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Abstract

Flynn classifitrl high speed (parallel) wmputers into four

categories. Of these, the single instruction stream, multiple

data stream (SIMD) processor array machines have become

very popular in pmcticd pamllel processing. The commer-

cially available processor array machines display important

architrxtuml variety, while belonging to SIMD cotegory of

machines. In this paper, we further categorize the SIMD

class of machines on the basis of processor autonomy of the

machines, which is the capability of the individual process-

ing elements (PEs) to act autonomously in some significant

way. For each autonomy class, we provide examples and il-

lustmte some of its important algorithmic features. We also

discuss how each type of autonomy can be simulated on ma-

chines without it. We study the addressing autonomous class

of machines in greater detail by discussing three algorithms

on machines with and without that type of autonomy. A dis-

cussion on how processor autonomy appears in algorithms in

the litemtum and what impact they can have in the future

machines also is provided.

1 Introduction

Flynn classified high speed (parallel) computers into the

following four categories based on how the individual proces-

sors receive instructions and data: Single instruction stream

single data stream (SISD), single instruction stream multi-

ple data stream (SIMD), multiple instruction stream single

data stream (MISD), and multiple instruction stream mul-

tiple data stream (MIMD) [11]. Of these, the SISD category

consists of the conventional serial processors. Pipelined pro-

cessors, where each processor performs a part of the compu-

tation on the same data stream, belong to the MISD cate-

gory. Parallel processors belong to the SIMD or the MIMD
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category based on the absence/presence of private instruc-

tion streams for each processor.

We restrict the focus to SIMD machines in this paper.

The architecture of a typical SIMD machine is shown in

Figure 1. The common instruction stream is issued by the

controller to all processing elements (PEs) through an in-

struction bus. This bus is also used for broadcasting scalar

values to the PEs. The PEs have private memories and in-

ternal registere. Operands and results of all arithmetic and

logical operations reside in the private memory or an in-

ternal register of each PE. Communications are performed

through the interconnection network using the communica-

tion instructions. The eddress of memory operands is typ-

ically the same on all PEs and is usually supplied by the

controller.

Processor array machines belonging to the SIMD cate-

gory are very popular in practical parallel processing today.

Many such machines are available commercially today, such

as the Connection Machine CM-2 [I], and the MasPar MP-

1 [4]. These machines exhibit a number of variations of

the SIMD paradigm described above, differing from one an-

other in important aspects of the model. In this paper, we

subcategorizc the SIMD model on the basis of prvcessor au-

tonomy. Processor autonomy of a machine is the capability

of its individual processing elements to act independently in

a significant way. The level of autonomy has its impact on

the algorithms that can be implemented efficiently on the

machine.

We describe the aspects in which the autonomy of indi-

vidual PEs differ and define the autonomy categories in Sec-

tion 2. A detailed study of the individual autonomy classes

and their impact on the architectures of the machine are

given in the next section. A detailed discussion on address-

ing autonomous class appears in Section 4. Section 5 doc-

uments how processor autonomy had been used in different

forms in the literature.

2 Processor autonomy

Processor autonomy in SIMD architectures has been

studied a little in the psst. Maresca and Li discuss processor
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Figure 1: Architecture of a generic SIMD processor ar-

ray machine

autonomies and the implementation of one type of auton-

omy in their polymorphic-torus architecture [18]. Fountain

discusses the role of local autonomy in processor arrays in

his book [12] and in a later paper [14]. In another paper,

Duff and Fountain identified autonomies ranging from pure

SIMD machines to full MIMD machine [10].

There are three architectural aspects that form the basis

of our study on processor autonomies on SIMD machines:

the selection of the instruction to execute in every cycle,

the selection of the operands for an instruction, and the se-

lection of the partner (the source or destination PE) in a

communication operation. These architectural aspects are

not exclusive of one another; PEs of different machhes can

have different levels of freedom of selection in one or more

of these aspects. We categorize the SIMD model into six

subcategories based on the level and kind of autonomy the

individual PEs possess in these aspects. Our categorization

is motivated by Fountain’s scheme, but differ from it impor-

tantly.

We define the folIowing six subcategories of SIMD pro-

cessor arrays:

1.

2<

3.

4.

5.

6.

Pure SIMD: Machh-tes with no local control.

Activit~ control: Machines that can participate in a

computation step or abstain from it based on a local

condition. This is a type of control on instruction se

lection.

Connection autonom~ Machines that can locally se-

lect one among the immediate neighbors as the source

or destination of a one-step communication operation.

This is a type of control on partner selection in direct

communication steps.

Communication autonom~ Machines that can use a

local variable as the source or destination address in a

general (multi-step) communication operation. This is

a type of control on partner selection in general com-

munication steps.

Addressing autonomy Machines that can use a local

variable as the address of an operand in a computation

step. This is a type of control on operand selection.

Opemtion autonom~ Machines that can locally select

one of a few operations for execution. Thw is a type of

control on instruction selection.

The pure SIMD category contains machines with no au-

tonomy. Machines belonging to it do not possess any other

kind of autonomy. The latter five autonomous categories are

technically independent of one another. However, activity

control is a part of every category in practice, except for the

first. Connection autonomy and communication autonomy

are related, the latter being a generalization of the former in

some sense. However, many practicaJ architectures without

connection autonomy do provide (virtual) communication

autonomy, but rarely the other way around. Addressing au-

tonomy and operation autonomy are independent of other

types of autonomy and can appear together with them.

In the next section, we describe each category in de-

tail. We illustrate each category using the following con-

ventions: The processing elements are represented by small

circles. The shading of each PE denotes the operation it

executes; inactive PEs are represented by dotted outlines.

The operand selection is illustrated by shading a particular

cell of an iconified memory array. The partner selection in a

communication operation is illustrated by arrows from the

source to the destination.

3 The autonomy classes in detail

We describe the salient features of each autonomy class

in this section. Wherever appropriate, we give a set of op-
erations that distinguish the autonomy class from others.

These are operation that can be performed efficiently with

that type of autonomy while being inefficient without it. We

also discuss, for each autonomy class, how its capabilities can

be simulated on machines without that type of autonomy.

3.1 Pure SIMD class

The category of pure SIMD architectures is the most re-

stricted category of SIMD machines. The individual pro-

cessing elements have no local control over any parameter

of the execution on pure SIMD machines. Computations are

uniform and regular over the processor array. Figure 2 shows

the operation selection, the operand selection, and the part-

ner selection in pure SIMD architectures. Typical examples

of th~ class are systolic processor arrays designed for specific

functions where each cell performs the same computation

and communication during every cycle. Examples include

the systolic convolver and the systolic matrix multiplier [30],

Even simple conditional constructs such as if-then-eke can-

not be implemented efficiently on this category of machines.

For instance, consider the following simple statement to be

executed independently on each PE:

Program Conditional

if (A)

then a = b

else c=d

End Conditional

128



(a)

II@
II@

(c)

(-0

II@
Figure 2: Pure SIMD architectures. (a) Operations are.,-
uniform (b) Communications are regular (c) Addresses

are the same in all PEs

On pure SIMD architectures, all PEs have to be active at

all times. Thus, a will have to be assigned to an expression

that evaluates to b if the condition A is true and to a if it

is false. To do thw, we need to generate an A-mask, equal

in length to a and b, that cent sins all 1‘s if A is true and all

O’s otherwise. The same applies to the assignment involving

c and d. Thus, the statement above can be coded as

Program SIMD-Conditional

(* Extend condition to a mask of all 1’s or O’s *)

A-mask = A

A-bar = - A-mask (* The inverted mask*)

a = (A-mask AND b) OR (A-bar AND a)

c = (A-mask ANI) c) OR (A-bar AND d)

End SIMD- Conditional

This requires at least eight expression evaluations and four

assignments.

3.2 Activity control

In this category of machines, each processing element can

choose to take part in a computation step or abstain from

it, based on the value of a bit stored locally. Figure 3 il-

lustrates how architectures with activity control differ from

pure SIMD machhes in the selection of instructions. ThB
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Figure 3: Activity control lets individual PEs drop out

of each instruction

gives the architecture the power to implement i~-then-eke

efficiently. For example, the if-then-else statement given

above can be implemented by deactivating PEs where A is

false to execute the then part and deactivating PEs where A

is true to execute the else part, requiring only one expression

evaluation ;and two zwsignments. Activity control is usually

implemented using an activity or context register which is

used to gate all operations that modify the memory or in-

ternal registers. It is interesting to note that a large number

of common data parallel algorithms exploit only this level

of autonom(y even on more powerful machines. Examples

include matrix multiplication [30], image convolution [16],

and connected component labeling [22]. Most general pur-

pose processor arrays possess activity control. Examples of

machines with activity control as the highest form of auton-

omy include ICL DAP [25] and MPP [2].

Algorithms that require activity control can be imple-

mented on architectures without it by transforming each

conditional operation into a number of complex expressions

involving lcjgical ANDs and ORS, as in the if-then-eke exam-

ple above. Implementing loops that may reach their termi-

nating conditions at different instances on different process-

ing elements is more tricky. This will require conditioning

the results of every statement inside the loop using maaks

derived from its termination condition like in the if-then-

ehe example above, to ensure that the values do not change

on PEs that have reached the termination condition. Nested

loops will require nested conditioning, resulting in inefficient

implementiltions.

3.3 Connection

1
.

*

Figure 4: (Connection

hors

autonomy
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?}

e
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autonomy permits different neigh-
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In a connection autonomous machine, each PE can se-

lect a neighbor among the immediate neighbors as the part-

ner (source or destination) of a communication step. This

is important for algorithms that need to establish vari-

able connections with neighbors on the basis of a local

condition. Connection autonomy can be implemented by

routing the inputs from the neighbors to each processor

through a multiplexer that is controlled locally. Figure 4

illustrates the freedom to select a communication partner

provided by connection autonomy. Examples of machines

in this category include the Polymorphic-Torus architec-

ture [17], the Reconfigurable Processor Array (RPA) [26],

the CAAPP layer of the Image Understanding Architecture

(IUA) [31], and CLIP7 [12, 13]. Operations on the con-

nected components of an image or a graph can take ad-

vantage of this level of autonomy efficiently by linking each

node to its component-neighbor, which could differ from

node to node. Maresca and Li have compared the complex-

ity of tree-embedding on meshes, hypercubes, tree architec-

tures, and the polymorphic-torus [18]. The mesh connected

polymorphic-torus was found to have lower propagation de-

lay between two nodes of the embedding than even hyper-

cubes due to its connection autonomy.

Algorithms that require connection autonomy can be im-

plemented on architectures without it by cycling through

the distinct neighbors sequentially for each communication

step, incurring a worst case slowdown by a factor equal to

the maximum number of neighbors of any PE, i.e., the max-

imum degree of the interconnection graph.

3.4 Communication autonomy

Figure 5: Communication autonomy allows general

communications

In a communication autonomous machine, the address of
the source/destination in a general communication opera-

tion is specified in each PE by a local variable. Connection

autonomy and communication autonomy differ only in the

scale and the range of the communications they refer to.

Connection autonomy is the freedom to choose locally one

of the few immediate neighbors; communication autonomy

is the independence to select locally one of the many PEs

that are reachable from the given one in a general com-

munication operation. Figure 5 shows a general communi-

cation pattern possible on communication autonomous ar-

chitectures. Without communication autonomy, each PE

has to use the same rule to select the partner of a long-

distance communication operation, such as: Send to the PE

10 locations to the left or send to the PE that differs in the

7th bit. A general purpose routing mechanism is necessary

to implement communication autonomy on all interconnec-

tion topologies except complete graphs (where communica-

tion autonomy is synonymous with connection autonomy).

Thus, the autonomy is usually a virtual one and the time

for a general communication operation may depend on the

particular pattern of communication. Communication au-

tonomy is an important algorithmic concept nevertheless.

Hence, we find even machines with no connection autonomy

possessing communication autonomy, though the latter ap

pears to be a generalization of the former. Richer physical

interconnectivity, however, results in an efficient implemen-

tation of communication autonomy. Examples of machines

with communication autonomy include the Connection Ma-

chine CM-2 [1] and the MasPar MP- 1 [4]. Communication

autonomy enables the machines to implement general graph

algorithms efficiently. Graphs with irregular structures can

be processed efficiently only on machines with communica-

tion autonomy.

Algorithms that require communication autonomy can

be implemented on architectures that lack it by serializing

the communication for each combination of distinct source-

destination pairs. The slowdown will depend on the specific

pattern of communication.

3.5 Addressing autonomy

I!!/ II
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Figure 6: Addressing autonomy permits operands to be

locally selected

In th~ category of SIMD machines, local memory

operands can be addressed using variables residing in the

local memory, i.e., the PEs possess local indirect addressing

capability. Addressing autonomy is independent of connec-

tion or communication autonomies. Figure 6 illustrates how

each PE could address a different location in its local mem-

ory at the same time. Addressing autonomous machines re-

quire a hardware mechanism to modify the memory address

locally in every processor, thus making Figure 1 somewhat
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incorrect?. Examples of addressing autonomous machines

include MasPar MP-1 [4, 23] and CLIP7 [12].

Algorithms that require addressing autonomy can be im-

plemented on other architectures by cycling through the dis-

tinct memory addresses in each instruction cycle. The slow-

down will depend on the specific addressing pattern, with a

worst case slowdown of the order of rnin(Size of local mem-
ory, Number of PEs). Machines that cannot cycle through

a dynamic list of addresses suffer this slowdown in each in-

struction. We provide detailed examples demonstrating the

algorithmic advantage of addressing autonomous machines

over machines without addressing autonomy in Section 4.

3.6 Operation autonomy

Figure 7: Operation autonomy permits different opera-

tions on each PE

Operation autonomy refers to the (limited) independence

of individual PEs in chosing the operation to be performed.

The level of autonomy does not make the machines MIMD in

nature. Thus, the individual PEs are not equipped with full

program memories and instruction sequencers. Figure 7 il-

lustrates how the operation is locally selected in this class of

architectures. The controller issues the opcode for a generic

CISSS of instructions. Each PE selects an instance of the

class locally based on its internal state by, say, plugging the

last few bits of the instruction broadcast by the controller.

Thus, for example, the controller may issue a general logical

instruction; each PE can choose for itself from logical AND,

OR, EXOR, NAND, or NOR. In an idternate implementation,

the controller could broadcast multiple parallel instructions

on multiple instruction buses simultaneously in each cycle.

Each PE selects one of the instructions for execution based

on a local condition. These schemes can be considered to

be a generalization of activity control to a multiway choice

of (similar) operations based on each PE’s internal state.

The iWarp processor array is almost full MIMD capable and

can simulate operation autonomy efficiently [5]. The Multi-

SIMD (MSIMD) architecture of PASM [27] and the Single

Program Multiple Data (SPMD) mode of CM-5 [28] repre-

sent various levels of operation autonomy. The processing

elements of the BLITZEN massively parallel processor array

1Ken Batcher, however, questioned the applicability of the
name SIMD to architectures without local independent address-
ing as early as in 1986. He argued that architectures without
indirect addressing were SISD [3].

have a locally loadable register whose contents select one of

two complementary operations locally [7]. The normaliza-

tion of results in floating point operations can benefit from

operation autonomy as different processors can shift the

mantissa left or right depending on its magnitude and can

either increment the exponent or decrement it. Operation

autonomy is helpful in implementing multistage pipelined

algorithms with different regions of the array acting aa dif-

ferent stages, The additional power operation autonomy

needs to be explored further.

Operation autonomous algorithms can be implemented

on other architectures by cycling through all instructions

executed by ilt least one PE in each cycle. This slows down

the execution by a worst-case factor of the number of differ-

ent instructions the PEs can execute in an instruction cycle.

4 Addressing autonomy on SIMD ma-

chines

In this section, we explore the category of addressing au-

tonomous SIMD machines. It is feasible to implement ad-

dressing autcmomy on processor arrays under today’s tech-

nology as is demonstrated by MasPar machines. We provide

examples in t,hw section that demonstrates the added power

of addressing autonomy, both asymptotically and practi-

cally. We compare three operations on processor arrays with

and without addressing autonomy. In all three cases, the

machine is assumed to have activity control. Section 4.1 dis-

cusses independent merging, Section 4.2 discusses indepen-

dent sorting, and Section 4.3 discusses independent search-

ing. A short discussion on how addressing autonomy can

help virtual processing on SIMD processor array appears in

the next sect ion.

4.1 Independent merging

In this section, we address the following problem for an

SIMD processor array: How can we merge two sorted lists

in the local lmemory of a processing element of the array,

independent of the other PEs? Each PE operates on its

local memory and no communication takes place. Indepen-

dent merging is useful in the independent sorting operation

d~cussed later and in other operations that need large lists

to be stored and manipulated in each processing element.

Many parallel programs have portions in which independent

sequential processing is performed by each PE. Independent

merging is M important to this phase as merging is to se-

quential computing.

The sequential merging algorithm has a time complexity

linear in the length of the merged list. It serves as the bsais

of the independent merging algorithm and is sketched here.

The algorithm given below merges the lists of numbers A

and B of lengths 1 and m respectively, sorted in ascending

order, and stores the result in the list C.
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Program SequentiaLWerge

j :=1, k:=l

fori:=ltol+tndo

if (j < 1) AND (Au] < .B[k])

then C[i] := Au], j := j + 1

else C[i] := B[k], k := k + 1

End SequentialMerge

The above algorithm will perform independent merging

on addressing autonomous SIMD machines if j and k are
independent local pointers. The then part will be executed

on PEs that satisfy the condition and the else part on oth-

ers sequentially. Addressing autonomy enables the pointers

to advance independently in each PE. Thus, independent

merging can be performed in 0(/ + m), or linear, time on

SIMD machines with addressing autonomy.

On machines with no addressing autonomy, pointers must

advance in synchrony in all PEs. In the worst case, all ele-

ments of list A lie between elements i and i + 1 of list B in

some PE, for a different i. However, there are only m + 1

possible i values. Thus, independent merging is an O(J m),

or quadratic, time operation in the worst case on SIMD ma-

chines with no addressing autonomy, whatever be the al-

gorithm. This asymptotic performance can be achieved by

repeatedly inserting the elements of the shorter list into the

longer list, which is an easy algorithm to implement.

Independent Merge Timing (in seconds)

for 8-bit random integers

List Without Wkh Speedup

Length autonomy autonomy

32 0.02 0.01 2.0

64 0.09 0.01 9.0

128 0.34 0.02 17.0

256 II 1.11 I 0.05 II 22.2

512 4.21 0.12 35.1

6144 1133.59 I 1.02 I 1111.4

Table 1: Timing of independent merging with and with-

out addressing autonomy on a MasPar MP-1

The running times of independent merging with and

without addressing autonomy is shown in Table 1, on an

8K processor MasPar MP-1. Merging without address-

ing autonomy waa implemented by repeatedly inserting the

elements of one list into the other. Figure 8 plots the

‘I””wa””-’- /’i
-32 s12 1024 244s 40s6
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Figure 8: Speedup gained by addressing autonomy for

independent merging on a MasPar MP-1

speedup of the addressing autonomous algorithm over the

non-autonomous algorithm for various list lengths. As can

be observed from the table, addressing autonomy improves

the performance of independent merging by orders of mag-

nit ude.

4.2 Independent sorting

In this section, we study the problem of independent sort-

ing on an SIMD machine. The problem is to sort lists of

numbers stored in the local memory of each PE indepen-

dently in each processor. No communication takes place

in th~ operation. Independent sorting is an important op

eration in the computation of rank based local parameters

in image processing such sa median and rank order filters.

Whfle sorting a large list using a processor array, the data

needs to be partitioned among the PEs. The sublists are

first sorted within each PE. These sorted partitions are later

merged across all PEs to yield the large sorted list. The first

step of sorting within each PE is an independent sorting op-

eration.

On an addressing autonomous SIMD machine, a list of

length n can be sor~ed in O(n log n) time using either the

heapsort idgorithm or the mergesort algorithm. A bottom

up mergesort algorithm is presented below to sort the list A

containing n elements.

Program MergeSort

RunSize := 1

while (RunSize < n/2) do

for i := 1 to n/RunSize step 2 do

MergeLists(A[(i - 1) * RunSize],

Ah * RunSize], RunSize)

RunSize = 2 * RunSize

End MergeSod
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Without addressing autonomy, each merge is quadratic

in the length of the lists. The running time of the sorting

algorithm then becomes ~ 1 + ~22 + :42 + . . . + 2(~)2 =

f(l+2+4+8+... + n) = *n(2n – 1) = 0(n2). Simple

sorting algorithms such as bubble sort and insertion sort also

have O(n2) running time on machines without addressing

autonomy. Bubble sort is easy to implement and is faster in

practice.

I Independent Sort Timing (in seconds)

for 8-bit random integers

List Bubble Merge Speedup

Length Sort Sort

32 0.01 0.02 0.5

64 0.03 0.04 0.8

128 0.13 0.12 1.1

I 1536 !! 12.01 I 1.81 II 6.6 I

1 8192 310.73 8.61 36.1

Table 2: Running times of different independent sorting

algorithms on a MasPar MP- 1

3S t Udng ●ddr autonomy — A

-32 S121024 M 40% 8192
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Figure 9: Speedup gained by addressing autonomy for

independent sorting on an MP-1

The running times of independent sorting with and with-

out addressing autonomy is shown in Table 2, on an 8K

processor MasPar MP-1. Figure 9 plots the speedup of the

addressing autonomous algorithm over the non-autonomous

algorithm for different list lengths. It can be observed that

addressing autonomy greatly improves the performance of

independent sorting. Even though merging is a step in the

algorithm, the performance of sorting is less spectacular.

The simple and tight code of bubble sort makes up for the

algorithmic advantage provided by the merge sort, especially

on shorter listw This brings out another important aspect

of SIMD programming: Simplicity of the controller code is

critical to a fw3t implementation.

4.3 Independent searching

In this prolblem, each PE searches for a given element

in a list stored in its local memory, independently of other

PEs. This prolblem can arise in a number of situations. For

instance, assume that a graph is mapped to the processor

array such that each PE represents a vertex and stores the

adjacency information (sa an adjacency matrix or an adja-

cency list) and other relevant information for that vertex.

In graph algorithms, it is common for a node to select a

neighbor that satisfies a particular condition for a parame-

ter value for communication/pro cessing. For example, every

vertex might want to identify a neighbor with a label given

by a local variable. This can be done by searching a sorted

list containing the parameter values (the vertex labels sorted

for the neighborhood in the example) of all neighbors.

On address autonomous SIMD machines, we can use bl-

nary search to search for a specific element in a sorted list, as

the pointers can advance independently in each PE. Without

addressing autonomy, the pointers have to move in unison

and we cannot use any searching algorithm more intelligent

than sequential searching. Thus independent sorting is an

O(log n) operation on addressing autonomous machines and

an O(n) operation without addressing autonomy, where n is

the length of the list.

200

230

mo

100

o
1

Using addr autonmny —

/

512 10M 2048 40% 4
LIs2 la@h

n

Figure 10: Speedup gained by addressing autonomy for

independent searching on an MP- 1

Table 3 compares the time for independent searching with

and without addressing autonomy on a MasPar MP-1. The
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Independent Search Tirnes(infieconds) I

for 8-bit random integers

List Without With Speedup

Length autonomy autonomy

128 2.66 0.55 4.85

192 4.32 0.59 7.37

256 6.13 0.59 10.46

384 9.13 0.61 14.97

512 11.72 0.60 19.60

768 17.38 0.60 29.07

1024 24.12 0.62 38.72

1536 33.69 0.61 55.23
)

2048 45.80 0.59 78.16

3072 67.58 0.60 113.01

4096 103.22 0.59 176.15

6144 149.81 0.59 255.64

8192 160.84 0.60 268.96

Table 3: Running times of different independent search-

ing algorithms on a MasPar MP-1

speedup of the addressing autonomous algorithm over the

non-autonomous one is plotted in Figure 10 for different list

lengths. Again, we observe orders of magnitude improve-

ment in performance using addressing autonomy.

5 Processor autonomy and SIMD ma-

chines

In this section, we point out the use of processor auton-

omy in a few algorithms in the literature. We also discuss

how processor autonomy can have an impact on some of the

architectural studies being carried out on SIMD machines.

5.1 Algorithms from the Iiterat ure

Tomboulian and Pappaa dwcuss how local indirect ad-

dressing can be used to achieve near mean convergence rates

for the computation of Mandelbrot sets on a MasPar MP-

1 [29]. Computation of Mandelbrot sets belongs to the class

of problems where identical computation is performed on

a number of data points, but the convergence rate is data

dependent. With indirect addressing, the computation can

proceed to the next data point upon convergence. Thus,

mean convergence rates can be achieved on sufficiently large

problems. Another application of indirect addressing on

SIMD processor arrays to improve the processing of recur-

sive neighborhood operations can be found in [15].

The data replication technique to speed up the processing

of small data structures on large processor arrays combines

operation parallelism with data parallelism. This is done by

dividing the computation among multiple copies of the data

structure. For the different copies to perform different useful

computations, processor autonomy is essential. Replicated

data algorithms utilizing communication autonomy and ad-

dressing autonomy are present in the literature [19, 20, 21].
It is common to map a vertex of the graph to a PE while

processing graphs in parallel. Many problems require access-

ing one of the neighbors of the graph based on the present

state of the algorithm and a few features of the local ver-

tex. Thus, different vertices access different neighbors. For

instance, in a parallel implementation of the traveling sales-

man problem, the graph representing the cities and the cost

of traveling between them is stored in a distributed fashion

in a processor array machine. The cost of traveling Up to

a number of vertices is available at every stage of the alg~

rithm. The algorithm proceeds by adding another city to

each of the paths found so far. Each vertex will need to ac-

cess a different neighbor, no matter how we store the neigh-

borhood information of the graph. To process the graphs

efficiently (without serializing the access at any stage), a

PE should be able to address its local memory indepen-

dently. Thus address autonomy is essential to the efficient

implementation of such algorithms.

Addressing autonomy facilitates the use of local mem-

ory allocation and management in each PE, This could be

important to many applications in which each PE handles a

non-uniform amound of data. All PEs must allocate memory

equal to the largest chunk on machines without addressing

autonomy, resulting in inefficient t use of the memory.

5.2 A note on virtual processing

Although large processor arrays are available today, prob-

lems involving large data sets also are common. While solv-

ing a problem involving data structures larger than the ma-

chine, the data can be processed in chunks that fit into the

machine (cut and stack) or the machine can be “enlarged”

to fit the data. The latter, called virtual processing, is imple-

mented by making each physical processing element simulate

multiple virtual ones. The number of virtual PEs simulated

by each physical PE is known as the virtual processing mtio

(VP mtio).

Virtual processing is typically implemented by partition-

ing the memory of each PE among the virtual PEs it sim-

ulates. Each instruction cycle is split into subcycles that

execute the instruction on one memory partition. This fits

the SIMD model without addressing autonomy if the parti-

tioning is done uniformly as every PE will be executing the

same instruction on operands at the same memory address

in each subcycle. The number of virtual processors should

be a multiple of the number of physical processors. Every

instruction will be slowed down by a factor equal to the VP

ratio.

In communication instructions, the address of the desti-

nation PE denotes both a physical PE and a memory par-

tition within it. Unless orchestrated carefully, general com-

munications and near neighbor communications will need
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to access different partitions of the local memory in differ-

ent PEs while virtual processing. While the time to store

the received value in the local memory is a constant on ma-

chines with addressing autonomy, it could take a worst case

time equal to the VP ratio on machhes with no addressing

autonomy. Machines with addressing autonomy can also

speedup the conditional instruction execution when only a

small number of PEs are active. Different PEs can operate

on ditlerent partitions of their local memory, not wasting

time on inactive virtual PEs. This reduces the slowdown

due to virtualization from VP ratio to the maximum num-

ber of active virtual PEs in any physical PE.

5.3 Simulating MIMD
machines

The question of simulating an

tation on an SIMD hardware has

model on SIMD

MIMD model of compu-

received considerable at-

tention recently [24]. Many researchers are of the opinion

that it is easier and more cost effective to build SIMD style

parallel hardware than MIMD ones. Bridges et ad. define a

measure of CPU utilization and establish that massively par-

allel SIMD computers utilize their CPU better than MIMD

computers [6]. The MIMD emulator of Dietz and Cohen

achieved 25~o of the peak machine performance on a Mas-

Par MP-1 at a fraction of the cost of a comparable MIMD

computer [9]. They expect to achieve 5070 performance in

the next version of the emulator. Wilsey et al. demonstrate

how MIMD performance can be extracted out of an existing

SIMD hardware and suggest minor hardware modifications

to boost the performance of MIMD code [32].

Emulating an MIMD machine on an SIMD architecture

is done by storing the program in the local memory of each

PE. The PE acts like a fetch-and-execute unit that executes

the code in its local memory. It is easy to see how proces-

sor autonomy can ease this task. Dietz and Cohen [9] and

Wilsey et al. [32] conclude that the independent address-

ing, i.e. the addressing autonomy, of MasPar MP-1 critical

to their simulator. Wilsey et al. also suggest that register

indirect addressing capability will further enhance the per-

formance of their MIMD simulator.

Operation autonomy takes SIMD machines closer to the

MIMD model and can help simulate such a model. Com-

mon subexpression induction is a technique that transforms

MIMD code into code that is more amenable to SIMD pr~

cessing [8]. Limited operation autonomy described in Sec-

tion 3.6 can eliminate the need for common subexpression

induction in some cases. On an SIMD machine where the

controller issues a generic logical instruction with the spe-

cific operation selected locally, there is no need to trans-

form logic instructions to fit the SIMD paradigm aa all log-

ical instructions can be executed simultaneously. Wilsey et

al. recommends having multiple controllers to issue multi-

ple instruction streams, with esxh PE selecting one locally.

This also is a form of operation autonomy, as mentioned in

Section 3.6.

6 Conclusions

In this paper, we examined the processor autonomy of

the SIMD clam of machines and categorized the SIMD class

into six subclasses on its baaia. These subclasses differ im-

portantly from one another as we demonstrated using code

that distinguish each type of autonomy. We also provided

examples of machhes belonging to each category and dis-

cussed how autonomies can be simulated on machines with-

bout them.

The study of the capabfities of the autonomy classes is

important to the design of future high performance processor

arrays. We demonstrated the usefulness of addressing auton-

omy using several examples; MaaPar mschines demonstrate

the feasibfit y of providing addressing autonomy. Designers

of the processor arrays of the future need to take a serious

look at these :results.

The machines with operation autonomy are interesting

and need to be studied in detail. The cost of (limited) 10CS.I

selection of the instruction to be executed is not significant,

particularly if the PEs are horizontally microcode. Sev-

eral issues related to it need addressing. How can we design

the generic (issued by the controller) and specific (selected

locally) instruction set for such a machine? How can we

design algorithms that effectively use the operation auton-

omy? Will this produce a model of computation that is a

good mix oft he SIMD and MIMD models at a significantly

reduced cost?
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