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Abstract. The second-order matching problem is the problem of deter-
mining, for a finite set {〈ti, si〉 | i ∈ I} of pairs of a second-order term ti

and a first-order closed term si, called a matching expression, whether
or not there exists a substitution σ such that tiσ = si for each i ∈ I . It is
well-known that the second-order matching problem is NP-complete. In
this paper, we introduce the following restrictions of a matching expres-
sion: k-ary, k-fv , predicate, ground , and function-free. Then, we show
that the second-order matching problem is NP-complete for a unary
predicate, a unary ground, a ternary function-free predicate, a binary
function-free ground, and an 1-fv predicate matching expressions, while
it is solvable in polynomial time for a binary function-free predicate, a
unary function-free, a k-fv function-free (k ≥ 0), and a ground predicate
matching expressions.

1 Introduction

The unification problem is the problem of determining whether or not any two
terms possess a common instance. The matching problem, on the other hand, is
the problem of determining whether or not a term is an instance of another term.
Both the unification and the matching play an important role in many research
areas, including theorem proving, term rewriting systems, logic and functional
programming, database query language, program synthesis, and so on.

The second-order unification problem is formulated as the problem of deter-
mining, for a finite set {〈ti, si〉 | i ∈ I} of pairs of second-order terms ti and si,
called a unification expression, whether or not there exists a substitution σ such
that tiσ = siσ for each i ∈ I. The second-order matching problem is the special
unification problem that ti is a second-order term and si is a first-order closed
term. A unification expression for the second-order matching problem is called
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a matching expression. The second-order matching has been applied to program
synthesis and transformation, schema-guided proof, analogical reasoning, and
machine learning [4, 5, 9, 13, 14].

It is well-known that the second-order unification problem is undecidable [12],
and various researchers have separated decidable from undecidable unification
problems by introducing several restrictions of a unification expression [1, 6, 7, 8,
11, 12, 15, 16, 17]. It is also well-known that the second-order matching problem
is NP-complete [2]. Huet and Lang [14] have designed a complete and nonredun-
dant second-order matching algorithm. However, there exist few researches to
analyze deeply the complexity of the matching problem. It is one of the reason
that the interest of the researchers [3, 5, 9, 13, 14] is rather the matching algo-
rithm than the matching problem itself. In this paper, by introducing the several
restrictions of a matching expression, we give a sharp characterization between
tractable and intractable second-order matching problems.

A matching expression is called k-ary if any function variable in it is at most
k-ary, and k-fv if it includes at most k distinct function variables. Furthermore,
a matching expression is called predicate if any argument’s term of function
variables in it includes no function variables, ground if it includes no individual
variables, and function-free if it includes no function constants.

In this paper, we show that the second-order matching problem is NP-
complete for a unary predicate, a unary ground, a ternary function-free predicate,
and a binary function-free ground matching expressions, while it is solvable in
polynomial time for a binary function-free predicate and a unary function-free
matching expressions. We also show that it is NP-complete for an 1-fv predicate
matching expression, while it is solvable in polynomial time for a k-fv function-
free matching expression for k ≥ 0. Furthermore, we show that it is solvable in
polynomial time for a ground predicate matching expression.

2 Preliminaries

Instead of considering arbitrary second-order languages, we shall restrict our
attention to languages containing just simple terms (i.e., terms without variable-
binding operators like the λ operator). Throughout of this paper, we deal with
the term languages introduced by Goldfarb [12] and Farmer [8].

Let a term language L be a quadruple (ICL, IVL,FCL,FVL), where ICL is
a set of individual constants (denoted by a, b, c, · · ·); IVL is a set of individual
variables (denoted by x, y, z, · · ·); FCL is a set of function constants (denoted
by f, g, h, · · ·); FVL is a set of function variables (denoted by F,G,H, · · ·). Each
element of FCL ∪ FVL has a fixed arity ≥ 1, and ICL, IVL, FCL and FVL are
mutually disjoint. We call an element of IVL ∪ FVL a variable simply. Let BVL

be an infinite collection {wi}i≥1 of symbols not in L called bound variables.
The L-terms and L∗-terms are defined inductively by:

1. Each d ∈ ICL ∪ IVL (resp. ICL ∪ IVL ∪BVL) is an L-term (resp. L∗-terms).
2. If d ∈ FCL∪FVL has arity n ≥ 1 and t1, · · · , tn are L-terms (resp. L∗-terms),

then d(t1, · · · , tn) is an L-term (resp. L∗-terms).
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The rank of an L∗-term t is the largest n such that wn occurs in t.
For L∗-terms t, t1, · · · , tn, we write t[t1, · · · , tn] for the L∗-term obtained by

replacing each occurrence of wi in t with ti for all i (1 ≤ i ≤ n) simultaneously.
The head of t, denoted by hd(t), is the outermost symbol occurring in t. An
L∗-term is closed if it contains no variables.

A substitution (in L) is a function σ with a finite domain dom(σ) ⊆ IVL∪FVL

which maps individual variables to L-terms and n-ary function variables with
n ≥ 1 to L∗-terms of rank≤ n. A substitution σ is denoted by {s1/v1, · · · , sm/vm},
where dom(σ) = {v1, · · · , vm}. Each element si/vi of σ is called a binding of σ.
The result tσ of applying σ to an L∗-term t is defined inductively by:

1. If t ∈ ICL ∪ IVL ∪ BVL but t �∈ dom(σ), then tσ = t.
2. If t = x ∈ IVL and x ∈ dom(σ), then tσ = xσ.
3. If t = d(t1, · · · , tn) (d ∈ FCL∪FVL) but d �∈ dom(σ), then tσ = d(t1σ, · · · , tnσ).
4. If t = F (t1, · · · , tn) and F ∈ dom(σ), then tσ = (Fσ)[t1σ, · · · , tnσ].

A matching expression E (in L) is a finite set {〈ti, si〉 | i ∈ I}, where ti is
an L-term and si is a closed L-term for each i ∈ I. For a substitution σ, Eσ
denotes the matching expression {〈tiσ, si〉 | i ∈ I}. The size of E, denoted by
|E|, is the number of symbols of L occurring in E. Furthermore, for a function
variable F , EF denotes a matching expression {〈t, s〉 ∈ E | hd(t) = F}.

A matching expression E is called matchable if there exists a substitution σ
such that tiσ = si for each i ∈ I. Such a σ is called a matcher of E.

The transformation rules [14] are defined as follows:

1. simplification:
{〈f(t1, · · · , tn), f(s1, · · · , sn)〉} ∪ E ⇒ {〈t1, s1〉, · · · , 〈tn, sn〉} ∪ E (n ≥ 0),

2. projection (on F ): E ⇒ E{wi/F},
if 〈F (t1, · · · , tn), s〉 ∈ E (n ≥ 1, 1 ≤ i ≤ n),

3. imitation (on F ): E ⇒ E{f (H1(w1, · · · , wn), · · · , Hm(w1, · · · , wn))/F},
if 〈F (t1, · · · , tn), f(s1, · · · , sm)〉 ∈ E (n,m ≥ 0).

Theorem 1 (Huet&Lang [14]). E is matchable iff E ⇒∗ ∅.

The second-order matching problem is defined as follows:

Second-Order Matching (Matching)

Instance: A matching expression E.
Question: Is E matchable?

Theorem 2 (Baxter [2]). Matching is NP-complete.

In this paper, we reduce the following problem Monotone 1-in-3 3SAT [10]
to the restricted problems of Matching:

Monotone 1-in-3 3SAT [10]
Instance: A set X of variables and a collection C of monotone 3-

clauses (clauses consisting of three positive literals) over X .
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Question: Is there a truth assignment to X that makes exactly one
literal of each clause in C true?

Hereafter, we refer X = {x1, · · · , xn} and C = {c1, · · · , cm} to an instance of
Monotone 1-in-3 3SAT, where cj ∈ C consists of the variables xj

1, x
j
2 and xj

3.

3 The Restricted Second-Order Matching Problems

Let E be a matching expression. E is k-ary if any function variable in E is at
most k-ary. E is k-fv if E includes at most k distinct function variables. E is
predicate if any argument’s term of function variables in E includes no function
variables. E is ground if E includes no individual variables. E is function-free if
E includes no function constants.

We introduce the following restricted problems of Matching:

kAry (resp. kFV, Pred, Ground, Ffree) Matching

Instance: A k-ary (resp. k-fv, predicate, ground, function-free) match-
ing expression E.

Question: Is E matchable?

Theorem3. UnaryPredMatching is NP-complete.

Proof. For each clause c ∈ C, let z1, z2 and z3 be the variables in c. Then, let
Ec be the following unary predicate matching expression:

Ec =
{ 〈F (f(z3, f(z2, f(z1, y)))), f(0, f(0, f(1, f(0, f(0, 0)))))〉,
〈F (y), f(0, f(0, 0))〉

}
.

Suppose that c is satisfiable and let (a1, a2, a3) be a truth assignment to
(z1, z2, z3) satisfying c, where there exists exactly one index i (1 ≤ i ≤ 3) such
that ai = 1 and al = 0 (l �= i). We can construct the matcher σ of Ec as follows:

1. If (a1, a2, a3) = (1, 0, 0), then σ = {w1/F, 1/z1, 0/z2, 0/z3, f(0, f(0, 0))/y};
2. If (a1, a2, a3) = (0, 1, 0), then σ = {f (0, w1)/F, 0/z1, 1/z2, 0/z3, f(0, 0)/y};
3. If (a1, a2, a3) = (0, 0, 1), then σ = {f (0, f(0, w1))/F, 0/z1, 0/z2, 1/z3, 0/y}.

Conversely, suppose that Ec is matchable and let σ be a matcher of Ec. Then,
σ includes the binding t/F , where t is w1, f(0, w1), or f(0, f(0, w1)).

Suppose that w1/F ∈ σ. Since Ec{w1/F} is of the form

{〈f(z3, f(z2, f(z1, y))), f(0, f(0, f(1, f(0, f(0, 0)))))〉, 〈y, f(0, f(0, 0))〉},
and by a simplification, σ includes the bindings 1/z1, 0/z2 and 0/z3.

Suppose that f(0, w1)/F ∈ σ. Since Ec{f (0, w1)/F} is of the form

{〈f(0, f(z3, f(z2, f(z1, y)))), f(0, f(0, f(1, f(0, f(0, 0)))))〉, 〈y, f(0, 0)〉},
and by a simplification, σ includes the bindings 0/z1, 1/z2 and 0/z3.

Suppose that f(0, f(0, w1))/F ∈ σ. Since Ec{f (0, f(0, w1))/F} is of the form
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{〈f(0, f(0, f(z3, f(z2, f(z1, y))))), f(0, f(0, f(1, f(0, f(0, 0)))))〉, 〈y, 0〉},
and by a simplification, σ includes the bindings 0/z1, 0/z2 and 1/z3.

Then, we can construct the truth assignment (a1, a2, a3) to (z1, z2, z3) sat-
isfying c such that ai = 1 if 1/zi ∈ σ; ai = 0 if 0/zi ∈ σ (1 ≤ i ≤ 3). Hence,
(a1, a2, a3) satisfies c, where exactly one of a1, a2 and a3 is 1 and others are 0.

For C, let E be the unary predicate matching expression
⋃m

j=1(Ecj{Fj(w1)/F,
yj/y}). Then, C is satisfiable by a truth assignment that makes exactly one lit-
eral in each clause in C true iff E is matchable. ��
Theorem 4. UnaryGroundMatching is NP-complete.

Proof. For each clause c ∈ C, let z1, z2 and z3 be the variables in c. Then, let
Ec be the following unary ground matching expression:

Ec = {〈Fz1(Fz2(Fz3(0))), f(0)〉, 〈Fz1(Fz2(Fz3(1))), f(1)〉}.
For a truth assignment (a1, a2, a3) to (z1, z2, z3) and a matcher σ of Ec, there
exists exactly one index i (1 ≤ i ≤ 3) such that ai = 1 iff f(w1)/Fzi ∈ σ, and
al = 0 iff w1/Fzl

∈ σ (l �= i). Then, c is satisfiable by a truth assignment that
makes exactly one literal true iff Ec is matchable.

For C, let E be the unary ground matching expression
⋃m

j=1 Ecj . Then, C is
satisfiable by a truth assignment that makes exactly one literal in each clause in
C true iff E is matchable. ��
Theorem 5. TernaryFfreePredMatching is NP-complete.

Proof. For each clause c ∈ C, let z1, z2 and z3 be the variables in c. Then, let
Ec be the following ternary predicate function-free matching expression:

Ec = {〈F (z1, z2, z3), 1〉, 〈F (z2, z3, z1), 0〉, 〈F (z3, z1, z2), 0〉}.
For a truth assignment (a1, a2, a3) to (z1, z2, z3) and a matcher σ of Ec, there
exists exactly one index i (1 ≤ i ≤ 3) such that ai = 1 iff 1/zi ∈ σ, and al = 0 iff
0/zl ∈ σ (l �= i). Then, c is satisfiable by a truth assignment that makes exactly
one literal true iff Ec is matchable.

For C, let E be the ternary function-free predicate matching expression⋃m
j=1(Ecj{Fj(w1, w2, w3)/F}). Then, C is satisfiable by a truth assignment that

makes exactly one literal in each clause in C true iff E is matchable. ��
Theorem 6. BinaryFfreePredMatching is solvable in polynomial time.

Proof. We reduce BinaryFfreePredMatching to 2SAT [10]. Let E be a bi-
nary function-free predicate matching expression. Without loss of generality, we
can suppose that EF includes pairs 〈t1, s1〉, 〈t2, s2〉 such that s1 �= s2.

Let ICE , IVE , and FVE be the sets of all individual constants, individ-
ual variables, and function variables in E, respectively. Suppose that EF is of
the form {〈F (ti1, ti2), si〉 | i ∈ I}. Note that each si is in ICL. For each pair
〈F (ti1, ti2), si〉 ∈ EF , construct the following formula T i

j (j = 1, 2):
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1. If tij ∈ ICE and tij = si, then T i
j = true;

2. If tij ∈ ICE and tij �= si, then T i
j = false;

3. If tij = v ∈ IVE , then T i
j = xvsi ∧ (

∧
c∈ICE−{si} xvc).

For EF , the DNF formula (
∧

i∈I T
i
1) ∨ (

∧
i∈I T

i
2) is denoted by TEF . The 2CNF

formula equivalent to TEF is denoted by CEF . For E,
∧

F∈FVE
CEF is denoted

by CE . The number of clauses in CE is at most (#ICE ×#E)2 ×#FVE ≤ |E|5.
Suppose that CE is satisfiable and let a be a truth assignment to variables

{xvc | v ∈ IVE , c ∈ ICE} satisfying CE . By the definition of CE , a satisfies CEF

for any F ∈ FVE , so it satisfies TEF . Then, it also satisfies
∧

i∈I T
i
1,

∧
i∈I T

i
2,

or both. If a satisfies
∧

i∈I T
i
j (j = 1, 2), then we add the bindings wj/F and

c/v to σ for each positive literal xvc ∈ ∧
i∈I T

i
j . By the construction of σ and by

the definition of
∧

i∈I T
i
j , σ is a matcher of EF for any F ∈ FVE . Hence, σ is a

matcher of E.
Conversely, suppose that E is matchable and let σ be a matcher of E. For

v ∈ IVE and c ∈ ICE , let a truth assignment avc to the variable xvc be 1 if
c/v ∈ σ; 0 otherwise. By the supposition, σ includes the binding either w1/F or
w2/F for any function variable F ∈ FVE . Suppose that wj/F ∈ σ (j = 1, 2).
Since EF {wj/F} is of the form {〈tij , si〉 | i ∈ I}, it holds that tijσ = si. If
tij ∈ ICE , then it holds that T i

j = true, since tijσ = tij = si. Then, T i
j is always

satisfiable. If tij = vi ∈ IVE , then it holds that si/vi ∈ σ, since tijσ = si. Since
T i

j is of the form xvisi ∧ (
∧

c∈IC−{si} xvic), the truth assignment {avic | c ∈ ICE}
satisfies T i

j . By the definition of TEF , the truth assignment {avic | c ∈ ICE , i ∈
I} satisfies TEF , so it satisfies CEF . Then, by collecting the truth assignment
{avic | c ∈ ICE , i ∈ I} for every function variable F ∈ FVE , CE is satisfiable. ��

Theorem7. BinaryFfreeGroundMatching is NP-complete.

Proof. For each clause c ∈ C, let z1, z2 and z3 be the variables in c. Then, let
Ec be the following binary function-free matching expression:

Ec =




〈Fz1(Gz1(Hz2(0), Hz3(0)),Hz1(0)), 1〉,
〈Fz1(Hz1(1), Hz2(1)), 0〉, 〈Gz1(0, 0), 0〉,
〈Fz2(Gz2(Hz3(0), Hz1(0)),Hz2(0)), 1〉,
〈Fz2(Hz2(1), Hz3(1)), 0〉, 〈Gz2(0, 0), 0〉,
〈Fz3(Gz3(Hz1(0), Hz2(0)),Hz3(0)), 1〉,
〈Fz3(Hz3(1), Hz1(1)), 0〉, 〈Gz3(0, 0), 0〉



.

For a truth assignment (a1, a2, a3) to (z1, z2, z3) and a matcher σ of Ec, there
exists exactly one index i (1 ≤ i ≤ 3) such that ai = 1 iff 1/Hzi ∈ σ, and al = 0
iff 0/Hzl

∈ σ (l �= i). Then, c is satisfiable by a truth assignment that makes
exactly one literal true iff Ec is matchable.

For C, let E be the binary function-free matching expression
⋃m

j=1 Ecj . Then,
C is satisfiable by a truth assignment that makes exactly one literal in each clause
in C true iff E is matchable. ��
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Theorem 8. UnaryFfreeMatching is solvable in polynomial time.

Proof. Let E be a unary function-free matching expression. For the transfor-
mation rules, we adopt the constraint that a projection on F is applied to E if
there exist pairs 〈t1, s1〉, 〈t2, s2〉 ∈ EF such that s1 �= s2. Since E is unary, the
transformation rules can be applied deterministically to E. ��
Theorem 9. 1FVPredMatching is NP-complete.

Proof. Let q1, q2 and q3 be terms g(1, 0, 0), g(0, 1, 0) and g(0, 0, 1), respectively.
Then, let E be the following 1-fv matching expression:

E =




〈F (g(x1
1, x

1
2, x

1
3), y1, z1, · · · g(xm

1 , x
m
2 , x

m
3 ), ym, zm),

f(q1, q2, q3, · · · , q1, q2, q3)〉,
〈F (d1, d1, d1, · · · , dm, dm, dm), f(d1, d1, d1, · · · , dm, dm, dm)〉


 .

Suppose that C is satisfiable and let (a1, · · · , an) be a truth assignment to X
satisfying C. From (a1, · · · , an), we obtain them 3-tuples (aj

1, a
j
2, a

j
3) (1 ≤ j ≤ m)

assigned to the variables xj
1, x

j
2, x

j
3 in cj . For each j (1 ≤ j ≤ m), there exists

exactly one index ij (1 ≤ ij ≤ 3) such that aj
ij
= 1 and aj

l = 0 (l �= ij). Then, E
is matchable by the following substitution σ:

σ = {f (wµ(1,i1,1), wµ(1,i1,2), wµ(1,i1,3), · · · , wµ(m,im,1), wµ(m,im,2), wµ(m,im,3))/F}
∪ {aj

1/x
j
1, a

j
2/x

j
2, a

j
3/x

j
3, qρ(ij ,2)/yj, qρ(ij ,3)/zj | 1 ≤ j ≤ m},

where ρ(l, n) = ((l + n − 2) mod 3) + 1 and µ(j, l, n) = 3(j − 1) + ((3 − l +
n) mod 3) + 1 for 1 ≤ l, n ≤ 3 and 1 ≤ j ≤ m.

Conversely, suppose that E is matchable. By Theorem 1, E is matchable iff
so is the following matching expression E′:

E′ =




〈Hj
1(g(x

1
1, x

1
2, x

1
3), y1, z1, · · · , g(xm

1 , x
m
2 , x

m
3 ), ym, zm), q1〉,

〈Hj
1(d1, d1, d1, · · ·dm, dm, dm), dj〉,

〈Hj
2(g(x

1
1, x

1
2, x

1
3), y1, z1, · · · , g(xm

1 , x
m
2 , x

m
3 ), ym, zm), q2〉,

〈Hj
2(d1, d1, d1, · · ·dm, dm, dm), dj〉,

〈Hj
3(g(x

1
1, x

1
2, x

1
3), y1, z1, · · · , g(xm

1 , x
m
2 , x

m
3 ), ym, zm), q3〉,

〈Hj
3(d1, d1, d1, · · ·dm, dm, dm), dj〉

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ≤ j ≤ m



.

Let σ be a matcher of E′. Then, σ includes the bindings wr1/H
j
1 , wr2/H

j
2 , and

wr3/H
j
3 such that 3(j − 1) + 1 ≤ r1, r2, r3 ≤ 3j for each j (1 ≤ j ≤ m). Let tji

(1 ≤ i ≤ 3, 1 ≤ j ≤ m) be the following L-term:

Hj
i (g(x

1
1, x

1
2, x

1
3), y1, z1, · · · , g(xm

1 , x
m
2 , x

m
3 ), ym, zm),

By the definition of tji , for each j, there exists exactly one index ij (1 ≤ ij ≤ 3)
such that tjij

σ = g(xj
1, x

j
2, x

j
3)σ = qij . Then, we obtain the truth assignment

(aj
1, a

j
2, a

j
3) to (xj

1, x
j
2, x

j
3) as qij = g(aj

1, a
j
2, a

j
3). By collecting all of (aj

1, a
j
2, a

j
3)

from qij (1 ≤ j ≤ m), we obtain the truth assignment (a1, · · · , an) toX satisfying
C such that (a1, · · · , an) makes exactly one literal in each clause in C true. ��
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Theorem10. kFVFfreeMatching is solvable in polynomial time for k ≥ 0.

Proof. Let E be a k-fv function-free matching expression with k function vari-
ables F1, · · · , Fk and n be the maximum arity of Fi (1 ≤ i ≤ k). We adopt
the same constraint of Theorem 8. Since E is function-free, once applying an
imitation or a projection to E decreases at least one function variable in E.
Furthermore, a projection is applied to E at most n times for every function
variable. Then, we can determine whether E is matchable by checking at most
nk first-order matching expressions. ��
Theorem11. GroundPredMatching is solvable in polynomial time.

Proof. Let E be a ground predicate matching expression. Consider the following
two projections, instead of a projection:

1. projection 1 (on F ): E ⇒ E{wi/F},
if EF is of the form {〈F (t11, · · · , t1n), t1i 〉, · · · , 〈F (tm1 , · · · , tmn ), tmi 〉},

2. projection 2 (on F ): E ⇒ fail,
if a projection 1 on F cannot be applied to E and there exists pairs
〈F (t1, · · · , tn), s1〉, 〈F (u1, · · · , un), s2〉 ∈ EF but hd(s1) �= hd(s2).

An imitation on F is applied to E if the above projections 1 and 2 on F cannot
be applied. Then, the transformation rules is applied deterministically to E.

Since E is ground and predicate, E is transformed to fail by a projection 2 iff
E �⇒∗ ∅ by only an imitation and a simplification. Furthermore, by an imitation
on F and a simplification, the right-hand term of pairs in EF is decomposed into
the subterms. By Theorem 1, the statement holds. ��

4 The Comparison between Second-Order Matching and
Unification Problems

In this section, we compare the tractability/intractability of the restricted second-
order matching problems with the decidability/undecidability of the restricted
second-order unification problems.

1. Amiot [1] (and implicitly Farmer [8]) has shown that the unification prob-
lem is undecidable for an unary predicate unification expression with at least
one binary function constant. On the other hand, by Theorem 3, the matching
problem is NP-complete for a unary predicate matching expression with at least
one binary function constant.

2. A matching expression is monadic if any function constant in it is unary,
and nonmonadic if it is not monadic. Farmer has shown that the unification
problem is decidable for a monadic unification expression [7], but undecidable
for a nonmonadic unary one with at least one binary function constant [8]. On the
other hand, by Theorem 4, the matching problem is NP-complete for a monadic
matching expression. Also by Theorem 3, it is NP-complete for a nonmonadic
unary one with at least one binary function constant.
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3. Goldfarb [12] has shown that the unification problem is undecidable for
a ternary ground unification expression. On the other hand, by Theorem 4, the
matching problem is NP-complete for a unary ground matching expression. Note
that Amiot’s and Farmer’s results [1, 8] do not imply that the unification problem
is undecidable for a unary ground unification expression, because the existence
of individual variables is essential in their proofs.

4. As pointed by Goldfarb [12], the unification problem is decidable for a
function-free unification expression. On the other hand, by Theorem 5 or 7,
the matching problem is NP-complete for a function-free matching expression.
However, if a function-free matching expression is binary predicate, unary, or
k-fv (k ≥ 0), then it is solvable in polynomial time by Theorem 6, 8 or 10.

5. Ganzinger et al. [11] have shown that the unification problem is undecid-
able for an 1-fv unification expression, where the function variable occurs at
most twice. On the other hand, by Theorem 9, the matching problem is NP-
complete for an 1-fv matching expression, where the function variable occurs at
most twice. Also Levy and Veanes [17] have shown that the unification prob-
lem is undecidable for an 1-fv ground and an 1-fv unary unification expressions.
Whether the corresponding matching problems are NP-complete is still open.

6. A matching expression is k-linear if any function variable occurs at most
k times. Dowek [6] has shown that the unification problem is decidable for an 1-
linear unification expression, and the matching problem is solvable in linear time
for an 1-linear matching expression. Furthermore, Levy [16] has shown that the
unification problem is undecidable for a 2-linear unification expression. On the
other hand, Theorem 3 or 9 claims that the matching problem is NP-complete
for a 2-linear matching expression.

5 Conclusion

We summarize the results obtained by this paper in the following table.

expression matching ref. unification ref.

UnaryPred NP-complete Theorem 3 undecidable [1, 8]
TernaryGround NP-complete Theorem 4 undecidable [12]
UnaryGround NP-complete Theorem 4
TernaryFfreePred NP-complete Theorem 5 decidable [12]
BinaryFfreePred polynomial Theorem 6 decidable [12]
BinaryFfreeGround NP-complete Theorem 7 decidable [12]
UnaryFfree polynomial Theorem 8 decidable [12]
1FVPred NP-complete Theorem 9 undecidable [11]
kFVFfree (k ≥ 0) polynomial Theorem 10 decidable [12]
GroundPred polynomial Theorem 11

Monadic NP-complete Theorem 4 decidable [7]
Nonmonadic NP-complete Theorem 3 undecidable [8]
1Linear linear [6] decidable [6]
2Linear NP-complete Theorem 3,9 undecidable [16]
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In this paper, we have dealt with the second-order matching problem for
a matching expression consisting of L-terms, not L∗-terms. The matching ex-
pression consisting of L∗-terms follows the matching problem of second-order
patterns [18, 19], which is related to the problem GroundPredMatching.

Curien et al. [3] have designed a complete second-order matching algorithm
which works more efficient than the one of Huet and Lang [14] in most cases.
When it is necessary to obtain the complete set of matchers for a given matching
expression, we know no more efficient algorithm than their algorithms although
it is not a polynomial-time algorithm. It is a future work to give the trade-off
between completeness and efficiency of the second-order matching adequate for
each research field.

References

1. Amiot, G.: The undecidability of the second order predicate unification problem,
Archive for Mathematical Logic 30, 193–199, 1990.

2. Baxter, L. D.: The complexity of unification, Doctoral Thesis, Department of Com-
puter Science, University of Waterloo, 1977.

3. Curien, R., Qian, Z. and Shi, H.: Efficient second-order matching, Proc. 7th In-
ternational Conference on Rewriting Techniques and Applications, LNCS 1103,
317–331, 1996.
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