of the crest lines have been speci�ed
manually.

3 Incorporating a priori knowledge

When reconstructing an object, we have a rough idea about its shape, espe-
cially about typical features like crest lines, or about areas that can be labeled
as \at", \spherical", \cylindrical", etc... This kind of a priori knowledge can
be of great interest where classical stereo methods fail. The a priori knowledge
that a user can have about the shape he wants to reconstruct can be intuitive
(\This region is at, or spherical") or can rely on well-known geometric prop-
erties (anthropometric in case of face reconstruction). In any case, this a priori
knowledge can very often be expressed in terms of di�erential properties. For
instance, the knowledge \This area is at" is obviously \translated" as:

at each vertex, kmax = kmin = 0

\This area is spherical" means:

at each vertex, kmax = kmin

We can also express \structural" knowledge such as \There is a crest line here",
and interactively outline the crest on the surface (or, ideally, on the images).
If we restrict our problem to the crest lines that are sets of maxima of the
maximum curvature in the maximum curvature direction, the corresponding
constraint can be expressed as:

8i 2 V; kmax(i) � kmax(j) and kmax(i) � kmax(j
0)

where V is the set of vertices lying on the crest line and j and j 0 are surface
points such that the directions respectively de�ned by (i; j) and (i; j 0) are
orthogonal to the crest line.
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Fig. 7. The initial eye surface (left) and the reconstructed eye with the classical
optimization algorithm (right). This area corresponds to the black spot in the eye
in �g. 6.

Incorporating a priori knowledge in the reconstruction process can be achieved
using constrained optimization, since all the constraints are expressed in terms
of the partial derivatives of the surface, which are the parameters of the op-
timization process. We use an optimization algorithm already presented in
[FB96] that decouples the projection step towards the constraint surface and
the minimization of the energy function.

We show two examples where we have locally applied di�erential constraints
to improve the reconstruction of speci�c facial features.

We have reconstructed one eye of the face shown in the previous section (see
the small window on the right image of �g. 6), using the a priori assump-
tion that the eye is spherical. We �rst constrain the topology of the mesh by
manually outlining the eyelid, therefore generating more facets on the tip of
the eyelid. The initial eye surface is computed by interpolation, since there
is no information on the animation model in this area. We then minimize
E = �extEext + �intEint under the following constraints:

8i 2 V; kmax(i) = kmin(i) (4)

8(i; j) 2 V2; kmax(i) = kmax(j) (5)

8(i; j) 2 V2; kmin(i) = kmin(j): (6)

where i denotes the i-th vertex and V the set of vertices lying on the eye sur-
face.
We show in the results a �ne isotropic mesh of the reconstructed eye surface
after resampling the anisotropic mesh and using the polynomial surface ap-
proximation given by the �nite element scheme. The surface has been rotated
for visualization purposes, thereby inverting the signs of the curvatures.

We have also focused on lip reconstruction. Adding constraints to the opti-
mization scheme expressing that the lips de�ne crest lines on the face yields
the �nal reconstruction shown in �g. 9. For this �nal result, we have subsam-
pled the mesh that contains a little more than 500 vertices into a very �ne
triangulation containing more than 40000 vertices. The polynomial approxi-
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Fig. 8. The reconstructed eye after incorporating curvature-based constraints (left)
and resampling the anisotropic mesh (right).

Fig. 9. The �nal reconstruction after incorporating crest line constraints on the lips

mation given by the �nite element scheme is used to perform the subsampling.
A direct optimization of such a �ne mesh would have been computationally
intractable. In this example, the forehead is not well reconstructed because of
the presence of hair. The next step of the implementation of this algorithm is
thus to incorporate a set of di�erent constraints (involving curvatures, crest
lines, or even normal orientations) applying simultaneously on di�erent parts
of the whole face. The main bottleneck of the constrained optimization scheme
is the non-linearity of the constraints involving di�erential properties. We still
have to improve this step, especially in terms of computation time (the con-
strained optimization of the above-mentioned mesh requires about 15 minutes
on a SGI Indy workstation, whereas the unconstrained one only requires a few
minutes).

The accuracy of the reconstruction should soon be measured since we intend
to compare our results with the ones obtained with a 3D scanner.

4 Conclusion

We have proposed a way of palliating the lack of information extracted from
stereo images during a 3D reconstruction task. We interactively reconstruct
from stereo a complex 3D object like a face using a priori information about
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its di�erential properties. We �rst try to design an optimal 3D mesh in terms
of compacity (for computational reasons) and locations of the vertices (to
capture the maximum information contained in the images) and then add dif-
ferential constraints to the iterative deformation of the mesh where the image
information is not su�cient. Our purpose is to develop an interactive image-
based modeling software that takes into account some a priori knowledge that
a user can have about the di�erential properties of the object to reconstruct.
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