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Abstract

The Cooperative File System (CFS) is a new peer-to-peer read-only storage system that
provides provable guarantees for the efficiency, robustness, and load-balance of file storage
and retrieval. CFS does this with a completely decentralized architecture that can scale
to large systems. CFS servers provide a distributed hash table (DHash) for block storage.
CF'S clients interpret DHash blocks as a file system. DHash distributes and caches blocks
at a fine granularity to achieve load balance, uses replication for robustness, and decreases
latency with server selection. DHash finds blocks using the Chord location protocol, which
operates in time logarithmic in the number of servers and requires logarithmic state at each
node.

CFS is implemented using the SFS file system toolkit and runs on many UNIX operat-
ing systems including Linux, OpenBSD, and FreeBSD. Experience on a globally deployed
prototype shows that CFS delivers data to clients as fast as FTP. Controlled tests show that
CFS is able to route queries in a scalable way. For example, in experiments with a system of
4,096 servers, looking up a block of data involves contacting only seven servers. In general,
a logarithmic number of servers must be contacted to route a query. Servers are also able
to join and leave the system efficiently. Tests demonstrate nearly perfect robustness and
unimpaired performance even when as many as half the servers fail.
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Chapter 1

Introduction

Existing peer-to-peer systems (such as Napster [24], Gnutella [12], and Freenet [6]) demon-
strate the benefits of cooperative storage and serving. These systems have the potential
to be more available and tolerate faults better than their client-server counterparts. In
addition, peer-to-peer systems offer the unique advantage of being able to the harness idle
network and storage resources of large numbers of participating servers.

Achieving these benefits requires overcoming a number of design challenges. A peer-to-
peer architecture should be decentralized and symmetric to prevent a small group of nodes
from limiting overall system performance under high load. Similarly, the system should not
present a single point of failure. Symmetry also implies that load should be well balanced
across the available servers in proportion to their ability or willingness to handle load.

We expect that participants in a peer-to-peer system will be volunteers using hardware
and networks that are less well managed and less reliable than a typical server deployed
today. A peer-to-peer system should operate well under these conditions. In particular, the
system should support join and leave operations for servers efficiently as we expect that
participants will be active for relatively short periods of time, on the order of one hour.

Finding desired data in a large system must be efficient; file transfers from a peer-to-
peer storage system should be competitive with point-to-point transfers using the FTP or
HTTP protocols.

Finally, the system should maintain these properties even as it grows very large. Reports
place the peak number of registered users of the Napster system at approximately 70 million
and the number of active users at 1.5 million [7]. Any viable design should be able to support
a user base on this order of magnitude in size.

1.1 CFS: A Cooperative File System

While the peer-to-peer systems in common use solve some of these problems, none solves
all of them. This thesis presents CFS (the Cooperative File System), a new design that
meets all of these challenges. Two major components of CFS are presented here in detail:
a distributed block store we call DHash and the CFS file system itself which utilizes the
DHash block store. The Chord distributed lookup system is used by DHASH and provides
many of the system’s desirable properties; Chord is described in detail in [35]. Figure 1.1
summarizes the CFS software layering:

A CFS file system exists as a set of blocks distributed over the available CFS servers by
DHash. CFS client software interprets the stored blocks as file system data and meta-data



Layer | Responsibility

FS Interprets blocks as files; presents a file
system interface to applications.
DHash | Stores unstructured data blocks reli-
ably.

Chord | Maintains routing tables used to find
blocks.

and presents an ordinary read-only file-system interface to applications. The client that
we have implemented and present here uses an NFS loop back server [19] to access stored
data as a file system mapped into the local namespace. It is not the only client we could
have chosen to implement; one could use the flexible DHash block store to implement, for
example, a system similar in spirit to Napster but without a centralized database.

The DHash (distributed hash) layer stores and retrieves unstructured data blocks for
the client, distributes the blocks among the servers and maintains cached and replicated
copies. DHash uses Chord to locate the servers responsible for a block. DHash layers block
management on top of the Chord distributed hash function. DHash provides load balance
for popular large files by arranging to spread the blocks of each file over many servers. To
balance the load imposed by popular small files, DHash caches each block at servers likely
to be consulted by future Chord lookups for that block. DHash supports asynchronous
operation to allow for pre-fetching to decrease download latency. DHash replicates each
block at a small number of servers, to provide fault tolerance. DHash enforces weak quotas
on the amount of data each server can inject, to deter abuse. Finally, DHash allows control
over the number of wvirtual servers per server, to provide control over how much data a
server must store on behalf of others.

The Chord lookup system implements a hash-like operation that maps from block iden-
tifiers to servers. Chord assigns each server an identifier drawn from the same 160-bit
identifier space as block identifiers. These identifiers can be thought of as points on a circle.
The mapping that Chord implements takes a block’s ID and yields the block’s successor, the
server whose ID most closely follows the block’s ID on the identifier circle. To implement
this mapping, Chord maintains at each server a table with information about O(log N)
other servers, where N is the total number of servers. A Chord lookup sends messages to
O(log N) servers to consult their tables. Using Chord, CFS can find data efficiently even
with a large number of servers, and servers can join and leave the system with few table
updates. To improve Chord’s performance we have modified it to route queries preferen-
tially to hosts nearby in the underlying network topology. We present initial results of those
experiments here.

1.2 Contributions
CFS has been implemented. This thesis reports experimental results from a small interna-
tional deployment of CFS servers and from a large-scale controlled test-bed. These results

confirm the contributions of the CFS design:

e an aggressive approach to load balance by spreading file blocks randomly over servers;
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e download performance on an Internet-wide prototype deployment as fast as standard
FTP;

e provable efficiency and provably fast recovery times after failure;
e network proximity aware routing;
e simple algorithms to achieve the above results.

CFS is not yet in operational use, and such use will likely prompt refinements to its
design. One potential area for improvement is the ability of the Chord lookup algorithm
to tolerate malicious participants by verifying the routing information received from other
servers. Another area that CFS does not currently address is anonymity; it is expected that
anonymity, if needed, would implemented as a new software layer above CFS, or perhaps
by modifying the DHash system.

1.3 Thesis Overview

This thesis begins with a survey of related work in the field of peer-to-peer storage and
lookup (Section 2). Section 3 provides an overview of the CFS system and explains how
the Chord, DHash and CFS software layers interact. Section 4 presents an overview of the
Chord lookup system and Section 5 discusses the DHash layer in detail. In Section 6 we
discuss an extension to the Chord system developed for this work: server selection. Section 7
describes the implementation of CFS and presents pseudocode for its core algorithms. The
results of experiments with an implementation of CFS are presented in Section 8. Finally,
we present conclusions and potential future work in Section 9.
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Chapter 2

Related Work

CF'S was inspired by Napster [24], Gnutella [12], and particularly Freenet [6]. CFS uses peer-
to-peer distributed hashing similar in spirit to a number of ongoing research projects [29,
32, 39]. In comparison to existing peer-to-peer file sharing systems, CFS offers simplicity
of implementation and high performance without compromising correctness. CFS balances
server load, finds data quickly, and guarantees data availability in the face of server failures
with very high probability. CFS, as a complete system, has individual aspects in common
with many existing systems. The major relationships are summarized below.

2.1 Naming and Authentication

CF'S authenticates data by naming it with public keys or content hashes, as do many other
distributed storage systems [10, 6, 8, 15, 32, 38]. The use of content-hashes to securely link
together different pieces of data is due to Merkle [21]; the use of public keys to authentically
name data is due to the SFS system [20].

CFS adopts naming, authentication, and file system structure ideas from SFSRO [10],
which implements a secure distributed read-only file system—that is, a file system in which
files can be modified only by their owner, and only through complete replacement of the file.
However, SFSRO and CFS have significant differences at the architectural and mechanism
levels. SFSRO defines protocols and authentication mechanisms which a client can use
to retrieve data from a given server. CFS adds the ability to dynamically find the server
currently holding the desired data, via the Chord location service. This increases the
robustness and the availability of CFS, since changes in the set of servers are transparent
to clients.

2.2 Peer-to-Peer Search

Napster [24] and Gnutella [12] are arguably the most well known peer-to-peer file systems
today. They present a keyword search interface to clients, rather than retrieving uniquely
identified data. As a result they are more like search engines than distributed hash tables,
and they trade scalability for this power: Gnutella broadcasts search queries to many ma-
chines, and Napster performs searches at a central facility. CFS as described in this paper
doesn’t provide search, but we are developing a scalable distributed search engine for CFS.

Mojo Nation [22] is a broadcast query peer-to-peer storage system which divides files
into blocks and uses a secret sharing algorithm to distribute the blocks to a number of hosts.
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CFS also divides files into blocks but does not use secret sharing.

The Morpehus system [23] works analogously to Napster but selects a fraction of par-
ticipating peers to serve as indexing servers, eliminating the single point of failure present
in Napster. Morpheus allows for the striping of downloads from multiple servers, but un-
like CFS it stores copies of whole files at each server. Both Napster and Morpheus do not
explicitly replicate documents, but rather depend on the fact that popular documents will
be widely downloaded and republished by users.

2.3 Anonymous Storage

Freenet [5] uses probabilistic routing to preserve the anonymity of clients, publishers, and
servers. This anonymity requirement limits Freenet’s reliability and performance. Freenet
avoids associating a document with any predictable server, and avoids forming any globally
coherent topology among servers. The former means that unpopular documents may simply
disappear from the system, since no server has the responsibility for maintaining replicas.
The latter means that a search may need to visit a large fraction of the Freenet network.
As an example, Hong shows in his Figure 14-12 that in a network with 1,000 servers, the
lookup path length can exceed 90 hops [26]. This means that if the hop count is limited to
90, a lookup may fail even though the document is available. Because CFS does not try to
provide anonymity, it can guarantee much tighter bounds on lookup cost; for example, in a
4,096-node system, lookups essentially never exceed 10 hops.

CFS’s caching scheme is similar to Freenet’s in the sense that both leave cached copies
of data along the query path from client to where the data was found. Because CF'S finds
data in significantly fewer hops than Freenet, and CFS’s structured lookup paths are more
likely to overlap than Freenet’s, CFS can make better use of a given quantity of cache space.

Like Freenet, Publius [38] focuses on anonymity, but achieves it with encryption and
secret sharing rather than routing. Publius requires a static, globally-known list of servers;
it stores each share at a fixed location that is predictable from the file name. Free Haven [8]
uses both cryptography and routing (using re-mailers [4]) to provide anonymity; like Gnutella,
Free Haven finds data with a global search.

CFS does not attempt to provide anonymity, focusing instead on efficiency and ro-
bustness. We believe that intertwining anonymity with the basic data lookup mechanism
interferes with correctness and performance. On the other hand, given a robust location and
storage layer, anonymous client access to CFS could be provided by separate anonymizing
proxies, using techniques similar to those proposed by Chaum [4] or Reiter and Rubin [30].

2.4 Peer-to-Peer Hash Based Systems

CF'S layers storage on top of an efficient distributed hash lookup algorithm. A number of
recent peer-to-peer systems use approaches similar to chord and offer similar scalability and
performance, including CAN [29], PAST [31, 32], OceanStore [15, 39], and Ohaha [25]. A
detailed comparison of these algorithms can be found in [35].

The PAST [32] storage system differs from CFS in its approach to load balance. Because
a PAST server stores whole files, a server might not have enough disk space to store a large
file even though the system as a whole has sufficient free space. A PAST server solves
this by offloading files it is responsible for to servers that do have spare disk space. PAST
handles the load of serving popular files by caching them along the lookup path.
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CF'S stores blocks, rather than whole files, and spreads blocks evenly over the avail-
able servers; this prevents large files from causing unbalanced use of storage. CFS solves
the related problem of different servers having different amounts of storage space with a
mechanism called virtual servers, which gives server managers control over disk space con-
sumption. CFS’s block storage granularity helps it handle the load of serving popular large
files, since the serving load is spread over many servers along with the blocks. This is more
space-efficient, for large files, than whole-file caching. CFS relies on caching only for files
small enough that distributing blocks is not effective. Evaluating the performance impact
of block storage granularity is one of the purposes of this thesis.

OceanStore [15] aims to build a global persistent storage utility. It provides data privacy,
allows client updates, and guarantees durable storage. However, these features come at a
price: complexity. For example, OceanStore uses a Byzantine agreement protocol for conflict
resolution, and a complex protocol based on Plaxton trees [27] to implement the location
service [39]. OceanStore assumes that the core system will be maintained by commercial
providers.

LH* [17] is a distributed data structure based on linear hashing which supports constant
time insertion and lookup of objects. Data stored in LH* is distributed to nodes via a split
operation which occurs when a node reaches its capacity; splitting allows LH* to maintain
a high utilization (a property not addressed by Chord which assumes an excess of available
storage). LH*, however, assumes either that each node has knowledge of all other nodes
in the system or that a central coordinator manages this information. This property is in
conflict with the symmetry and scalability goals of Chord.

Ohaha [25] uses consistent hashing to map files and keyword queries to servers, and
a Freenet-like routing algorithm to locate files. As a result, it shares some of the same
weaknesses as Freenet.

2.5 Web Caches

Content distribution networks (CDNs), such as Akamai [1], handle high demand for data by
distributing replicas on multiple servers. CDNs are typically managed by a central entity,
while CFS is built from resources shared and owned by a cooperative group of users.

There are several proposed scalable cooperative Web caches [3, 9, 11, 18]. To locate
data, these systems either multicast queries or require that some or all servers know about
all other servers. As a result, none of the proposed methods is both highly scalable and
robust. In addition, load balance is hard to achieve as the content of each cache depends
heavily on the query pattern.

Cache Resolver [34], like CFS, uses consistent hashing to evenly map stored data among
the servers [13, 16]. However, Cache Resolver assumes that clients know the entire set of
servers; maintaining an up-to-date server list is likely to be difficult in a large peer-to-peer
system where servers join and depart at unpredictable times.
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Chapter 3

Design Overview

CFS provides distributed read-only file storage. It is structured as a collection of servers
that provide block-level storage. Publishers (producers of data) and clients (consumers of
data) layer file system semantics on top of this block store much as an ordinary file system
is layered on top of a disk. Many unrelated publishers may store separate file systems
on a single CFS system; the CFS design is intended to support the possibility of a single
world-wide system consisting of millions of servers.

3.1 System Structure

Figure 3-1 illustrates the structure of the CFS software. Each CFS client contains three
software layers: a file system client, a DHash storage layer, and a Chord lookup layer. The
client file system uses the DHash layer to retrieve blocks. The client DHash layer uses the
client Chord layer to locate the servers that hold desired blocks.

Each CFS server has two software layers: a DHash storage layer and a Chord layer.
The server DHash layer is responsible for storing keyed blocks, maintaining proper levels
of replication as servers come and go, and caching popular blocks. The server DHash and
Chord layers interact in order to integrate looking up a block identifier with checking for
cached copies of the block. CFS servers are oblivious to file system semantics: they simply
provide a distributed block store.

CFS clients interpret DHash blocks in a file system format adopted from SFSRO [10];
the format is similar to that of the UNIX V7 file system, but uses DHash blocks and block
identifiers in place of disk blocks and disk addresses. As shown in Figure 3-2, each block is

FS

|

DHash DHash DHash
1 b1 b1
Chord Chord Chord
CFS Client CFS Server CFS Server

Figure 3-1: CFS software structure. Vertical links are local APIs; horizontal links are RPC
APIs.
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Figure 3-2: A simple CFS file system structure example. The root-block is identified by a
public key and signed by the corresponding private key. The other blocks are identified by
cryptographic hashes of their contents.

either a piece of a file or a piece of file system meta-data, such as a directory. The maximum
size of any block is on the order of tens of kilobytes. A parent block contains the identifiers
of its children.

The publisher inserts the file system’s blocks into the CFS system, using a hash of each
block’s content (a content hash) as its identifier. Then the publisher signs the root block
with his or her private key, and inserts the root block into CFS using the corresponding
public key as the root block’s identifier. Clients name a file system using the public key;
they can check the integrity of the root block using that key, and the integrity of blocks
lower in the tree with the content hash identifiers that refer to those blocks. This approach
guarantees that clients see an authentic and internally consistent view of each file system,
though under some circumstances a client may see an old, but still internally consistent,
version of a recently updated file system.

A CFS file system is read-only as far as clients are concerned. However, a file system may
be updated by its publisher. This involves updating the file system’s root block in place, to
make it point to the new data. CFS authenticates updates to root blocks by checking that
the new block is signed by the same key as the old block. A timestamp prevents replays
of old updates. CFS allows file systems to be updated without changing the root block’s
identifier so that external references to data need not be changed when the data is updated.

CFS stores data for an agreed-upon finite interval. Publishers that want indefinite
storage periods can periodically ask CFS for an extension; otherwise, a CFS server may
discard data whose guaranteed period has expired. CFS has no explicit delete operation:
instead, a publisher can simply stop asking for extensions. In this area, as in its replication
and caching policies, CFS relies on the assumption that large amounts of spare disk space
are available.

3.2 Design Motivation

CFS is intended to provide a highly available file system distributed across a very large
collection of unreliable nodes. The system’s two main design decisions reflect this: CFS
uses the Chord location algorithm which maintains only a small amount of state and allows
efficient join and leave operations, and CFS distributes a single file over many hosts to
balance load.

Splitting each file system (and file) into blocks and distributing those blocks over many
servers balances the load of serving popular files over many servers. It also increases the
number of messages required to fetch a whole file, since a client must look up each block
separately. However, the network bandwidth consumed by a lookup is small compared
to the bandwidth required to deliver the block. In addition, CFS hides the block lookup

18



latency by pre-fetching blocks.

Systems such as Freenet [6] and PAST [32] store whole files. This results in lower lookup
costs than CFS, one lookup per file rather than per block, but requires more work to achieve
load balance. Servers unlucky enough to be responsible for storing very large files may run
out of disk space even though the system as a whole has sufficient free space. Balancing the
load of serving whole files typically involves adaptive caching. Again, this may be awkward
for large files; a popular file must be stored in its entirety at each caching server. DHash
also uses caching, but only depends on it for small files.

DHash’s block granularity is particularly well suited to serving large, popular files,
such as software distributions. For example, in a 1,000-server system, a file as small as 8
megabytes will produce a reasonably balanced serving load with 8 KByte blocks; the load of
serving the file will distributed across 1,000 servers. A system that balances load by caching
whole files would require, in this case, about 1,000 times as much total storage to achieve
the same load balance since the whole file would be required to be cached on 1,000 servers.
On the other hand, DHash is not as efficient as a whole-file scheme for large but unpopular
files, though the experiments in Section 8.1 show that it can provide competitive download
speeds. DHash’s block granularity is not likely to affect (for better or worse) performance
or load balance for small files. For such files, DHash depends on caching and on server
selection among block replicas (described in Section 5.1).

CFS’s core location algorithm, Chord, requires a logarithmic number of messages per
lookup and provides a logarithmic bound on the number of messages a join or leave operation
requires. CFS might have used the more naive approach of simply maintaining a list of every
node on each node and then using consistent hashing or some other distributed storage
algorithm to store and retrieve data. This approach would allow for constant time lookups
but requires a number of messages linear in the number of nodes in the system for each
join or leave operation; additionally this scheme requires storage linear in the number of
nodes at each node. While an approach that requires linear state could be implemented for
systems with a small collection of nodes or a larger system where the set of participating
nodes rarely changed, it is not appropriate for the environment we intend CFS to be used
in: millions of unreliable machines. A measurement study of Napster and Gnutella hosts
reports that 50 percent of sessions lasted less than 60 minutes and that 25 percent lasted
less than approximately 10 minutes [33].

In an environment with such a large number of join and leave operations, we feel that
Chord offers an appealing tradeoff between the cost of performing a lookup and the cost of a
membership change. Maintaining an accurate group membership over a wide-area network
is difficult. Keidar et al. propose an algorithm to maintain group membership in a WAN
but only demonstrate scaling to hundreds of clients and utilize a central server which CFS
explicitly attempts to avoid [14]. Additionally, any large cache of node locations is likely to
contain entries which have become unreachable (a linear group membership list could not
be easily maintained). These unreachable entries will not affect the correctness of a lookup
but will cause the lookup to suffer a large number of expensive network timeouts.

A detailed description and analysis of the additional mechanisms Chord uses to achieve
load balance and reliability are presented in Section 5.
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3.3 CFS Properties

CF'S provides consistency and integrity of file systems by adopting the SFSRO file system
format. CFS extends SFSRO by providing the following desirable desirable properties:

e Decentralized control. CFS servers need not share any administrative relationship
with publishers. CFS servers could be ordinary Internet hosts whose owners volunteer
spare storage and network resources.

e Scalability. CFS lookup operations use space and messages at most logarithmic in
the number of servers.

e Availability. A client can always retrieve data as long as it is not trapped in a
small partition of the underlying network, and as long as one of the data’s replicas
is reachable using the underlying network. This is true even if servers are constantly
joining and leaving the CFS system. CFS places replicas on servers likely to be at
unrelated network locations to ensure independent failure.

e Load balance. CFS ensures that the burden of storing and serving data is divided
among the servers in rough proportion to their capacity. It maintains load balance,
even if some data are far more popular than others, by caching blocks and by spreading
each file’s data over many servers.

e Persistence. Once CFS commits to storing data, it keeps it available for at least an
agreed-on interval.

e Quotas. CFS limits the amount of data that any particular IP address can insert
into the system. This provides a degree of protection against malicious attempts to
exhaust the system’s storage.

e Efficiency. Clients can fetch CFS data with delay comparable to that of FTP, due to
CFS’s use of efficient lookup algorithms, caching, pre-fetching, and server selection.

The next two sections present Chord and DHash, which together provide these proper-
ties.

20



Chapter 4

Chord Layer

CF'S uses the Chord protocol to locate blocks [35]. Chord supports just one operation: given
a key, it will determine the node responsible for that key. Chord does not itself store keys
and values, but provides primitives that allow higher-layer software to build a wide variety
of storage systems; CFS is one such use of the Chord primitive. This section summarizes
Chord; for a more detailed description of Chord see one of the several publications relating
to Chord [35] [36].

4.1 Consistent Hashing

Each Chord node has a unique m-bit node identifier (ID), obtained by hashing the node’s
IP address and a virtual node index. Chord views the IDs as occupying a circular identifier
space. Keys are also mapped into this ID space, by hashing them to m-bit key IDs. Chord
defines the node responsible for a key to be the successor of that key’s ID. The successor
of an ID j is the node with the smallest ID that is greater than or equal to j (with wrap-
around), much as in consistent hashing [13].

Consistent hashing lets nodes enter and leave the network with minimal movement of
keys. To maintain correct successor mappings when a node n joins the network, certain
keys previously assigned to n’s successor become assigned to n. When node n leaves the
network, all of n’s assigned keys are reassigned to its successor. No other changes in the
assignment of keys to nodes need occur.

Consistent hashing is straightforward to implement, with constant-time lookups, if all
nodes have an up-to-date list of all other nodes. However, such a system does not scale;
Chord provides a scalable, distributed version of consistent hashing.

4.2 The Chord Lookup Algorithm

A Chord node uses two data structures to perform lookups: a successor list and a finger
table. Only the successor list is required for correctness, so Chord is careful to maintain its
accuracy. The finger table accelerates lookups, but does not need to be accurate, so Chord is
less aggressive about maintaining it. The following discussion first describes how to perform
correct (but slow) lookups with the successor list, and then describes how to accelerate them
up with the finger table. This discussion assumes that there are no malicious participants
in the Chord protocol; while we believe that it should be possible for nodes to verify the
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routing information that other Chord participants send them, the algorithms to do so are
left for future work.

Every Chord node maintains a list of the identities and IP addresses of its 7 immediate
successors on the Chord ring. The fact that every node knows its own successor means that
a node can always process a lookup correctly: if the desired key is between the node and
its successor, the latter node is the key’s successor; otherwise the lookup can be forwarded
to the successor, which moves the lookup strictly closer to its destination.

A new node n learns of its successors when it first joins the Chord ring, by asking
an existing node to perform a lookup for n’s successor; n then asks that successor for
its successor list. The r entries in the list provide fault tolerance: if a node’s immediate
successor does not respond, the node can substitute the second entry in its successor list. All
r successors would have to simultaneously fail in order to disrupt the Chord ring, an event
that can be made very improbable with modest values of r. An implementation should use
a fixed r, chosen to be 2log, N for the foreseeable maximum number of nodes N.

The main complexity involved with successor lists is in notifying an existing node when
a new node should be its successor. The stabilization procedure described in [35] does this
in a way that guarantees to preserve the connectivity of the Chord ring’s successor pointers.

Lookups performed only with successor lists would require an average of N/2 message
exchanges, where N is the number of servers. To reduce the number of messages required
to O(log N), each node maintains a finger table table with m entries. The i** entry in the
table at node n contains the identity of the first node that succeeds n by at least 2°~! on
the ID circle. Thus every node knows the identities of nodes at power-of-two intervals on
the ID circle from its own position. A new node initializes its finger table by querying an
existing node. Existing nodes whose finger table or successor list entries should refer to
the new node find out about it by periodic lookups performed as part of an asynchronous,
ongoing stabilization process.

Figure 4-1 shows pseudo-code to look up the successor of identifier ¢d. The main loop
is in find_predecessor, which sends preceding node_list RPCs to a succession of other nodes;
each RPC searches the tables of the other node for nodes yet closer to id. Each iteration will
set n’ to a node between the current n’ and id. Since preceding_node_list never returns an ID
greater than id, this process will never overshoot the correct successor. It may under-shoot,
especially if a new node has recently joined with an ID just before id; in that case the check
for id ¢ (n',n'.successor] ensures that find_predecessor persists until it finds a pair of nodes
that straddle id.

Two aspects of the lookup algorithm make it robust. First, an RPC to preceding_node_list
on node n returns a list of nodes that n believes are between it and the desired id. Any
one of them can be used to make progress towards the successor of id; they must all be
unresponsive for a lookup to fail. Second, the while loop ensures that find_predecessor will
keep trying as long as it can find any next node closer to id. As long as nodes are careful
to maintain correct successor pointers, find_predecessor will eventually succeed.

In the usual case in which most nodes have correct finger table information, each iter-
ation of the while loop eliminates half the remaining distance to the target. This means
that the hops early in a lookup travel long distances in the ID space, and later hops travel
small distances. The efficacy of the caching mechanism described in Section 5.2 depends
on this observation. It is worthwhile to note that this algorithm does not itself provide an
O(lg N) bound; the structure of the finger table, which the algorithm examines, guarantees
that each hop will cover half of the remaining distance. This behavior is the source of the
algorithm’s logarithmic properties.
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// Ask node n to find id’s successor; first
// finds id’s predecessor, then asks that
// predecessor for its own successor.
n.find_successor(id)

n' = find_predecessor(id);

return n'.successor();

// Ask node n to find id’s predecessor.
n.find_predecessor(id)
n' =mn;
while (id ¢ (n',n'.successor()])
I = n'.preceding_node_list(id);
n' = maxn'' €1 s.t. n' is alive
return n';

// Ask node n for a list of nodes in its finger table or
// successor list that precede id.
n.preceding node list(id)
return {n' € {fingersU successors}
s.t. n' € (n,id]}

Figure 4-1: The pseudo-code to find the successor node of an identifier 2d. Remote procedure
calls are preceded by the remote node.

The following two theorems, proved in an accompanying technical report [36], show that
neither the success nor the performance of Chord lookups is likely to be affected even by
massive simultaneous failures. Both theorems assume that the successor list has length
r = O(log N). A Chord ring is stable if every node’s successor list is correct.

Theorem 1 In a network that is initially stable, if every node then fails with probability
1/2, then with high probability find_successor returns the closest living successor to the query
key.

Theorem 2 In a network that is initially stable, if every node then fails with probability
1/2, then the expected time to ezecute find_successor is O(log N).

The evaluation in Section 8 validates these theorems experimentally.

4.3 Node ID Authentication

If Chord nodes could use arbitrary IDs, an attacker could destroy chosen data by choosing
a node ID just after the data’s ID. With control of the successor, the attacker’s node could
effectively delete the block by denying that the block existed.

To limit the opportunity for this attack, a Chord node ID must be of the form h(z),
where h is the SHA-1 hash function and z is the node’s IP address concatenated with a
virtual node index. The virtual node index must fall between 0 and some small maximum.
As a result, a node cannot easily control the choice of its own Chord ID.
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When a new node n joins the system, some existing nodes may decide to add n to
their finger tables. As part of this process, each such existing node sends a message to n’s
claimed IP address containing a nonce. If the node at that IP address admits to having n’s
ID, and the claimed IP address and virtual node index hash to the ID, then the existing
node accepts n.

With this defense in place, an attacker would have to control roughly as many IP
addresses as there are total other nodes in the Chord system in order to have a good chance
of targeting arbitrary blocks. However, owners of large blocks of IP address space tend to
be more easily identifiable (and less likely to be malicious) than individuals.
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Chapter 5

DHash Layer

The CFS DHash layer stores and retrieves uniquely identified blocks, and handles distribu-
tion, replication, and caching of those blocks. DHash uses Chord to help it locate blocks.

Table 5.1 shows the API that the DHash layer exposes. The CFS file system client layer
uses get to implement application requests to open files, read files, navigate directories, etc.
Publishers of data use a special application that inserts or updates a CFS file system using
the put_h and put_s calls.

5.1 Replication

DHash replicates each block on k CFS servers to increase availability, maintains the k
replicas automatically as servers come and go, and places the replicas in a way that clients
can easily find them.

DHash places a block’s replicas at the k servers immediately after the block’s successor
on the Chord ring (see Figure 5-1). DHash can easily find the identities of these servers from
Chord’s r-entry successor list. CFS must be configured so that » > k. This placement of
replicas means that, after a block’s successor server fails, the block is immediately available
at the block’s new successor.

The DHash software in a block’s successor server manages replication of that block by
making sure that all £ of its successor servers have a copy of the block at all times. If the
successor server fails, the block’s new successor assumes responsibility for the block. The
new successor is able to determine that it should assume responsibility by a strictly local
examination of routing tables maintained by the Chord layer: if a key is between the node’s

Function Description

put_h(block) Computes the block’s key by hashing its contents, and sends it to
the key’s successor server for storage.

put_s(block, pubkey) | Stores or updates a signed block; used for root blocks. The block
must be signed with the given public key. The block’s Chord key
will be the hash of pubkey.

get (key) Fetches and returns the block associated with the specified Chord
key.

Table 5.1: DHash client API; exposed to client file system software.
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Figure 5-1: The placement of an example block’s replicas and cached copies around the
Chord identifier ring. The block’s ID is shown with a tick mark. The block is stored at
the successor of its ID, the server denoted with the square. The block is replicated at the
successor’s immediate successors (the circles). The hops of a typical lookup path for the
block are shown with arrows; the block may be cached at the servers along a possible lookup
path (the triangles).

predecessor and its own ID, the node is now responsible for maintaining replicas of the key.

The value of this replication scheme depends in part on the independence of failure and
unreachability among a block’s k replica servers. Servers close to each other on the ID ring
are not likely to be physically close to each other, since a server’s ID is based on a hash of
its IP address. This provides the desired independence of failure.

CFS could save space by storing coded pieces of blocks rather than whole-block replicas,
using an algorithm such as IDA [28]. CFS doesn’t use coding, because storage space is not
expected to be a highly constrained resource.

5.2 Caching

DHash caches blocks to avoid overloading servers that hold popular data. Each DHash layer
sets aside a fixed amount of disk storage for its cache. When a CFS client looks up a block
key, it performs a Chord lookup, visiting intermediate CFS servers with IDs successively
closer to that of the key’s successor (see Figure 5-1). At each step, the client asks the
intermediate server whether it has the desired block cached. Eventually the client arrives
at either the key’s successor or at an intermediate server with a cached copy. The client
then sends a copy of the block to the last server it contacted along the lookup path.

Since a Chord lookup takes shorter and shorter hops in ID space as it gets closer to the
target, lookups from different clients for the same block will tend to visit the same servers
late in the lookup. As a result, the policy of caching blocks along the lookup path is likely
to be effective.

By sending a block to the last server contacted we maximize the probability that the
cached block will be utilized by future lookups while minimizing the effort spent distributing
blocks to caches: the final server is closest to the target and is most likely to be contacted
again during a search for the same block. This strategy has the additional property that
it spreads cached copies at a distance away from a key’s successor in proportion to the
popularity of the key.
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DHash replaces cached blocks in least-recently-used order. Copies of a block at servers
with IDs far from the block’s successor are likely to be discarded first, since clients are least
likely to stumble upon them. This has the effect of preserving the cached copies close to
the successor, and expands and contracts the degree of caching for each block according to
its popularity.

While caching and replication are conceptually similar, DHash provides them as distinct
mechanisms. DHash stores replicas in predictable places, so it can ensure that enough
replicas always exist. In contrast, the number of cached copies cannot easily be counted,
and might fall to zero. If fault-tolerance were achieved solely through cached copies, an
unpopular block might simply disappear along with its last cached copy.

CF'S avoids most cache consistency problems because blocks are keyed by content hashes.
Root blocks, however, use public keys as identifiers; a publisher can change a root block
by inserting a new one signed with the corresponding private key. This means that cached
root blocks may become stale, causing some clients to see an old, but internally consistent,
file system. A client can check the freshness of a cached root block [10] to decide whether
to look for a newer version. Non-root blocks that no longer have any references to them
will eventually be eliminated from caches by LRU replacement.

The caching mechanism described here was implemented to avoid overtaxing servers
holding popular documents; the traditional use of caching, however, has been to improve
performance. The CFS client (see Section 7.3) caches file blocks in this manner.

5.3 Load Balance

DHash spreads blocks evenly around the ID space, since the content hash function uniformly
distributes block IDs. If each CFS server had one ID, the fact that IDs are uniformly
distributed would mean that every server would carry roughly the same storage burden. This
is not desirable, since different servers may have different storage and network capacities.
In addition, even uniform distribution doesn’t produce perfect load balance; the maximum
storage burden is likely to be about log(N) times the average due to irregular spacing
between server IDs [13].

To accommodate heterogeneous server capacities, CFS uses the notion (from [13]) of
a real server acting as multiple virtual servers. The CFS protocol operates at the virtual
server level. A virtual server uses a Chord ID that is derived from hashing both the real
server’s IP address and the index of the virtual server within the real server.

A CFS server administrator configures the server with a number of virtual servers in
rough proportion to the server’s storage and network capacity. This number can be adjusted
from time to time to reflect observed load levels.

Use of virtual servers could potentially increase the number of hops in a Chord lookup
by increasing the number of nodes participating in the protocol. CFS avoids this expense by
allowing virtual servers on the same physical server to examine each others’ tables; the fact
that these virtual servers can take short-cuts through each others’ routing tables exactly
compensates for the increased number of servers.

CFS could potentially vary the number of virtual servers per real server adaptively, based
on current load. Under high load, a real server could delete some of its virtual servers; under
low load, a server could create additional virtual servers. Any such algorithm would need to
be designed for stability under high load. If a server is overloaded because the CFS system
as a whole is overloaded, then automatically deleting virtual servers might cause a cascade
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of such deletions.

5.4 Quotas

The most damaging technical form of abuse that CFS is likely to encounter is malicious
injection of large quantities of data. The aim of such an attack might be to use up all the disk
space on the CFS servers, leaving none available for legitimate data. Even a non-malicious
user could cause the same kind of problem by accident.

Ideally, CFS would impose per-publisher quotas based on reliable identification of pub-
lishers, as is done in the PAST system [32]. Reliable identification usually requires some
form of centralized administration, such as a certificate authority. As a decentralized ap-
proximation, CF'S bases quotas on the IP address of the publisher. For example, if each CFS
server limits any one IP address to using 0.1% of its storage, then an attacker would have
to mount an attack from about 1,000 machines for it to be successful. This mechanism also
limits the storage used by each legitimate publisher to just 0.1%, assuming each publisher
uses just one IP address.

This limit is not easy to subvert by simple forging of IP addresses, since CFS servers
require that publishers respond to a confirmation request that includes a random nonce, as
described in Section 4.3. This approach is weaker than one that requires publishers to have
unforgeable identities, but requires no centralized administrative mechanisms.

If each CFS server imposes a fixed per-IP-address quota, then the total amount of
storage an IP address can consume will grow linearly with the total number of CFS servers.
It may prove desirable to enforce a fixed quota on total storage, which would require the
quota imposed by each server to decrease in proportion to the total number of servers. An
adaptive limit of this form is possible, using the estimate of the total number of servers that
the Chord software maintains (see Section 7.1).

5.5 Updates and Deletion

CFS allows updates, but in a way that allows only the publisher of a file system to modify
it. A CFS server will accept a request to store a block under either of two conditions. If
the block is marked as a content-hash block, the server will accept the block if the supplied
key is equal to the SHA-1 hash of the block’s content. If the block is marked as a signed
block, the block must be signed by a public key whose SHA-1 hash is the block’s CFS key.

The low probability of finding two blocks with the same SHA-1 hash prevents an attacker
from changing the block associated with a content-hash key, so no explicit protection is
required for most of a file system’s blocks. The only sensitive block is a file system’s root
block, which is signed; its safety depends on the publisher avoiding disclosure of the private
key.

CFS does not support an explicit delete operation. Publishers must periodically refresh
their blocks if they wish CFS to continue to store them. A CFS server may delete blocks
that have not been refreshed recently.

One benefit of CFS’s implicit deletion is that it automatically recovers from malicious
insertions of large quantities of data. Once the attacker stops inserting or refreshing the
data, CFS will gradually delete it.
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Chapter 6

Server Selection

In building CFS we added the concept of server selection to Chord. Server selection reduces
lookup latency by allowing lookups to preferentially contact nodes likely to be nearby in
the underlying network. It also directs searches to the lowest latency data block replica.

At each step in find_predecessor(id) (Figure 4-1), the node doing the lookup (n) can
choose the next hop from a set of nodes. Initially this set is the contents of n’s own routing
tables; subsequently the set is the list of nodes returned by the preceding_node_list RPC to
the most recent hop (m). Node m tells n the measured latency from m to each node in the
set; m collected these latencies when it acquired its finger table entries. Different choices
of next-hop node will take the query different distances around the ID ring, but impose
different RPC latencies; the following calculation seeks to pick the best combination.

Chord attempts to predict the latency for the entire lookup given that the next hop is
to node n; for each n; in the set of potential next hops. This cost, C'(n;), is calculated as
follows:

C(ni) = di+dx H(n;)
n; — id

H(n;) is an estimate of the number of Chord hops that would remain after contacting
n;. To calculate H(n;) we begin with N, node n’s estimate of the total number of Chord
nodes in the system, based on the density of nodes nearby on the ID ring. Multiplying N
by the fraction of the ring between the proposed node and the target gives an estimate of
the number of nodes between the proposed node and the target. The base two logarithm of
this quantity is an estimate of the number of hops remaining to complete the lookup since
we expect the Chord lookup algorithm to eliminate half the remaining nodes between the
current position and the target with each hop. Multiplying this quantity by d, the average
latency of all the RPCs that node n has ever issued, estimates the time it would take to send
RPCs for those hops. Adding d;, the latency to node n; as reported by node m, produces
a complete cost estimate. Chord uses the node with the minimum C(n;) as the next hop.

Server selection is also performed in the DHash layer when downloading a block. The
placement of block replicas makes it easy for a client to select the replica likely to be
fastest to download. The result of the Chord lookup for block id is the identity of the
server that immediately precedes id. The client asks this predecessor for its successor list,
which will include the identities of the servers holding replicas of block id as well as latency
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measurements between the predecessor and these servers. The client then fetches the block
from the replica with the lowest reported latency.

One benefit of the proposed server selection method is that no extra measurements
are necessary to decide which node is closest; the decisions are made based on latencies
observed while building finger tables. However, nodes rely on latency measurements taken
by other nodes. This works well when low latencies from nodes a to b, and b to ¢ imply that
latency is also low from a to ¢. Measurements of our Internet test-bed suggest that this
transitivity condition often holds [37]. An implementation of the lookup algorithm in which
nodes issue RPCs on behalf of other nodes could lessen the impact of a lack of transitivity
in the network (we call this style of implementation recursive).

6.1 Correctness of server selection

Adding server selection makes it more difficult to reason about the performance of Chord.
In this section we attempt to provide some basis for an understanding of why the server
selection algorithm presented above is helpful.

First we show that the server selection algorithm does not disturb the O(log N) bound
on hops for Chord lookups when all internode latencies are equal.

Observation: In a stable network, if all internode latencies are equal, and nodes are
uniformly distributed in the ID space, a lookup operation requires O(log N) hops.

Pf: If all transmission latencies are equal, the fitness metric (C(n;)) for each potential
node can be simplified to H(n;), the estimate of the number of hops between the proposed
node and the target: since the d; terms for each node are equal they do not affect any
comparison. At each step, the algorithm will pick the smallest H(n;) which is equivalent
to picking the n; with the largest ID since the estimate assumes that nodes are uniformly
distributed in ID space. This is equivalent to the behavior of the algorithm as stated with-
out server selection and the O(log N) bound for that algorithm applies here.

Next we attempt to show how the strictly local, hop by hop, decisions made by the
algorithm reduce lookup latency on average. In particular, we wish to demonstrate that
when the algorithm does not choose the same node that the unmodified lookup algorithm
would, the choice produces a latency savings under certain assumptions.

Observation In a stable network of uniformly distributed (in ID space) nodes, if a search
proceeds to a node whose estimated remaining hop count is not the minimum possible choice,
the latency of the search will not be increased assuming that the local estimates for average
RPC latency and hops remaining are globally accurate.

Pf: If the algorithm chooses a node with a non-minimal hop count there must exist, for
some i, j, the comparison:

di—I-EXHZ' < d]‘—I-EXHj

where H; > Hj. Since d; > d; we can write:

dj—di > EX(HZ'—HJ')
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Latency savings > d x Added hops

From this result we conclude that the savings we gain by choosing a node that is closer
in the network topology but further from the target outweigh, on average, the time spent
to traverse the added distance in the ID space.

In practice server selection produces only a prediction for the best node to chose in the
next hop. Variable network conditions and intransitivity in the network make it difficult to
maintain accurate estimates for internode latencies d;, the estimate of remaining hops (H;)
is sensitive to fluctuations in the distribution of nodes through the ID space, and d is likely
to vary based on a node’s network connectivity. The result is that server selection is at best a
useful heuristic. Worse, server selection may break the assumption that a lookup operation
contacts O(log N) nodes. It is possible that a lookup running under server selection could
make a linear number of hops that are “short” in both ID space and in the underlying
network topology.
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Chapter 7

Implementation

CF'S is implemented in 7,000 lines of C++4, including the 3,000 line Chord implementation.
It consists of a number of separate programs that run at user level. The programs com-
municate over UDP using a C++ RPC package provided by the SFS toolkit [19]. A busy
CFS server may exchange short messages with a large number of other servers, making
the overhead of TCP connection setup unattractive. TCP also requires the allocation of
resources (a file descriptor, namely) for each connection. In large systems CFS may exhaust
these resources by contacting a large number of nodes in a short period of time. The inter-
nal structure of each program is based on asynchronous events and callbacks, rather than
threads. Each software layer is implemented as a library with a C++ interface. CFS runs
on a variety of UNIX systems including Linux, OpenBSD, and FreeBSD. We are currently
working on a port of SFS and CFS to the Apple Macintosh OS X operating system.

7.1 Chord Implementation

The Chord library maintains the routing tables described in Section 4. It exports these
tables to the DHash layer, which implements its own integrated version of the Chord lookup
algorithm. The implementation uses the SHA-1 cryptographic hash function to produce
CF'S block identifiers from block contents. This means that block and server identifiers are
160 bits wide.

The Chord implementation maintains a running estimate of the total number of Chord
servers, for use in the server selection algorithm described in Section 6. Each server computes
the fraction of the ID ring that the r nodes in its successor list cover; let that fraction be
f. Then the estimated total number of servers in the system is r/f.

7.2 DHash Implementation

DHash is implemented as a library which depends on Chord. Each DHash instance is
associated with a Chord virtual server and communicates with that virtual server through
a function call interface. DHash instances on different servers communicate with one another
via RPC.

DHash has its own implementation of the Chord lookup algorithm, but relies on the
Chord layer to maintain the routing tables. Integrating block lookup into DHash increases
its efficiency. If DHash instead called the Chord find_successor routine, it would be awkward
for DHash to check each server along the lookup path for cached copies of the desired block.
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// RPC handler on server n. Returns block with ID key,
// or the best next server to talk to.
n.lookup_step(key)
if key € (stored U cached U replicated) then
return[COMPLETE, key, datay.y)
else if key € (predecessor, myid]
return NONEXISTENT
else if key € (myid, first live successor]
next_hop = first live successor
else
// Find highest server < key in my finger table or successor list.
next_hop = lookup_closest_pred(key)
succlist = {s € {fingersU successors} s.t. s > next_hop}
return [CONTINUE, next_hop, succlist]

// RPC handler to ask the Chord software to delete
// server id from the finger list and successor list.
n.alert(id)

// Return the block associated with key, or an error.
// Runs on the server that invokes lookup().
lookup(key)
p-push(n) // A stack to accumulate the path.
[status,res] = n.lookup_step(key)
repeat
if (status = COMPLETE)
return res.datayey
else if (status = CONTINUE)
if (res.next_hop = p.top)
// p.top knew no server other than itself.
return NONEXISTENT
else if (key € (p.top', p-top])
// p.top should have had the block.
return NONEXISTENT
else // explore next hop
p.push(res.next_hop)
[status,res] = res.next_hop.lookup_step(key)
else if (status = RPC_FAILURE)
// Try again at previous hop.
failed = p.pop()
last = p.top()
last.alert(failed)
[status,res] = last.lookup_step(key)
else
return NONEXISTENT

Figure 7-1: The procedure used by DHash to locate a block.
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It would also cost an un-needed round trip time, since both Chord and DHash would need
to separately contact the block’s successor server.

Pseudo-code for the DHash implementation of lookup(key) is shown in Figure 7-1; this
is DHash’s version of the Chord code shown in Figure 4-1. The function lookup (key) returns
the data associated with key or an error if it cannot be found. The function lookup operates
by repeatedly invoking the remote procedure n’.lookup_step(key) which returns one of three
possible values. If the called server (n') stores or caches the data associated with key, then
n’.lookup_step (key) returns that data. If n’ does not store the data, then n’.lookup_step(key)
returns instead the closest predecessor of key (determined by consulting local routing tables
on n'). Finally, n’.lookup_step returns an error if n’ is the true successor of the key but does
not store its associated data.

If lookup tries to contact a failed server, the RPC machinery will return RPC_FAILURE.
The function lookup then backtracks to the previously contacted server, tells it about the
failed server with alert, and asks it for the next-best predecessor. At some point lookup (key)
will have contacted a pair of servers on either side of key. If there have been server failures,
the second server of the pair may not be the key’s original successor. However, that second
server will be the first live successor, and will hold a replica for key, assuming that not all
of its replicas have failed.

Though the pseudo-code does not show it, the virtual servers on any given physical
server look at each others’ routing tables and block stores. This allows lookups to progress
faster around the ring, and increases the chances of encountering a cached block.

As presented in this section, the DHash lookup procedure is iterative; that is, the orig-
inating server itself queries each server along the lookup path until it reaches a block’s
successor. We have also implemented the lookup algorithm in a recursive manner. In a
recursive implementation each node along the lookup path (as opposed to the originating
node) issues an RPC to the next node in the search path. The first node encountered
which stores the desired data then responds to the originating node with the data. Sim-
plified pseudocode (no failure recovery is shown) for this implementation style is shown in
Figure 7-2

7.3 Client Implementation

The CFS client software layers a file system on top of DHash. CFS exports an ordinary
UNIX file system interface by acting as a local NFS server using the SFS user level file
system toolkit [19]. A CFS file system client (denoted chordcd in Figure 7-3 which shows
the major components of the CFS client) services NFS requests from applications via the
SFS automounter. The file system client communicates with a local block storage daemon
(chordd) via a UNIX domain socket to fetch file and meta-data blocks from the network.
The chordcd daemon returns this data to applications via the SFS automounter. The CFS
client holds blocks in a local LRU cache to improve performance and reduce network traffic.

File systems are published by another user-level program which reads a directory tree
and injects blocks and meta-data into the block store by communicating with a local chord
daemon.

The DHash back end is sufficiently flexible to support a number of different client in-
terfaces. For instance, we are currently implementing a client which acts as a web proxy in
order to layer the CFS namespace on top of the name space of the world wide web.
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// local procedure. Begins a recursive lookup
begin lookup_recursive(key)
//a nonce allows us to identify which lookup has completed when the lookup returns
nonce = new_nonce()
next = lookup_closest_pred(key)
next.lookup_recusrsive(key, this.address, nonce)

// RPC handler on server n. Sends an RPC to the next best server
// or to the originator if n holds the requested data
n.lookup recursive(key, return_address, nonce)
if key € (stored U cached U replicated) then
return_address.lookup_done(nonce, datayey)
else if key € (predecessor, myid]
return_address.lookup_done(nonce, NONEXISTENT)
else if key € (myid, first live successor]
(first live successor).lookup_recursive(nonce, return_address, key)
else
// Find highest server < key in my finger table or successor list.
next_hop = lookup_closest_pred(key)
next_hop.lookup_recurseive(nonce, return_address, key)

// RPC handler on node n. Receives results of recursive lookup.
n.lookup_done(nonce, result)

Figure 7-2: A recursive implementation of the DHash lookup algorithm.
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gray are not part of CFS. Arrows indicate communication among processes.

7.4 Using CFS

To publish the directory my-uncopyrighted-music a user A issues the chordpblsh com-
mand at the command prompt of his terminal.

AQ@A.com > chordpblsh -k secret_key_file —-d my-uncopyrighted-music
chordpblsh: file system exported under IaLCvdNTyE8wX103EAQ2uMgMdYU

The chordpblsh command will convert the specified directory into a series of data and
meta-data blocks and insert them into the DHash system where they are available to other
users. The publishing program will sign the root block of the file system using the user’s
public key (stored, along with the private key, in secret key_file). The hash of this key is
encoded in a base 64 ASCII format and becomes the name of the published file system (in
this case the name is TaLCvdNTyE8wX103EAQ2uMgMdYU). As file system names are not par-
ticularly human-readable, we expect that, as in the SFS system, symbolic links will provide
authenticated human readable names for documents.

User B could retrieve those files using CFS by accessing the chord namespace embedded
in his local namespace on a different node. In the following example the mpg123 utility is
used to play a music file directly from CFS. Alternatively, the file could have been moved
to a local disk with the cp command.

BOB.org > mpgl23 /sfs/chord:IalCvd...uMgMdYU/Bach/T_and_F_in D minor.mp3
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Chapter 8

Experimental Results

In order to demonstrate the practicality of the CFS design, we present two sets of tests. The
first explores CFS performance on a modest number of servers distributed over the Internet,
and focuses on real-world client-perceived performance. The second involves larger numbers
of servers running on a single machine and focuses on scalability and robustness.

Quotas (Section 5.4) were not implemented in the tested software. Cryptographic ver-
ification of updates (Section 5.5) was implemented but not enabled. This has no effect on
the results presented here.

Unless noted, all tests were run with caching turned off, with no replication, with just
one virtual server per physical server, and with server selection turned off. These defaults
allow the effects of these features to be individually illustrated. The experiments involve
only block-level DHash operations, with no file-system meta-data; the client software driving
the experiments fetches a file by fetching a specified list of block identifiers. Every server
maintains a successor list with 2 log, (V) entries, as mentioned in Section 4, to help maintain
ring connectivity. While CFS does not automatically adjust the successor list length to
match the number of servers, its robustness is not sensitive to the exact value.

8.1 Real Life

We first determine the performance of the Chord protocol; later experiments will exercise
DHash. To determine the effectiveness of server selection: 32 small (8 byte) blocks are
inserted into a network of 12 nodes scattered over the Internet and then fetched from each
server using the iterative lookup algorithm. The machines used in these experiements are
part of the RON testbed [2]. A total of three copies of each block are stored. Each lookup
took an average of 2.75 hops. As the Figure 8.1 shows, server selection decreases latency
appreciably. It is not surprising that server selection does not produce dramatic savings.
Because there are only 12 machines in the network we expect that each node will have
few unique finger table entries (several nodes had only two unique entries); as a result the
number of potential nodes presented to the server selection algorithm is limited.

| no server selection | server selection

Avg. Latency (msec) | 384 | 277

Figure 8-1: Latencies for 8-byte fetches on the RON testbed.
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Figure 8-2: Download speeds achieved while fetching a 1MB file with CFS on the Internet
testbed, for a range of pre-fetch window sizes. Each point is the average of the times seen
by each testbed machine. One curve includes server selection; the other does not.

The remaining tests described in this section used CFS servers running on a testbed of
10 machines scattered over the Internet. Eight of the machines are at sites spread over the
United States (three of those are universities connected to the high-speed Abiline or vBNS
backbones), and the other two are in Sweden and South Korea.!

To test CFS we inserted a 1MB file split into 8K blocks. To test download speed, client
software on each machine fetched the entire file. The machines fetched the file one at a
time. Three RPCs, on average, were required to fetch each block in these experiments.
The client software uses pre-fetch to overlap the lookup and fetching of blocks. The client
initially issues a window of some number of parallel block fetches; as each fetch completes,
the client starts a new one. Five copies (or about 2log N) of each block are stored in the
system.

Figure 8-2 shows the average download speeds, for a range of pre-fetch window sizes,
with and without server selection. A block fetch without server selection averages nearly
1000 milliseconds; this explains why the download speed is about 10 KBytes/second when
fetching one 8KByte block at a time. Increasing the amount of pre-fetch increases the
speed; for example, fetching three blocks at a time yields an average speed of about 30
KBytes/second. Large amounts of pre-fetch are counter-productive, since they can congest
the client server’s network connection. Future versions of CFS will include dynamic flow
control to obtain maximum throughput without causing congestion. Server selection in-
creases performance in this scenario, most likely because a large number of data replicas
were available (relative to the number of nodes) from which to select. As a result more
lookups were directed to the well connected nodes which are able to handle large pre-fetch
windows without congesting their links.

Figure 8-3 shows the distribution of speeds seen by the downloads from the different
machines, for different pre-fetch windows, with and without server selection. The distri-
butions of speeds are fairly narrow: every download is likely to require a few blocks from
every server, so all downloads see a similar mix of per-block times. The best download

!These results presented here were obtained from testing on a different set of machines than the similar
results presented in “Wide Area Cooperative Storage with CFS,” SOSP 2001. The machines used here are
not, as a group, as well connected as those used to produce results for the SOSP paper. As a result, overall
performance is lower (but still competitive with TCP on the same test bed).
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Figure 8-3: Cumulative distribution of the download speeds plotted in Figure 8-2, for various
pre-fetch windows. Results with and without server selection are marked “w/ s.s.” and “no
s.s.” respectively.

speeds were from a machine at New York University with good connections to multiple
backbones. The worst download speeds for small pre-fetch windows were from sites outside
the United States, which have high latency to most of the servers. The worst speeds for
large amounts of pre-fetch were for fetches from cable modem sites in the United States,

which have limited link capacity.

Most of the time, server selection improves download speeds by a modest amount.
Sometimes it improves them substantially, usually for downloads initiated by well-connected
sites. Sometimes server selection makes download speeds worse, usually for downloads
initiated by sites outside the United States.

To show that the CF'S download speeds are competitive with other file access protocols,
files of various sizes were transferred between every pair of the testbed machines using
ordinary TCP. The files were transferred one at a time, one whole file per TCP connection.
Figure 8-4 shows the cumulative distribution of transfer speeds over the various machine
pairs, for 8 KByte, 64 KByte, and 1.1 MByte files. The wide distributions reflect the wide
range of propagation delays and link capacities between different pairs of machines. The
best speeds are between well-connected sites on the east coast of the United States. The
worst speeds for 8 KByte transfers occur when both end-points are outside the United
States; the worst for one-megabyte transfers occur when one endpoint is outside the United
States and the other is a cable modem, combining high latency with limited link speed.

CFS with a 56 KByte pre-fetch window achieves speeds competitive with TCP, on
average. The CFS speeds generally have a distribution much narrower than those of TCP.
This means that users are more likely to see repeatably good performance when fetching
files with CFS than when fetching files from, for example, FTP servers.
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Figure 8-4: Distribution of download speeds achieved by ordinary TCP between each pair
hosts on the Internet testbed, for three file sizes.

8.2 Controlled Experiments

The remainder of the results were obtained from a set of CFS servers running on a single
machine and using the local loopback network interface to communicate with each other.
These servers act just as if they were on different machines. This arrangement is appropriate
for controlled evaluation of CFS’s scalability and tolerance to failure.

8.2.1 Server Selection

We evaluated the server selection algorithm in an environment with simulated delay: 32
nodes were run on the same physical machine, each one assigned to one of two “continents”
based on the node ID’s lowest bit. Modifications to the Chord software delayed RPCs be-
tween nodes on the same continent by 20ms and by 180ms for nodes on different continents.
To test the performance of server selection, 32 keys were inserted into the system and then
retrieved from each node. Five copies of each key were present in the system. The numbers
presented below represent the average of elapsed times for the 32 nodes to fetch the keys.

| No SS/Iterative | No SS/Recursive | SS/Iterative | SS/Recursive

Avg. Lookup (ms) | 451 | 520 | 170 | 228

Times are presented for both a recursive and iterative implementation of the lookup
algorithm (see Section 7 for detailed descriptions of these algorithms.) We expect the
recursive algorithm to perform better in a network environment that does not exhibit tran-
sitivity since latency measurements are used by the nodes that make them rather than by
the issuing node as in the iterative case. The recursive lookup implementation presented
here has not been as heavily optimized as the iterative version; future implementations of
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Figure 8-5: The average number of RPCs that a client must issue to find a block, as
function of the total number of servers. The error bars reflect one standard deviation. This
experimental data is linear on a log plot, and thus fits the expectation of a logarithmic
growth.

recursive lookup should perform better. On average, server selection reduced latency by at
least 50 percent in this simulated environment, confirming its value.

8.2.2 Lookup Cost

Looking up a block of data is expected to require O(log(N)) RPCs. The following experi-
ment verifies this expectation. For each of a range of numbers of servers, 10,000 blocks were
inserted into the system. Then 10,000 lookups were done, from a single server, for randomly
selected blocks. The number of RPCs required for each lookup was recorded. The averages
are plotted in Figure 8-5, along with error bars showing one standard deviation.

The results are linear on a log plot, and thus fit the expectation of logarithmic growth.
The actual values are about %logQ(N ); for example, with 4096 servers, lookups averaged
6.7 RPCs. The number of RPCs required is determined by the number of bits in which the
originating server’s ID and the desired block’s ID differ [35]; this will average about half of
the bits, which accounts for the %

8.2.3 Load Balance

One of the main goals of CFS is to balance the load over the servers. CFS achieves load
balanced storage by breaking file systems up into many blocks and distributing the blocks
over the servers. It further balances storage by placing multiple virtual servers per physical
server, each virtual server with its own ID. We expect that O(log(N)) virtual servers per
physical server will be sufficient to balance the load reasonably well [35].

Figure 8-6 shows typical distributions of ID space among 64 physical servers for 1, 6,
and 24 virtual servers per physical server. The crosses represent an actual distribution of

43



1.0 —

-
e gf*'
] o
8 l/’f
g 0.8+ (.
=z s
7 (3
2 ¥
2 i3
< (F
o 06 t + Red
B ;;% 1
5 6
g ¥ Tl
o 044 bl
) hid
> #
g #
> :‘;;t- |
£ 024 £
o ]
4 ,’+ /
,-'.
£/
0.0 t T T
0.00 0.02 0.04

Fraction of 1D Space per Physical Node

Figure 8-6: Representative cumulative distributions of the fraction of the key space a server
might be responsible for. 64 servers are simulated, each with 1, 6, or 24 virtual servers.
The data marked Real is derived from the distribution of 10,000 blocks among 64 servers,
each with 6 virtual servers.

10,000 blocks over 64 physical servers each with 6 virtual servers. The desired result is that
each server’s fraction be 0.016. With only one virtual server per server (i.e., without using
virtual servers), some servers would store no blocks, and others would store many times the
average. With multiple virtual servers per server, the sum of the parts of the ID space that
a server’s virtual servers are responsible for is more tightly clustered around the average.

The fact that CFS spreads the storage of blocks across servers means that in many cases
the burden of serving the blocks will also be evenly spread. For large files this will be true
even if some files are more popular than others, since a file’s blocks are widely spread. If
the popular data consists of only a few blocks, then the servers that happen to be those
blocks’ successors will experience high load. The next section describes how caching helps
balance the serving load for small files.

8.2.4 Caching

CFS caches blocks along the lookup path. As the initiating server contacts successive
servers, each checks whether it already has the desired block cached and returns it if so.
Once the initiating server has found the block, it sends a copy to the last server contacted
before the block was found; this server adds the block to its cache. This scheme is expected
to produce high cache hit rates because the lookup paths for the same block from different
sources will tend to intersect as they get closer to block’s successor server. Figure 8-7
illustrates that lookup paths rapidly intersect. In this experiment each node in a 100 node
system looked up the same key and the IDs of nodes visited to resolve the lookup were
recorded. A curve in the figure represents the path of a search through ID space: for each
hop the ID of the node contacted at that hop is plotted. Only the curves for the 32 nodes
which resolved the query in three hops are shown (for clarity’s sake). As one can see from
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Figure 8-7: Lookup paths in Chord intersect. Each line in figure (a) above represents the
path that a lookup took through the ID space to locate a key. The horizontal axis represents
the hop number, the vertical axis is the high three bytes of the ID of the node contacted on
that hop. As the figure shows, the set of nodes that distinct searches contact diminishes as
the searches near the target (corresponding to ID 238). Only lookup paths of length three
are shown for clarity (32 such paths are plotted). This experiment was run in a system with
100 nodes. Figure (b) shows the number of nodes visited by any search at each hop for the
lookup paths plotted in (a). For instance, the first hop contains 32 nodes since each lookup
was initiated from a different node. After one hop lookup paths have converged such that
the 32 searches contacted only 10 distinct nodes.
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the figure, searches for the same block initiated from a set of nodes distributed across the
address space rapidly converge to a few nodes near the target.

Figure 8-8 illustrates how well caching works. A single block is inserted into a 1,000
server system. Then a sequence of randomly chosen servers fetch the block. The graph
shows how the number of RPCs required to fetch the block decreases with the number of
cumulative fetches, due to the block being cached in more places. Each plotted point is the
average of many sequential fetches. A quirk in the implementation prevents the originating
server from checking its own cache, which is why no fetches have an RPC count of zero.

As expected, the RPC counts decrease, since more and more servers have the block
cached. The RPC counts decrease significantly after just a few lookups. Figure 8-5 shows
that lookups without caching in a 1,000-server system require an average of 4 RPCs, while
after 10 lookups only 3 hops are required. The net effect is to improve client-perceived
performance and to spread the load of serving small files.

To demonstrate how caching distributes the load of serving blocks, we simulated the
effect of a single popular file. Figure 8-9 shows the results of this experiment. In this
simulation, 100 hosts each ask for a single block. The figure plots the number of RPCs each
machine received. This request distribution imposes a large load on the successor node
(whose ID corresponds to 92 on the horizontal axis) when caching is not enabled (dotted
line). When caching is enabled, the number of RPCs that the successor fields is dramatically
reduced. It is also interesting to note that the total number of messages sent when caching
is enabled is strictly less than the number sent without caching. When load is considered in
terms of message count, caching does not only spread load, but also reduces it. This effect
is due to the fact that all nodes which respond with messages returning cached copies of
data would have been contacted to forward search requests had caching been disabled.
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error bars indicate one standard deviation. The system has 1,000 servers.
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a sorted list. The vertical axis indicates the number of RPCs handled by the corresponding
node when a single block (stored at node 93) is fetched from every server with caching
enabled. Of interest in this figure is the dramatic reduction of the number of RPCs that
node 93 must handle
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Figure 8-10: Impact of the number of virtual servers per physical server on the total amount
of data that the physical server must store.

8.2.5 Storage Space Control

By varying the number of virtual servers on a physical server, a server’s owner can control
the amount of data that CFS stores on the server, and thus the amount that the server
must serve. Figure 8-10 shows how effective this is. The experiment involves seven physical
servers, with 1, 2, 4, 8, 16, 32, 64, and 128 virtual servers, respectively. 10,000 blocks are
inserted into the system, and the relationship between how many virtual servers a physical
server has and how many blocks it must store is plotted. For example, the physical server
with 16 virtual server stores 586 blocks; there are a total of 255 virtual servers, so this is
close to the expected value 627 = 10000 x %. Since the relationship of blocks to virtual
servers is linear, an administrator can easily adjust a CFS server’s storage consumption.

There is little memory overhead to running many virtual servers to achieve fine-grained
control over load. Each virtual server requires its own finger table and successor list, as well
as accounting structures for the block store and cache; the total memory footprint of these
structures in our unoptimized implementation is less than 10KBytes.

8.2.6 Effect of Failure

After a CFS server fails, some time will pass before the remaining servers react to the
failure, by correcting their finger tables and successor pointers and by copying blocks to
maintain the desired level of replication. Theorems 1 and 2 suggest that CFS will be able
to perform lookups correctly and efficiently before this recovery process starts, even in the
face of massive failure.

To test this, 1,000 blocks are inserted into a 1,000-server system. Each block has six
replicas (including the main copy stored at the direct successor). After the insertions, a
fraction of the servers fail without warning. Before Chord starts rebuilding its routing tables,
1,000 fetches of randomly selected blocks are attempted from a single server. Figure 8-11
shows the fraction of lookups that fail, and Figure 8-12 shows the average RPC count of
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the lookups.

No lookups fail when fewer than 20% of the servers fail, and very few when less than
35% fail. The reason for this is that server finger tables and successor lists provide many
potential paths to carry a query around the Chord ID ring; if the most desirable finger
table entry points to a failed server, CF'S uses an entry that points less far around the ring.
Lookups start to fail when enough servers fail that some blocks lose all six copies. For
example, when 50% of the servers fail, the probability of losing all of a block’s replicas is
0.55 = 0.016; this is close to the value 0.013 shown in Figure 8-11. All of the lookup failures
encountered in this experiment are due to all of a block’s replicas failing; CFS was always
able to find a copy of a block if one was available.

Figure 8-12 shows that lookups take about one RPC longer as a result of 50% of the
servers failing. The RPC counts do not include attempts to contact failed servers. Lookups
take longer after failures because some of the finger table entries required for fast lookups
point to failed servers. If half of the finger table entries are not valid, then each RPC makes
about half as much progress as expected; but one extra RPC fully corrects this.

Figure 8-13 shows the number of attempts to contact failed servers that occur per lookup,
averaged over 1,000 block lookups. After the first time a server decides (by a timeout) that
it has used a finger table or successor-list entry that points to a failed server, it does not use
that server again until it has been stabilized. Given that massive failures have little effect
on the availability of data or the number of RPCs per lookup, users are likely to perceive
such failures because of RPC timeouts during lookups. However, Figure 8-13 shows that a
typical block lookup shortly after a failure can expect less than one timeout on the way to
retrieving the desired block.

These experiments demonstrate that a large fraction of CFS servers can fail without
significantly affecting data availability or performance.
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Chapter 9

Future Work and Conclusions

CFS is just one example of an application that can be built on top of the Chord/DHash
system: we hope to explore a variety of systems based on the work presented here. For
instance, the most popular peer-to-peer storage systems today offer a keyword search fea-
ture. We are currently working on adding this functionality to CFS by distributing an
index of content over the nodes. An alternative interface to CFS might make it more usable
as well: the file system interface presented here is flexible but requires the user to run an
automounting NFS loopback server. A simpler, web-proxy based Ul might be preferable
for many applications.

We also hope to explore uses for the Chord system other than file storage. Chord acts
analogously to DNS: it maps names to servers. This raises the possibility that Chord could
provide a decentralized name service with the additional advantage of not requiring the
hierarchy imposed by DNS. Providing an authority for a namespace mapped by Chord (i.e.
arbitrating conflicts over a given name or set of names) in a decentralized manner is an
open problem, however.

A complete defense against malicious nodes has yet to be devised. We believe that a
Chord node can verify the data sent to it by consulting additional nodes, but have yet to
design an efficient algorithm to do so. The simple defense against flooding attacks described
here could also be improved.

Using UDP as an RPC transport over the wide area network saves resources and avoids
the expense of setting up connections but sacrifices the flow control properties that TCP
provides. Testing CFS made it clear that an effective flow control protocol for CFS traffic
is necessary. The many-to-many nature of CFS connectivity will make the design of such a
protocol a challenge.

Despite the fact that the work described here is in the early stages of development, this
thesis provides a basis for a promising new file distributed file system: CFS is a highly
scalable, available and secure read-only file system. It presents stored data to applications
through an ordinary file-system interface. Servers store uninterpreted blocks of data with
unique identifiers. Clients retrieve blocks from the servers and interpret them as file systems.

CFS stores blocks using the DHash distributed block store. DHash provides an efficient
mechanism for storing and retrieving blocks among a decentralized group of servers. DHash
replicates a block along consecutive servers in the identifier space and as a result is robust
in the face of the failure of a massive number of servers. DHash achieves load balance by
caching blocks along probable lookup paths leading to the block’s successor.

DHash uses the Chord distributed lookup protocol to map blocks to servers. This
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mapping is dynamic and implicit. As a result, there is no directory information to be
updated when the underlying network changes (a small number of nodes must update
routing tables when the network membership changes, however). This makes CFS both
robust and scalable. CFS uses the replication and caching properties of DHash to achieve
availability and load balance. Finally, CFS provides simple but effective protection against
a single attacker inserting large amounts of data.

A prototype implementation of CFS has been implemented and evaluated on a controlled
Internet-wide test-bed. Future operational deployment will likely uncover opportunities for
improvement, but the current results indicate that CFS is a viable large-scale peer-to-peer
system.
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