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Abstract 

Computing datacubes requires multidimensional aggrega- 
tions for all possible combinations of each dimension. In thii 
paper, we present a method to improve main memory uti- 
lization efficiency for an array-based algorithm for datacube 
computation in a MOLAP context. The problem with the 
array-based algorithm is in its sparsity, where a large pre 
portion of array cells are empty. ,The algorithm proposed in 
[ZDN97] reduces this space inefficiency by compressing ar- 
rays on disk. We improve on this algorithm by performing 
compression of arrays in main memory as well as on disk 
using a hashing method, which allocates main memory ac- 
cording to the number of non-empty array cells. We further 
improve the algorithm using a dynamic main memory alloca- 
tion strategy. The algorithm by [ZDN97] computes the mul- 
tiple aggregate views simultaneously, which consumes a lot 
of main memory space. We propose a main memory alloca- 
tion method that minimizes the main memory requirement 
by dynamically allocating main memory only to necessary 
aggregate views at run time. These savings in main mem- 
ory resources result in the reduction of disk I/O cost. We 
evaluate the performance of the proposed method by disk 
I/O analysis and demonstrate that the improved MOLAP 
algorithm compares well with a ROLAP algorithm. 

1 Introduction 

OLAP is one of the new applications emerging in database 
technologies in recent years and allows users to easily ana- 
lyze large volumes of data in detail from various viewpoints 
for use in decision making. Multidimensional aggregation 
plays an important role in OLAP technology in providing 
such an environment for users. However, since computing 
these aggregations, even for a small number of dimensions, 
is very expensive, sophiiicatied techniques are essential for 
obtaining good performance. 

Several techniques have already been proposed in the 
past[AAD+96, DAN’R96, Rs97, SAG96, ZDN97]. These 
techniques can be categorized into two groups called RO- 
LAP and MOLAP. The ROLAP approach is based on re- 
lational databases, which are widely used today. In this 
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approach, systems directly access and process tuples in the 
relations as data elements. On the other hand, MOLAP 
systems use a multidimensional data structure such as an 
array constructed from the original data, which are typi- 
cally stored in relational databases. Although the MOLAP 
approach needs thii loading process, it is possible to select 
data structures optimized for multidimensional data manip 
ulations. 

[ZDN97] proposes an algorithm using the MOLAP ap 
proach based on an array structure and shows that their 
method, even including the loading process, outperforms the 
ROLAP algorithm presented in [AAD+96, DANR96], where 
aggregations are performed after sorting tuples in contrast to 
directly aggregating values in the array cells as in the array 
approach. The problem with an array structure is its spar- 
sity, which wastes main memory because many array cells 
are empty and thus are not used during the computation. 
In particular, the sparsity problem arises when the num- 
ber of dimensions increases. This is because the number of 
all possible combinations of dimension values exponentially 
increases, whereas the number of actual data values would 
not increase at such a rate. In [Rs97], attempts to solve 
thii sparsity problem are made using the ROLAP approach, 
which employs a sort-based method developed in [AAD+96, 
SAG96], where multiple aggregations are overlapped in a 
pipeline fashion after sorting tuples. 

In thii paper, we propose another solution to handle this 
sparsity problem in the conte$ of the MOLAP approach and 
show that this solution compares well with the sort-based 
ROLAP approach adapted to deal with high sparsity. In 
the array-based algorithm, thepro&ssmg is done on a chunk 
by chunk basis. A chunk is a unit of processing used in this 
algorithm and compressed on disk when more than a certain 
number of cells are empty. For chunks in main memory, 
however, array data is not compressed in this algorithm. 
We overcome this main memory indeciency in its array- 
based algorithm by introducing compression for the array 
structure in main memory as well as on diik using a hashing 
method, which can determine the size of main memory to 
be allocated depending on the amount of actually existiig 
data. 

In addition, we provide further improvement for this al- 
gorithm using dynamic main memory allocation. While 
computing a datacube, main m?mory is allocated to multiple 
aggregate views in the datacube because these aggregations 
are performed simultaneously. In the original array-based al- 
gorithm[ZDN97], thii main memory allocation is performed 
statically. The number of aggregate views that use main 
memory at the same time can be minimized by dynamically 
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allocating main memory only to those aggregate views in 
use at that point in time. 

As a result of these enhancements in main memory use, 
disk I/O can be reduced considerably. To examine the ef- 
fectiveness of the proposed methods for the array-based al- 
gorithm compared to the ROLAP algorithm, we evaluate 
the performance by analyzing disk I/O cost since the perfor- 
mance of these algorithms is expected to be disk I/O bound. 

The rest of the paper is organized as follows. In Section 
2, we briefly introduce the array-based algorithm proposed 
in [ZDN97] and then describe the proposed hash-based com- 
pression method and the dynamic main memory allocation 
method. In Section 3, we present performance evaluation 
results to demonstrate the effect of these proposed improve- 
ments. In Section 4, we discuss our conclusions and future 
work. 

2 Improving Main Memory Utilization of Array-Based Al- 
gorithm 

Multidimensional aggregation is formalized as a datacube in 
the relational context in [GBLP96]. In a data cube, aggre 
gates of values of a measure attribute in a relation are com- 
puted with respect to all possible combinations of each di- 
mension attribute. For example, if a data cube has 3 dimen- 
sions A, B and C, aggregate views that should be computed 
are ABC, AB, AC, BC, A, B, C and a view obtained by 
aggregating all values denoted by 0. Aggregate functions 
such as count, sum, max, ruin, average have a distributive 
property defined in [GBPL96]. In these functions, there are 
dependencies where aggregate views in a data cube are com- 
puted from other aggregate views. For example, A can be 
computed from AB, AC or ABC. For this reason, the com- 
putations of these aggregate views can be overlapped. Like 
other methods, the array-based algorithm makes use of thii 
fact to achieve efficient processing of datacubes. 

2.1 Array-Based Algorithm 

In thii subsection, we briefly describe the array-based al- 
gorithm proposed in [ZDN97]. One of the features of this 
algorithm is n chunking” arrays. Multidimensional arrays are 
partitioned into chunks, based on the values of each dimen- 
sion. Chunks are processed as they are read from disk one 
after another in a certain order. Consider the example given 
in Figure 1, which depicts dependencies amongst aggregate 
views in a data cube consisting of 4 dimensions A, B, C 
and D. Dependencies are determined such that an aggre- 
gate view is computed from the “smallest parent” aggregate 
view in order to minimize the aggregation cost pointed out 
in [GBLP96]. In this paper, we refer to the number of pos- 
sible values for each dimension as the dimension size and 
the partitioned dimension size within a chunk as the chunk 
dimension size. we denote each dimension size by nA, ng , 
nc and no. Figure 1 shows an optimized dependency tree 
inthecasewherenA~nB>nc~nn. 

Chunks are read from disk in a left dimension major 
order. Suppose that dimension X is divided into n parti- 
tions named X0, XI, X2, . . . . X,. We first read chunks such 
that only the chunk number of the dimension D increases 
as AoBoCoDo, AoBoCODI, AoBoCoDz, . . . . AoBoCoD, in 
this example. When the chunk number of the dimension 
D equals n, we change the chunk number of the dimension 
C to the next chunk number and then increase the chunk 
number for the dimension D again from the 6rst chunk in 
the same way as in AoBoGDo, AoBoCIDI, AoBoCIDZ, 

ABC ABD ACD BCD 

I n/Y 
AB ACADBCBDCD 

Figure 1: Dependency tree 

Figure 2: Maid Memory cost 

‘..) AoB& D,,. In this way, reading continues until chunk 
A,B,,C,,D, is read. 

In main memory, array cells for each aggregate view are 
reserved to store aggregated values. Each time a chunk is 
read from disk, values in the chunk are aggregated into the 
corresponding array cells for each aggregate view. If we re- 
fer to the chunk dimension size of dimension X as cx, the 
number of array cells needed for each aggregate view dur- 
ing processing will be as illustrated in Figure 2. For exam- 
ple, for an aggregate view ABD, aITay Ceb, Sk% CACBnD, 
are required to reside in main memory. This is because 
for the dimension A and B, only values in the specified 
range are processed until all chunks containing the values 
in that range are exhausted, whereas for the dimension D, 
every possible value would be processed during that time. 
If nA > nB 1 nc 1 nD, the number of array cells required 
is mi&ised, since for thisscheme, the larger dimensions 
use the chunk dimension size in determining the number of 
Bnay cells required. 

If the number of aggregategiews becomes large, all the 
aggregate views may not fit in main memory. When this 
happens, the dependency tree must be divided into multiple 
subtrees. The problem is how to divide the tree into subtrees 
such that each subtree fits into the available main memory. 
This problem is likely to be NP-hard, hence the use of a 
heuristic algorithm in allocating main memory in a breadth- 
first manner. For each subtree that oved~ws out of main 
memory, only one chunk is allocated for the intermediate 
results to be materialized. Then, each nubtree is processed in 
the same way after creating chunks from these intermediate 
results. 

2.2 Hash-Based Compression 

In the array-based algorithm, chunks are compressed on disk 
if many array cells in the chunks are empty. This is achieved 
by using a “chunk offset” that can be added to the address 
of the 6rst element in the chunk to obtain the address of 
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the corresponding chunk element. In a compressed chunk, 
only the array cells containing a value and their correspond- 
ing chunk offset are retained. Let s,,,, si, t arid n denote 
the size of an array cell, the size of the chunk offset, the 
number of distinct values and dimension size respectively. 
If s,,,n > (s, + s;)t, the chunk should be compressed. This 
compression improves the disk I/O efficiency significantly. 

Likewise, not all array cells in main memory can be used 
during computation. When the sparsity is very high, this 
could be very wasteful in terms of main memory utiliza- 
tion. Performance can be improved by using main memory 
more efficiently. Hence we propose a hash-based compres- 
sion method to compress array cells in main memory as well 
as on disk. Like compression on disk, empty array cells 
do not have to be retained in main memory in this method. 
An index value representing a location in a multidimensional 
space, which corresponds to a chunk-offset for compression 
on disk, is calculated from the address of an element in a 
chunk being read from disk. For example, for the address 
(i, j, k) of a chunk element and dimension sizes ni, nj and 
nk, the index value might be (inj + j)nk + k. Hashing is 
applied to this index value. Suppose that the size of mea- 
sure values is sm, the size of index values is si, the size of a 

. . pomter 1s sp, dimension size is n and the number of distinct 
values is t. Assuming that we use a hashing method based 
on pointer chains, the main memory space required for this 
method is as follows. 

(Sm + Si + Sp)ft’ 

The fudge factor f takes into account the collision of hash 
entries. If s,,,~z > (s, + si + +)ft, compression should be 
applied to the corresponding array. 

2.3 Dynamic Main Memory Allocation 

In addition to compression in main memory, we propose an- 
other method for further improvement of the main memory 
utilization efficiency in the array-based algorithm. The idea 
is to minimize the main memory requirement by dynamically 
allocating main memory only to aggregate views necessary 
at that point in time. In the original array-based algorithm, 
main memory is allocated to as many aggregate views as 
possible before any chunks are read from disk. Once process- 
ing starts, the allocated main memory is not released until 
the computation of those aggregate views is completed. In 
our method, the unused main memory is released and reallo- 
cated to other aggregate views dynamically even during pro- 
cessing. Consider the computation of the aggregate views 
AC, AD and A in Figure 1 for example. While these aggre- 
gate views are being computed in main memory, no main 
memory is required to be allocated for the computation of 
views such as ABCD, ABC, ABD and AB. Since only main 
memory required by the current computation is allocated, 
significant savings in main memory can be achieved. 

The main memory allocation process proceeds as follows. 
First, we allocate main memory to ABCD, ABC, ABD, 
ACD and BCD in that order as long as we have sufficient 
main memory. We assume that all of these five aggregate 
views fit into main memory. Chunks are read from disk 
one after another, from AoB&Do to A,, B,,C,, D,. Each 
time a new chunk is read, the corresponding aggregate views 
are computed. When the chunk AoB&,,D, is read, we 
can, in addition to the computation of the above aggregate 
views, also compute AB from ABD. Instead of allocating 
new main memory to AB, we can release the main memory 
for ABCD and ABC, which is not needed at this time, 

and reuse it for AB. Similarly, the arrival of AoB,C,D, 
enables us to compute AC, AD and A from ACD. For thii 
computation, the main memory for other aggregate views 
can be released with the exception of that for ACD and 
BCD, which must be reserved in main memory for later 
use. 

However, it should be noted that reusable main memory 
may not be sufficient for the purpose to which it is to be real- 
located. First we allocate main memory to a root aggregate 
view and its child aggregate views, which are ABCD, ABC, 
ABD, ACD and BCD in thii example. In the original 
array-based algorithm, the main memory allocated first is 
always sufficient for computing other aggregate views. This 
is not the case, however, for our algorithm which includes 
compression in main memory. Depending on the data distri- 
bution, the main memory allocated first can be insufficient 
because the density at the lower dimension is usually higher 
than the density at the higher dimension. For this case, 
maximum main memory requirement is equal to the main 
memory required for aggregate views, which are obtained 
by recursively searching for the second child aggregate views 
from the right, starting from the rightmost child aggregate 
view of the root in the tree. This is because the right ag- 
gregate views are larger than the left aggregate views and 
the parent aggregate views of the second child aggregate 
views from the right must reside in memory for computing 
the rightmost child aggregate views. If there is only single 
child aggregate view, the search is done and the last one is 
added to these selected aggregate views. In this example, 
the main memory for BCD, BD and B can be maximum 
main memory requirement. 

Another advantage of this method is that it is simple to 
determine how to divide a dependency tree into subtrees if 
main memory is not large enough to hold all aggregate views 
in a datacube. As stated above, the original algorithm uses a 
heuristic algorithm because this problem is likely to be NP- 
hard. In our method, however, we can always determine 
the division of the tree by only examining how many child 
aggregate views directly connected to the root of the tree 
can be placed in main memory. The process of dividing the 
tree into subtrees proceeds recursively. If a child aggregate 
view can not be placed in main memory, it in turn is con- 
sidered a root and its child aggregate views are examined to 
see whether they can be placed in main memory. The pro- 
cess recursively continues until subtrees that fit into main 
memory are obtained. In the example in Figure 1, if only 
ABC and ABD fit into main memory, the tree is divided 
into subtrees STl, ST2 and ST3 as in Figure 3. Moreover, 
in the subtree ST3, if only X*&id BD can be staged into 
main memory, the subtree is further divided into subtrees 
ST4 and ST5 as shown in Figure 3. Unlike the original 
alogrithm, we create no intermediate results to avoid the 
extra disk I/O. Instead, we take as input an aggregate view 
that is already materialized on disk, from which the root of 
each subtree can be computed directly. 

3 Cost Model 

In this section, we describe an analytical cost model that 
calculates the amount of main memory required for the im- 
proved array-based algorithm described proposed in this pa- 
per. 
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Figure 3: Subtrees 

3.1 Preliminaries 

We begin by making some assumptions for simplification. 
Assume that data is uniformly distributed and all dimen- 
sions has the same dimension size n. Given that the maxi- 
mum number of dimensions in a datacube is k and the num- 
ber of distinct values is t, the upper bound of the density, 
d(i), in the case where the each number of dimensions in the 
datacube is i is as follows. 

(i = 0,1,2 ,..., k) 

This is because the number of actually existing values in 
the lower dimension will not be larger than the higher di- 
mension. However, for the dimension in which the number 
of possible values is smaller than the number of actually 
existing values in the higher dimension, the number of ac- 
tual values is equivalent to the number of possible values. 
In a hashing method, we must estimate the hash table size 
in advance. This upper bound can be used for this pur- 
pose. At the same time, this function is considered to be 
approximately equal to the density in the case where the 
data is uniformly distributed, since the possibility that dif- 
ferent measure values in a datacube will share the same di- 
mension values is extremely low due to the randomness of 
the distribution. For this mason, we use this function as the 
density of uniformly distributed data. 

3.2 Main Memory Cost 

Figures 4 and 5 show the main memory requirement of each 
aggregate view in a 4 dimensional datacube when using an 
array structure and hashing respectively. c stands for the 
chunk dimension size, which is assumed to be the zame in all 
dimensions. Az we can see from these figures, the difference 
between them is the density. The main memory cost for an 
array is not affected by the density. On the other hand, for 
hashing the density must be taken into account. As shown 
in Figure 5, the density is simply multiplied by the number 
of array cells. This is possible because of the assumption 
that data is uniformly distributed. 

We now derive the main memory cost for the improved 
array-based algorithm. First, we take an aggregate view 
ABCD for example. As stated in the previous section, if 
s,c’ > (s,,, + si + s,)fc’d(4), we should use hashing rather 
than an array for the aggregate view. Consequently, the 
main memory requirement for ABCD is as follows. 

min{smc4, (sm + si + s,)fc’d(rl)} 

Thii can be applied to other aggregate views in the same 
way. Using these main memory costs, we derive the total 
main memory requirement for datacube computation. As 
we described earlier, main memory, allocated dynamically, 

Figure 4: Main Memory cost for array 

ABCD 
44) 

AB AC AD EC BD W 
&2J cndy2)cmdf2b94f2J nbyz) n;uz, 

Figure 5: Main Memory cost for hash 

can be maximum in two cases. We use j to denote the 
jth child aggregate view. j increases from the left child 
aggregate view to the right aggregate view in a tree. In the 
first case, main memory cost is the main memory required 
for the root aggregate view and its child aggregate views in 
the tree, which is formulated as follows. 

Ml Cd = min{s,ck, (Si + Sm + sp)fckd(k)} 

min{s,ck-‘-‘n’, 

;I:+ s,,,+ sp)fck-‘-‘n’d(k - 1)) 

In the other case, main memory cost is the main memory re- 
quired for the aggregate views obtained by recursively choos- 
ing a child aggregate view nextto the rightmost child aggre 
gate view that has the same parent, which is is formulated 
a9 follows. 

i+O 

(Si + Sm + Sp)fCk-‘-‘72-‘d(j - i)} 

Consequently, the total main memory cost required for dat- 
acube computation is as follows. 

M(j) = m={Mlti), M2l.i)) 

4 Experimental Results 

We performed analytical experiments based on the cost model 
formulated in the previous section. We used parameter val- 
ues as shown in the Table 1 in these experiments. Chunk 
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Table 1: Parameters 

Figure 6: Disk I/O vs. Main Memory Size(5 dimensions, lo6 tu- 
Pl4 

Figure 1: Disk I/O vs. Deasity(5 dimensions, main memory 
256MB) 

Figure 8: Disk I/O vs. Number of Dimensions(5 dimensions, 10’ 
tuples, main memory 256MB) 

dimension size is determined such that the chunk size for 
the root aggregate view is equal to the page size. Perfor- 
mance evaluation is based on a comparison of disk I/O. We 
assume that the performance is bounded by the diik I/O. 
The input data is assumed to be in the form of tuples in 
relational databases. Note that results in these experiments 
do not include disk I/O for the output results. 

4.1 Array-Based algorithm vs. Improved Array-Based al- 
gorithm 

We evaluate the performance of the improved array-based 
algorithm compared with the original array-based algorithm 
in our first experiment. The disk I/O of the loading process 
is not included in these results. For comparison, we es- 
sume that no intermediate results are created for the original 

Figure 9: Disk I/O vs. Main Memory Size (10 dimensions, lo6 
tuples) 

Figure 10: Disk I/O vs. De’tity(l0 dimensions, main memory 
256MB) 

Figure 11: Disk I/O vs. Number of Dimeasions(10 dimensions, 
10’ tuples, main memory 256MB) 

array-based algorithm as well as the improved array-based 
algorithm. 

Figure 6, 7 and 8 show the amount of disk I/O, varying 
main memory size, density. and the number of dimensions 
respectively. Since the original array-based algorithm as- 
sumes low dimensional datacubes, we used 5 as the number 
of dimensions of a datacubefor these experiments. How- 
ever, since thii number of dimensions is too low to observe 
the effect of dynamic main memory allocation, we used 10 
dimensions for comparison between hash-based compression 
and dynamic main memory allocation, which are shown in 
Figure 9, 10 and 11. We can see from these Sgures that the 
improved array-based algorithm shows better performance 
when we apply hash-based compression to arrays in main 
memory. Furthermore, we can see that the performance of 
the array-based algorithm is further improved by dynamic 
main memory allocation. There are some cases where the 
results of the original array-based algorithm are not shown 
in these graphs, because in these cases, even the root aggre- 
gate view does not fit into main memory unless the number 
of elements in a chunk is made smaller, which is less efficient 
in disk I/O. 
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Figure 12: Disk I/O VS. Main Memory Size(l0 dimensions, 10s 
tuples) 

Figure 13: Disk I/O vs. Dansity(l0 dimensions, main memory 
256MB) 

Figure 14: Disk I/O vs. Number of Dimension+9 dimensions, 
10s tuples, main memory 256MB) 

4.2 MOLAP us. ROLAP 

In the following experiments, we compared the MOLAP al- 
gorithm and the ROLAP algorithm. We used the improved 
array-based algorithm, including the loading process as the 
MOLAP approach. For the ROLAP approach, the sort- 
based algorithm proposed in [Rs97] was used. Since the 
sort-based algorithm -urnas the higher dimensions than 
the original array-based algorithm, we computed a 10 di- 
mensional datacube in these experiments. 

Figure 12, 13 and 14 show the amount of disk I/O as a 
function of main memory size, density and the number of di- 
mensions respectively. We can observe that the performance 
of the MOLAP algorithm dominates the ROLAP algorithm 
for various cases. 

The primary feature of the ROLAP algorithm proposed 
by [Rs97] is that the disk I/O cost is a linear function of the 
number of dimensions. On the other hand, the disk I/O cast 
of the array-based algorithm, even with the improved main 
memory efficiency, is not likely to be linear with respect to 
the number of dimensions. However, for the dimension sire 
range and other parameters in this experiment, the perfor- 
mance of the MOLAP algorithm is much better than that 
of the ROLAP algorithm. 

5 Related Work 

Several researches on datacube computation have already 
been discussed. In this section, we discuss work not al- 
ready cited earlier. In [AAD+96, SAG96], a hash-based 
algorithm as well as a sort-baaed algorithm is proposed for 
the ROLAP approach. Hashing as well as sorting is a com- 
monly used technique for the aggregate operation in rela- 
tional databases. An attempt is made in the research to 
apply these methods to the computation of datacubes. On 
the other hand, our algorithm uses a hashing method as a 
compression technique for an array structure in the MOLAP 
approach. The most significant difference between these two 
methods is that when data is partitioned using an appropri- 
ate number of dimensions, the hash-based algorithm does 
not compute aggregate views not containing the partition- 
ing attributes. We believe that this difference affects the 
performance significantly. 

6 Conclusions and Future Work 

We have presented an algorithm for computing datacubes 
from the MOLAP viewpoint, which allows systems to choose 
data structures well suited for multidimensional aggrega- 
tion. We proposed efficient main memory utilization meth- 
ods for the array-based algorithm. Experimental results 
based on our cost model show that the MOLAP algorithm 
using our methods performs better than the ROLAP alg+ 
rithm in many cases. 

However, our work is still in the preliminary stages. Our 
performance evaluation is merely based on an analytical cost 
model, in which we made simplifying assumptions that data 
is uniformly distributed and all dimensions have the same 
size. In the near future, we plan to actually implement our 
algorithm and evaluate its performance using various data 
distributions and different dimension sizes. 

References 

[AAD+96] 

[DANR96] 

[GBLP96] 

kw 

[SAG961 

(ZDN97] 

S. AgarwaI, R. Agrawd, P.M. Deshpande, A. Gupta, 
J. F. Naughton, R e and S. Sarawagi, 
“On the Computation of Multidimentional Aggre- 
gates”, In Proceedings of the Intcrnationel Confer- 
ence on Very Layc Databaecs, -es 566-521,1996. 

P. M. Deshpande, S. Agarwal, J. F. Naughton and R. 
Ramakrishman, “Computation of MuItidimensionaI 
Aggregates”, Technical Report 1314. University of 
Wiionsin, Madiin, 1996. 

J. Gray, A. BoswortIii;i. ‘Layman and II. Pirahesh, 
“A Relational Aggregation Operator Gsnerahzing 
Group-By, Cross-Tab, and SubTotaLs”, In Proceed- 
ings of the IEEE Intemationsl Conference on Date 
Engineering, pages 152-159,1996. 

K. A. Ross and D. Srivastava, “Fast Computation 
of Sparse Datacubes”, In Procssdinga of the Inter- 
national Conference on Very Large Databaew, pages 
116-125, 1997. 

S. Sarawagi, R. AgrawaI and A. Gupta, “On Com- 
puting the Data Cube”, Remarch Report RJ10626, 
IBM Almaden Research Center, San Joss. CA, 1996. 

Y. Zhao, P. M. Deshpande and J. F. Naughton, “An 
Array-Based Algorithm for Simultaneous Multidi- 
mensional Aggrsgates”, In Proceedings of the ACM 
SIGMOD Conference on Management of Data, 
pages 159-170, 1997. 

33 


