
Intel Technology Journal Q2, 1999

The Internet Streaming SIMD Extensions 1

The Internet Streaming SIMD Extensions

Shreekant (Ticky) Thakkar, Microprocessor Products Group, Intel Corp.
 Tom Huff, Microprocessor Products Group, Intel Corp.

ABSTRACT

The paper describes the development and definition of
Intel’s new Internet Streaming SIMD Extensions
introduced on the Pentium III processor. The
extensions are divided into three categories: SIMD-FP,
New Media, and Streaming Memory instructions. The
new extensions accelerate the 3D geometry pipeline by
nearly 2x that of the previous-generation processor while
enabling new applications, such as real-time MPEG-2
encode. The Pentium III processor implementations
achieved the desired goal at a modest 10% increase in
die size. The definition achieved the short-term goal
while still providing the performance scalability needed
for future implementations.

INTRODUCTION
In late 1995, it was becoming clear that visual computing
would assume an increasingly important role in the
volume PC market segments. To address this need, Intel
launched an initiative in visual computing aimed at the
1999 volume PC market segments. This required a
balanced platform for 3D graphics performance in order
to scale from arcade consoles to workstation
applications. Floating-point (FP) computation is the heart
of 3D geometry; thus, speeding up FP computation is
vital to overall 3D performance.

An increase of 1.5 – 2x the native FP performance in IA-
32 processors was required in order to have a visually
perceptible difference in performance. 3D graphics
applications require the same computation to be
performed on 3D data types (vertices), making it
amenable to a Single Instruction Multiple Data (SIMD)
parallel computation model. This is the most cost-
effective way of accelerating FP performance of 3D
applications in general purpose processors, and it is
similar to the acceleration for the class of integer
applications provided by the Intel® MMX™ technology
extensions [1]. Thus, a SIMD-FP model was selected for
the IA-32 extension.

The Instruction Set Architecture (ISA) scope expanded
beyond 3D geometry to include feedback on the usage
of the MMX technology from independent software

vendors (ISV), as well as support for 3D software
rendering, video encode and decode, and speech
recognition. Cacheability instructions were added to
increase concurrency between execution and memory
accesses. In all, 70 new instructions and a
corresponding new state were added to IA-32
architecture; this is the first new state added since the
Intel® i386 processor added the x87-FP. This paper
describes the architectural features and instructions
selected as part of the IA-32 definition process.

ARCHITECTURE DEFINITION

2-Wide Versus 4-Wide SIMD-FP
The key component of the new extension was
accelerating single precision floating-point computation,
which involved the choice of either 2-wide or 4-wide 32-
bit floating-point data parallel computations. This crucial
decision is discussed later in this paper. This choice
shaped key aspects of the new architecture.

An initial feasibility study of SIMD-FP in IA-32 done by
the development team indicated that a new
microarchitecture could perform 4-wide single precision
floating-point operations per clock period, without
adding significant complexity or cost to die size. The
basic approach was to double-cycle existing 64-bit
hardware. The performance benefit of selecting this
format was to deliver a realized 1.5 - 2x (or greater)
speedup for the geometry pipeline, which supports much
greater levels of visual realism.

Another solution for achieving similar gains would be
via a superscalar design, by adding execution units.
Although this approach may be simpler for a
programmer, it incurs a much larger area and timing cost,
by increasing busses, register file ports, execution
hardware, and scheduling complexity.

Implementing a datapath greater than 128 bits was also
not viewed as a reasonable option, again due to
balancing cost against performance benefits. Busses
and registers were already 80 bits wide due to x87-FP;
128 bits represented only an incremental increase,
whereas 256 bits would have a much larger impact. As

Intel Technology Journal Q2, 1999

The Internet Streaming SIMD Extensions 2

mentioned, 128-bit execution is actually performed in 64-
bit chunks and yet the peak rate of one 128-bit operation
can be sustained if, as commonly occurs, instructions
alternate between different execution units (i.e., add-
multiply-add-multiply). Implementing a 256-bit wide
SIMD unit would require doubling the width of execution
units in order to still attain peak throughput in the same
manner. Increasing SIMD-width beyond 128 bits would
also require an increase in memory bandwidth in order to
feed the wider execution units. There is a cost to this
additional bandwidth, which may not follow Moore’s
Law progression, required by other application areas.
Also, since the primary focus for the extensions has
been on 3D geometry, greater than 4-wide parallelism
may offer diminishing returns, since triangular strip
lengths in current desktop 3D applications tend to be
fairly small (i.e., on the order of 20 vertices per strip).

Related to this decision were the following two issues:

• state space: overlap or new registers

• Pentium® III processor implementation

State Space
There were two choices: overlap the new state with the
MMX/x87 FP registers or add a new state. One big
advantage of the first choice is that it would not require
any operating system (OS) changes, just like the
MMXTM technology extension. However, there were
many disadvantages with this choice. First, we could
only implement four 4-wide 128-bit registers in the
existing space since we only had eight 80-bit registers, or
we could go to a 2-wide format, thus sacrificing potential
performance gains. Second, we would be forced to share
the state with MMX registers, which was an issue for the
already register-starved IA-32 architecture. The
complexity of adding another set of overlapped state was
overwhelming.

Adding a new state had the advantage of reducing
implementation complexity and easing programming
model issues. SIMD-FP and MMX or x87 instructions
can be used concurrently. This clearly eased OS Vendor
and ISV concerns. The disadvantage of the second
approach was that Intel had a dependency of not being
able to use new features without OS support. However,
Intel worked around this by implementing the new state
store and restore instructions in an earlier
implementation. Thus by the time the Pentium III
processor was released, the new OS's supported this
new state.

To ensure no unusual corner cases, all of the new state
was separated from the x87-FP state. Figure 1 shows the
new 128-bit registers. There is a new control/status

register MXCSR which is used to mask/unmask
numerical exception handling, to set rounding modes, to
set flush-to-zero mode, and to view status flags.

Internet SSE
(Scalar/packed SIMD-SP)

128

XMM0

XMM7

...

80

64

FP0 or MM0

 FP7 or MM7

...

MMX/x87
Registers(64-bit Integer, x87)

data)

Figure 1: The Internet SSE 128-bit registers

There is also a new interrupt vector to handle SIMD-FP
numeric exceptions.

Pentium® III Processor Implementation
The Pentium III processor implements each 4-wide
computational macro-instruction as two 64-bit micro-
instructions. However, since the processor is a
superscalar implementation (i.e., two execution ports), a
full 4-wide SIMD operation can also be done every clock
cycle (assuming instructions alternate between execution
units). With this approach, applications can
theoretically achieve a full 4x performance gain; 2x is the
realized gain on real applications in part because of
micro-instruction pressure within the microarchitecture.
A future 128-bit implementation can deliver a higher level
of performance scaling.

Scalar Versus Packed Operations
We considered the inclusion of scalar floating
instructions in the new SIMD-FP mode because
applications often require both scalar and packed
operations. It is possible to use x87-FP for scalar and the
new registers just for SIMD-FP. However, this approach
results in a cumbersome programming paradigm, since
x87-FP is a stack register model while the SIMD-FP is a
flat register model. Passing parameters would either
require more conversion instructions or would be
through memory, as currently implemented.
Additionally, the results generated via x87-FP operations
might differ from SIMD-FP results, due to differences
between how computation is performed in the two
paradigms (32 bit in SIMD-FP versus 80 bit in x87 FP).

Intel Technology Journal Q2, 1999

The Internet Streaming SIMD Extensions 3

Scalar implementation on the Pentium III processor was
problematic because of its emulation of 4-wide SIMD-FP.
Using packed instructions for scalar operations would
impact performance since both 64-bit micro-instructions
would still be executed. Also, it is particularly costly in
terms of execution time for long latency de-pipelined
packed operations, such as divide and square-root.
Lastly, software would need to ensure that no faults
occur in the unused slots. To address this issue, explicit
scalar instructions were defined, which for the Pentium
III processor execute only a single micro-instruction.
The upper three components of the source register are
passed directly to the destination register when a scalar
operation is done; computation is performed only on the
lower component pair (Figure 4). Thus, the Pentium III
processor did not have to do any operation on the upper
half of the data type.

While masked (selective) operations on SIMD-FP
registers were another option, we decided against this on
the grounds of design complexity and lack of compelling
application requirements.

Improving Concurrency
High SIMD performance can only be achieved by
balancing memory bandwidth and execution. Multimedia
workloads such as 3D graphics and video are streaming
applications that have situations where data are largely
read once and then discarded. The caches local
processors are not large enough to contain the entire
data sets of these applications, which results in the
execution units being stalled while data are fetched from
memory. The out of order and speculative pipeline
cannot hide the latency of these accesses without
significantly increasing the hardware resources, which
impacts die size and cost. A good alternative is to let the
programmer overlap execution of one piece of data with
the fetch of the next piece so that the latency of the fetch
is hidden by the execution time. This works best if the
algorithms have a compute-intensive component, such
as 3D graphics, where scenes have multiple light
sources. Thus we created cacheability hints that allow a
programmer to prefetch the next data closer to the
processor without touching the architectural state.

For these applications, programmers are the best judges
of which data are going to be streaming and which are
going to be reused. For example, in 3D graphics, the
programmer wants code and transformation matrices to
remain in the cache while the input display list and the
output command list need to be streamed. This requires
some primitives that allow a programmer to manage
caching of the data and minimize cache pollution. Thus,
the prefetching hints were expanded to let the

programmer specify the cache hierarchy level where the
prefetched data are going to be placed. Complementary
instructions were added to perform non-allocating
(streaming) stores so that needed data in the cache does
not get replaced, and these stores do not generate
unnecessary write-allocation.

The prefetch instructions do not update any
architectural state. To some degree, the implementation
is specific to each processor. The programmer may have
to tune his/her application for each implementation to
take full advantage of these instructions. However, it is
a design goal to ensure that there are no performance
glass jaws between implementations. These instructions
merely provide a hint to the hardware: they do not
generate exceptions or faults.

Figure 2 illustrates how the various features of the new
extensions work together to improve concurrency and
reduce total execution time. Prior to Internet Streaming
SIMD Extensions, read miss latency and execution and
subsequent store miss latency comprised total execution
in a serial fashion. The extensions let read miss latency
overlap execution via the use of prefetching, and they
allowed store miss latency to be reduced and overlap
execution via streaming stores. Moreover, SIMD-FP
reduces the amount of time spent on execution.

Read Latency Execution Write Latency

Read Latency

Execution

Write Latency

Prior to Internet SSE

With Internet SSE

Prefetch

SIMD-FP

Streaming Stores

Figure 2: Increasing performance via concurrency

Data Alignment
Hardware support to efficiently handle memory accesses
that are not aligned to a 16-byte (128-bit) boundary is
expensive in both area and timing. Two options were
explored: either detect and fix these cases using a micro-
code assist, or generate a general protection fault. ISV
feedback was unanimous in their desire to avoid the first
option, which can silently introduce a degradation in
performance that is difficult to track down. Instead, the
ISVs preferred being alerted to misalignment via an
explicit fault. As a result, all computation instructions
that use a memory operand must be 16-byte aligned.
Unaligned load and store instructions are also provided
for cases where alignment cannot be guaranteed (i.e.,

Intel Technology Journal Q2, 1999

The Internet Streaming SIMD Extensions 4

video). These instructions are intended to operate as
efficiently or more efficiently than would be the case if
explicit code sequences were used to achieve alignment.

Flush-To-Zero and IEEE Modes
We decided to offer two modes of FP arithmetic: IEEE
compliance for applications that need exact single-
precision computation and a Flush-To-Zero (FTZ) mode
for real-time applications. Full IEEE support ensures
greater future applicability of the extensions for
applications that require full precision and portability,
while FTZ mode along with fast hardware support for
masked exceptions enables high-performance execution.
FTZ mode returns a zero result in an underflow situation
during computation if the exceptions are masked. Most
real-time 3D applications would use the FTZ mode since
they are not sensitive to a slight loss in precision,
especially if they can get faster execution by using the
FTZ mode.

INSTRUCTION SET ARCHITECTURE
The Internet SSE supplies a rich set of instructions
(shown in Table 1) that operate on either all, or the least
significant pairs, of packed data operands in parallel.
The packed instructions (with PS suffix) operate on a pair
of operands as shown in Figure 3 while scalar
instructions (with SS suffix) always operate on the least
significant pair of the two operands as shown in Figure
4.

X 1 (S P) X2 (SP) X 3 (S P) X 4 (S P)

Y 1 (S P) Y2 (SP) Y 3 (S P) Y 4 (S P)

X 1 o p Y 1 (S P) X2 op Y2 (SP) X 3 o p Y 3 (S P) X4 op Y4 (SP)

O PO PO PO P

Src1/Dest

S r c 2

Src1/Dest

Figure 3: Packed operation

Figure 4: Scalar operation

Packed
Single

Scalar
Single

Packed
Integer

Arithmetic ADD, SUB, MUL, DIV, MAX,
MIN, RCP, RSQRT, SQRT

X X

Logical AND, ANDN, OR, XOR X

Comparison CMP, MAX, MIN X X

COMI, UCOMI X

Data
Movement

MOV (load/store aligned), X

MOVUPS
(load/store unaligned),
MOVLPS, MOVLHPS,
MOVHPS, MOVHLPS

(load/store), MOVMSKPS

X

MOVSS (load/store) X

Shuffle SHUFPS, UNPCKHPS,
UNPCKLPS

X

Conversions CVTSS2SI, CVTTSS2SI,
CVTSI2SS

X

CVTPI2PS, CVTPS2PI,
CVTTPS2PI

X

State FXSAVE,
FXRSTOR, STMXCSR,

LDMXCSR

X

MMXTM Tech
Enhancements

PINSRW, PEXTRW,
PMULHU, PSHUFW,

PMOVMSKB, PSAD, PAVG,
PMIN, PMAX

X

Streaming/
Prefetching

MASKMOVQ,
MOVNTQ (aligned store)

X

MOVTPS (aligned store) X

PREFETCH

SFENCE

Table 1: Internet SSE ISA

Basic Building Blocks
These include instructions such as load, store, addition,
multiplication, subtraction, division, and square root as
well as instructions to access the new Control/Status
Register and Save/Restore new state.

Cacheability Hints
As mentioned earlier, achieving high performance for
multimedia applications requires some degree of overlap
between the execution of a block of data and the fetch of
the next block of data. The PREFETCH instruction was
added to the new extensions to let the programmer
control overlap in the application. This instruction also
allows control over data placement in the cache
hierarchy and further allows programmers to distinguish
between the locality of temporal (i.e., frequently used)
cached data and non-temporal (i.e., read and used once
before being discarded) data. There are four possible
prefetches currently defined with room for future
definitions. Note that these instructions can also be
used for non-SIMD applications.

Streaming store instructions, MOVNTPS (Packed Single
Precision FP) and MOVNTQ (Packed Integer) allow the
programmer to specify a write-combining (WC) memory
type on a per instruction basis. This is true even for
memory otherwise assigned a writeback (WB) memory
type via the Memory Type Range Register’s (MTRRs) or
Page Attribute Table (PAT). This allows the user to

X1 (SP) X2 (SP) X3 (SP) X4 (SP)

Y1 (SP) Y2 (SP) Y3 (SP) Y4 (SP)

X1 (SP) X2 (SP) X3 (SP) X4 op Y4 (SP)

OP

Src1/Dest

Src2

Src1/Dest

Intel Technology Journal Q2, 1999

The Internet Streaming SIMD Extensions 5

obtain all the benefits of a WC memory type (i.e., write-
combining, write-collapsing, uncacheable, non-write-
allocating) on a per-instruction granularity.

Fencing
In order to allow efficient software-controlled coherency,
a light-weight fence (SFENCE) instruction was also
included in the new extension; this instruction ensures
that all stores that precede the fence are observed on the
front-side bus before any subsequent stores are
completed. SFENCE is targeted for uses such as writing
commands from the processor to the graphics accelerator
or to ensure observability between a producer and
consumer where communication of data uses stores with
a WC memory-type semantic.

Comparison and Conditional Flow
The basic single precision FP comparison instruction
(CMP) is similar to existing MMX instruction variants
(PCMPEQ, PCMPGT) in that it produces a redundant
mask per float of all 1’s or all 0’s, depending upon the
result of the comparison. This approach allows the mask
to be used with subsequent logic operations (AND,
ANDN, OR, XOR) in order to perform conditional moves.
Additionally, four mask (most significant of each
component) bits can be moved to an integer register
using the MOVMSKPS/PMOVMSKB instructions.
These instructions simplify data-dependent branching,
such as the clip extent and front/back-face culling checks
in 3D geometry, and they address a common desire
registered by many ISVs.

Another important conditional usage model involves
finding the maximum or minimum between two values
(packed or scalar). While this can be done as just
described for conditional moves, the MAX/MIN and
PMIN/PMAX instructions perform this function in only
one instruction by directly using the carry-out from the
comparison subtraction to select which source to
forward as a result. Within 3D geometry and
rasterization, color clamping is an example that benefits
from the use of MINPS/PMIN. Also, a fundamental
component in many speech recognition engines is the
evaluation of a Hidden-Markov Model (HMM); this
function comprises upwards of 80% of execution time.
The PMIN instruction improves this kernel performance
by 33%, giving a 19% application gain.

To provide a complete set of comparisons for CMP, an 8-
bit immediate is used to encode eight basic comparison
predicates, EQ, LT, LE, UNORD, NEQ, NLT, and NLE.
Another four can be obtained by using these predicates
and swapping source operands. Using an immediate to
encode the predicate greatly reduces the number of

opcodes that are assigned to these comparison
operations.

Data Manipulation
SIMD computation gains are only realized if data can be
efficiently reorganized into an SIMD format. For
example, 3D geometry transformation with 4-wide SIMD-
FP format can be done per vertex or on four separate
vertex components, where a vertex has four components
(x, y, z, and w). The method of organizing 3D data
structures on a per vertex basis is called Array-of-
Structures (AOS) since the display list is an array of
individual vertices. Organizing the display list for an
ideal SIMD format is called Structure-of-Arrays (SOA)
since the structure contains separate x, y, z, and w
arrays. An AOS approach is less efficient for two
reasons: 1) not all SIMD computation slots may be
utilized (i.e., the w vertex component may not be
needed); 2) horizontal reduction operations (i.e., dot
products such as a * x + b * y + c * z) are typically
needed, which use multiple SIMD slots to generate only
one unique scalar result. This is exacerbated if other
long-latency operations (i.e., square-root and division)
are used in conjunction with the horizontal reduction.

Often, it may not be possible to statically reorganize data
if for example, in 3D geometry, either a standard API or
the rasterization graphics controller do not directly
support SOA. In order to efficiently transpose data into
the ideal SOA format or vice versa, the new extension
supports a number of data manipulation instructions,
including the following:

• UNPCKHPS/UNPCKLPS. These interleave floats
from the high/low part of a register or memory
operand, similar to the MMX unpack instructions.

• SHUFPS/PSHUFW. These support swizzling of data
from source operands, including such operations as
broadcast, rotate, swap, and reverse.

• MOVHPS/MOVLPS. When used in conjunction with
SHUFPS, these 64-bit load/store instructions enable
efficient gathering of four individual vertex
components from four non-adjacent AOS data
structures into a single 128-bit register (SOA); these
instructions can be similarly used to de-swizzle SOA
to AOS.

• PINSRW/PEXTRW. These support scatter and
gather operations on words within an MMX register
from memory or the 32-bit integer registers.
Examples include gathering texture components and
supporting SIMD lookup tables. The PINSRW
instruction also gives a performance gain of 22% for
the Hidden-Markov Model (HMM) based speech

Intel Technology Journal Q2, 1999

The Internet Streaming SIMD Extensions 6

recognition kernel and a 13% gain at the application
level.

A number of experiments were run using various 3D
transform/lighting building blocks as well as a more
complete geometry pipeline. Of the approaches
described for utilizing SIMD computation, the static SOA
case achieves the best performance. Computing directly
in AOS format achieves only half of the static SOA
throughput for a geometry benchmark that implements a
full lighting case (ambient, diffuse, specular) due to the
reasons listed above. Dynamic reorganization from AOS
to SOA and vice versa using a combination of
SHUFPS/MOVHPS/MOVLSP instructions incurs a 20%-
25% overhead compared to static SOA, which is a 6%-
10% better performance than is possible with other
methods. Note this overhead is constant and diminishes
as more SIMD computation is performed (e.g., with
additional lights). Computing directly in AOS may
appear to provide a simpler programming model since
most APIs handle display lists on a per vertex basis. In
order to improve performance for the horizontal
operations that can result from computing in an AOS
format, several additional instructions,
MOVLHPS/MOVHLPS, were added to the extensions.
These instructions support emulating a full range of
horizontal operations, including addition, subtraction,
and logic operations. However, better performance can
generally be achieved by computing in an SOA form, and
the transpose code used with dynamic reorganization
can be effectively hidden behind compiler pragmas or
intrinsics.

Conversions
A large number of conversion operations are possible,
including integer to/from FP, scalar and packed, source
and destination of either register or memory, rounding
mode contained implicitly within the instruction, and
integer operand sizes (byte, word, double-word). A full
set of all permutations is impractical and unnecessary
since not all possible cases are common, and many
others can be emulated by a sequence of instructions.
The factors that motivated the final definition include the
following:

• Basic operations between integer and FP are
required with both SMID-FP and MMXTM

technology for packed data (CVTPI2PS, CVTPS2PI,
CVTTPS2PI) and Scalar-FP and IA-32 Integer for
scalar data (CVTSS2SI, CVTTSS2SI, CVTSI2SS).

• Destination is a register, since, if needed, the result
can be explicitly moved to memory using a store.

• CVTTPS2PI/CVTTSS2SI implicitly encode
truncation rounding to eliminate the common
serialization performance penalty of changing the
control register rounding mode when converting FP
to integer.

• Internet SSEs support only conversions to/from
double-words. Existing MMX pack and unpack
instructions can be used to efficiently translate from
double-words to/from words and bytes.

Reciprocal and Reciprocal Square Root
A basic building block operation in geometry involves
computing divisions and square roots. For instance,
transformation often involves dividing each x, y, z
coordinate by the W perspective coordinate. Similarly,
specular lighting contains a power function, which is
often emulated using an approximation function that
requires a division. Also, normalization is another
common geometry operation, which requires the
computation of 1/square-root. In order to optimize these
cases, the new extensions introduce two approximation
instructions: RCP and RSQRT. These instructions are
implemented via hardware lookup tables and are
inherently less precise (12 bits of mantissa) than the full
IEEE-compliant DIV and SQRT (24 bits of mantissa).
However, these instructions have the advantage of
being much faster than the full precision versions.
When greater precision is needed, the approximation
instructions can be used with a single Newton-Raphson
(N-R) iteration to achieve almost the same precision as
the IEEE instructions (~22 bits of mantissa). This N-R
iteration for the reciprocal operation involves two
multiplies and a subtraction, so the overall latency and
especially the throughput are lower than the IEEE
instructions. For a basic geometry pipeline, these
instructions can improve overall performance on the
order of 15%.

Unsigned Multiply, Byte Mask Write
Discussions with the D3D team, among others, identified
the lack of an unsigned MMX multiply operation as the
reason for inefficiency in 3D rasterization performance.
This function inherently works with unsigned pixel data,
and the existing PMULHW instruction operates only on
signed data. Providing an unsigned PMULHUW
eliminates fix-up overhead required in using the signed
version, creating an application-level performance gain
of 8%-10%.

The byte-masked write instruction, MASKMOVQ, is
aimed at specific rasterization and image processing
applications. The instruction supports several beneficial
features:

Intel Technology Journal Q2, 1999

The Internet Streaming SIMD Extensions 7

• A byte mask, either generated by a PCMPEQ/
PCMPGT instruction or loaded from memory, is used
to selectively write bytes in the other source
operand directly to memory. This mask is effectively
transferred in a parallel fashion along with the data
throughout the memory subsystem (i.e., write-
combining buffers, bus queue entries, and bus byte
enables). Alternative implementations with
conditional moves or branches did not deliver as
much of a performance gain because they introduce
significantly more micro-operations into the
execution pipeline as well as possible miss-
predictions for the branch approach.

• Similar to other non-temporal streaming store
cacheability instructions, MASKMOVQ implements
a WC memory semantic, which eliminates
unnecessary read-for-ownership bandwidth and
disturbance of temporal cached data, since the
cache is bypassed altogether.

Packed Average
Motion compensation is a key component of the MPEG-
2 decode pipeline. It is the process of reconstituting
each frame of the output picture stream by interpolating
between key frames. This interpolation primarily
consists of averaging operations between pixels from
different macroblocks where a macroblock is a 16x16 pixel
unit. The MPEG-2 specification requires that the result
of the averaging operation be rounded to the nearest
integer; values precisely at half way should be rounded
away from zero. This is equivalent to operations with 9-
bit precision. MMX instructions provide either 8 or 16
bits of accuracy, and it is desirable to use the 8-bit
versions to increase the data parallelism. The PAVG
instruction facilitates the use of 8-bit instructions by
performing a 9-bit accurate averaging operation. The
word version PAVGW provides higher accuracy for
applications that accumulate a result using several
computation instructions.

Currently, Motion Compensation of a DVD player on a
Pentium® II processor-based system (266MHz) is evenly
balanced between memory latency and execution. The
PAVG instruction enabled a 25% kernel speedup.
Instrumenting the motion compensation code in the
player with the PAVG instruction provided a 4%-6%
speedup at the application level (depending on the video
clip chosen). The application level gain can increase to
10% for higher resolution HDTV digital television
formats.

Packed Sum of Absolute Differences
Although the video encode pipeline is quite complex and
involves many stages, the bulk of the execution is spent
in the motion-estimation function (40%-70% at present).
This stage compares a sub-block of the current frame
with those in the same neighborhood of the previous
and next frames in order to find the best match.
Consequently, only a vector representing the position of
this match, and the residual difference sub-block, needs
to be included in the compressed output stream as
opposed to the entire original sub-block.

There are two common comparison metrics that are used
in motion-estimation: sum-of-square-differences (SSD)
and sum-of-absolute-differences (SAD). Both have
benefits and limitations in specific cases, although
overall they are roughly comparable metrics in
determining the quality of a match.

There is a factoring technique that allows SSD to be
implemented using an unsigned multiply-accumulate
(byte to word) operation; however, the accumulation
range requires 24 bits of precision, which does not map
neatly to a general purpose data-type. Instead, the
PSADBW instruction retains byte-level parallelism of
execution, working on 8 bytes at a time, and the
accumulation does not exceed a 16-bit word. This single
instruction replaces on the order of seven MMX
instructions in the motion-estimation inner loop, largely
because MMX technology does not support unsigned
byte operations, which need to be emulated by zero
extension to words and the use of word operations.
Consequently, PSADBW has been found to increase
motion-estimation performance by a factor of two.

CONCLUSION
The Internet Streaming SIMD Extensions enable an
exciting new level of visual computing on the volume PC
platform. The single precision SIMD-FP ISA will deliver
the desired performance goal of 2x an increase in FP
performance with the Pentium® III processor. This
speedup will significantly improve the image quality for
real-time 3D applications, and the Pentium III processor
systems will enable real-time rendering of complex
worlds. This instruction set represents a significant step
forward for Intel in improving the performance of
visualization on PC platforms.

The addition of SIMD-integer instructions for video will
enable real-time video encoding in the MPEG-1 format, as
well as the MPEG-2 format, with some trade-offs in visual
quality and compression rates. The new extensions will
also deliver DVD decode at 30 frames per second within
the Pentium III processor timeframe, with good headroom

Intel Technology Journal Q2, 1999

The Internet Streaming SIMD Extensions 8

for multitasking other processes. Increasing Pentium III
processor frequency will subsequently enable 1M-pixel
HDTV format decode. Initially this will require hardware
motion compensation support, but with an incremental
increase in processor frequency, this decode can be
handled entirely in software. These instructions will also
enable home video editing similar to that currently
available for photographic editing.

A reduction in speech recognition error rates and an
increase in dictionary size can be achieved with the use
of the prefetching options and the new packed integer
instructions. Concurrency of memory accesses and
execution have also been enhanced across the range of
multimedia applications via the new cacheability
instructions.

The definition team delivered the new ISA in record time,
working diligently to review all the requested
instructions and analyzing the potential improvement in
application performance. Intense scrutiny was applied to
the definition by the three implementation teams to
justify inclusion of instructions. A range of constraints
drove the final definition, including performance
benefits, die size, timing impact, and code portability.
The Internet SSE implementation cost in the Pentium III
processor was just around 10% of the die size. This is
similar to the cost of including MMXTM technology in
the Pentium and Pentium® II processors.

ACKNOWLEDGMENTS
We acknowledge the contribution of the entire definition
team, in particular Srinivas Chennupaty, Patrice Roussel,

Vladimir Pentkovski, and Mohammad Abdallah. We also
acknowledge the adoption of IA-64 definition and
semantics for a number of instructions to maintain
consistency. We also acknowledge the guidance of
Glenn Hinton, Bob Colwell, and Fred Pollack during the
definition period.

REFERENCES
[1] Alex Peleg, et al, “MMXTM Technology Extension to

the Intel® Architecture” DTTC Proceedings 1996
(Internal Intel Document).

[2] Millind Mittal, et al, “MMX™ Technology
Architecture Overview,” Intel Technology Journal, Q3,
1997,
http://developer.intel.com/technology/itj/q31997.htm.

AUTHORS’ BIOGRAPHIES
Shreekant (Ticky) Thakkar is a principal processor
architect in the Microprocessor Products Group. He led
the Internet Streaming SIMD Extension development for
the Pentium® III processor. Prior to that, Shreekant was
responsible for the development of the Pentium® Pro
multi-processor. His e-mail is ticky.thakkar@intel.com.

Tom Huff is an architect in the Microprocessor Product
Group in Oregon. He was one of the architects in the
core team that defined the Internet Streaming SIMD
Extensions for the IA-32 architecture. He is currently
working on multimedia performance analysis for the
Willamette processor project. He holds M.S. and Ph.D.
degrees in electrical engineering from the University of
Michigan. His email is tom.huff@intel.com.

