
ICMP Usage in Scanning
Version 2.0

1

Copyright Ofir Arkin, 2000
http://www.sys-security.com

ICMP Usage in Scanning1

Or

Understanding some of the ICMP Protocol’s Hazards

Ofir Arkin

The Sys-Security Group

Founder

http://www.sys-security.com
ofir.arkin@sys-security.com

ITCon – Information Technology

Consultants2

Senior Security Analyst

http://www.itcon-ltd.com

ofir@itcon-ltd.com

Version 2.0

September 2000

1 This is part of “Network Scanning Techniques”, by Ofir Arkin. To be published during 2000 (http://www.sys-
security.com).
2 IT Con is a leading information security consultancy company in the E-Commerce area. For more information please
contact global@itcon-ltd.com.

http://www.sys-security.com/
mailto:ofir.arkin@sys-security.com
http://www.itcon-ltd.com/
mailto:ofir@itcon-ltd.com

ICMP Usage in Scanning
Version 2.0

2

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Table of Contents

1.0 Introduction ... 5

1.1 Introduction to Version 1.0 .. 5
1.2 Introduction to Version 2.0 .. 5
1.3 Changes from version 1.0... 6

2.0 Host Detection using the ICMP Protocol ... 8
2.1 ICMP ECHO (Type 8) and ECHO Reply (Type 0) ... 8
2.2 ICMP Sweep (Ping Sweep)... 9
2.3 Broadcast ICMP.. 10
2.4 Non-ECHO ICMP.. 12

2.4.1 ICMP Time Stamp Request (Type 13) and Reply (Type 14)......................... 12
2.4.2 ICMP Information Request (Type 15) and Reply (Type 16) 14
2.4.3 ICMP Address Mask Request (Type 17) and Reply (Type 18) 16

2.5 Non-ECHO ICMP Sweeps .. 20
2.6 Non-ECHO ICMP Broadcasts ... 21

3.0 Advanced Host Detection using the ICMP Protocol (using ICMP Error Messages
generated from the probed machines) .. 23

3.1 Sending IP Datagrams with bad IP headers fields – generating ICMP Parameter
Problem error message back from probed machines.. 23

3.1.1 ACL Detection using IP Datagrams with bad IP headers fields 25
3.2 IP Datagrams with non-valid field values... 27

3.2.1 The Protocol Field example.. 27
3.2.1.2 Using all combination of the IP protocol filed values.................................. 27
3.2.2 ACL Detection using the Protocol field ... 28

3.3 Host Detection using IP fragmentation to elicit Fragment Reassembly Time
Exceeded ICMP error message. ... 29

3.3.1 ACL Detection using IP fragmentation ... 29
3.4 Host Detection using UDP Scans, or why we wait for the ICMP Port Unreachable
... 31

3.4.1 A Better Host Detection Using UDP Scan .. 31
3.5 Using Packets bigger than the PMTU of internal routers to elicit an ICMP
Fragmentation Needed and Don’t Fragment Bit was Set (configuration problem) 32

4.0 Inverse Mapping Using ICMP (ECHO & ECHO Reply) ... 34
5.0 Using traceroute to Map a Network Topology ... 36
6.0 The usage of ICMP in Active Operating System Fingerprinting Process................. 39

6.1 Using Wrong Codes within ICMP datagrams (the ICMP ECHO request example)
... 39

6.1.1 Using Wrong Codes with ICMP Datagrams (The ICMP Timestamp Request
Example) .. 41
6.1.2 Listing ICMP query message types sent to different operating systems with
the Code field !=0 and the answers (is any) we got... 42

6.2 Using Fragmented ICMP Address Mask Requests (Identifying Solaris boxes).... 43
6.3 TOSing OSs out of the Window / Fingerprinting Microsoft Windows 2000 45

6.3.1 The use of the Type-of-Service field with the Internet Control Message
Protocol .. 47

6.4 ICMP error Message Quenching... 52
6.5 ICMP Message Quoting.. 52
6.6 ICMP Error Message Echoing Integrity ... 53

ICMP Usage in Scanning
Version 2.0

3

Copyright Ofir Arkin, 2000
http://www.sys-security.com

6.7 TOS Field in ICMP Port Unreachable Error Message ... 54
6.8 Using ICMP Information Requests.. 54
6.9 Identifying operating systems according to their replies for non-ECHO ICMP
requests aimed at the broadcast address. .. 55
6.10 IP TTL Field Value with ICMP ... 56

6.10.1 IP TTL Field Value with ICMP Query Replies... 57
6.10.2 IP TTL Field Value with ICMP ECHO Requests ... 58
6.10.3 Correlating the Information... 59

6.11 DF Bit ... 60
6.12 DF Bit Echoing.. 61

6.12.1 DF Bit Echoing with the ICMP Echo request .. 61
6.12.2 DF Bit Echoing with the ICMP Address Mask request 62
6.12.3 DF Bit Echoing with the ICMP Timestamp request 62
6.12.4 Using all of the Information in order to identify maximum of operating
systems .. 63
6.12.5 Why this would work (for the skeptical) .. 63
6.12.6 Combining all together ... 64

6.13 What will not produce any gain compared to the effort and the detection ability?
... 66

6.13.1 Unusual Big ICMP ECHO Messages ... 66
7.0 Filtering ICMP on your Filtering Device to Prevent Scanning Using ICMP 68

7.1 Inbound... 68
7.2 Outbound.. 68
7.3 Other Considerations.. 70

8.0 Conclusion.. 72
9.0 Acknowledgment .. 73

9.1 Acknowledgment for version 1.0 ... 73
9.1 Acknowledgment for version 2.0 ... 73

Appendix A: The ICMP Protocol ... 74
A.1 ICMP Messages ... 75

Appendix B: ICMP “Fragmentation Needed but the Don’t Fragment Bit was set” and the
Path MTU Discovery Process .. 78

B.1 The PATH MTU Discovery Process.. 78
B.2 Host specification ... 78
B.3 Router Specification ... 79
B.4 The TCP MSS (Maximum Segment Size) Option and PATH MTU Discovery
Process .. 80

Appendix C: Mapping Operating Systems for answering/discarding ICMP query
message types ... 81
Appendix D: ICMP Query Message Types with Code field !=0 83
Appendix E: ICMP Query Message Types aimed at a Broadcast Address.................... 85
Appendix F: ICMP Query Message Types with TOS! = 0 ... 87
Appendix G: DF Bit Echoing ... 88

ICMP Usage in Scanning
Version 2.0

4

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Figures List
Figure 1: ICMP ECHO Mechanism 8
Figure 2: ICMP ECHO Request & Reply message format 9
Figure 3: ICMP Time Stamp Request & Reply message format 13
Figure 4: ICMP Information Request and Reply 14
Figure 5: ICMP Address Mask Request & Reply message format 17
Figure 6: The IP Header 23
Figure 7: An Example: A TCP packet fragmented after only 8 bytes of TCP information 30
Figure 8: Using Packets bigger than the PMTU of internal routers to elicit an ICMP Fragmentation
Needed and Don’t Fragment Bit was Set 33
Figure 9: ICMP Time Exceeded message format 36
Figure 10: ICMP ECHO Request & Reply message format 40
Figure 11: The Type of Service Byte 45
Figure 12: Firewall ICMP Filtering Rules 71
Figure 13: ICMP Message Format 75
Figure 14: ICMP Fragmentation Required with Link MTU 79

Table List
Table 1: Which Operating System would answer to an ICMP ECHO Request aimed at the
 Broadcast Address of the Network they reside on? 11
Table 2: Non-ECHO ICMP Query of different Operating Systems and Networking Devices 19
Table 3: Operating Systems, which would answer to requests, aimed at the Broadcast address 21
Table 4: Networking Devices, which would answer to requests, aimed at the Broadcast address 22
Table 5: Using Wrong Codes when probing Non-ECHO Query ICMP Types 41
Table 6: Precedence Field Values 46
Table 7: Type-of-Service Field Values 46
Table 8: ICMP Query Message Types with TOS! = 0 51
Table 9: IP TTL Field Values in replies from Various Operating Systems 57
Table 10: IP TTL Field Values in requests from Various Operating Systems 58
Table 11: Further dividing the groups of operating systems according to IP TTL field value in the
 ICMP ECHO Requests and in the ICMP ECHO Replies 60
Table 12: DF Bit Echoing 64
Table 13: DF Bit set on reply 66
Table 14: ICMP message types 74
Table 15: ICMP Types & Codes 76

Diagram List
Diagram 1: Finger Printing Using ICMP Timestamp Request and Wrong Codes 42
Diagram 2: Finger Printing Using ICMP Address Mask Requests 45
Diagram 3: Finger Printing Using ICMP Information Request Combines with ICMP Address
 Mask Request 55
Diagram 4: Finger Printing Using non-ECHO ICMP Query Types aimed at the Broadcast Address
 of an Attacked Network 56
Diagram 5: DF Bit Echoing 65

ICMP Usage in Scanning
Version 2.0

5

Copyright Ofir Arkin, 2000
http://www.sys-security.com

1.0 Introduction

1.1 Introduction to Version 1.0
The Internet Control Message Protocol is one of the debate full protocols in the TCP/IP protocol
suite regarding its security hazards. There is no consent between the experts in charge for
securing Internet networks (Firewall Administrators, Network Administrators, System
Administrators, Security Officers, etc.) regarding the actions that should be taken to secure their
network infrastructure in order to prevent those risks.

In this paper I have tried to outline what can be done with the ICMP protocol regarding scanning.

Scanning can be defined as: The determination of the characteristics of the target network such
as identifying which systems are alive and reachable via the Internet, and what services they
offer, using techniques such as ping sweeps, port scans, firewalking, trace routing, and operating
system identification.

This operation eventually leads to the discovery of the network topology map of the attacked
network (although we will cover methods directly aimed at network topology mapping).

The kind of information collected using scanning methods can be summarized with a few simple
questions:

• “What hosts are alive?”
• “What services are running on those hosts?”
• “How those hosts are organized?”
• “What are the operating systems used on those hosts?”
• “What is the role of each host?”

The data collected allow a malicious computer attacker to identify the hosts (if any) on a target
network that are running a network service, which may have a known vulnerability that may allow
a remote exploit.

The sections in this paper are divided according to the various methods in scanning; Host
Detection using the ICMP protocol; Advanced Host Detection using the ICMP protocol - Host
Detection using ICMP error messages generated from probed machines; Inverse Mapping Using
ICMP; Using Trace Route with ICMP ECHO; and The usage of ICMP in the Operating System
Finger Printing process. In the last section I have described which ICMP traffic should be filtered
on the Border Router and/or Firewall in order to eliminate/reduce the risks outlined in this paper.

The paper introduces new methods for Host Detection using ICMP error messages generated
from probed machines and a new method for OS Finger Printing using ICMP.

I hope that this paper would educate people to eliminate some of the security hazards the ICMP
protocol carries.

1.2 Introduction to Version 2.0
Quite a large number of new OS fingerprinting methods using ICMP, which I have found are
introduced with this revision. Among those methods two can be used in order to identify Microsoft
Windows 2000 machines; one would allow us to distinguish between Microsoft Windows
operating system machines and the rest of the world, and another would allow us to distinguish

ICMP Usage in Scanning
Version 2.0

6

Copyright Ofir Arkin, 2000
http://www.sys-security.com

between SUN Solaris machines and the rest of the world3. I have also tried to be accurate as
possible with data presented in this paper. Few tables have been added to the paper mapping the
behavior of the various operating systems I have used. These tables describe the results I got
from the various machines after querying them with the various tests introduced with this paper.

See section 1.3 for a full Changes list.

1.3 Changes from version 1.0

2.0 Host Detection Using the ICMP Protocol

 2.3 Broadcast ICMP

Added a table describing which operating systems would answer an ICMP ECHO
request aimed at the Broadcast address of the network they reside on.

 2.4 Non-ECHO ICMP
 Added Information Request and Reply as a valid Host Detection method.
 2.4.2 ICMP Information Request and Reply
 The actual Information (added a section).
 2.4.3 ICMP Address Mask Request and Reply
 Added SUN Solaris and networking devices examples.

 2.5 Non-Echo ICMP Sweep
 Added a table summarizing which operating systems would answer those

queries.
 2.6 Non-ECHO ICMP Broadcasts
 Added the fact that “Hosts running an operating system, which answers

requests aimed at the IP broadcast address…”
Added two tables describing which operating systems would answer to which
type of ICMP queries aimed at the broadcast address of the network they reside
on?

3.0 Host Detection Using ICMP Error messages generated from the probed machines
 3.1 IP datagrams with bad IP Header fields
 Added more information on various other fields which can be used for this

purpose.

6.0 The Usage of ICMP in the operating system Finger Printing Process

 6.1 Using Wrong Codes within ICMP Datagrams
 6.1.1 Using ICMP Timestamp Requests with Codes different than 0

6.1.2 Listing ICMP query message types sent to different operating systems
with the Code field !=0 and the answers (is any) we got.

 6.2 Using ICMP Address Mask Requests (Identifying Solaris Machines)
 6.3 TOSing OSs out of the Window / Fingerprinting Microsoft Windows 2000
 6.7 Using ICMP Address Mask Requests
 6.8 Using ICMP Information Requests
 6.9 Identifying operating systems according to their replies for non-ECHO ICMP

requests aimed at the broadcast address.
 6.10 IP TTL Field Value with ICMP

 6.10.1 IP TTL Field Value with ICMP ECHO Replies
 6.10.2 IP TTL Field Value with ICMP ECHO Requests
 6.11 DF Bit
 6.12 DF Bit Echoing

3 See Section 6 for more information.

ICMP Usage in Scanning
Version 2.0

7

Copyright Ofir Arkin, 2000
http://www.sys-security.com

 6.12.1 DF Bit Echoing with ICMP Echo requests
 6.12.2 DF Bit Echoing with ICMP Address Mask requests
 6.12.3 DF Bit Echoing with ICMP Timestamp requests
 6.12.4 Using all of the Information in order to identify the maximum of operating
 systems.
 6.12.5 Why this would work (for the skeptical)
 6.13 What will not provide any gain compared to the effort and the detection ability?
 6.13.1 Unusual big ICMP Echo messages

7.0 Filtering ICMP on your Filtering Device to Prevent Scanning Using ICMP

7.3 Other Considerations
 More information was added.

Appendixes
 Appendix C: Table - Mapping Operating Systems for answering/discarding ICMP query

Message types.
 Appendix D: Table - ICMP Query Message Types with Code Field !=0
 Appendix E: Table - ICMP Query Message Types aimed at a Broadcast Address
 Appendix F: Table - ICMP Query Message Types with TOS !=0
 Appendix G: Table - DF Bit Echoing

ICMP Usage in Scanning
Version 2.0

8

Copyright Ofir Arkin, 2000
http://www.sys-security.com

2.0 Host Detection using the ICMP Protocol4
The Host Detection stage gives a malicious computer attacker crucial information by identifying
the computers on the targeted network that are reachable from the Internet. This process belongs
to the scanning stage, which is one of the first stages in the Information Gathering process. The
information collected during this stage could later lead to an attempt to break in to one (or more)
of the targeted network computers. This, if the information gathered would be sufficient for the
malicious computer attacker.

2.1 ICMP ECHO (Type 8) and ECHO Reply (Type 0)
We can use an ICMP ECHO datagram to determine whether a target IP address is active or not,
by simply sending an ICMP ECHO5 (ICMP type 8) datagram to the targeted system and waiting
to see if an ICMP ECHO Reply (ICMP type 0) is received. If an ICMP ECHO reply is received, it
would indicate that the target is alive (few firewalls spoof ICMP ECHO replies from protected
hosts); No response means the target is down or a filtering device is preventing the incoming
ICMP ECHO datagram from getting inside the protected network or the filtering device prevents
the initiated reply from reaching the Internet.

Figure 1: ICMP ECHO Mechanism

This mechanism is used by the Ping command to determine if a destination host is reachable.

In the next example two LINUX machines demonstrate the usage of Ping:

[root@stan /root]# ping 192.168.5.5
PING 192.168.5.5 (192.168.5.5) from 192.168.5.1 : 56(84) bytes of data.
64 bytes from 192.168.5.5: icmp_seq=0 ttl=255 time=4.4 ms
64 bytes from 192.168.5.5: icmp_seq=1 ttl=255 time=5.9 ms
64 bytes from 192.168.5.5: icmp_seq=2 ttl=255 time=5.8 ms

--- 192.168.5.5 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 4.4/5.3/5.9 ms

A Snort trace6:
01/26-13:16:25.746316 192.168.5.1 -> 192.168.5.5

4 For more information about the ICMP Protocol please read “Appendix A: The ICMP Protocol”.
5 From a technical point of view: The sending side initializes the identifier (used to identify ECHO requests aimed at
different destination hosts) and sequence number (if multiple ECHO requests are sent to the same destination host), adds
some data (arbitrary) to the data field and sends the ICMP ECHO to the destination host. In the ICMP header the code
equals zero. The recipient should only change the type to ECHO Reply and return the datagram to the sender.
6 Snort, written by Martin Roesch, can be found at http://www.snort.org.

ICMP ECHO request

If alive and not filtered – ICMP ECHO
Reply

ICMP Usage in Scanning
Version 2.0

9

Copyright Ofir Arkin, 2000
http://www.sys-security.com

ICMP TTL:64 TOS:0x0 ID:6059
ID:5721 Seq:1 ECHO
89 D7 8E 38 27 63 0B 00 08 09 0A 0B 0C 0D 0E 0F ...8'c..........
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F !"#$%&'()*+,-./
30 31 32 33 34 35 36 37 01234567

01/26-13:16:25.746638 192.168.5.5 -> 192.168.5.1
ICMP TTL:255 TOS:0x0 ID:6072
ID:5721 Seq:1 ECHO REPLY
89 D7 8E 38 27 63 0B 00 08 09 0A 0B 0C 0D 0E 0F ...8'c..........
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F !"#$%&'()*+,-./
30 31 32 33 34 35 36 37 01234567

Checksum

Sequence NumberIdentifier

Code = 0Type

0 4 8 16 31

Data...

Figure 2: ICMP ECHO Request & Reply message format

Countermeasure: Block ICMP ECHO requests coming from the Internet towards your network at
your border router and/or Firewall7.

2.2 ICMP Sweep (Ping Sweep)
Querying multiple hosts using ICMP ECHO is referred to as ICMP Sweep (or Ping Sweep).

For a small to midsize network the Ping utility is an acceptable solution to this kind of host
detection, but with large networks (such as Class A, or a full Class B) this kind of scan is fairly
slow mainly because Ping waits for a reply (or a time out to be reached) from the probed host
before proceeding to the next one.

fping8 is a UNIX utility which sends parallel mass ECHO requests in a round robin fashion
enabling it to be significantly faster than the usual Ping utility. It can also be fed with IP addresses
with its accompanied tool gping. gping is used to generate a list of IP addresses which would be
later fed into fping, directly or from a file, to perform the ICMP sweep. fping is also able to resolve
hostnames of the probed machines if using the –d option.

Another UNIX tool that is able of doing an ICMP sweep in parallel, resolve the hostnames of the
probed machines, save it to a file and a lot more is NMAP9, written by Fyodor.

7 It is better to filter unwanted traffic at your border router, reducing traffic rates for your firewall.
8 ftp://ftp.tamu.edu/pub/Unix/src
9 http://www.insecure.org

ICMP Usage in Scanning
Version 2.0

10

Copyright Ofir Arkin, 2000
http://www.sys-security.com

For the Microsoft Windows operating system a notable ICMP sweep tool is Pinger from Rhino910,
able of doing what fping and NMAP do regarding this kind of scan.

Trying to resolve the names of the probed machines may discover the malicious computer
attacker’s IP number used for the probing, using the log of the authoritative DNS server.

The next example demonstrates the usage of NMAP to perform an ICMP sweep11 against 20 IP
addresses. Our test lab contains two LINUX machines running Redhat Linux v6.1, Kernel 2.2.12
(Stan & Kenny) and one Windows NT WRKS SP4 (Cartman). As it can be seen all of the
machines answered the probe:

[root@stan /root]# nmap -sP -PI 192.168.5.1-20

Starting nmap V. 2.3BETA13 by fyodor@insecure.org (
www.insecure.org/nmap/)
Host stan.sys-security.com (192.168.5.1) appears to be up.
Host kenny.sys-security.com (192.168.5.5) appears to be up.
Host cartman.sys-security.com (192.168.5.15) appears to be up.
Nmap run completed -- 20 IP addresses (3 hosts up) scanned in 3 seconds

If we wish to avoid the automatic resolving done by NMAP we should use the –n option to
eliminate it.

ICMP sweeps are easily detected by IDS (Intrusion Detection Systems) whether launched in the
regular way, or if used in a parallel way.

Countermeasure: Block ICMP ECHO requests coming from the Internet towards your network at
your border router and/or Firewall.

2.3 Broadcast ICMP
A simpler way to map a targeted network for alive hosts is by sending an ICMP ECHO request to
the broadcast address or to the network address of the targeted network.

The request would be broadcasted to all hosts on the targeted network. The alive hosts will send
an ICMP ECHO Reply to the prober’s source IP address (additional conditions apply here).

The malicious computer attacker has to send only one IP packet to produce this behavior.

This technique of host detection is applicable only to some of the UNIX and UNIX-like hosts of the
targeted network. Microsoft Windows based machines will not generate an answer (ICMP ECHO
Reply) to an ICMP ECHO request aimed at the broadcast address or at the network address.
They are configured not to answer those queries out-of-the box (This applies to all Microsoft
Windows operating systems accept for Microsoft Windows NT 4.0 with service pack below SP4).
This is not an abnormal behavior as RFC 112212 states that if we send an ICMP ECHO request to
an IP Broadcast or IP Multicast addresses it may be silently discarded by a host.

10 The Rhino9 group no longer exists. Their tools are available from a number of sites on the Internet.
11 The –sP –PI options enable NMAP to perform only an ICMP Sweep. The default behavior when using the –sP option is
 different and includes the usage of TCP ACK host detection technique as well.
12 RFC 1122: Requirements for Internet Hosts - Communication Layers, http://www.ietf.org/rfc/rfc1122.txt.

ICMP Usage in Scanning
Version 2.0

11

Copyright Ofir Arkin, 2000
http://www.sys-security.com

The next example demonstrates the behavior expected from hosts when sending an ICMP ECHO
request to the broadcast address of a network. The two LINUX machines on our test lab
answered the query while the Microsoft Windows NT 4.0 Workstation with SP6a machine silently
ignored it.

[root@stan /root]# ping -b 192.168.5.255
WARNING: pinging broadcast address
PING 192.168.5.255 (192.168.5.255) from 192.168.5.1 : 56(84) bytes of
data.
64 bytes from 192.168.5.1: icmp_seq=0 ttl=255 time=4.1 ms
64 bytes from 192.168.5.5: icmp_seq=0 ttl=255 time=5.7 ms (DUP!)

--- 192.168.5.255 ping statistics ---
1 packets transmitted, 1 packets received, +1 duplicates, 0% packet
loss
round-trip min/avg/max = 4.1/4.9/5.7 ms

In the next example I have sent an ICMP ECHO request to the network address of the targeted
network. The same behavior was produced. The LINUX machines answered the ICMP ECHO
request while the Microsoft Windows NT 4.0 with SP6a machine ignored it.

[root@stan /root]# ping -b 192.168.5.0
WARNING: pinging broadcast address
PING 192.168.5.0 (192.168.5.0) from 192.168.5.1 : 56(84) bytes of data.
64 bytes from 192.168.5.1: icmp_seq=0 ttl=255 time=7.5 ms
64 bytes from 192.168.5.5: icmp_seq=0 ttl=255 time=9.1 ms (DUP!)

--- 192.168.5.0 ping statistics ---
1 packets transmitted, 1 packets received, +1 duplicates, 0% packet
loss
round-trip min/avg/max = 7.5/8.3/9.1 ms

Note: Broadcast ICMP may result in a Denial-Of-Service condition if a lot of machines response
to the query at once.

A more accurate table that lists which operating systems would answer to an ICMP ECHO
request aimed at their Network / Broadcast address is given below:

Operating System

Echo Request

Broadcast

Debian GNU/ LINUX 2.2, Kernel 2.4 test 2 +
Redhat LINUX 6.2 Kernel 2.2.14 +

FreeBSD 4.0 -
FreeBSD 3.4 -
OpenBSD 2.7 -
OpenBSD 2.6 -
NetBSD

Solaris 2.5.1 +
Solaris 2.6 +
Solaris 2.7 +

ICMP Usage in Scanning
Version 2.0

12

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Operating System

Echo Request

Broadcast

Solaris 2.8 +

HP-UX v10.20 +

AIX

ULTRIX

Windows 95 -
Windows 98 -
Windows 98 SE -
Windows ME -
Windows NT 4 WRKS SP 3 -
Windows NT 4 WRKS SP 6a -
Windows NT 4 Server SP4 -
Windows 2000 Professional (and SP1) -
Windows 2000 Server (and SP1) -

Table 1: Which Operating Systems would answer to an ICMP ECHO Request aimed at the Broadcast

Address of the Network they resides on?

Countermeasure: Block the IP directed broadcast on the border router.

2.4 Non-ECHO ICMP
ICMP ECHO is not the only ICMP query message type available with the ICMP protocol.

Non-ECHO ICMP messages are being used for more advanced ICMP scanning techniques (not
only probing hosts, but network devices, such as a router, as well).

The group of ICMP query message types includes the following:

ECHO Request (Type 8), and Reply (Type 0)
Time Stamp Request (Type 13), and Reply (Type 14)
Information Request (Type 15), and Reply (Type 16)
Address Mask Request (Type 17), and Reply (Type 18)

 Router Solicitation (Type 10), and Router Advertisement (Type 9)

2.4.1 ICMP Time Stamp Request (Type 13) and Reply (Type 14)
The ICMP Time Stamp Request and Reply allows a node to query another for the current time.
This allows a sender to determine the amount of latency that a particular network is experiencing.
The sender initializes the identifier (used to identify Timestamp requests aimed at different
destination hosts) and sequence number (if multiple Timestamp requests are sent to the same
destination host), sets the originate time stamp and sends it to the recipient.

The receiving host fills in the receive and transmit time stamps, change the type of the message
to time stamp reply and returns it to the recipient. The time stamp is the number of milliseconds
elapsed since midnight UT (GMT).

The originate time stamp is the time the sender last touched the message before sending it, the
receive time stamp is the time the recipient first touched it on receipt, and the Transmit time
stamp is the time the receiver last touched the message on sending it.

ICMP Usage in Scanning
Version 2.0

13

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Checksum

Sequence NumberIdentifier

CodeType

Originate timestamp

Receive timestamp

Transmit timestamp

0 4 8 16 31

Figure 3: ICMP Time Stamp Request & Reply message format

As RFC 1122 state, a host may implement Timestamp and Timestamp Reply. If they are
implemented a host must follow this rules:

o Minimum variability delay in handling the Timestamp request.
o The receiving host must answer to every Timestamp request that he receives.
o An ICMP Timestamp Request to an IP Broadcast or IP Multicast address may be silently

discarded.
o The IP source address in an ICMP Timestamp reply must be the same as the specific-

destination address of the corresponding Timestamp request message.
o If a source-route option is received in a Timestamp request, the return route must be

reserved and used as a Source Route option for the Timestamp Reply option.
o If a Record Route and/or Timestamp option is received in a Timestamp request, this

option(s) should be updated to include the current host and included in the IP header of
the Timestamp Reply message.

Receiving an ICMP Timestamp Reply would reveal an alive host (or a networking device) that has
implemented the ICMP Timestamp messages.

In the next example I have sent an ICMP Time Stamp Request, using the icmpush13 tool, to a
Redhat 6.1 LINUX, Kernel 2.2.12 machine:

[root@stan /root]# icmpush -tstamp 192.168.5.5
kenny.sys-security.com -> 13:48:07

Snort Trace:
01/26-13:51:29.342647 192.168.5.1 -> 192.168.5.5
ICMP TTL:254 TOS:0x0 ID:13170
TIMESTAMP REQUEST
88 16 D8 D9 02 8B 63 3D 00 00 00 00 00 00 00 00c=........

01/26-13:51:29.342885 192.168.5.5 -> 192.168.5.1
ICMP TTL:255 TOS:0x0 ID:6096

13 Icmpush was written by Slayer of hispahack.http://hispahack.ccc.de/ .

ICMP Usage in Scanning
Version 2.0

14

Copyright Ofir Arkin, 2000
http://www.sys-security.com

TIMESTAMP REPLY
88 16 D8 D9 02 8B 63 3D 02 88 50 18 02 88 50 18c=..P...P.
2A DE 1C 00 A0 F9 *.....

When I have sent an ICMP Time Stamp Request to a Windows NT WRKS 4.0 SP4 machine, I got
no reply. Again, this is not an abnormal behavior from the Microsoft Windows NT machine, just an
implementation choice as RFC 1122 states.

Countermeasure: Block ICMP Time Stamp Requests coming from the Internet on the border
Router and/or Firewall.

2.4.2 ICMP Information Request (Type 15) and Reply (Type 16)
The ICMP Information Request/Reply pair was intended to support self-configuring systems such
as diskless workstations at boot time, to allow them to discover their network address.

The sender fills in the request with the Destination IP address in the IP Header set to zero
(meaning this network). The request may be sent with both Source IP Address and Destination IP
Address set to zero. The sender initializes the identifier and the sequence number, both used to
match the replies with the requests, and sends out the request. The ICMP header code field is
zero.

If the request was issued with a non-zero Source IP Address the reply would only contain the
network address in the Source IP Address of the reply. If the request had both the Source IP
Address and the Destination IP Address set to zero, the reply will contain the network address in
both the source and destination fields of the IP header.

From the description above one can understand that the ICMP Information request and reply
mechanism was intended to be used locally.

Checksum

Sequence NumberIdentifier

Code = 0Type

0 4 8 16 31

Figure 4: ICMP Information Request & Reply message format

The RARP, BOOTP & DHCP protocols provide better mechanisms for hosts to discover its own
IP address.

The Information Request & Reply mechanism is now obsolete as stated in RFC 1122, and RFC
181214. A router should not originate or respond to these messages; A host should not implement
these messages.

Demands on one hand and reality on the other.

14 RFC 1812: Requirements for IP Version 4 Routers, http://www.ietf.org/rfc/rfc1812.txt . As the RFC states this
mechanism is now obsolete - A router should not originate or respond to these messages; A host should not implement
these messages.

ICMP Usage in Scanning
Version 2.0

15

Copyright Ofir Arkin, 2000
http://www.sys-security.com

RFC 792 specifies that the Destination IP address should be set to zero, this mean that hosts that
do not reside on the same network cannot send these ICMP query type.

But what would happen if we would send an ICMP Information Request with the Destination IP
address set to a specific IP address of a host out in the void?

The next example illustrates that some operating systems would answer these queries even if not
issued from the same network. The ICMP Information Request queries we are sending are not
really RFC compliant because of the difference in the Destination IP address.

Those operating systems that answer our queries work in contrast to the RFC guidelines as well.
We would see in the next example why.

In the next example I have sent an ICMP Information Request, using the SING15 tool, to an AIX
machine:

[root@aik icmp]# ./sing -info host_address16

SINGing to host_address (ip_address): 8 data bytes
8 bytes from ip_address: icmp_seq=0 ttl=238 Info Reply
8 bytes from ip_address: icmp_seq=1 ttl=238 Info Reply
8 bytes from ip_address: icmp_seq=2 ttl=238 Info Reply
8 bytes from ip_address: icmp_seq=3 ttl=238 Info Reply

--- host_address sing statistics ---
5 packets transmitted, 4 packets received, 20% packet loss

The tcpdump trace:

19:56:37.943679 ppp0 > slip139-92-208-21.tel.il.prserv.net >
host_address: icmp: information request

4500 001c 3372 0000 ff01 18a7 8b5c d015
xxxx xxxx 0f00 bee3 321c 0000

19:56:38.461427 ppp0 < host_address > slip139-92-208-
21.tel.il.prserv.net: icmp: information reply

4500 001c 661b 0000 ee01 f6fd xxxx xxxx
8b5c d015 1000 bde3 321c 0000

Lets do a quick analysis of the trace.

The ICMP Information Request:

Value

Field

Additional Information

4 4-Bit Version IP Version 4
5 4-Bit Header Length 4 x DWORD = 20 Bytes
00 8-Bit TOS TOS=0
00 1c 16-Bit Total Length
33 72 16-Bit Identification
00 00 3-Bit Flags + 13-bit Fragment Offset
ff 8-Bit TTL TTL=255
01 8-Bit Protocol 1=ICMP

15 SING written by Alfredo Andreיs Omella, can be found at http://sourceforge.net/projects/sing.
16 Since I have queried a production system for this test, with a permission of the owners, I do not wish to identify it.

ICMP Usage in Scanning
Version 2.0

16

Copyright Ofir Arkin, 2000
http://www.sys-security.com

18 a7 16-Bit Header Checksum
8b 5c d0 15 32-bit Source IP Address 139.92.208.21
xx xx xx xx 32-Bit Destination IP Address
0f 8-Bit Type Type=15
00 8-Bit Code Code=0
be e3 16-Bit Checksum
32 1c 16-Bit Identifier
00 00 16-Bit Sequence Number

The ICMP Information Reply:

Value

Field

Additional Information

4 4-Bit Version IP Version 4
5 4-Bit Header Length 4 x DWORD = 20 Bytes
00 8-Bit TOS TOS=0
00 1c 16-Bit Total Length
66 1b 16-Bit Identification
00 00 3-Bit Flags + 13-bit Fragment Offset
ee 8-Bit TTL TTL=238
01 8-Bit Protocol 1=ICMP
F6 fd 16-Bit Header Checksum
xx xx xx xx 32-bit Source IP Address
8b 5c d0 15 32-Bit Destination IP Address 139.92.208.21
10 8-Bit Type Type=16
00 8-Bit Code Code=0
bd e3 16-Bit Checksum
32 1c 16-Bit Identifier
00 00 16-Bit Sequence Number

Instead of having the network address in the Source IP Address we are getting the IP address of
the host.

Does the reply compliant with RFC 792 regarding this issue? Basically yes, because the RFC
does not specify an accurate behavior.

The RFC states: “To form a information reply message, the source and destination addresses are
simply reversed, the type code changes to 16, and the checksum recomputed”.

This means that if the ICMP Information Request is coming from outside (Destination is not zero)
of the network in question, the network address would not be revealed. But still a host could be
revealed if he answers the request.

The request is not compliant with the RFC in my opinion because it does not fulfill its job – getting
the network address.

Countermeasure: Block ICMP Information Requests coming from the Internet on the border
Router and/or Firewall.

2.4.3 ICMP Address Mask Request (Type 17) and Reply (Type 18)
The ICMP Address Mask Request (and Reply) is intended for diskless systems to obtain its
subnet mask in use on the local network at bootstrap time. Address Mask request is also used
when a node wants to know the address mask of an interface. The reply (if any) contains the
mask of that interface.

ICMP Usage in Scanning
Version 2.0

17

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Once a host has obtained an IP address, it could than send an Address Mask request message
to the broadcast address of the network they reside on (255.255.255.255). Any host on the
network that has been configured to send address mask replies will fill in the subnet mask,
change the type of the message to address mask reply and return it to the sender.

RFC 1122 states that the Address Mask request & reply query messages are entirely optional.

Checksum

Sequence NumberIdentifier

CodeType

0 4 8 16 31

Subnet address mask

Figure 5: ICMP Address Mask Request & Reply message format

RFC 1122 also states that a system that has implemented ICMP Address Mask messages must
not send an Address Mask Reply unless it is an authoritative agent for address masks.

Usually an Address Mask request would be answered by a gateway.

Receiving an Address Mask Reply from a host would reveal an alive host that is an authoritative
agent for address masks. It will also allow a malicious computer attacker to gain knowledge about
your network’s configuration. This information can assist the malicious computer attacker in
determining your internal network structure, as well as the routing scheme.

Please note that a Router must implement ICMP Address Mask messages. This will help identify
routers along the path to the targeted network (it can also reveal internal routers if this kind of
traffic is allowed to reach them).

If the Router is following RFC 1812 closely, it should not forward on an Address Mask Request to
another network.

ICMP Address Mask Request aimed at a LINUX machine would not trigger an ICMP Address
Mask Reply, nor a request aimed at a Microsoft Windows NT 4 Workstation SP 6a box.

In the next example I have sent an ICMP Address Mask Request to the broadcast address
(192.168.5.255) of a class C network 192.168.5.0, spoofing the source IP to be 192.168.5.3:

[root@stan /root]# icmpush -vv -mask -sp 192.168.5.3 192.168.5.255
-> ICMP total size = 12 bytes
-> Outgoing interface = 192.168.5.1
-> MTU = 1500 bytes
-> Total packet size (ICMP + IP) = 32 bytes

ICMP Address Mask Request packet sent to 192.168.5.255 (192.168.5.255)

Receiving ICMP replies ...

192.168.5.3 ...

Type = Address Mask Request (0x11)
Code = 0x0 Checksum = 0xBF87

ICMP Usage in Scanning
Version 2.0

18

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Id = 0x3B7 Seq# = 0x3CB0

icmpush: Program finished OK

The snort trace:

-*> Snort! <*-
Version 1.5
By Martin Roesch (roesch@clark.net, www.clark.net/~roesch)
Kernel filter, protocol ALL, raw packet socket
Decoding Ethernet on interface eth0
02/15-13:47:37.179276 192.168.5.3 -> 192.168.5.255
ICMP TTL:254 TOS:0x0 ID:13170
ADDRESS REQUEST
B9 03 8E 49 00 00 00 00 ...I....

No answer was received from the LINUX machines or from the Microsoft Windows NT
Workstation 4 SP 6a machine on our test lab.

When I have tried to map which operating systems would answer (if at all) the ICMP Address
Mask Requests, I have discovered that SUN Solaris is very cooperative with this kind of query17:

[root@aik icmp]# ./sing -mask -c 1 IP_Address18

SINGing to IP_Address (IP_Address): 12 data bytes
12 bytes from IP_Address: icmp_seq=0 ttl=241 mask=255.255.255.0

--- IP_Address sing statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
[root@aik icmp]#

The Tcpdump trace:

20:02:07.402229 ppp0 > slip139-92-208-21.tel.il.prserv.net >
Host_Address: icmp: address mask request

4500 0020 3372 0000 ff01 70a7 8b5c d015
xxxx xxxx 1100 afe3 3f1c 0000 0000 0000

20:02:07.831426 ppp0 < Host_Address > slip139-92-208-
21.tel.il.prserv.net: icmp: address mask is 0xffffff00 (DF)

4500 0020 3617 4000 f101 3c02 xxxx xxxx
8b5c d015 1200 afe2 3f1c 0000 ffff ff00

Our two last examples would be an ICMP Address Mask request aimed at a router (which must
implement ICMP Address Mask Messages) and at a switch.

The following is an Address Mask Request sent to a Cisco Catalyst 5505 with OSS v4.5:

inferno:/tmp# sing -mask -c 1 10.13.58.240

17 The –c 1 option enable SING to send only one ICMP datagram. The parameter can be changed to any desired value.
18 The real IP Address and the Host address were replaced.

ICMP Usage in Scanning
Version 2.0

19

Copyright Ofir Arkin, 2000
http://www.sys-security.com

SINGing to 10.13.58.240 (10.13.58.240): 12 data bytes
12 bytes from 10.13.58.240: icmp_seq=0 ttl=60 mask=255.255.255.0

--- 10.13.58.240 sing statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
inferno:/tmp#

inferno:~# tcpdump -tnxv -s 1600 icmp
tcpdump: listening on xl0
10.13.58.199 > 10.13.58.240: icmp: address mask request (ttl 255, id
13170)
0000 : 4500 0020 3372 0000 FF01 FE99 0A0D 3AC7 E.. 3r........:.
0010 : 0A0D 3AF0 1100 6BF7 8308 0000 0000 0000 ..:...k.........

10.13.58.240 > 10.13.58.199: icmp: address mask is 0xffffff00 (ttl 60,
id 20187)
0000 : 4500 0020 4EDB 0000 3C01 A631 0A0D 3AF0 E.. N...<..1..:.
0010 : 0A0D 3AC7 1200 6BF6 8308 0000 FFFF FF00 ..:...k.........
0020 : 0000 0000 0000 0000 0000 0000 0000
^C
79 packets received by filter
0 packets dropped by kernel
inferno:~#

The last example is an ICMP Address Mask request sent to an Intel 8100 ISDN Router on our
network:

[root@aik icmp]# ./sing -mask 10.0.0.254
SINGing to 10.0.0.254 (10.0.0.254): 12 data bytes
12 bytes from 10.0.0.254: icmp_seq=0 ttl=64 mask=255.255.255.0
12 bytes from 10.0.0.254: icmp_seq=1 ttl=64 mask=255.255.255.0
12 bytes from 10.0.0.254: icmp_seq=2 ttl=64 mask=255.255.255.0

--- 10.0.0.254 sing statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
[root@aik icmp]#

The tcpdump trace:

[root@aik /root]# tcpdump -x icmp
Kernel filter, protocol ALL, datagram packet socket
tcpdump: listening on all devices
16:34:30.666687 eth0 > 10.0.0.105 > 10.0.0.254: icmp: address mask
request

4500 0020 3372 0000 ff01 7304 0a00 0069
0a00 00fe 1100 0afd e402 0000 0000 0000

16:34:30.667961 eth0 < 10.0.0.254 > 10.0.0.105: icmp: address mask is
0xffffff00

4500 0020 2cb7 0000 4001 38c0 0a00 00fe
0a00 0069 1200 0afc e402 0000 ffff ff00
0000 0000 0000 0000 0000 0000 0000

Countermeasure: Block ICMP Address Mask Requests coming from the Internet on the border
Router and/or Firewall.

ICMP Usage in Scanning
Version 2.0

20

Copyright Ofir Arkin, 2000
http://www.sys-security.com

2.5 Non-ECHO ICMP Sweeps
We can query multiple hosts using a Non-ECHO ICMP query message type. This is referred as a
Non-ECHO ICMP sweep.

Who would answer our query?

Hosts that answer to the following:

o Hosts that are in a listening state.
o Hosts running an operating system that implemented the Non-ECHO ICMP query

message type that was sent.
o Hosts that are configured to reply to the Non-ECHO ICMP query message type (few

conditions here as well, for example: RFC 1122 states that a system that implemented
ICMP Address Mask messages must not send an Address Mask Reply unless it is an
authoritative agent for address masks).

Given the conditions above, which host(s) would answer our queries?

Operating System

Info. Request

Time Stamp Request

Address Mask Request

Debian GNU/ LINUX 2.2, Kernel 2.4 test 2 - + -
Redhat LINUX 6.2 Kernel 2.2.14 - + -

FreeBSD 4.0 - + -
FreeBSD 3.4 - + -
OpenBSD - + -
NetBSD

Solaris 2.5.1 - + +
Solaris 2.6 - + +
Solaris 2.7 - + +
Solaris 2.8 - + +

HP-UX v10.20 + + -

AIX v4.x + + -

ULTRIX 4.2 – 4.5 + + +

Windows 95 - - +
Windows 98 - + +
Windows 98 SE - + +
Windows ME - + -
Windows NT 4 WRKS SP 3 - - +
Windows NT 4 WRKS SP 6a -
Windows NT 4 Server SP 4 - - -
Windows 2000 Professional - + -
Windows 2000 Server - + -

ICMP Usage in Scanning
Version 2.0

21

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Networking Devices

Info. Request

Time Stamp Request

Address Mask Request

Cisco Catalyst 5505 with OSS v4.5 + + +
Cisco Catalyst 2900XL with IOS 11.2 + + -

Cisco 3600 with IOS 11.2 + + -
Cisco 7200 with IOS 11.3 + + -

Intel Express 8100 ISDN Router - - +

Table 2: non-ECHO ICMP Query of different Operating Systems and Networking Devices

Countermeasure: Block ICMP Information Requests, ICMP Address Mask Requests & ICMP
Time Stamp Requests coming from the Internet on the border Router and/or Firewall.

2.6 Non-ECHO ICMP Broadcasts
We can send a Non-ECHO ICMP query message type to the broadcast address or to the network
address of the targeted network.

The request would be broadcasted to all listening hosts on the targeted network.

Who would answer our query?

o Hosts that are in a listening state
o Hosts running an operating system that implemented the Non-ECHO ICMP query

message type that was sent.
o Hosts that are configured to reply to the Non-ECHO ICMP query message type (few

conditions here as well, for example: a host may discard Non-ECHO ICMP query
message type requests targeted at the broadcast address. For example an ICMP
Timestamp Request to an IP Broadcast or IP Multicast address may be silently
discarded).

Given the conditions above, the answering hosts would almost always be UNIX and UNIX-like
machines. SUN Solaris, HP-UX, and LINUX are the only operating systems, from the group of
operating systems I have tested, that would answer to an ICMP Timestamp Request aimed at the
broadcast address of a network. HP-UX would answer Information Requests aimed at the
broadcast address of a network. Non-would answer to an ICMP Address Mask Request aimed at
the broadcast address of a network.

Operating System

Info. Request

Broadcast

Time Stamp Request

Broadcast

Address Mask Request

Broadcast

Debian GNU/ LINUX 2.2, Kernel 2.4 test 2 - + -
Redhat LINUX 6.2 Kernel 2.2.14 - + -

FreeBSD 4.0 - - -
FreeBSD 3.4
OpenBSD 2.7 - - -
OpenBSD 2.6 - - -

ICMP Usage in Scanning
Version 2.0

22

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Operating System

Info. Request

Broadcast

Time Stamp Request

Broadcast

Address Mask Request

Broadcast

NetBSD

Solaris 2.5.1 * + -
Solaris 2.6 * + -
Solaris 2.7 * + -
Solaris 2.8 * + -

HP-UX v10.20 + + -

AIX 4.x

ULTRIX 4.2 – 4.5

Windows 95
Windows 98 - - -
Windows 98 SE - - -
Windows ME - - -
Windows NT 4 WRKS SP 3 - - -
Windows NT 4 WRKS SP 6a
Windows NT 4 Server SP 4 - - -
Windows 2000 Professional (& SP1) - - -
Windows 2000 Server (& SP1) - - -

Table 3: Operating Systems, which would answer to requests, aimed at the Broadcast address

Networking Devices

Info. Request

Broadcast

Time Stamp Request

Broadcast

Address Mask Request

Broadcast

Cisco Catalyst 5505 with OSS v4.5 + + +
Cisco Catalyst 2900XL with IOS 11.2 + - -

Cisco 3600 with IOS 11.2 + - -
Cisco 7200 with IOS 11.3 + - -

Intel Express 8100 ISDN Router - - -

Table 4: Networking Devices, which would answer to requests, aimed at the Broadcast address

Countermeasure: Block the IP directed broadcast on the border router. Block ICMP Information
Requests, ICMP Address Mask Requests & ICMP Time Stamp Requests coming from the
Internet on the border Router and/or Firewall.

ICMP Usage in Scanning
Version 2.0

23

Copyright Ofir Arkin, 2000
http://www.sys-security.com

3.0 Advanced Host Detection using the ICMP Protocol (using ICMP Error
Messages generated from the probed machines)
The advanced host detection methods rely on the idea that we can use various methods in order
to elicit an ICMP Error Message back from a probed machine and discover its existence. Some of
the methods described here are:

• Mangling IP headers
o Header Length Field
o IP Options Field

• Using non-valid field values in the IP header
o Using valid field values in the IP header

• Abusing Fragmentation
• The UDP Scan Host Detection method

With the first method we are using bad IP headers in the IP datagram that would generate an
ICMP Parameter Problem error back from the probed machine to the source IP address of the
probing datagram. The second method use non-valid field values in the IP header in order to
force the probed machine to generate ICMP Destination Unreachable error message back to the
malicious computer attacker. The third method discussed uses fragmentation to trigger an ICMP
Fragment Reassembly Time Exceeded error message from the probed machine. The last method
uses the UDP Scan method to elicit ICMP Port Unreachable error message back from a closed
UDP port(s) on the probed host(s).

When using some of those methods we can determine if a filtering device is present and some
can even discover the Access Control List a Filtering Device is forcing on the protected network.

4 bit
Version

4 bit
Header
Length

8-bit type of service
 (TOS)=0 16-bit total length (in bytes)

16-bit identification 3 bit
Flags 13-bit Fragment Offset

8-bit time to live
(TTL)

8-bit protocol=1
(ICMP) 16-bit header checksum

32-bit source IP address

Options (if any)

32-bit destination IP address

20 bytes

0 8 16 314

Figure 6: The IP Header

3.1 Sending IP Datagrams with bad IP headers fields – generating ICMP Parameter
Problem error message back from probed machines
An ICMP Parameter Problem error message is sent when a router (must generate this message)
or a host (should generate this message) process a datagram and finds a problem with the IP
header parameters, which is not specifically covered by another ICMP error message. The ICMP
Parameter Problem error message is only sent if the error caused the datagram to be discarded.

We have some variants with this type of Host Detection. We send an illegal forged datagram(s)
with bad IP header field(s), that no specific ICMP error message is sent for this field(s). It will

ICMP Usage in Scanning
Version 2.0

24

Copyright Ofir Arkin, 2000
http://www.sys-security.com

force a Host to send back an ICMP Parameter Problem Error message with either Code 0 or
Code 2 (When code 0 is used, the pointer field will point to the exact byte in the original IP
Header, which caused the problem. Code 2 is sent when the Header length or the total packet
length values of the IP datagram do not appear to be accurate) to the source IP address of the
bad IP datagram and reveal its existence. With this type of host detection it is not relevant what
would be the protocol (TCP/UDP/ICMP) embedded inside the IP datagram. All we care about is
the ICMP Error messages generated by the probed machine (if any).

This method is very powerful in detecting host(s) on the probed network with direct access from
the Internet, since a host should generate this error message. Routers must generate the ICMP
Parameter Problem error message as well, but not all of them check the correctness of some
fields inside the IP header like a host does (processing of some fields is done on the host only).

According to RFC 1122 a host should check for validity of the following fields when processing a
packet19:

• Version Number – if not 4 a host must silently discard the IP packet.
• Checksum – a host should verify the IP header checksum on every received datagram

and silently discard every datagram that has a bad checksum.

A router should check for the validity of the following fields when processing a packet20:

• Checksum – a router must verify the IP checksum of any packet it received, and must
discard messages containing invalid checksums.

The conditions outlined eliminate the usage of this method to a limited number of fields only.

It is possible to send an IP datagram with bad field(s) in the IP header, which will get routed
without getting dropped in the way to the probed machine. It should be noted that different routers
perform different checks regarding the IP header (different implementation and interpretation of
RFC 1812). When a router, because of a bad IP header, drops an IP packet and sends an ICMP
Parameter Problem error message, it is possible to identify the manufacture of the router, and to
adjust the wrong IP header field correctly according to a field, which is not checked by the
manufacture of that particular router.

A router may be more forgiving than a Host regarding the IP header. This may result from the fact
that a router is a vehicle for delivering the IP datagram and a Host is the Destination and the
place where more processing on the datagram is done.

The downside for this method is the detection. Intrusion Detection Systems should alert you
about abnormalities in the attacked network traffic, since not every day you receive IP packets
with bad IP Header field(s).

We can use this type of Host Detection to sweep through the entire IP range of an organization
and get back results, which will map all the alive hosts on the probed network with direct access
from the Internet.

Even if a firewall or another filtering device is protecting the probed network we can still try to
send those forged packets to an IP addresses with ports that are likely to be opened. For

19 RFC 1122 – Requirements for Internet Host, http://www.ietf.org/rfc/rfc1122.txt.
20 RFC 1812 – Requirements for IPv4 Routers, http://www.ietf.org/rfc/rfc1812.txt.

ICMP Usage in Scanning
Version 2.0

25

Copyright Ofir Arkin, 2000
http://www.sys-security.com

example - TCP ports 21,25,80; UDP port 53; and even try to send an ICMP message presumably
coming back from a Host/Router who generated it upon receiving data from the attacked network.

In my opinion Firewalls/Filtering Devices should check the validity of those fields used to elicit the
ICMP Parameter Problem error message and disallow this kind of traffic.

An example is given here using the ISIC tool written by Mike Frantzen21. ISIC sends randomly
generated packets to a target computer. Its primary uses are to stress test an IP stack, to find
leaks in a firewall, and to test the implementation of Intrusion Detection Systems and firewalls.
The user can specify how often the packets will be fragmented; have IP options, TCP options, an
urgent pointer, etc.

In the next example I have sent 20 IP Packets from a LINUX machine to a Microsoft Windows NT
WRKS 4 SP4 machine. The datagrams were not fragmented nor bad IP version numbers were
sent. The only weird thing sent inside the IP headers was random IP Header length, which have
produced ICMP Parameter Problem Code 2 error message as I anticipated.

[root@stan packetshaping]# ./isic -s 192.168.5.5 -d 192.168.5.15 -p 20
-F 0 -V 0 -I 100
Compiled against Libnet 1.0
Installing Signal Handlers.
Seeding with 2015
No Maximum traffic limiter
Bad IP Version = 0% Odd IP Header Length = 100%
Frag'd Pcnt = 0%

Wrote 20 packets in 0.03s @ 637.94 pkts/s

tcpdump trace:

12:11:05.843480 eth0 > kenny.sys-security.com > cartman.sys-
security.com: ip-proto-110 226 [tos 0xe6,ECT] (ttl 110, id 119,
optlen=24[|ip])

12:11:05.843961 eth0 P cartman.sys-security.com > kenny.sys-
security.com: icmp: parameter problem - octet 21 Offending pkt:
kenny.sys-security.com > cartman.sys-security.com: ip-proto-110 226
[tos 0xe6,ECT] (ttl 110, id 119, optlen=24[|ip]) (ttl 128, id 37776)

Other fields we can use inside the IP Header
In the last example we have used a bad Header Length field value to generate an ICMP
Parameter Problem code 2-error message.

An ICMP Parameter Problem would almost always result from an incorrect usage of the IP option
field as well.

3.1.1 ACL Detection using IP Datagrams with bad IP headers fields
If we probe the entire IP range of the targeted network with all combinations of protocols and
ports, it would draw us the targeted network topology map, and will allow us to determine the
access list (ACL) a Filtering Device (If present, and not blocking outgoing ICMP Parameter
Problem Error messages) is forcing.

21 http://expert.cc.purdue.edu/~frantzen/

ICMP Usage in Scanning
Version 2.0

26

Copyright Ofir Arkin, 2000
http://www.sys-security.com

This, if the filtering device does not check the validity of the mangled IP header fields, and allows
the specified traffic.

3.1.1.1 How we determine the ACL (ICMP Protocol embedded inside)?
When the embedded protocol is ICMP, we send various ICMP message types encapsulated
inside IP datagrams with bad IP header(s). If we receive a reply from a Destination IP address we
have a host that is alive and an ACL, which allows this type of message of ICMP to get to the
host who generated the ICMP error message (and the Parameter Problem ICMP error message
is allowed from the destination host to the Internet).

If we are not getting any reply than one of three possibilities:

• The Filtering Device disallows datagrams with the kind of bad field we are using.
• The Filtering Device is filtering the type of the ICMP message we are using.
• The Filtering Device blocks ICMP Parameter Problem error messages initiated from the

protected network destined to the Internet.

3.1.1.2 How we determine the ACL (TCP or UDP Protocol embedded inside)?
We can probe for every combination of protocol and port values inside an IP packet with bad IP
header(s). If we would receive an answer it would indicate that the protocol and port we used are
allowed to the probed host from the Internet, and the ICMP Parameter Problem error message is
allowed from the destination host in the protected network out to the Internet. It would also
indicate that the filtering device used on the targeted network is not validating the correctness of
the fields we have used in order to elicit the ICMP Parameter Problem error message.

If the embedded protocol were either TCP or UDP, a reply would not be generated if:

• The Filtering Device disallows packets with the kind of bad field we are using.
• The Filtering Device filters the Protocol used.
• The Filtering Device is filtering the specific port we are using for the probe.
• The Filtering Device blocks ICMP Parameter Problem error messages initiated from the

protected network destined to the Internet. In our case, the filtering device may be
blocking the specific host we are probing for outgoing ICMP Parameter Problem
datagrams.

Note: If we are using the IP Header Length field in order to elicit ICMP Parameter Problem error
message back from the probed host(s) than the host processing the datagram may not be able to
access the Protocol information embedded inside. The reason would be the faulty calculation that
would be made – where the header ends and the data portion begins.

Countermeasure: Block outgoing ICMP Parameter Problem from the protected network to the
Internet on the Firewall & on the border Router.

Check with the manufacture of your filtering device which fields it validates on the IP header when
processing a datagram.

ICMP Usage in Scanning
Version 2.0

27

Copyright Ofir Arkin, 2000
http://www.sys-security.com

3.2 IP Datagrams with non-valid field values
This Host Detection method is based on different IP header fields within the crafted IP datagram
that would have non-valid field values, which would trigger an ICMP Destination Unreachable
Error message back from the probed machines.

Note that some hosts (AIX, HP-UX, Digital UNIX) may not send ICMP Protocol Unreachable
messages.

3.2.1 The Protocol Field example
3.2.1.1 Using non-Valid (not used) IP protocol values
One such field within the IP header is the protocol field. If we will put a value, which does not
represent a valid protocol number, the probed machine would elicit an ICMP Destination
Unreachable – Protocol Unreachable error message back to the probed machine.

By sending this kind of crafted packets to all IP addresses within the IP address range of the
probed network we can map the hosts that are directly connected to the Internet (assuming that
no filtering device is present, or filtering the specific traffic).

3.2.1.1.1 Detecting if a Filtering Device is present
A packet sent with a protocol value, which does not represent a valid protocol number, should
elicit an ICMP Destination Unreachable – Protocol Unreachable from the probed machine. Since
this value is not used (and not valid) all hosts probed, unless filtered or are AIX, HP-UX, Digital
UNIX machines, should send this reply. If a reply is not received we can assume that a filtering
device prevents our packet from reaching our destination or from the reply to reach us back.

3.2.1.2 Using all combination of the IP protocol filed values
The difference with this variant is that we use all of the combinations available for the IP protocol
field – since the IP protocol field has only 8 bits in length, there could be 256 combinations
available.

NMAP 2.54 Beta 1 has integrated this variant and Fyodor have named it - IP Protocol scan.
NMAP sends raw IP packets without any further protocol header (no payload) to each specified
protocol on the target machine. If an ICMP Protocol Unreachable error message is received, the
protocol is not in use. Otherwise it is assumed it is opened (or a filtering device is dropping our
packets).

If our goal was Host Detection only, than using the NMAP implementation would be just fine. But
if we wish to use this scan type for other purposes, such as ACL detection, than we would need
the payload data as well (the embedded protocol’s data).

We can determine if a filtering device is present quite easily using this scan method. If a large
number of protocols (non valid values could be among those) seems to be “opened”/used (not
receiving any reply – ICMP Protocol Unreachable) than we can assume a filtering device is
blocking our probes (if using a packet with the protocol headers as well). If the filtering device is
blocking the ICMP Protocol Unreachable error messages initiated from the protected network
towards the Internet than nearly all of the 256 possible protocol values would be seemed
“opened”/used.

With the current implementation with NMAP the 256 possible protocol values should be “opened”
when a scan is performed against a machine inside a protected network, because a packet filter
firewall (or other kind of firewall) should block the probe since it lacks information to validate the
traffic against its rule base (information in the protocol headers such as ports for example).

ICMP Usage in Scanning
Version 2.0

28

Copyright Ofir Arkin, 2000
http://www.sys-security.com

In the next example I have used NMAP 2.54 Beta 1 in order to scan a Microsoft Windows 2000
Professional machine:

[root@catman /root]# nmap -vv -sO 192.168.1.1

Starting nmap V. 2.54BETA1 by fyodor@insecure.org (
www.insecure.org/nmap/)
Host (192.168.1.1) appears to be up ... good.
Initiating FIN,NULL, UDP, or Xmas stealth scan against (192.168.1.1)
The UDP or stealth FIN/NULL/XMAS scan took 4 seconds to scan 254 ports.
Interesting protocols on (192.168.1.1):
(The 250 protocols scanned but not shown below are in state: closed)
Protocol State Name
1 open icmp
2 open igmp
6 open tcp
17 open udp

Nmap run completed -- 1 IP address (1 host up) scanned in 4 seconds

A tcpdump trace of some of the communication exchanged:

17:44:45.651855 eth0 > localhost.localdomain > 192.168.1.1: ip-proto-50
0 (ttl 38, id 29363)
17:44:45.652169 eth0 < 192.168.1.1 > localhost.localdomain: icmp:
192.168.1.1 protocol 50 unreachable Offending pkt:
localhost.localdomain > 192.168.1.1: ip-proto-50 0 (ttl 38, id 29363)
(ttl 128, id 578)
17:44:45.652431 eth0 > localhost.localdomain > 192.168.1.1: ip-proto-
133 0 (ttl 38, id 18)
17:44:45.652538 eth0 > localhost.localdomain > 192.168.1.1: ip-proto-
253 0 (ttl 38, id 36169)
17:44:45.652626 eth0 > localhost.localdomain > 192.168.1.1: ip-proto-92
0 (ttl 38, id 26465)
17:44:45.652727 eth0 < 192.168.1.1 > localhost.localdomain: icmp:
192.168.1.1 protocol 133 unreachable Offending pkt:
localhost.localdomain > 192.168.1.1: ip-proto-133 0 (ttl 38, id 18)
(ttl 128, id 579)
17:44:45.652760 eth0 > localhost.localdomain > 192.168.1.1: ip-proto-
143 0 (ttl 38, id 14467)
17:44:45.652899 eth0 > localhost.localdomain > 192.168.1.1: ip-proto-30
0 (ttl 38, id 30441)
17:44:45.652932 eth0 < 192.168.1.1 > localhost.localdomain: icmp:
192.168.1.1 protocol 253 unreachable Offending pkt:
localhost.localdomain > 192.168.1.1: ip-proto-253 0 (ttl 38, id 36169)
(ttl 128, id 580)

3.2.2 ACL Detection using the Protocol field
First we need to determine if a filtering device is present using a non-valid (not used) protocol
number probe. If a filtering device exists then no answer (ICMP Protocol Unreachable) will be
received from the probed machine, assuming it is not AIX, HP-UX or Digital UNIX22.

22 You can determine this using OS finger printing methods.

ICMP Usage in Scanning
Version 2.0

29

Copyright Ofir Arkin, 2000
http://www.sys-security.com

If a certain protocol were not allowed through the filtering device we would not receive any ICMP
error message from the probed machine. Probing for all combinations of protocols and ports
against an IP range of a targeted network using non-valid and valid protocol values can
determine the ACL a filtering device is forcing on the protected network, along with the topology
map of a targeted network (hosts reachable from the Internet).

A reply would not be generated if:

• The Filtering Device filters the Protocol we are using
• The Filtering Device is filtering the specific port we are using for the probe.
• The Filtering Device blocks ICMP Destination Unreachable - Protocol Unreachable error

messages initiated from the protected network destined to the Internet. In our case, the
filtering device may be blocking the specific host we are probing for outgoing ICMP
Destination Unreachable - Protocol Unreachable error messages.

Note: We can use this method for ACL detection but if the protocol we are using is not used on
the target machine it should be blocked on the filtering device. Than, only opened TCP/UDP ports
and allowed ICMP traffic could traverse the filtering device. If this kind of traffic is allowed we can
have better ACL detection solutions then we outlined here.

Countermeasure: Block outgoing ICMP Protocol Unreachable error messages coming from the
protected network to the Internet on your Firewall and/or Border Router. If you are using a firewall
check that your firewall block protocols which are not supported (deny all stance).

3.3 Host Detection using IP fragmentation to elicit Fragment Reassembly Time
Exceeded ICMP error message.
When a host receives a fragmented datagram with some of its pieces missing, and does not get
the missing part(s) within a certain amount of time the host will discard the packet and generate
an ICMP Fragment Reassembly Time Exceeded error message back to the sending host.

We can use this behavior as a Host Detection method, by sending fragmented datagrams with
missing fragments to a probed host, and wait for an ICMP Fragment Reassembly Time Exceeded
error message to be received from a live host(s), if any.

When we are using this method against all of the IP range of a probed network, we will discover
the network topology of that targeted network.

3.3.1 ACL Detection using IP fragmentation
This method can be used not only to map the entire topology map of the targeted network, but
also to determine the ACL a firewall or a filtering device is forcing on the protected network.

Simply using all combinations of TCP and UDP with different ports, with the IP addresses from
the IP range of the probed network will do it. When we receive a reply it means a host we queried
is alive, the port we have used is opened on that host, and the ACL allows the protocol type and
the port that was used to get to the probed machine (and the ICMP Fragment Reassembly Time
Exceeded error message back from the probed machine to the Internet).

If we were not getting any reply back from the probed machine it can mean:

• The Filtering Device filters the Protocol used.
• The Filtering Device is filtering the specific port we are using for the probe.

ICMP Usage in Scanning
Version 2.0

30

Copyright Ofir Arkin, 2000
http://www.sys-security.com

• The Filtering Device blocks ICMP Fragment Reassembly Time Exceeded error messages
initiated from the protected network destined to the Internet. In our case, the filtering
device may be blocking the specific host we are probing for outgoing ICMP Parameter
Problem datagrams.

3.3.1.1 An Example with UDP (Filtering Device Detection)
Since UDP is a stateless protocol it may be better suited for our needs here. The first datagram
would be fragmented including enough UDP information in the first fragmented datagram that
would be enough to verify the packet against a Firewall’s Rule base. The second part of the
datagram would not be sent. It would force any host that gets such a packet to send us back an
ICMP Fragment Reassembly Time Exceeded error message when the time for reassembly
exceeds.

If the port we were using were an open port, than the ICMP Fragment Reassembly Time
Exceeded error message would be generated. If the port were closed then an ICMP Port
Unreachable error message would be produced.

If a firewall is blocking our probed than no reply would be generated.

No reply would be an indication that traffic to the Host we probed is filtered.

3.3.1.2 An example with TCP
We can divide the first packet of the TCP handshake into two fragments. We would put enough
TCP information in the first packet that would be enough to verify the packet against the Firewall’s
Rule base (this means the port numbers we are using are included in the packet). We will not
send the second part of the packet, forcing any host that gets such a packet to send us back an
ICMP Fragment Reassembly Time Exceeded error message when the time for reassembly
exceeds. This would indicate the host is accessible by this kind of traffic, which is allowed using
the port we have specified as the destination port23.

4 bit
Version

4 bit
Header
Length

8-bit type of service 16-bit total length (in bytes)

16-bit identification 3 bit
Flags 13-bit Fragment Offset

8-bit time to live
(TTL)

8-bit protocol
(TCP) 16-bit header checksum

32-bit source IP address

Options (if any)

32-bit destination IP address

16-bit Destination Port

20 bytes

12 bytes32-bit Sequence NumberIP Data
Field

0 8 16 314

16-bit Source Port

16-bit Window6-bit Reserved4-bit Data
Offser

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Figure 7: An Example: A TCP packet fragmented after only 12 bytes of TCP information

23 In a case were a firewall is validating that the first packet is not fragmented, we can fragment another one instead. But
than this scanning method would not be any different from any other scanning method using TCP flags combinations.

ICMP Usage in Scanning
Version 2.0

31

Copyright Ofir Arkin, 2000
http://www.sys-security.com

If the port we are using is open, than the ICMP error message would be generated. If the port is
closed than a TCP RST packet should be sent back. If a filtering device were to block our probes
than no reply would be generated. No reply would be an indication that traffic to the host we
probed is filtered or the filtering device requires that the first TCP packet would not be fragmented
(which is a legitimate requirement).

3.3.1.3 An Example with ICMP
We can do the same with encapsulating the ICMP protocol. When doing so the ICMP fragmented
packets should sound the sirens when an Intrusion Detection system (if deployed) sees them.
There is no reason to fragment an ICMP datagram.

If we think of sending fragmented ICMP through a bad filtering device product than we should at
least include the first 4 bytes of the ICMP header with the IP datagram.

Countermeasure: Block outgoing ICMP Fragment Reassembly Time Exceeded Error messages.

3.4 Host Detection using UDP Scans, or why we wait for the ICMP Port
Unreachable
How can we determine if a host is alive using a UDP probe? – We use the UDP scan method that
uses ICMP Port Unreachable error message that may be generated from probed hosts as
indicator of alive hosts. With this method we are sending a UDP datagram with 0 bytes of data to
a UDP port on the attacked machine. If we have sent the datagram to a closed UDP port we will
receive an ICMP Port Unreachable error message. If the port is opened, we would not receive
any reply.

When a filtering device is blocking UDP traffic aimed at the attacked machine, it would copycat
the behavior pattern as with opened UDP ports.

If we probe a large number of UDP ports on the same host and we do not receive a reply from a
large number of ports, it would look like that a large number of probed UDP ports are opened.
While a filtering device is probably blocking the traffic and nearly all of the ports are closed.

How can we remedy this?
We can set a threshold number of non-answering UDP ports, when reached we will assume a
filtering device is blocking our probes.

Fyodor has implemented a threshold with NMAP 2.3 BETA 13, so when doing a UDP scan and
not receiving an answer from a certain number of ports, it would assume a filtering device is
monitoring the traffic, rather than reporting those ports as opened.

3.4.1 A Better Host Detection Using UDP Scan
We will take the UDP scan method and tweak it a bit for our needs. We know that a closed UDP
port will generate an ICMP Port Unreachable error message indicating the state of the port -
closed UDP port. We will choose a UDP port that should be definitely closed (according to the
IANA list of assigned ports ftp://ftp.isi.edu/in-notes/iana/assignments/port-numbers). For example
we can use port 0 (but it would reveal our probe pretty easily).

Based on the fact that sending a UDP datagram to a closed port should elicit an ICMP Port
Unreachable, we would send one datagram to the port we have chosen, than:

ftp://ftp.isi.edu/in-notes/iana/assignments/port-numbers

ICMP Usage in Scanning
Version 2.0

32

Copyright Ofir Arkin, 2000
http://www.sys-security.com

• If no filtering device is present we will receive an ICMP Port Unreachable error
message, which will indicate that the Host is alive.

• If no answer is given – a filtering device is covering that port.

In the next example I have used the HPING224 tool to send one UDP datagram to host
192.168.5.5 port 50, which was closed:

[root@stan /root]# hping2 -2 192.168.5.5 -p 50 -c 1
default routing not present
HPING 192.168.5.5 (eth0 192.168.5.5): udp mode set, 28 headers + 0 data
bytes
ICMP Port Unreachable from 192.168.5.5 (kenny.sys-security.com)

--- 192.168.5.5 hping statistic ---
1 packets tramitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms

-*> Snort! <*-
Version 1.5
By Martin Roesch (roesch@clark.net, www.clark.net/~roesch)
Kernel filter, protocol ALL, raw packet socket
Decoding Ethernet on interface eth0
03/12-12:54:47.274096 192.168.5.1:2420 -> 192.168.5.5:50
UDP TTL:64 TOS:0x0 ID:57254
Len: 8

03/12-12:54:47.274360 192.168.5.5 -> 192.168.5.1
ICMP TTL:255 TOS:0xC0 ID:0
DESTINATION UNREACHABLE: PORT UNREACHABLE
00 00 00 00 45 00 00 1C DF A6 00 00 40 11 0F D4E.......@...
C0 A8 05 01 C0 A8 05 05 09 74 00 32 00 08 6A E1t.2..j.

We can use the port number we have chosen, or a list of UDP ports that are likely not being used,
and query all the IP range of an attacked network. Getting a reply back would reveal a live host.
No reply would mean a filtering device is covering those hosts UDP traffic, and probably other
protocols and hosts as well.

3.5 Using Packets bigger than the PMTU of internal routers to elicit an ICMP
Fragmentation Needed and Don’t Fragment Bit was Set (configuration problem)
If internal routers have a PMTU that is smaller than the PMTU for a path going through the border
router, those routers would elicit an ICMP “Fragmentation Needed and Don’t Fragment Bit was
Set” error message back to the initiating host if receiving a packet too big to process that has the
Don’t Fragment Bit set on the IP Header, discovering internal architecture of the router
deployment of the attacked network.

This is in my opinion a configuration problem causing a security hazard.

24 HPING2 written by antirez, http://www.kyuzz.org/antirez/hping/ .

ICMP Usage in Scanning
Version 2.0

33

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Figure 8: Using Packets bigger than the PMTU of internal routers to elicit an ICMP Fragmentation Needed

and Don’t Fragment Bit was Set

DMZ

Internal Network
The Internet

A configuration Error example. If internal Routers are
configured with MTU smaller than the MTU the border
router has, sending packets with the Don’t Fragment bit
set that are small enough to pass the border router but
are bigger than the MTU on an internal Router would
reveal its existence.

Border Router

ICMP Usage in Scanning
Version 2.0

34

Copyright Ofir Arkin, 2000
http://www.sys-security.com

4.0 Inverse Mapping Using ICMP (ECHO & ECHO Reply)
Inverse Mapping is a technique used to map internal networks or hosts that are protected by a
filtering devices/firewall. Usually some of those systems are not reachable from the Internet. We
use routers, which will give away internal architecture information of a network, even if the
question they were asked does not make any sense, for this scanning type. We compile a list of
IP’s that list what is not there and use it to conclude were things probably are.

A router looks at the IP address and makes decisions based on that solely.

We use two ICMP message types in order to use this technique. ICMP ECHO and ICMP ECHO
Reply. We send a number of ICMP ECHO / ICMP ECHO Reply datagrams to different IP’s we
suspect are in the IP range of the network we are probing. When a router, either an exterior or
interior, gets those ICMP message types for further processing, it looks at the IP address and
makes decisions of routing based on it solely. When a router gets a datagram with an IP which is
not used in the IP space / network segment of the part of the probed network he serves, the
router will elicit an ICMP Host Unreachable (Generated by a router if a route to the destination
host on a directly connected network is not available - does not respond to ARP) or ICMP Time
Exceeded (Because the amount of time the Router waits for determining the destination host is
unavailable have not been reached yet, but the TTL timer have turned 0 because of the time we
wait for an answer) error message(s) back to the originator of the datagram. If we do not get an
answer about a certain IP we can assume this IP exist inside the probed network25.

We are using the ICMP ECHO Reply datagrams because most of the firewalls will let them pass
through.

[root@cartman]# ./icmpush -vv -echo Target_IP26

-> Outgoing interface = 192.168.1.5
-> ICMP total size = 12 bytes
-> Outgoing interface = 192.168.1.5
-> MTU = 1500 bytes
-> Total packet size (ICMP + IP) = 32 bytes

ICMP Echo Request packet sent to Target_IP (Target_IP)

Receiving ICMP replies ...

Routers_IP ...

Type = Time Exceeded (0xB)
Code = 0x0 Checksum = 0xF98F

Id = 0x0 Seq# = 0x0

./icmpush: Program finished OK

CMP TTL:254 TOS:0x0 ID:13170
ID:12291 Seq:317 ECHO

02/13-09:16:31.724400 Routers_IP -> 192.168.1.5
ICMP TTL:57 TOS:0x0 ID:7410
TTL EXCEEDED

25 There is also a possibility that a filtering device is blocking our probes, or the replies.
26 The real IP’s of the targeted host and the Router were replaced because of legal problems that might arise when the
ISP’s personal that was used would understand it was one of their Routers used for this experiment.

ICMP Usage in Scanning
Version 2.0

35

Copyright Ofir Arkin, 2000
http://www.sys-security.com

00:13:12 prober> 192.168.2.5: icmp: echo reply
00:13:13 router> prober: icmp: host unreachable

Theoretically speaking, using any ICMP type in order to inverse map a network using a Router is
possible. The downside would be that some Routers would filter unwanted traffic of certain ICMP
types.

ICMP Usage in Scanning
Version 2.0

36

Copyright Ofir Arkin, 2000
http://www.sys-security.com

5.0 Using traceroute to Map a Network Topology
Traceroute is a Network debugging utility, which attempts to map all the hosts on a route to a
certain destination host/machine.

The program sends UDP (by default) or ICMP ECHO Request27 datagrams in sets of three, to a
certain destination host. The first three datagram’s to be sent have a Time-to-Live field value in
the IP Header equals to one. The program lies on the fact that a router should decrement the TTL
field value just before forwarding the datagram to another router/gateway.

If a router discovers that the Time-To-Live field value in an IP header of a datagram he process
equals zero (or less) he would discard the datagram and generate an ICMP Time Exceeded
Code 0 – transit TTL expired error message back to the originating host.

This is when a successful round is completed and another set of three datagrams is sent, this
time with a Time-to-Live field value greater by one than the last set.

The originating host would know at which router the datagram expired since it receives this
information with the ICMP Time Exceeded in Transit error message (Source IP address of the
ICMP error message would be the IP address of the router/gateway; inside the IP header + 64
bits of original data of the datagram field we would have additional informaiton that would bound
this ICMP error message to our issued traceroute command).

ChecksumCodeType

IP header + 64 bits of original data of the datagram

0 8 16 31

Unused (zero)

Figure 9: ICMP Time Exceeded message format

Since we increment the TTL field starting from one for each successful round (again - a round is
finished when the ICMP Time Exceeded in Transit error message is received) until we receive an
ICMP Port Unreachable error message (or ICMP ECHO Reply if we are using the ICMP ECHO
request datagrams) from the destined machine, we map every router/gateway/host along the path
to our destination.

By default, when sending UDP packets we use a destination port which is probably not used by
the destination host so the UDP datagram would not be processes and an ICMP Port
Unreachable error message would be generated from the destined machine. The destination port
would be incremented with each probe sent.

We get ICMP responses provided there is no prohibitive filtering or any packet loss.

27 Microsoft Windows NT and Microsoft Windows 2000 are using the tracert command, which use ICMP ECHO Request
datagrams as its default.

ICMP Usage in Scanning
Version 2.0

37

Copyright Ofir Arkin, 2000
http://www.sys-security.com

The output we see is a line showing the Time-To-Live, the address of the gateway, and the round
trip time of each probe. If we do not get a response back within 5 seconds an “*” is printed, which
represents no answer.

A regular traceroute example with ICMP would be28:

zuul:~>traceroute –I 10.0.0.10
traceroute to 10.0.0.10 (10.0.0.10), 30 hops max, 40 byte
packets
1 10.0.0.1 (10.0.0.1) 0.540 ms 0.394 ms 0.397 ms
2 10.0.0.2 (10.0.0.2) 2.455 ms 2.479 ms 2.512 ms
3 10.0.0.3 (10.0.0.3) 4.812 ms 4.780 ms 4.747 ms
4 10.0.0.4 (10.0.0.4) 5.010 ms 4.903 ms 4.980 ms
5 10.0.0.5 (10.0.0.5) 5.520 ms 5.809 ms 6.061 ms
6 10.0.0.6 (10.0.0.6) 9.584 ms 21.754 ms 20.530 ms
7 10.0.0.7 (10.0.0.7) 89.889 ms 79.719 ms 85.918 ms
8 10.0.0.8 (10.0.0.8) 92.605 ms 80.361 ms 94.336 ms
9 10.0.0.9 (10.0.0.9) 94.127 ms 81.764 ms 96.476 ms
10 10.0.0.10 (10.0.0.10) 96.012 ms 98.224 ms 99.312 ms

Lets assume that a network is protected by a firewall, which blocks all incoming traffic except for
traffic aimed at the DNS Machine’s UDP port 53. If we would perform a regular traceroute aimed
for the DNS machine’s IP address, our UDP datagrams would be sent with a destination port,
which is probably not used on the targeted machine, and probably blocked by a Firewall or
another filtering device. The traces would stop at the firewall at the entrance point to the probed
network.

zuul:~>traceroute 10.0.0.10
traceroute to 10.0.0.10 (10.0.0.10), 30 hops max, 40 byte
packets
1 10.0.0.1 (10.0.0.1) 0.540 ms 0.394 ms 0.397 ms
2 10.0.0.2 (10.0.0.2) 2.455 ms 2.479 ms 2.512 ms
3 10.0.0.3 (10.0.0.3) 4.812 ms 4.780 ms 4.747 ms
4 10.0.0.4 (10.0.0.4) 5.010 ms 4.903 ms 4.980 ms
5 10.0.0.5 (10.0.0.5) 5.520 ms 5.809 ms 6.061 ms
6 10.0.0.6 (10.0.0.6) 9.584 ms 21.754 ms 20.530 ms
7 10.0.0.7 (10.0.0.7) 89.889 ms 79.719 ms 85.918 ms
8 10.0.0.8 (10.0.0.8) 92.605 ms 80.361 ms 94.336 ms
9 * * *
10 * * *

We need to set the port number to 53 in order to reach the DNS server. Since the traceroute
program increases the port number every time it sends a UDP datagram, we need to calculate
the port number to start with, so when a datagram would be processed by the Firewall29 and
would be examined, it would have the appropriate port and other information needed to fit with
the Access Control List. If we use a simple equation we can calculate the starting port:

(Target port – (number of hops * number of probes)) -1

The number of hops (gateways) from our probing machine to the firewall is taken from our earlier
traceroute. We use three probes for every query with the same TTL value, each one of them uses
a different destination port number.

28 All examples taken from “A Traceroute-Like Analysis of IP Packet Responses to Determine Gateway Access Control
Lists” by David Goldsmith and Michael Shiffman. No real examples were provided because of legal issues.
29 A firewall should not elicit any reply for any traffic destined directly for him.

ICMP Usage in Scanning
Version 2.0

38

Copyright Ofir Arkin, 2000
http://www.sys-security.com

zuul:~>traceroute -p28 10.0.0.10
traceroute to 10.0.0.10 (10.0.0.10), 30 hops max, 40 byte packets
1 10.0.0.1 (10.0.0.1) 0.501 ms 0.399 ms 0.395 ms
2 10.0.0.2 (10.0.0.2) 2.433 ms 2.940 ms 2.481 ms
3 10.0.0.3 (10.0.0.3) 4.790 ms 4.830 ms 4.885 ms
4 10.0.0.4 (10.0.0.4) 5.196 ms 5.127 ms 4.733 ms
5 10.0.0.5 (10.0.0.5) 5.650 ms 5.551 ms 6.165 ms
6 10.0.0.6 (10.0.0.6) 7.820 ms 20.554 ms 19.525 ms
7 10.0.0.7 (10.0.0.7) 88.552 ms 90.006 ms 93.447 ms
8 10.0.0.8 (10.0.0.8) 92.009 ms 94.855 ms 88.122 ms
9 10.0.0.9 (10.0.0.9) 101.163 ms * *
10 * * *

But with the regular traceroute program we now face another difficulty. After the datagram have
passed the ACL of the Firewall (and we assume the firewall lets ICMP TTL Exceeded messages
out) and listed the outer leg of the Firewall itself as the next hop, the next UDP datagram sent
would be with a different port number - Than again it would be blocked by the firewall.

A modification to the traceroute program has been made by Michael Shiffman30 in order to stop
the port incrementation. One side affect from sending traceroutes with a fixed port number, which
is allowed on the firewalls ACL, is the final datagram, which normally would generate an ICMP
Port Unreachable message now would not be generated since the UDP port would be in a
listening state on the probed machine and would not provide an answer.

zuul:~>traceroute -S –p53 10.0.0.15
traceroute to 10.0.0.15 (10.0.0.15), 30 hops max, 40 byte
packets
1 10.0.0.1 (10.0.0.1) 0.516 ms 0.396 ms 0.390 ms
2 10.0.0.2 (10.0.0.2) 2.516 ms 2.476 ms 2.431 ms
3 10.0.0.3 (10.0.0.3) 5.060 ms 4.848 ms 4.721 ms
4 10.0.0.4 (10.0.0.4) 5.019 ms 4.694 ms 4.973 ms
5 10.0.0.5 (10.0.0.5) 6.097 ms 5.856 ms 6.002 ms
6 10.0.0.6 (10.0.0.6) 19.257 ms 9.002 ms 21.797 ms
7 10.0.0.7 (10.0.0.7) 84.753 ms * *
8 10.0.0.8 (10.0.0.8) 96.864 ms 98.006 ms 95.491 ms
9 10.0.0.9 (10.0.0.9) 94.300 ms * 96.549 ms
10 10.0.0.10 (10.0.0.10) 101.257 ms 107.164 ms 103.318 ms
11 10.0.0.11 (10.0.0.11) 102.847 ms 110.158 ms *
12 10.0.0.12 (10.0.0.12) 192.196 ms 185.265 ms *
13 10.0.0.13 (10.0.0.13) 168.151 ms 183.238 ms 183.458 ms
14 10.0.0.14 (10.0.0.14) 218.972 ms 209.388 ms 195.686 ms
15 10.0.0.15 (10.0.0.15) 236.102 ms 237.208 ms 230.185 ms

30 http://www.packetfactory.net

ICMP Usage in Scanning
Version 2.0

39

Copyright Ofir Arkin, 2000
http://www.sys-security.com

6.0 The usage of ICMP in Active Operating System Fingerprinting Process
Finger Printing is the art of Operating System Detection.

A malicious computer attacker needs few pieces of information before lunching an attack. First, a
target, a host detected using a host detection method. The next piece of information would be the
services that are running on that host. This would be done with one of the Port Scanning
methods. The last piece of information would be the operating system used by the host.

The information would allow the malicious computer attacker to identify if the targeted host is
vulnerable to a certain exploit aimed at a certain service version running on a certain operating
system.

In this section I have outlined the ICMP methods for this type of scan. Few methods are new and
were discovered during this research.

6.1 Using Wrong Codes within ICMP datagrams (the ICMP ECHO request example)
An interesting detail I have discovered during the lab experiments I did when I have researched
ICMP scanning is when a wrong code is sent along with the correct type of ICMP query message,
different operating systems would send different code values back.

In the next example I have sent an ICMP Timestamp Request with code 38 instead of code 0 to a
LINUX machine running Redhat LINUX 6.2 Kernel 2.2.14 (it was experimented with kernel 2.2.12
as well). The LINUX machine processed the query and sent the reply, with the code value set to
38. I was thinking that a check for the validity of the code field would be done on the targeted
machine. Obviously I was wrong.

[root@stan /root]# icmpush -vv -tstamp -c 38 192.168.5.5
-> Outgoing interface = 192.168.5.1
-> ICMP total size = 20 bytes
-> Outgoing interface = 192.168.5.1
-> MTU = 1500 bytes
-> Total packet size (ICMP + IP) = 40 bytes

ICMP Timestamp Request packet sent to 192.168.5.5 (192.168.5.5)

Receiving ICMP replies ...
kenny.sys-security.com -> Timestamp Reply transmited at 18:06:40
icmpush: Program finished OK

02/14-18:10:31.951977 192.168.5.1 -> 192.168.5.5
ICMP TTL:254 TOS:0x0 ID:13170
TIMESTAMP REQUEST
1D 04 9D 20 03 78 8C 8B 00 00 00 00 00 00 00 00x..........

02/14-18:10:31.952233 192.168.5.5 -> 192.168.5.1
ICMP TTL:255 TOS:0x0 ID:220
TIMESTAMP REPLY
1D 04 9D 20 03 78 8C 8B 03 75 03 00 03 75 03 00x...u...u..
8C 21 01 00 8C 21 .!...!

ICMP Usage in Scanning
Version 2.0

40

Copyright Ofir Arkin, 2000
http://www.sys-security.com

I was looking for other ICMP query types, which the Microsoft Windows machine I had on my test
lab could answer, since Microsoft Windows NT 4 Workstation SP 6a machines do not answer
ICMP Timestamp request messages, I used ICMP ECHO Request instead.

I have queried my LINUX box (Redhat 6.2 with kernel 2.2.12) with ICMP ECHO request with the
code field value set to 38 - LINUX Replied with code value set to 38 again. We can look at the
tcpdump trace, the type and code fields are in bold type:

10:06:02.329509 lo < localhost.localdomain > localhost.localdomain:
icmp: echo request

4500 0020 3372 0000 fe01 0610 c0a8 0105
c0a8 0105 0826 675a 7402 0e20 0186 0cd7

10:06:02.329639 lo > localhost.localdomain > localhost.localdomain:
icmp: echo reply

4500 0020 096d 0000 ff01 2f15 c0a8 0105
c0a8 0105 0026 6f5a 7402 0e20 0186 0cd7

If we examine what RFC 792 requires, we see that LINUX does exactly that.

The sending side initializes the identifier (used to identify ECHO requests aimed at different
destination hosts) and sequence number (if multiple ECHO requests are sent to the same
destination host), adds some data (arbitrary) to the data field and sends the ICMP ECHO
Request to the destination host. In the ICMP header the code equals zero. The recipient should
only change the type to ECHO Reply and return the datagram to the sender.

Checksum

Sequence NumberIdentifier

Code = 0Type

0 4 8 16 31

Data...

Figure 10: ICMP ECHO Request & Reply message format

This also means that we trust another machine to behave correctly.

LINUX changes the type field value to 0 and sends the reply. The code field is unchanged.

I have checked the behavior of my Microsoft Windows 2000 Professional box. I have sent the
same ICMP ECHO Request message to the Microsoft Windows box (the code field is in bold
type):

10:03:33.860212 eth0 > localhost.localdomain > 192.168.1.1: icmp: echo
request

4500 0020 3372 0000 fe01 0614 c0a8 0105
c0a8 0101 0826 d618 6102 f658 0183 c8e2

ICMP Usage in Scanning
Version 2.0

41

Copyright Ofir Arkin, 2000
http://www.sys-security.com

10:03:33.860689 eth0 < 192.168.1.1 > localhost.localdomain: icmp: echo
reply

4500 0020 2010 0000 8001 9776 c0a8 0101
c0a8 0105 0000 de3e 6102 f658 0183 c8e2
0000 0000 0000 0000 0000 0000 0000

The Microsoft Windows 2000 Professional operating system changed the code field value on the
ICMP ECHO Reply to 0.

I have tested this method with various operating systems including LINUX Kernel 2.4t1-6, IBM
AIX 4.x & 3.2, SUN Solaris 2.51, 2.6, 2.7 & 2.8, OpenBSD 2.6 & 2.7, NetBSD 1.4.2, BSDI
BSD/OS 4.0 & 3.1, HP-UX 10.20 & 11.0, Compaq Tru64 v5.0, Irix 6.5.3 & 6.5.8, Ultrix 4.2-4.5,
OpenVMS, FreeBSD 3.4, 4.0 & 4.1 and they produced the same results as the LINUX box
(Kernel 2.2.x) did.

Microsoft Windows 4.0 Server SP4, Microsoft Windows NT 4.0 Workstation SP 6a, Microsoft
Windows NT 4.0 Workstation SP3, Microsoft Windows 95 / 98 / 98 SE / ME have produced the
same behavior as the Microsoft Windows 2000 Professional (Server & Advanced Server).

We have a method to differentiate between a Microsoft Windows box to the rest of the world
using wrong codes inside ICMP ECHO Requests.

6.1.1 Using Wrong Codes with ICMP Datagrams (The ICMP Timestamp Request Example)
I have decided to map which operating systems would answer to an ICMP Timestamp Request
that would have its code field not set to zero.

Interesting results were produced. The Microsoft Windows 98/98 SE/ME, and the Microsoft
Windows 2000 Professional that have answered to ICMP Timestamp requests with the code field
set to zero, now did not produce any reply back.

This enables us to group together certain versions of the Windows Operating System.

The next diagram shows how we can distinguish between the different Microsoft Windows
operating systems using two datagrams of ICMP Timestamp request. The first one is a regular
one; the Microsoft Windows machines that do not answer are Microsoft Windows 95 and
Microsoft Windows NT 4.0 Workstation with SP 6a. All other operating systems answer the ICMP
Time stamp request. The second stage is sending another datagram, this time with the Code field
set to a value, which is not equal to zero. The operating systems that would not answer would
include Windows 98/98 SE/ME/2000 Family, which are the newer versions of Microsoft Windows
operating systems.

ICMP Usage in Scanning
Version 2.0

42

Copyright Ofir Arkin, 2000
http://www.sys-security.com

ICMP Timestamp Request

Reply No Reply

Other OS's

ICMP Timestamp Request with CODE!=0

Reply No Reply

1

2

Other OS's
Windows 98

Windows 98 SE
Windows ME

Windows 2000 Proffesional
Windows 2000 Server

Windows 95
Windows NT 4 WRKS SP6a

Diagram 1: Finger Printing Using ICMP Timestamp Request and Wrong Codes

It is quite obvious that Microsoft have tried to change some of their newer operating systems
fingerprinting in later TCP/IP implementations of their operating systems. For example, the default
for answering an ICMP Timestamp request was changed from "no answer" to "answer", like UNIX
and UNIX-like operating systems. But the Microsoft programmers / designers / architects /
security engineers did not think about every thing apparently.

6.1.2 Listing ICMP query message types sent to different operating systems with the Code
field !=0 and the answers (is any) we got31

Operating System

Info. Request

Time Stamp

Request

Address Mask Request

Debian GNU/ LINUX 2.2, Kernel 2.4 test 2 - + -
Redhat LINUX 6.2 Kernel 2.2.14 - + -

FreeBSD 4.0 - + -
FreeBSD 3.4 - + -
OpenBSD 2.7 - + -
OpenBSD 2.6 - + -
NetBSD - + -

Solaris 2.5.1 * + +
Solaris 2.6 * + +
Solaris 2.7 * + +
Solaris 2.8 * + +

31 Please see “Appendix D: ICMP Query Message types with Code field !=0 (table)”.

ICMP Usage in Scanning
Version 2.0

43

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Operating System

Info. Request

Time Stamp Request

Address Mask Request

HP-UX 10.20 + + -

AIX 4.x + + -
ULTRIX 4.2 – 4.5 + + +

Windows 95 - - +
Windows 98 - - (CHANGE) +
Windows 98 SE - - (CHANGE) +
Windows ME - - (CHANGE) -
Windows NT 4 WRKS SP 3 - - +
Windows NT 4 WRKS SP 6a - - -
Windows NT 4 Server SP 4 - - -
Windows 2000 Professional - - (CHANGE) -

Table 5: Using Wrong Codes when probing Non-ECHO Query ICMP Types

6.2 Using Fragmented ICMP Address Mask Requests (Identifying Solaris boxes)32
It appears that only some of the operating systems would answer an ICMP Address Mask
Request as it is outlined in Table 2 in section 2.5. Those operating systems include - ULTRIX
OpenVMS, Windows 95/98/98 SE/ME, NT below SP 4, and SUN Solaris. How can we distinguish
between those who answer the request?

This is a regular ICMP Address Mask Request sent by SING to a SUN Solaris 2.7 machine:

[root@aik icmp]# ./sing -mask IP_Address
SINGing to IP_Address (IP_Address): 12 data bytes
12 bytes from IP_Address: icmp_seq=0 ttl=236 mask=255.255.255.0
12 bytes from IP_Address: icmp_seq=1 ttl=236 mask=255.255.255.0
12 bytes from IP_Address: icmp_seq=2 ttl=236 mask=255.255.255.0
12 bytes from IP_Address: icmp_seq=3 ttl=236 mask=255.255.255.0
12 bytes from IP_Address: icmp_seq=4 ttl=236 mask=255.255.255.0

--- IP_Address sing statistics ---
5 packets transmitted, 5 packets received, 0% packet loss

All operating systems that would answer with ICMP Address Mask Reply would reply with the
Address Mask of the network they reside on.

What would happen if we would introduce a little twist? Lets say we would send those queries
fragmented?

In the next example, I have sent ICMP Address Mask Request to the same SUN Solaris 2.7 box,
this time fragmented to pieces of 8 bytes of IP data. As we can see the answer I got was unusual:

[root@aik icmp]# ./sing -mask -c 2 -F 8 IP_Address
SINGing to IP_Address (IP_Address): 12 data bytes
12 bytes from IP_Address: icmp_seq=0 ttl=241 mask=0.0.0.0
12 bytes from IP_Address: icmp_seq=1 ttl=241 mask=0.0.0.0

32 The Solaris portion was also discovered by Alfredo Andres Omella.

ICMP Usage in Scanning
Version 2.0

44

Copyright Ofir Arkin, 2000
http://www.sys-security.com

--- IP_Address sing statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
[root@aik icmp]#

The tcpdump trace:

20:02:48.441174 ppp0 > slip139-92-208-21.tel.il.prserv.net >
Host_Address: icmp: address mask request (frag 13170:8@0+)

4500 001c 3372 2000 ff01 50ab 8b5c d015
xxxx xxxx 1100 aee3 401c 0000

20:02:48.442858 ppp0 > slip139-92-208-21.tel.il.prserv.net >
Host_Address: (frag 13170:4@8)

4500 0018 3372 0001 ff01 70ae 8b5c d015
xxxx xxxx 0000 0000

20:02:49.111427 ppp0 < Host_Address > slip139-92-208-
21.tel.il.prserv.net: icmp: address mask is 0x00000000 (DF)

4500 0020 3618 4000 f101 3c01 xxxx xxxx
8b5c d015 1200 ade3 401c 0000 0000 0000

20:02:49.441492 ppp0 > slip139-92-208-21.tel.il.prserv.net >
Host_Address: icmp: address mask request (frag 13170:8@0+)

4500 001c 3372 2000 ff01 50ab 8b5c d015
xxxx xxxx 1100 ade3 401c 0100

20:02:49.442951 ppp0 > slip139-92-208-21.tel.il.prserv.net >
Host_Address: (frag 13170:4@8)

4500 0018 3372 0001 ff01 70ae 8b5c d015
xxxx xxxx 0000 0000

20:02:50.011433 ppp0 < Host_Address > slip139-92-208-
21.tel.il.prserv.net: icmp: address mask is 0x00000000 (DF)

4500 0020 3619 4000 f101 3c00 xxxx xxxx
8b5c d015 1200 ace3 401c 0100 0000 0000

The same SUN Solaris box now replies with a 0.0.0.0 as the Address Mask for the Network it
resides on.

What would happen with the other operating systems?

They all would respond with the real Address Mask in their replies.

Here we got a distinction between SUN Solaris machines and the other operating systems that
would answer those queries.

Important notice: When I have tested this method I have encountered some problems replicating
the results with different ISPs. As it seems from analyzing the information I got, certain ISPs
would block fragmented ICMP datagrams. This behavior would not enable this method to
succeed. One way of testing this is to send a regular ICMP Echo request. We should watch for a
response from the probed machine. If received, than we should send ICMP Echo request, this
time fragmented. If no reply is received than your ISP is blocking ICMP fragments probably.

Note: When I have published this information in Bugtraq (August 5, 2000) Peter J. Holzer notified
me that HP-UX 11.00 produce the same behavior as the SUN Solaris boxes. Darren Reed also
noted that because SUN Solaris and HP-UX 11.0 share the same third party (Mentat)
implementation for some of their TCP/IP stacks this behavior is produced by both.

ICMP Usage in Scanning
Version 2.0

45

Copyright Ofir Arkin, 2000
http://www.sys-security.com

We can further try to distinguish between the remaining operating systems. This, if we would use
the !=0 code method I have introduced in section 6.1.

ICMP Address Mask Request

Reply No Reply

Solaris
ULTRIX OpenVMS

Win 95/98/98SE/NT below SP 4

ICMP Address Mask Request
Fragmented

Reply with 0.0.0.0
Reply with the same
Address Mask as in

Step 1

1

2

Solaris ULTRIX OpenVMS
Win 95/98/98SE/NT below SP 4

3

ICMP Address Mask Request
CODE!=0

Reply with CODE=0 Reply with CODE!=0

ULTRIX OpenVMSWin 95/98/98SE/NT below SP 4

Other OS's

Diagram 2: Finger Printing Using ICMP Address Mask Requests

6.3 TOSing OSs out of the Window / Fingerprinting Microsoft Windows 2000
Each IP Datagram has an 8-bit field called the “TOS Byte”, which represents the IP support for
prioritization and Type-of-Service handling.

MBZTOSPrecedence

0 3 4 51 2 6 7

Figure 11: The Type of Service Byte

ICMP Usage in Scanning
Version 2.0

46

Copyright Ofir Arkin, 2000
http://www.sys-security.com

The “TOS Byte” consists of three fields.

The “Precedence field”, which is 3-bit long, is intended to prioritize the IP Datagram. It has eight
levels of prioritization33:

Precedence

Definition

0 Routine (Normal)
1 Priority
2 Immediate
3 Flash
4 Flash Override
5 Critical
6 Internetwork Control
7 Network control

Table 6: Precedence Field Values

Higher priority traffic should be sent before lower priority traffic.

The second field, 4 bits long, is the “Type-of-Service” field. It is intended to describe how the
network should make tradeoffs between throughput, delay, reliability, and cost in routing an IP
Datagram.

RFC 134934 has defined the “Type-of-Service” field as a single enumerated value, thus
interpreted as a numeric value rather than independent flags (with RFC 791 the 4 bits were
distinct options, allowing combinations as well). The 4 bits represents a maximum of 16 possible
values.

Value (Hex)

Value (Binary)

Service

0 0000 Normal
1 1000 Minimize Delay
2 0100 Maximize Throughput
4 0010 Maximize Reliability
8 0001 Minimize Cost
15 Maximize Security35

Table 7: Type-of-Service Field Values

What about the other 10 value possibilities?

RFC 1349 refer to this issue and states that “although the semantics of values other than the five
listed above are not defined by this memo, they are perfectly legal TOS values, and hosts and
routers must not preclude their use in any way”…”A host or a router need not make any
distinction between TOS values who’s semantics are defined by this memo and those that are
not”.

The last field, the “MBZ” (most be zero), is unused and most be zero. Routers and hosts ignore
this last field. This field is 1 bit long.

Combining Type-of-Service flags with the different prioritization values, dictates very explicit types
of behavior with certain types of data.

33 RFC 791 – Internet Protocol, http://www.ietf.org/rfc/rfc791.txt.
34 RFC 1349 - Type of Service in the Internet Protocol Suite, http://www.ietf.org/rfc/rfc1349.txt.
35 RFC 1455 - Physical Link Security Type of Service, http://www.ietf.org/rfc/rfc1455.txt.

ICMP Usage in Scanning
Version 2.0

47

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Please note the not all TCP/IP implementations would use this values (nor offer a mechanism for
setting those values) and some will not handle datagrams which have Type-of-Service and/or
Precedence values other than the defaults, differently.

6.3.1 The use of the Type-of-Service field with the Internet Control Message Protocol
RFC 1349 also define the usage of the Type-of-Service field with the ICMP messages. It
distinguishes between ICMP error messages (Destination Unreachable, Source Quench,
Redirect, Time Exceeded, and Parameter Problem), ICMP query messages (Echo, Router
Solicitation, Timestamp, Information request, Address Mask request) and ICMP reply messages
(Echo reply, Router Advertisement, Timestamp reply, Information reply, Address Mask reply).

Simple rules are defined:

� An ICMP error message is always sent with the default TOS (0x00)
� An ICMP request message may be sent with any value in the TOS field. A mechanism to

allow the user to specify the TOS value to be used would be a useful feature in many
applications that generate ICMP request messages.

The RFC further specify that although ICMP request messages are normally sent with the
default TOS, there are sometimes good reasons why they would be sent with some other
TOS value.

� An ICMP reply message is sent with the same value in the TOS field as was used in the
corresponding ICMP request message.

Using this logic I have decided to check if certain operating systems react correctly to an ICMP
Query messages with a Type-of-Service field value, which is different than the default (0x00).

The check out was produced with all ICMP query message types sent with a Type-of-Service field
set to a known value, than set to an unknown value (the term known and unknown are used here
because I was not experimenting with non-legit values, and since any value may be sent inside
this field).

The following example is an ICMP Echo request sent to my FreeBSD 4.0 machine. The tool used
here is HPING2 beta 54. The –o option with HPING2 enable it to insert Type-of-Service values.

[root@aik /root]# hping2 -1 -o 8 192.168.1.15
default routing not present
HPING 192.168.1.15 (eth0 192.168.1.15): icmp mode set, 28 headers + 0
data bytes46 bytes from 192.168.1.15: icmp_seq=0 ttl=255 id=16 rtt=1.1
ms
46 bytes from 192.168.1.15: icmp_seq=1 ttl=255 id=17 rtt=0.4 ms
46 bytes from 192.168.1.15: icmp_seq=2 ttl=255 id=18 rtt=0.3 ms
46 bytes from 192.168.1.15: icmp_seq=3 ttl=255 id=19 rtt=0.3 ms
46 bytes from 192.168.1.15: icmp_seq=4 ttl=255 id=20 rtt=0.3 ms
…

--- 192.168.1.15 hping statistic ---
11 packets tramitted, 11 packets received, 0% packet loss
round-trip min/avg/max = 0.3/0.4/1.1 ms

ICMP Usage in Scanning
Version 2.0

48

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Snort trace:

Initializing Network Interface...
Decoding Ethernet on interface eth0

-*> Snort! <*-
Version 1.6
By Martin Roesch (roesch@clark.net, www.clark.net/~roesch)
08/09-21:48:37.280337 192.168.1.200 -> 192.168.1.15
ICMP TTL:64 TOS:0x8 ID:60783
ID:48899 Seq:0 ECHO

08/09-21:48:37.280928 192.168.1.15 -> 192.168.1.200
ICMP TTL:255 TOS:0x8 ID:16
ID:48899 Seq:0 ECHO REPLY
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 ..

This is the second test I have produced, sending ICMP Echo request with the Type-of-Service
field set to a 10 Hex value, a value that is not a known Type-of-Service value:

[root@aik /root]# hping2 -1 -o 10 192.168.1.15
default routing not present
HPING 192.168.1.15 (eth0 192.168.1.15): icmp mode set, 28 headers + 0
data bytes46 bytes from 192.168.1.15: icmp_seq=0 ttl=255 id=27 rtt=0.4
ms
46 bytes from 192.168.1.15: icmp_seq=1 ttl=255 id=28 rtt=0.4 ms
46 bytes from 192.168.1.15: icmp_seq=2 ttl=255 id=29 rtt=0.4 ms
46 bytes from 192.168.1.15: icmp_seq=3 ttl=255 id=30 rtt=0.3 ms
…

--- 192.168.1.15 hping statistic ---
10 packets tramitted, 10 packets received, 0% packet loss
round-trip min/avg/max = 0.3/0.4/0.4 ms
[root@aik /root]#

Snort trace:

Initializing Network Interface...
Decoding Ethernet on interface eth0

-*> Snort! <*-
Version 1.6
By Martin Roesch (roesch@clark.net, www.clark.net/~roesch)
08/09-21:48:58.626840 192.168.1.200 -> 192.168.1.15
ICMP TTL:64 TOS:0x10 ID:53895
ID:49667 Seq:0 ECHO

08/09-21:48:58.627170 192.168.1.15 -> 192.168.1.200
ICMP TTL:255 TOS:0x10 ID:27
ID:49667 Seq:0 ECHO REPLY
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 ..

ICMP Usage in Scanning
Version 2.0

49

Copyright Ofir Arkin, 2000
http://www.sys-security.com

As it can be seen from the trace, the ICMP Echo reply message have maintained the Type-of-
Service value as was used in the corresponding ICMP request message.

FreeBSD 4.0 does not respond to ICMP Information request, or to ICMP Address Mask requests.
I had to verify with ICMP Timestamp requests with the same Type-of-Service values as with the
previous ICMP Echo requests that this behavior is produced with ICMP Timestamp request and
replies as well.

This time I had to use another tool since HPING2 did not provide me with the ability to send ICMP
Timestamp request. I switched to nemesis:36

[root@aik /root]# nemesis-icmp -v -i 13 -t 8 -S x.x.x.x -D y.y.y.y

ICMP Packet Injection -=- The NEMESIS Project 1.1
(c) 1999, 2000 obecian <obecian@celerity.bartoli.org>

[IP] x.x.x.x > y.y.y.y
[Type] TIMESTAMP REQUEST
[Sequence number] 0
[IP ID] 0
[IP TTL] 254
[IP TOS] 0x8
[IP Frag] 0x4000

Wrote 48 bytes

ICMP Packet Injected
[root@aik /root]#

Snort trace:

Initializing Network Interface...
Decoding raw data on interface ppp0

-*> Snort! <*-
Version 1.6
By Martin Roesch (roesch@clark.net, www.clark.net/~roesch)
08/15-21:05:37.570078 x.x.x.x -> y.y.y.y
ICMP TTL:254 TOS:0x8 ID:24 DF
TIMESTAMP REQUEST
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

08/15-21:05:38.101883 y.y.y.y -> x.x.x.x
ICMP TTL:241 TOS:0x8 ID:31017 DF
TIMESTAMP REPLY
00 00 00 00 00 00 00 00 03 DB 2F 7A 03 DB 2F 7A/z../z
00 00 00 00 00 00 00 00

The same behavior was produced.

36 Nemesis, written by obescian, can be downloaded from, http://celerity.bartoli.org.

ICMP Usage in Scanning
Version 2.0

50

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Ok. I was curious again. I imagined that the Microsoft Windows implementation of the things
might be a little different.

When I was examining ICMP Echo requests I noticed something is wrong with Microsoft:

[root@aik /root]# hping2 -1 -o 10 192.168.1.1
default routing not present
HPING 192.168.1.1 (eth0 192.168.1.1): icmp mode set, 28 headers + 0
data bytes
46 bytes from 192.168.1.1: icmp_seq=0 ttl=128 id=74 rtt=0.9 ms
46 bytes from 192.168.1.1: icmp_seq=1 ttl=128 id=75 rtt=0.5 ms
46 bytes from 192.168.1.1: icmp_seq=2 ttl=128 id=76 rtt=0.5 ms
…

--- 192.168.1.1 hping statistic ---
8 packets tramitted, 8 packets received, 0% packet loss
round-trip min/avg/max = 0.5/0.6/0.9 ms
[root@aik /root]#

Snort trace:

Initializing Network Interface...
Decoding Ethernet on interface eth0

-*> Snort! <*-
Version 1.6
By Martin Roesch (roesch@clark.net, www.clark.net/~roesch)
08/09-21:43:53.257483 192.168.1.200 -> 192.168.1.1
ICMP TTL:64 TOS:0x10 ID:34638
ID:45571 Seq:0 ECHO

08/09-21:43:53.258294 192.168.1.1 -> 192.168.1.200
ICMP TTL:128 TOS:0x0 ID:86
ID:45571 Seq:0 ECHO REPLY
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 ..

Oops! Some one zero out my Type-of-Service field!

Before I would let you know who of all Microsoft Windows operating systems did that, I am going
to list the Microsoft operating systems who behave correctly – Microsoft Windows 98/SE/ME,
Microsoft Windows NT 4 Workstation SP3, Microsoft Windows NT 4 Server SP4, Microsoft
Windows NT 4 Workstation SP6a.

The Microsoft Windows 2000 family (Professional, Server, Advanced Server) zero out this field on
the ICMP Echo reply.

Is this makes those Microsoft Windows 2000 machines identified easily and uniquely?

99.9% yes. The other 0.01 % belongs to Ultrix.

From the operating systems I have checked (Linux Kernel 2.2.x, Linux Kernel 2.4 test 2/4/5,
FreeBSD 4.0 & 4.1, OpenBSD 2.6 & 2.7, NetBSD 1.4.2, SUN Solaris 2.7 & 2.8, Compaq Tru64

ICMP Usage in Scanning
Version 2.0

51

Copyright Ofir Arkin, 2000
http://www.sys-security.com

UNIX 5.0, AIX 4.1 & 3.2, OpenVMS v7.2, Irix 6.5.3 & 6.5.8, Ultrix 4.2-4.5, Microsoft Windows
98/SE/ME, Microsoft Windows NT 4 Workstation & Server with various service packs, Microsoft
Windows 2000 Professional, Server & Advanced Server) only Ultrix behaved like the Microsoft
Windows 2000 machines.

How can we distinguish between those?
First, there are much fewer Ultrix machines out there than Microsoft’s Windows 2000 (I see your
faces – not convincing enough).

The fast track in distinguishing between Ultrix and Microsoft Windows 2000 is simply by looking at
the TTL field value. Microsoft Windows 2000 family uses 128 as their default TTL value in ICMP
ECHO replies while Ultrix uses 255. For more information about the TTL field value see sections
6.10 and 6.11.

Another method would be sending an ICMP Information request or an ICMP Address Mask
request - than only Ultrix would answer our request (if not filtered of course) and not the Microsoft
Windows 2000 machines.

Other ICMP query message types help us to identify a unique group of Microsoft operating
systems. As a rule all operating systems except the named Microsoft windows operating systems
here, maintain a single behavior regarding the Type-of-Service field. All would maintain the same
values with different types of ICMP requests. But, again, Microsoft have some of the “top” people
understanding TCP/IP to the degree we humans do not understand so we have the following
Microsoft operating systems zero out (0x00) the Type-of-Service field on the replies for ICMP
Timestamp requests: Microsoft Windows 98/98SE/ME. Microsoft Windows 2000 machines would
zero out this field as well.

This means that Microsoft Windows 98/98SE/ME would not zero out the Type-of-Service field
value with ICMP Echo requests but will do so with ICMP Timestamp requests.

Here we got a way to fingerprint Microsoft Windows 2000 machines from the rest of the world and
from the rest of the Microsoft Windows operating systems.

Operating System

Information

Request
With TOS!=0x00

Time Stamp

Request
With TOS!=0x00

Address Mask

Request
With TOS!=0x00

Echo Request

With TOS!=0x00

Debian GNU/ LINUX 2.2,
Kernel 2.4 test 2 (*)

Not Answering !=0x00 Not Answering !=0x00

Redhat LINUX 6.2
Kernel 2.2.14 (*)

Not Answering !=0x00 Not Answering !=0x00

FreeBSD 4.0 (*) Not Answering !=0x00 Not Answering !=0x00
FreeBSD 3.4 Not Answering Not Answering
OpenBSD 2.7 (*) Not Answering !=0x00 Not Answering !=0x00
OpenBSD 2.6 Not Answering !=0x00 Not Answering !=0x00
NetBSD Not Answering !=0x00 Not Answering !=0x00
BSDI BSD/OS 4.0 (*) Not Answering !=0x00 Not Answering !=0x00
BSDI BSD/OS 3.1 (*) Not Answering !=0x00 Not Answering !=0x00

Solaris 2.5.1 Not Implemented
Solaris 2.6 Not Implemented
Solaris 2.7 (*) Not Implemented !=0x00 !=0x00 !=0x00
Solaris 2.8 (*) Not Implemented !=0x00 !=0x00 !=0x00

HP-UX v10.20 Not Answering

ICMP Usage in Scanning
Version 2.0

52

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Operating System

Information

Request
With TOS!=0x00

Time Stamp Request

With TOS!=0x00

Address Mask

Request
With TOS!=0x00

Echo Request

With TOS!=0x00

HP-UX v11.0 Not Answering Not Answering !=0x00 !=0x00

Compaq Tru64 v5.0 (*) !=0x00 Not Answering !=0x00

Irix 6.5.3 (*) Not Answering !=0x00 Not Answering !=0x00
Irix 6.5.8 (*) Not Answering !=0x00 Not Answering !=0x00

AIX 4.1 (*) !=0x00 Not Answering !=0x00
AIX 3.2 (*) !=0x00 Not Answering !=0x00

ULTRIX 4.2 – 4.5 (*) 0x00 0x00 0x00

OpenVMS v7.1-2 (*) !=0x00 !=0x00 !=0x00

Novell Netware 5.1 SP1 (*) Not Answering Not Answering Not Answering 0x00
Novell Netware 5.0 (*) Not Answering Not Answering Not Answering 0x00
Novell Netware 3.12 (*) Not Answering Not Answering Not Answering 0x00

Windows 95 Not Answering Not Answering
Windows 98 (*) Not Answering 0x00 0x00 !=0x00
Windows 98 SE (*) Not Answering 0x00 !=0x00
Windows ME (*) Not Answering 0x00 Not Answering !=0x00
Windows NT 4 WRKS SP 3
(*)

Not Answering Not Answering !=0x00

Windows NT 4 WRKS SP
6a (*)

Not Answering Not Answering Not Answering !=0x00

Windows NT 4 Server SP4 Not Answering Not Answering Not Answering !=0x00
Windows 2000
Professional (*)

Not Answering 0x00 Not Answering 0x00

Windows 2000 Server (*) Not Answering 0x00 Not Answering 0x00

Table 8: ICMP Query Message Types with TOS! = 0

6.4 ICMP error Message Quenching
RFC 1812 suggests limiting the rate at which various error messages are sent.
Only few operating systems are known to follow this RFC.

An attacker can use this to send UDP packets to a random, high UDP port and count the number
of ICMP Destination unreachable messages received within a given amount of time.

6.5 ICMP Message Quoting
Every ICMP error message includes the Internet Protocol (IP) Header and at least the first 8 data
bytes of the datagram that triggered the error; more than 8 octets (bytes) may be sent.

Except for LINUX and Solaris almost all implementations will quote 8 bytes of the datagram that
triggered the error message. Solaris sends more information than is needed and Linux even
more.

The following example is a snort log of a LINUX machine (LINUX 6.1 Kernel 2.2.12) that have
generated a Port Unreachable ICMP error message:

03/01-12:29:39.259510 192.168.5.5 -> 192.168.5.1
ICMP TTL:255 TOS:0xDE ID:149
DESTINATION UNREACHABLE: PROTOCOL UNREACHABLE
00 00 00 00 45 7E 04 32 00 0D 00 00 89 70 A1 7AE~.2.....p.z

ICMP Usage in Scanning
Version 2.0

53

Copyright Ofir Arkin, 2000
http://www.sys-security.com

C0 A8 05 01 C0 A8 05 05 FE 94 6C 95 59 F2 D9 3Cl.Y..<
8D AA B6 0B 2B 80 CB 8B 89 4D C9 59 19 D6 0F A0+....M.Y....
D3 67 D1 0F CB ED 84 8C 91 7E 24 00 70 B9 D7 E4 .g.......~$.p...
6E AA 91 8F CF 5C ED 86 1B A2 40 1D 93 10 73 4B n....\....@...sK
49 5B A8 D5 91 99 47 F0 15 6B EB 8B 21 2D A2 15 I[....G..k..!-..
A1 97 4C AD 6D A1 2B E5 15 07 86 77 3A 85 E9 6E ..L.m.+....w:..n
58 87 05 73 6D FB E9 05 29 73 DD B4 C0 EA 98 1D X..sm...)s......
6E 44 8F 47 85 A4 89 E6 CF 64 18 B5 FD 31 19 C0 nD.G.....d...1..
C0 8A 8E CB 60 B0 D5 F5 79 57 81 DD 78 0B 1B EF`...yW..x...
CE 8A E5 AC 46 D4 E3 91 6C 24 80 59 CC 00 C4 ABF...l$.Y....
86 CC 39 FC AD B1 AF 3F 16 B1 6D 9C 47 5D 85 F5 ..9....?..m.G]..
FC E3 CC 01 0E DC CC 48 E4 B6 0B 0E E5 08 A5 41H.......A
9A D9 45 B9 7A 37 13 31 C7 96 F2 42 2E 20 95 21 ..E.z7.1...B. .!
D8 EF 74 F4 78 B3 44 14 F5 4D 45 B4 08 C0 7B 1A ..t.x.D..ME...{.
7E B0 B5 71 2A 5A 95 61 22 0E 72 B7 1A 57 1E F2 ~..q*Z.a".r..W..
3E B9 28 33 EA 3A 23 70 34 41 CF 43 C8 B1 CE 1A >.(3.:#p4A.C....
15 FD 42 E9 E1 4B DC 93 35 2C 10 6C 71 B5 0D 1C ..B..K..5,.lq...
84 60 E9 68 51 30 79 AE 2E 1D 59 F0 F4 C8 AD CD .`.hQ0y...Y.....
0E 62 1F 23 42 2F 30 70 91 DA 5C 86 4E 62 CF 93 .b.#B/0p..\.Nb..
84 B9 39 9D F2 03 B8 FA 08 E1 BA B5 86 15 1D DE ..9.............
FD 9E 68 61 F9 71 32 CB 78 CD 6A 27 3F E7 FC 2D ..ha.q2.x.j'?..-
54 90 90 17 76 DC 82 AD E9 07 6A A5 2F 7B F7 69 T...v.....j./{.i
89 C8 71 AA 27 DA 1A A3 CD 30 75 3C EA 36 52 EA ..q.'....0u<.6R.
AE D9 DC 3A 0A E5 B7 BA 97 F0 91 FA D4 98 94 8F ...:............
F9 5B CE 0A C6 5A 71 29 38 32 05 42 6D 57 8C C2 .[...Zq)82.BmW..
95 59 E3 33 0F 70 7E 61 4E D9 3E EB 75 CB D7 A1 .Y.3.p~aN.>.u...
B0 95 9C A5 F2 44 7D C6 11 E2 DC 7B CF B0 C0 BBD}....{....
B8 B6 DA 95 77 76 4F A7 6B 90 4B 0F E3 36 64 ECwvO.k.K..6d.
19 1A A9 91 D5 15 52 4C AE D3 42 6D DE 0E 43 2DRL..Bm..C-
26 A1 ED 7E C1 8E 74 7A 2C 6A 36 5A 4B 1C DC FF &..~..tz,j6ZK...
D2 FF 3D 61 59 C6 E4 E1 19 DD 29 77 A4 9D D2 93 ..=aY.....)w....
03 0D 1B 14 21 3B 6E 9D 66 23 05 72 D2 89 80 3D!;n.f#.r...=
AE 03 A7 9F D2 89 5D D7 E9 0C B0 98 A0 04 0F AE].........
9E 17 62 93 83 28 CA 81 ..b..(..

This technique allows us to identify Solaris & LINUX machines even if there is no port opened.

6.6 ICMP Error Message Echoing Integrity
When sending back an ICMP error message, some stack implementations may alter the IP
header.

If an attacker examines the types of alternation that have been made to the headers, he may be
able to make certain assumptions about the target operating system.

Fyodor gives the following examples in his article “Remote OS detection via TCP/IP Stack Finger
Printing”37:

“For example, AIX and BSDI send back an IP 'total length' field that is 20 bytes too high.
Some BSDI, FreeBSD, OpenBSD, ULTRIX, and VAXen change the IP ID that you sent
them. While the checksum is going to change due to the changed TTL anyway, there are
some machines (AIX, FreeBSD, etc.) which send back an inconsistent or 0 checksum.
Same thing goes with the UDP checksum."

37 http://www.insecure.org/nmap/nmap-fingerprinting-article.html

ICMP Usage in Scanning
Version 2.0

54

Copyright Ofir Arkin, 2000
http://www.sys-security.com

6.7 TOS Field in ICMP Port Unreachable Error Message
Nearly all stack implementations send back 0x00 as the TOS value when generating an ICMP
Port Unreachable Message as RFC 1349 orders. All but LINUX, which sends the value of 0xc0.

In the next example we have sent one UDP packet destined to port 50 (which is closed on the
destination machine) from one LINUX machine to another, both running Redhat LINUX 6.1:

[root@stan /root]# hping2 -2 192.168.5.5 -p 50 -c 1
default routing not present
HPING 192.168.5.5 (eth0 192.168.5.5): udp mode set, 28 headers + 0 data
bytes
ICMP Port Unreachable from 192.168.5.5 (kenny.sys-security.com)

--- 192.168.5.5 hping statistic ---
1 packets tramitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms

-*> Snort! <*-
Version 1.5
By Martin Roesch (roesch@clark.net, www.clark.net/~roesch)
Kernel filter, protocol ALL, raw packet socket
Decoding Ethernet on interface eth0
03/12-12:54:47.274096 192.168.5.1:2420 -> 192.168.5.5:50
UDP TTL:64 TOS:0x0 ID:57254
Len: 8

03/12-12:54:47.274360 192.168.5.5 -> 192.168.5.1
ICMP TTL:255 TOS:0xC0 ID:0
DESTINATION UNREACHABLE: PORT UNREACHABLE
00 00 00 00 45 00 00 1C DF A6 00 00 40 11 0F D4E.......@...
C0 A8 05 01 C0 A8 05 05 09 74 00 32 00 08 6A E1t.2..j.

6.8 Using ICMP Information Requests
Because of the fact, that only few operating systems would reply to these queries, we can group
them together.

From table 2 in section 2.5 we can conclude that HP-UX 10.20, AIX, ULTRIX & Open-VMS would
be the only operating systems (among those I have tested) that would answer these queries.

We can further distinguish between those operating systems if we would send an ICMP Address
Mask Request and wait for the reply from the systems in question. AIX and HP-UX would not
answer the query, while the ULTRIX & Open-VMS would.

ICMP Usage in Scanning
Version 2.0

55

Copyright Ofir Arkin, 2000
http://www.sys-security.com

ICMP Information Request

Reply No Reply

HP-UX
ULTRIX OpenVMS

AIX

ICMP Address Mask Request

Reply No Reply

1

2

ULTRIX Open-VMS HP-UX
AIX

Other OS's

Diagram 3: Finger Printing Using ICMP Information Request Combines with ICMP Address Mask Request

6.9 Identifying operating systems according to their replies for non-ECHO ICMP
requests aimed at the broadcast address.
If IP directed broadcasts are not blocked, than we can identify the answering machines quite
easily.

ICMP Usage in Scanning
Version 2.0

56

Copyright Ofir Arkin, 2000
http://www.sys-security.com

ICMP Timestamp Request aimed at the Broadcast
Address of a Network

Reply No Reply

Solaris
HP-UX

LINUX Kernel 2.2.14

ICMP Information Request aimed at the Broadcast
Address of a Network

Reply No Reply

1

2

HP-UX Solaris
LINUX Kernel 2.2.14

Other OS's

ICMP Address Mask Request Aimed at Specific IPs

No ReplyReply

3

LINUX Kernel 2.2.14Solaris

Diagram 4: Finger Printing Using non-ECHO ICMP Query Types aimed at the Broadcast Address of an

Attacked Network

The first step is sending an ICMP Timestamp request aimed at the broadcast address of a
network. The operating systems who would answer would include SUN Solaris, HP-UX 10.20,
and LINUX (Kernel version 2.2.x). We can further identify those operating systems by sending an
ICMP Information request aimed at the broadcast address of a network. HP-UX 10.20 would
answer the query while SUN Solaris and LINUX would not. To distinguish between the two we
would send an ICMP Address Mask request to the IPs that did not answer in the previous step.
SUN Solaris would reply to the query while LINUX would not.

For complete information see Section 2.6.

6.10 IP TTL Field Value with ICMP
The IP TTL field value with ICMP has two separate values, one for ICMP query messages and
one for ICMP query replies.

ICMP Usage in Scanning
Version 2.0

57

Copyright Ofir Arkin, 2000
http://www.sys-security.com

The TTL field value help us identify certain operating systems and groups of operating systems. It
also provide us with the simplest means to add another check criteria when we are quering other
host(s) or listening to traffic (sniffing).

6.10.1 IP TTL Field Value with ICMP Query Replies
We can use the IP TTL field value with the ICMP Query Reply datagrams to identify certain
groups of operating systems. The method discussed in this section is very simple one. We send
an ICMP Query message to a host. If we receive a reply, we would be looking at the IP TTL field
value in the ICMP query reply. The next table describes the IP TTL field value with ICMP Echo
replies. According to it we can distinguish between certain operating systems:

Operating System

IP TTL on ICMP

datagrams

- In Reply -
LINUX Kernel 2.4 255
Kernel 2.2.14 255
Kernel 2.0.x38 64

FreeBSD 4.0 255
FreeBSD 3.4 255
OpenBSD 2.7 255
OpenBSD 2.6 255
NetBSD 255
BSDI BSD/OS 4.0 255
BSDI BSD/OS 3.1 255

Solaris 2.5.1 255
Solaris 2.6 255
Solaris 2.7 255
Solaris 2.8 255

HP-UX v10.20 255
HP-UX v11.0 255

Compaq Tru64 v5.0 64

Irix 6.5.3 (*) 255
Irix 6.5.8 (*) 255

AIX 4.1 (*) 255
AIX 3.2 (*) 255

ULTRIX 4.2 – 4.5 (*) 255

OpenVMS v7.1-2 (*) 255

Windows 95 32
Windows 98 (*) 128
Windows 98 SE (*) 128
Windows ME (*) 128
Windows NT 4 WRKS SP 3 128
Windows NT 4 WRKS SP 6a 128
Windows NT 4 Server SP4 128
Windows 2000 Professional 128
Windows 2000 Server 128

 Table 9: IP TTL Field Values in replies from Various Operating Systems

38 Stephane Omnes provided information about LINUX Kernel 2.0.x.

ICMP Usage in Scanning
Version 2.0

58

Copyright Ofir Arkin, 2000
http://www.sys-security.com

If we would look at the ICMP Echo replies IP TTL field values than we see some patterns:

• UNIX and UNIX-like operating systems use 255 as their IP TTL field value with ICMP
query replies.

• Compaq Tru64 5.0 and LINUX 2.0.x are the exception, using 64 as its IP TTL field value
with ICMP query replies.

• Microsoft Windows operating system machines are using the value of 128.
• Microsoft Windows 95 is the only Microsoft operating system to use 32 as its IP TTL field

value with ICMP query messages.

With the ICMP query replies we have an operating systems that is clearly distinguished from the
other - Windows 95. Other operating systems are grouped into the 64 group (LINUX Kernel 2.0.x
& Compaq Tru64 5.0), the 255 group (UNIX and UNIX-like), and into the 128 group (Microsoft
operating systems).

We are not limited to ICMP ECHO replies only. We can use the other ICMP Query message
types as well, and the results should be the same. In the next example an ICMP Timestamp
request is sent to a Redhat 6.1 LINUX, Kernel 2.2.12 machine:

[root@stan /root]# icmpush -tstamp 192.168.5.5
kenny.sys-security.com -> 13:48:07

Snort Trace:
01/26-13:51:29.342647 192.168.5.1 -> 192.168.5.5
ICMP TTL:254 TOS:0x0 ID:13170
TIMESTAMP REQUEST
88 16 D8 D9 02 8B 63 3D 00 00 00 00 00 00 00 00c=........

01/26-13:51:29.342885 192.168.5.5 -> 192.168.5.1
ICMP TTL:255 TOS:0x0 ID:6096
TIMESTAMP REPLY
88 16 D8 D9 02 8B 63 3D 02 88 50 18 02 88 50 18c=..P...P.
2A DE 1C 00 A0 F9 *.....

IP TTL field value is 255 (the machine is on the same LAN).

We can use this information with other tests as, to provide us extra criteria with zero effort.

6.10.2 IP TTL Field Value with ICMP ECHO Requests
The examination of the IP TTL field value is not limited to ICMP Query replies only. We can learn
a lot from the ICMP requests as well.

Operating System

IP TTL on ICMP datagrams

In Requests

LINUX Kernel 2.4 test 1-7 64
LINUX Kernel 2.2.x 64
LINUX Kernel 2.0.x 64

FreeBSD 4.0 255
FreeBSD 3.4 255

ICMP Usage in Scanning
Version 2.0

59

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Operating System

IP TTL on ICMP datagrams

In Requests

OpenBSD 2.7 255
OpenBSD 2.6 255
NetBSD

Solaris 2.5.1 255
Solaris 2.6 255
Solaris 2.7 255
Solaris 2.8 255

HP-UX v10.20 255

Windows 95 32
Windows 98 32
Windows 98 SE 32
Windows ME 32
Windows NT 4 WRKS SP 3 32
Windows NT 4 WRKS SP 6a 32
Windows NT 4 Server SP4 32
Windows 2000 Professional 128
Windows 2000 Server 128

 Table 10: IP TTL Field Values in requests from Various Operating Systems

The ICMP Query message type used was ICMP Echo request, which is common on all operating
systems tested using the ping utility.

• LINUX Kernel 2.0.x, 2.2.x & 2.4.x use 64 as their IP TTL Field Value with ICMP Echo
Requests.

• FreeBSD 4.1, 4.0, 3.4; Sun Solaris 2.5.1, 2.6, 2.7, 2.8; OpenBSD 2.6, 2.7, NetBSD and
HP UX 10.20 use 255 as their IP TTL field value with ICMP Echo requests. With the OSs
listed above the same IP TTL Field value with any ICMP message is given.

• Windows 95/98/98SE/ME/NT4 WRKS SP3,SP4,SP6a/NT4 Server SP4 - all using 32 as
their IP TTL field value with ICMP Echo requests.

• A Microsoft window 2000 is using 128 as its IP TTL Field Value with ICMP Echo
requests.

We can distinguish between LINUX, Microsoft Windows 2000, the other Microsoft operating
systems group, and the 255 group.

6.10.3 Correlating the Information
Using the IP TTL field value with ICMP messages we can distinguish between Microsoft Windows
2000, certain Microsoft Windows Operating systems, LINUX Kernel 2.2.x & 2.4.x, LINUX Kernel
2.x.0, and the *BSD and Solaris group.

ICMP Usage in Scanning
Version 2.0

60

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Operating System

IP TTL value in the ECHO Requests

IP TTL value in the ECHO Replies

Microsoft Windows Family

32

128

*BSD and Solaris

255

255

LINUX Kernel 2.2.x & 2.4.x

64

255

LINUX Kernel 2.0.x

64

64

Microsoft Windows 2000

128

128

Microsoft Windows 95

32

32

Table 11: Further dividing the groups of operating systems according to IP TTL field value in the ICMP

ECHO Requests and in the ICMP ECHO Replies

One would expect that the IP TTL field value would be the same with both ICMP Query requests
and ICMP Query replies. Apparently this is not true and provide us with valuable information
about the operating system querying / being queried.

6.11 DF Bit
A few operating systems would set the DF bit with the replies they produce for ICMP Query
messages they answer for.

In the next example an OpenBSD 2.7 box replies to an ICMP Echo Request with an ICMP Echo
reply, which sets the DF bit on.

=+
08/19-23:48:04.711978 139.92.185.88 -> 129.128.5.191
ICMP TTL:255 TOS:0x0 ID:13170
ID:1187 Seq:1 ECHO
84 F2 9E 39 15 DD 0A 00 ...9....

=+
08/19-23:48:05.711955 129.128.5.191 -> 139.92.185.88
ICMP TTL:235 TOS:0x0 ID:26398 DF
ID:1187 Seq:1 ECHO REPLY
84 F2 9E 39 15 DD 0A 00 ...9....

=+

I have tested this behavior with a number of operating systems. I have queried them for all the
ICMP Query messages they answer for to find out who reply with the DF bit set.

Solaris 2.6,2.7 & 2.8, OpenBSD and HP-UX 11.0 sets the DF bit in their replies to the ICMP
Query messages they answer for. Other operating systems do not.

ICMP Usage in Scanning
Version 2.0

61

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Operating systems that I have checked are: Linux Kernel 2.4 test 2,4,5,6; Linux Kernel 2.2.x;
FreeBSD 4.0, 3.4; OpenBSD 2.7,2.6; NetBSD 1.4.1,1.4.2; BSDI BSD/OS 4.0,3.1; Solaris
2.6,2.7,2.8; HP-UX 11.0; Compaq Tru64 5.0; Aix 4.1,3.2; Irix 6.5.3, 6.5.8; Ultrix 4.2 – 4.5;
OpenVMS v7.1-2; Novel Netware 5.1 SP1, 5.0, 3.12; Microsoft Windows 98/98SE/ME, Microsoft
Windows NT WRKS SP6a, Microsoft Windows NT Server SP4, Microsoft Windows 2000 Family.

6.12 DF Bit Echoing
Some operating systems, when receiving an ICMP Query message with the DF bit set, would set
the DF bit with their replies as well. Sometimes it would be in contrast with their regular behavior,
which would be not setting the DF Bit in their replies for a regular query that comes with the DF
bit not set.

6.12.1 DF Bit Echoing with the ICMP Echo request
The snort trace below illustrates an ICMP Echo request sent from a Linux box, using nemesis, to
a SUN Solaris 2.7 machine:

[root@aik /root]# nemesis-icmp -i 8 x.x.x.x
08/10-15:24:21.625260 10.0.0.105 -> x.x.x.x
ICMP TTL:64 TOS:0x0 ID:13670 DF
ID:62979 Seq:0 ECHO

08/10-15:24:22.623507 10.0.0.105 -> x.x.x.x
ICMP TTL:64 TOS:0x0 ID:43567 DF
ID:62979 Seq:256 ECHO

08/10-15:24:23.318173 x.x.x.x -> 10.0.0.105
ICMP TTL:239 TOS:0x0 ID:221 DF
ID:62979 Seq:0 ECHO REPLY
08 8C 02 85 1C 2A 7F 32 AB 14 6C 79 F5 2E 53 84*.2..ly..S.
AF 15 ..

08/10-15:24:23.555488 x.x.x.x -> 10.0.0.105
ICMP TTL:239 TOS:0x0 ID:222 DF
ID:62979 Seq:256 ECHO REPLY
BE 13 02 8F 90 8F 15 93 94 93 04 97 98 97 16 9B
9C 9B ..

Most of the operating systems that I have checked this behavior against did the same thing. In
the reply they produced, the DF bit was set.

Which operating systems are the exceptional and do not echo back the DF bit?
Linux Kernel 2.2.x, Linux Kernel 2.4 with the various test kernels, Ultrix v4.2 – 4.5, and Novell
Netware.

How can we distinguish between those operating systems?
Frankly it is quite simple. In the next example I have sent an ICMP Echo request to my Linux box
loop back address:

ICMP Usage in Scanning
Version 2.0

62

Copyright Ofir Arkin, 2000
http://www.sys-security.com

[root@aik sbin]# ./nemesis-icmp -i 8 -S 127.0.0.1 -D 127.0.0.1

Initializing Network Interface...

=> Decoding LoopBack on interface lo

-*> Snort! <*-
Version 1.6.3
By Martin Roesch (roesch@clark.net, www.snort.org)
08/20-17:11:06.825971 127.0.0.1 -> 127.0.0.1
ICMP TTL:254 TOS:0x18 ID:104 DF
ID:0 Seq:0 ECHO
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

08/20-17:11:06.826007 127.0.0.1 -> 127.0.0.1
ICMP TTL:255 TOS:0x18 ID:105
ID:0 Seq:0 ECHO REPLY
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

Since LINUX and Ultrix are using a TTL field value of 255 in their ICMP Query replies, and Novell
Netware uses 128, it is easy to distinguish between those groups.

6.12.2 DF Bit Echoing with the ICMP Address Mask request
With ICMP Address Mask requests we have a different story. Among the operating systems that I
have checked that answer for an ICMP Address Mask request Sun Solaris & OpenVMS echo
back the DF bit. Microsoft Windows 98, Microsoft Windows 98 SE, and Ultrix do not echo back
the DF bit.

Again it is very simple to distinguish between the Microsoft Windows 98 family and between the
Ultrix machines. Since the Microsoft Windows 98 family is using 128 as their TTL field value in
their ICMP query replies and Ultrix uses 255, we can distinguish between those operating
systems.

We have here a simple method to distinguish between Microsoft Windows 98 / 98 SE, and Ultrix
machines to the rest of the operating systems world.

Another interesting piece of information is that the Microsoft Windows 98 family changed its
behavior from DF echoing with the ICMP Echo request to not echoing with the ICMP Address
Mask request. This inconsistency is a factor with all Microsoft operating systems (Echoing with
ICMP Echo request, not echoing with the other types of ICMP query).

6.12.3 DF Bit Echoing with the ICMP Timestamp request
Since a lot more operating systems answer for an ICMP Timsestamp request than with the ICMP
Address Mask request, we have a bit more difficulty in identifing those.

Linux with Kernel 2.2.x, Linux with Kernel 2.4, Ultrix, Microsoft Windows 98/98SE/ME, and the
Microsoft Windows 2000 Family would not echo back the DF bit with ICMP Timestamp replies
they produce for ICMP Timestamp request that sets their DF bit.

Here we can only distinguish between certain groups of operating systems; again it would be
according to their TTL field value with their replies.

ICMP Usage in Scanning
Version 2.0

63

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Linux would use 255 as its TTL field value for the ICMP Timestamp reply; Ultrix would use the
same value. The Microsoft family of operating systems that would answer for this kind of query
would use 128 as their TTL value.

Again we have Linux and Ultrix on the one hand and the Microsoft Family on the other hand. How
can we further distinguish between those?

6.12.4 Using all of the Information in order to identify maximum of operating systems
We can group Linux and Ultrix with the ICMP Echo requests. We can do the same with Microsoft
Windows 98 / 98 SE & Ultrix using the ICMP Address Mask requests. This would allow us to
pinpoint the Linux boxes from the first stage. So when we would go into the third stage we would
know which operating systems are Linux based, which are Microsoft Windows 98 / 98 SE based,
and which are Ultrix based. This would leave us with Microsoft Windows ME and with the
Microsoft Windows 2000 family machines.

6.12.5 Why this would work (for the skeptical)
All those skeptical would say that if they receive an ICMP Query request with the DF bit set than it
should be clear that something is wrong and someone is probably trying to scan them. Think
again. What would happen if a Solaris box would query your box? Than the same behavior would
be produced.

This is an ICMP Echo request sent from a Solaris 2.6 box to a Linux box. We can see that the DF
bit is set with the request and not set with the reply. But again if some one would mimic this
behavior with a tool used on a Linux box to query the world, which is 100% mimicking Solaris
than we would never know if this is a legit request or an attempt for scanning / fingerprinting.

Initializing Network Interface...
Decoding raw data on interface ppp0

-*> Snort! <*-
Version 1.6
By Martin Roesch (roesch@clark.net, www.clark.net/~roesch)
08/10-23:32:52.201612 y.y.y.y -> 139.92.207.58
ICMP TTL:239 TOS:0x0 ID:48656 DF
ID:2080 Seq:0 ECHO
39 93 10 A3 00 03 F0 E5 08 09 0A 0B 0C 0D 0E 0F 9...............
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F !"#$%&'()*+,-./
30 31 32 33 34 35 36 37 01234567

08/10-23:32:52.201649 139.92.207.58 -> y.y.y.y
ICMP TTL:255 TOS:0x0 ID:349
ID:2080 Seq:0 ECHO REPLY
39 93 10 A3 00 03 F0 E5 08 09 0A 0B 0C 0D 0E 0F 9...............
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F !"#$%&'()*+,-./
30 31 32 33 34 35 36 37 01234567

ICMP Usage in Scanning
Version 2.0

64

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Operating System

Info. Request

Time Stamp

Request

Address Mask

Request

Echo Request

Debian GNU/ LINUX 2.2, Kernel
2.4 test 2 (*)

Not Answering + (- DF) Not Answering + (- DF)

Redhat LINUX 6.2 Kernel 2.2.14
(*)

Not Answering + (- DF) Not Answering + (- DF)

FreeBSD 4.0 (*) Not Answering + (+ DF) Not Answering + (+ DF)
FreeBSD 3.4 Not Answering + (+ DF) Not Answering + (+ DF)
OpenBSD 2.7 Not Answering + (+ DF) Not Answering + (+ DF)
OpenBSD 2.6 Not Answering + (+ DF) Not Answering + (+ DF)
NetBSD Not Answering + (+ DF) Not Answering + (+ DF)
BSDI BSD/OS 4.0 Not Answering + (+ DF) Not Answering + (+ DF)
BSDI BSD/OS 3.1 Not Answering + (+ DF) Not Answering + (+ DF)

Solaris 2.5.1 Not Answering
Solaris 2.6 Not Answering + (+ DF) + (+ DF) + (+ DF)
Solaris 2.7 (*) Not Answering + (+ DF) + (+ DF) + (+ DF)
Solaris 2.8 Not Answering + (+ DF) + (+ DF) + (+ DF)

HP-UX v10.20 Not Answering
HP-UX v11.0 Not Answering Not Answeting + (+ DF) + (+ DF)

Compaq Tru64 v5.0 (*) + (+ DF) Not Answering - + (+ DF)

Irix 6.5.3 (*) Not Answering + (+ DF) Not Answering + (+ DF)
Irix 6.5.8 (*) Not Answering + (+ DF) Not Answering + (+ DF)

AIX 4.1 (*) + (+ DF) Not Answering + (+ DF)
AIX 3.2 (*) + (+ DF) Not Answering + (+ DF)

Operating System

Info. Request

Time Stamp

Request

Address Mask Request

Echo Request

ULTRIX 4.2 – 4.5 (*) + (- DF) + (- DF) + (- DF)

OpenVMS v7.1-2 (*) + (+ DF) + (+ DF) + (+ DF)

Novell Netware 5.1 SP1 (*) Not Answering Not Answering Not Answering + (- DF)
Novell Netware 5.0 (*) Not Answering Not Answering Not Answering + (- DF)
Novell Netware 3.12 Not Answering Not Answering Not Answering + (- DF)

Windows 95 Not Answering Not Answering
Windows 98 (*) Not Answering + (- DF) + (- DF) + (+ DF)
Windows 98 SE (*) Not Answering + (- DF) + (- DF) + (+ DF)
Windows ME (*) Not Answering + (- DF) Not Answering + (+ DF)
Windows NT 4 WRKS SP 3 (*) Not Answering Not Answering
Windows NT 4 WRKS SP 6a (*) Not Answering Not Answering Not Answering + (+ DF)
Windows NT 4 Server SP4 Not Answering Not Answering Not Answering + (+ DF)
Windows 2000 Professional (*) Not Answering + (- DF) Not Answering + (+ DF)
Windows 2000 Server (*) Not Answering + (- DF) Not Answering + (+ DF)

Table 12: DF Bit Echoing

6.12.6 Combining all together
If we combine every thing together than we can start from sending ICMP Echo requests with the
DF bit set probing the attacked systems/network. The OSs, which will not echo the DF bit, would
be Linux with kernel 2.2.x, Linux with kernel 2.4.x, Novel Netware, and Ultrix. We can distinguish
the novel Netware machines from the rest of the OSs according to the TTL field values with the
ICMP echo replies. The second stage would be sending ICMP Address Mask requests with the
DF bit set. Microsoft Windows 98/98 SE and Ultrix would not echo the DF bit. We can distinguish

ICMP Usage in Scanning
Version 2.0

65

Copyright Ofir Arkin, 2000
http://www.sys-security.com

between the Ultrix machines and the Microsoft Windows machines, because of the different TTL
field values in the ICMP Address Mask replies. We can now also identify the Ultrix machines with
the first step – we know their IPs now. Than it leaves us with only the Linux boxes. Within two
steps we are able of fingerprinting Novel Netware, Ultrix, Microsoft Windows 98/98 SE and Linux
with kernel 2.2.x and kernel 2.4.x. In the last step we are sending ICMP Timestamp requests with
the DF bit set to the same group of IPs we are probing. The OSs which do not echo back the DF
bit are Linux with Kernel 2.2.x, Linux with Kernel 2.4, Ultrix, Microsoft Windows 98/98SE,
Microsoft Windows ME, and Microsoft Windows 2000 Family. Since we already fingerprinted
most of the OSs that do not echo back the DF bit in the first two steps, this enable us to
fingerprint Microsoft Windows ME, and Microsoft Windows 2000 family.

DF Bit Echoing with the ICMP Echo request

ECHO
DF Bit

Not ECHO
the DF Bit

Linux Kernel 2.2.x
Linux Kernel 2.4

Ultrix v4.2 - 4.5

Novell Netware

DF Bit Echoing w ith the ICMP Address Mask request

1

2

Sun Solaris
OpenVMS

Microsoft Windows 98
Microsoft Windows 98 SE

Ultrix

Other OS's
TTL Filed

Not ECHO
the DF Bit

ECHO
DF Bit

TTL Filed

DF Bit Echoing w ith the ICMP Timestamp request

3

ECHO
DF Bit

Not ECHO
the DF Bit

Linux with Kernel 2.2.x
Linux with Kernel 2.4

Ultrix
Microsoft Windows 98/98SE

Microsoft Windows ME
Microsoft Windows 2000 Family

Other OS's

Diagram 5: DF Bit Echoing

ICMP Usage in Scanning
Version 2.0

66

Copyright Ofir Arkin, 2000
http://www.sys-security.com

6.13 What will not produce any gain compared to the effort and the detection
ability?

6.13.1 Unusual Big ICMP ECHO Messages
What would happen if we would send unusual big ICMP ECHO message that would require its
fragmentation? Would the queried operating systems will process the query correctly and
produce an accurate reply?

[root@aik /root]# ping -s 1500 x.x.x.x
PING x.x.x.x (x.x.x.x) from y.y.y.y : 1500(1528) bytes of data.
1508 bytes from x.x.x.x: icmp_seq=0 ttl=241 time=1034.7 ms
1508 bytes from host_address (x.x.x.x): icmp_seq=2 ttl=241 time=1020.0
ms
1508 bytes from host_address (x.x.x.x): icmp_seq=3 ttl=241 time=1090.4
ms
1508 bytes from host_address (x.x.x.x): icmp_seq=5 ttl=241 time=1060.0
ms

--- x.x.x.x ping statistics ---
8 packets transmitted, 5 packets received, 37% packet loss
round-trip min/avg/max = 1000.2/1041.0/1090.4 ms
[root@aik /root]#

As it seems all the probed operating systems I have tested behaved correctly processing the
query and sending the reply back.

What else can assist us with this kind of query?
The DF (Don’t Fragment) bit.

Some operating systems would process the query and set the don’t fragment bit on the fragments
on the reply.

Operating System

DF bit set on the Reply?

Debian GNU/ LINUX 2.2, Kernel 2.4 test 2 -
Redhat LINUX 6.2 Kernel 2.2.14 -

FreeBSD 4.0 -
FreeBSD 3.4 -
OpenBSD 2.7 + (DF set)
OpenBSD 2.6
NetBSD -
BSDI BSD/OS 4.0 -
BSDI BSD/OS 3.1 -

Solaris 2.5.1
Solaris 2.6 + (DF set)
Solaris 2.7 + (DF set)
Solaris 2.8 + (DF set)

HP-UX v10.20
HP-UX v11.0 + (DF set)

ICMP Usage in Scanning
Version 2.0

67

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Operating System

DF bit set on the Reply?

Compaq Tru64 v5.0 -

Irix 6.5.3 -
Irix 6.5.8 -

AIX v4.1 -
AIX v3.2 -

ULTRIX v4.2 – v4.5 -

OpenVMS v7.1-2 -

Novell Netware 5.1 SP1 -
Novell Netware 5.0 -
Novell Netware 3.12 -

Windows 95 -
Windows 98 -
Windows 98 SE -
Windows ME -
Windows NT 4 WRKS SP 3 -
Windows NT 4 WRKS SP 6a -
Windows NT 4 Server SP 4 -
Windows 2000 Professional SP1 -
Windows 2000 Server SP1 -
Windows 2000 Advanced Server -

Table 13: DF Bit set on reply

ICMP Usage in Scanning
Version 2.0

68

Copyright Ofir Arkin, 2000
http://www.sys-security.com

7.0 Filtering ICMP on your Filtering Device to Prevent Scanning Using ICMP

7.1 Inbound
Incoming ICMP traffic that should be blocked in order to prevent scanning techniques that were
outlined in this paper are:

• ICMP ECHO (used for Host Detection, traceroute & Inverse Mapping)
• ICMP ECHO Reply (used for Inverse Mapping)
• ICMP Time Stamp Request (used for Host Detection)
• ICMP Address Mask Request (used for Host Detection)
• All ICMP Message Types (Inverse Mapping Technique)

You should also block the IP directed broadcast on your border router.
Deny access to your Broadcast and Network addresses from the Internet.

7.2 Outbound
There are people who claim that any traffic type of ICMP should be allowed from a protected
network to the Internet. This is not true. Filtering the incoming traffic does not mean we are
protected from some of the security hazards I outlined in this paper.

7.2.1 ICMP ECHO Reply (Type 0)
Used to map a host using Host Detection.

7.2.2 ICMP Destination Unreachable Messages
I have demonstrated that host detection can be done with bad IP Header packets, which elicit
various ICMP Parameter Problem and ICMP Destination Unreachable error messages from the
probed machines and draw the attacked network topology.

7.2.3 ICMP “Fragmentation Needed and Don’t Fragment Bit was Set”
See section 3.5

7.2.4 ICMP ECHO (Type 8)
We have to have a Stateful filtering device that would perform Stateful inspection with ICMP in
order to let ICMP ECHO Requests out, and receive only the corresponding ICMP ECHO Replies.

The current state with filtering devices is not that bright. Most of them do not perform Stateful
inspection with the ICMP protocol. Allowing ICMP ECHO Replies inside our protected network is
very dangerous and is not worth it.

Unless you use a Stateful filtering device with the ICMP protocol don’t let ICMP ECHO Replies
into your protected network. This would make your requests useless so you better block them.

7.2.5 ICMP Time to Live Exceeded in Transit (Type 11 Code 0)
To eliminate traceroute and Reverse Mapping techniques we do not want to let a Time-to-Live
Exceeded code 0 messages go back to the malicious computer attacker.

7.2.6 ICMP Fragmentation Reassembly Time Exceeded (Type 11 Code 1)

ICMP Usage in Scanning
Version 2.0

69

Copyright Ofir Arkin, 2000
http://www.sys-security.com

By blocking this ICMP type we eliminate the usage of a Host Detection technique, which sends
only few fragments, form a fragmented datagram, and force the probed host to send us an ICMP
Fragmentation Reassembly Time Exceeded error message back revealing his existence.

7.2.7 ICMP Parameter Problem
We have demonstrated that host detection can be made with bad IP Header packets, which
would elicit various ICMP Parameter Problem and ICMP Destination Unreachable error
messages from the probed machines.

7.2.8 ICMP Time Stamp Request & Reply
Time Stamp requests & replies can be used for Host Detection and Inverse Mapping.

7.2.9 ICMP Address Mask Request and Reply
Address Mask request & reply can be used for host detection and Inverse Mapping.

7.2.10 The liability Question
System administrator / Network administrator don’t want to be held liable for an attack generated
from there network by an abusive user (or a malicious computer attacker using a compromised
system within the network). Therefore blocking some types of ICMP traffic from the protected
network to the outside world is recommended for liability reasons:

o Destination Unreachable Codes 2-4

o ICMP Destination Unreachable error messages 2-4 (“Port Unreachable”,
“Protocol Unreachable” and “Fragmentation Needed and DF Flag was Set”) is a
group of messages that are hard error conditions and when received should
terminate a connection.

 This allow an attacker to send fake Destination Unreachable codes 2-4 to
 terminate valid connections between the attacked target and other hosts on the
 void.

 Old TCP/IP implementations terminat TCP connections when receiving
 those error messages. Modern TCP/IP implementations no longer terminate a
 TCP connection when receiving those error messages

o Source Quench messages

o Since hosts still react to Source Quenches by slowing communication, they can
be used as a Denial-of-Service measure.

o Redirect messages

o If you can forge ICMP Redirect packets, and if your target host pays attention to

them - ICMP Redirects may be employed for denial of service attacks, where a
host is sent a route that loses it connectivity, or is sent an ICMP Network
Unreachable packet telling it that it can no longer access a particular network.

This means that all outbound ICMP traffic should be disallowed.

ICMP Usage in Scanning
Version 2.0

70

Copyright Ofir Arkin, 2000
http://www.sys-security.com

7.3 Other Considerations
If you want to maintain strong ICMP filtering rules with your Firewall/Filtering-Device I suggest
you block all incoming ICMP traffic except for Type 3 Code 4, which is used by the Path MTU
Discovery process39. ICMP Type 3 Code 4 should be allowed from the Internet to your DMZ at
least. Opening your Internal segmentation to this kind of traffic is questionable and depends on
the facilities / activities / usage of the site and the level of filtering you wish to maintain.

If you will block incoming ICMP “Fragmentation Needed and Don’t Fragment Bit was Set” your
network performance will suffer from degradation. You should understand the security risks
involving in opening this kind of traffic to your DMZ (& protected network) - The possibility of a
Denial-of-Service, Inverse Mapping, Host Detection, and a one-way Covert communication
channel (which was not been seen in the wild yet).

Another consideration could be the usage of network troubleshooting tools such as traceroute
and ping. In the case of traceroute if the filtering device you are using does not support Stateful
inspection with ICMP than allowing ICMP TTL Exceeded In Transit (Type 11, code 0) error
messages inside the protected network could lead to various security hazards. The same goes
with ping, where ICMP ECHO reply is even more dangerous when allowed inside the protected
network (Inverse Mapping, Covert Channel and more security risks).

You can limit the number of systems that need to use the network troubleshooting tools with ACL,
but bear in mind that those systems could be mapped from the Internet – and this is only the tip of
the iceberg.

Internal Host(s) performance considerations – When blocking incoming ICMP Destination
Unreachable Network/Host/Protocol/Port Unreachable ICMP error messages coming from the
Internet, host(s) would hang when the destination system’s network is unreachable/when a host
is unreachable/when a protocol on the destination machine is not available/a port on a destination
machine is closed. They all would hang until the timeout counter would reach zero. This little
inconveniently is better than having the dangers other types of ICMP error messages inside your
network can introduce.

Unless your filtering device is a real intelligence one, doing his work with dynamic tables and
correlating correctly the ICMP replies with the requests, do not open your Internal network
segment to no ICMP traffic type.

Some might offer to use a Proxy server with the ICMP protocol between the Internet and you
protected network(s). A Proxy Server is only a tunnel – remember that.

39 See Appendix B: “Fragmentation Needed but the Don’t Fragment Bit was set” and the Path MTU Discovery Process.

ICMP Usage in Scanning
Version 2.0

71

Copyright Ofir Arkin, 2000
http://www.sys-security.com

DMZ

Internal Network

Boarder Router

Direct Link

Illustrates "Data Flow"

Internet -> DMZ
Incoming ICMP Traf f ic

Ty pe 3 Code 4 - f or Path
MTU Discov ery process.

DMZ -> Internet
Outgoing ICMP Traf f ic

None

Internet -> Intranet
Incoming ICMP Traf f ic

None

Intranet -> Internet
Outgoing ICMP Traf f ic

None*

* You can hav e a dedicated Management station that would be allowed to use ICMP f or
troubleshooting purposes only . The v arious ICMP replies should be allowed only by a statf ul
inspection / Dy namic f irewall. This means that no incoming ICMP is traf f ic is allowed to the
management station, unless its correlated with a prev ious ICMP query this machine
produced.

Intranet -> DMZ
Outgoing ICMP Traf f ic

Dependent

DMZ -> Intranet
Outgoing ICMP Traf f ic

None**

** If a malicious computer attacker breaks into the DMZ y ou do not want to prov ide him the
means to scan internal machines & and the ability to query them directly .

Figure 12: Firewall ICMP Filtering Rules

ICMP Usage in Scanning
Version 2.0

72

Copyright Ofir Arkin, 2000
http://www.sys-security.com

8.0 Conclusion
The ICMP protocol is a very powerful tool in the hands of smart malicious computer attackers.
Mapping, detecting, and fingerprinting of hosts and networking devices can be done in various
ways as I have outlined in this paper.

It is extremely important to understand that ICMP traffic can be used for other malicious activities
other than scanning, such as:

• Denial of Service Attacks
• Distributed Denial of Service Attacks
• Covert Channel Communications

Therefore filtering Inbound and Outbound ICMP traffic is very important and may help you in
preventing risks to your computing environment.

ICMP Usage in Scanning
Version 2.0

73

Copyright Ofir Arkin, 2000
http://www.sys-security.com

9.0 Acknowledgment
9.1 Acknowledgment for version 1.0
I would like to thank the following people for their help with/during this research.

Ariel Pisetsky for going over this paper correcting my English, and for his moral support.

Christopher Tresco, Systems Administrator at the Massachusetts Institute of Technology
provided necessary test systems to verify my findings.

Special thanks to mr2940 for his patience while I introduced my new ideas.

James Cudney, Michael, Pat, for their support when the times where bad.

9.1 Acknowledgment for version 2.0
I would like to thank Alfredo Andreיs Omella author of SING for his help.

I would like to thank Fyodor for his help providing me with necessary test systems.

I would like to thank the people who provided feedback to the first version of this research paper,
and to the people who provided feedback to my Bugtraq posts.

ICMP Usage in Scanning
Version 2.0

74

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Appendix A: The ICMP Protocol40
Internet Control Message Protocol (ICMP) is used for two types of operations: when a router or a
destination host need to inform the source host about errors in a datagram processing, and for
probing the network with request messages in order to determine general characteristics about
the network (getting the information back, hopefully, with the reply messages).

Some of ICMP’s characteristics are:

o ICMP uses IP as if it were a higher-level protocol, however, ICMP is already an internal
part of IP, and must be implemented by every IP module.

o ICMP is used to provide feedback about some errors in a datagram processing, not to
make IP reliable. Datagrams may still be undelivered without any report of their loss. If a
higher level protocol that use IP need reliability he must implement it.

o No ICMP messages are sent in response to ICMP messages to avoid infinite repetitions.
The exception is a response to ICMP query messages (ICMP Types 0,8-10,13-18. See
Table 1 ICMP Query Messages).

o For fragmented IP datagrams ICMP messages are only sent about errors on fragment
zero (first fragment).

o ICMP error messages are never sent in response to a datagram that is destined to a
broadcast or a multicast address.

o ICMP error messages are never sent in response to a datagram sent as a link layer
broadcast.

o ICMP error messages are never sent in response to a datagram whose source address
does not represents a unique host – the source IP address cannot be zero, a loopback
address, a broadcast address or a multicast address.

o ICMP Error messages are never sent in response to an IGMP massage of any kind.
o When an ICMP message of unknown type is received, it must be silently discarded.
o Routers will almost always generate ICMP messages but when it comes to a destination

host(s), the number of ICMP messages generated is implementation dependent.

ICMP Query Messages

ICMP error Messages

Echo Destination Unreachable
Router Advertisement Source Quench
Router Solicitation Redirect
Time Stamp Time Exceeded
Information Parameter Problem
Address Mask

Table 14: ICMP message types

40 ICMP is described in RFC 972 (http://www.ietf.org/rfc/rfc0972.txt) with updates in: RFC 896 (Source Quench), RFC 950
(Address Mask Extensions), RFC 1191 (Path MTU Discovery) & RFC 1256 (Router Discovery). Further clarifications
about the ICMP protocol are included in RFC 1122 and in RFC 1812. STD 2 has redefine and clarified much of ICMP’s
core functionality.

ICMP Usage in Scanning
Version 2.0

75

Copyright Ofir Arkin, 2000
http://www.sys-security.com

A.1 ICMP Messages
ICMP messages are sent in IP datagrams. The protocol number will be always one (ICMP), and
the Type-of-Service will be zero. The IP data field will contain the actual ICMP message:

4 bit
Version

4 bit
Header
Length

8-bit type of service
 (TOS)=0 16-bit total length (in bytes)

16-bit identification 3 bit
Flags 13-bit Fragment Offset

8-bit time to live
(TTL)

8-bit protocol=1
(ICMP) 16-bit header checksum

32-bit source IP address

Options (if any)

32-bit destination IP address

Type Code Checksum

20 bytes

4 bytes

ICMP data (depending on the type of message)IP Data
Field

0 8 16 314

Figure 13: ICMP Message Format

ICMP error message length
Every ICMP error message includes the Internet (IP) Header and at least the first 8 data octets
(bytes) of the datagram that triggered the error; more than 8 octets (bytes) may be sent; this
header and data must be unchanged from the received datagram.

The TYPE field specifies the type of the message, while the error code for the datagram reported
on by this ICMP message is contained in the CODE field. The code interpretation is dependent
upon the message type.

ICMP Usage in Scanning
Version 2.0

76

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Type

Name

Code

0 Echo Reply 0 No Code
1 Unassigned
2 Unassigned
3 Destination Unreachable41

0 Net Unreachable
1 Host Unreachable
2 Protocol Unreachable
3 Port Unreachable
4 Fragmentation Needed and Don't
 Fragment was Set
5 Source Route Failed
6 Destination Network Unknown
7 Destination Host Unknown
8 Source Host Isolated42
9 Communication with Destination
 Network is Administratively Prohibited43
10 Communication with Destination Host is
 Administratively Prohibited44
11 Destination Network Unreachable for Type of
 Service.
12 Destination Host Unreachable for
 Type of Service.
13 Communication Administratively Prohibited.
14 Host Precedence Violation
15 Precedence cutoff in effect

4 Source Quench 0 No Code
5 Redirect

 0 Redirect Datagram for the Network (or subnet)
 1 Redirect Datagram for the Host
 2 Redirect Datagram for the Type of Service and

 Network
 3 Redirect Datagram for the Type of Service and

 Host
6 Alternate Host Address 0 Alternate Address for Host
7 Unassigned
8 Echo Request 0 No Code
9 Router Advertisement 0 No Code
10 Router Selection 0 No Code
11 Time Exceeded

 0 Time to Live exceeded in Transit
 1 Fragment Reassembly Time Exceeded

12 Parameter Problem
 0 Pointer indicates the error
 1 Missing a Required Option
 2 Bad Length

13 Timestamp 0 No Code
14 Timestamp Reply 0 No Code

41 RFC 972 defines codes 1-5. RFC 1122 defines codes 6-12. RFC 1812 defines codes 13-15.
42 Reserved for use by U.S. military agencies.
43 Reserved for use by U.S. military agencies.
44 Reserved for use by U.S. military agencies.

ICMP Usage in Scanning
Version 2.0

77

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Type

Name

Code

15 Information Request 0 No Code
16 Information Reply 0 No Code
17 Address Mask Request 0 No Code
18 Address Mask Reply 0 No Code
19 Reserved (for Security) 0 No Code

20-29 reserved (for Robustness Experiment)
30 Traceroute
31 Datagram Conversion Error
32 Mobile Host Redirect
33 IPv6 Where-Are-You
34 IPv6 I-Am-Here
35 Mobile Registration Request
36 Mobile Registration Reply
39 SKIP
40 Photuris
 0 Reserved
 1 unknown security parameters index
 2 valid security parameters, but authentication

 failed
 3 valid security parameters, but decryption failed

Table 15: ICMP Types & Codes

Checksum – contains the 16bit one’s complement of the one’s complement sum of the ICMP
message starting with the ICMP Type field. For computing this checksum, the checksum field is
assumed to be zero.

Data

� With ICMP error messages it will contain a part of the original IP message for which this

ICMP message was generated. The length of the DATA field equals the IP datagram
length less the IP header length. Every ICMP error message includes the Internet (IP)
Header and at least the first 8 data octets (bytes) of the datagram that triggered the error;
more than 8 octets (bytes) may be sent; this header and data must be unchanged from
the received datagram.

� With ICMP query messages the Data field will contain dependent information upon the

query type.

ICMP Usage in Scanning
Version 2.0

78

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Appendix B: ICMP “Fragmentation Needed but the Don’t Fragment Bit was
set” and the Path MTU Discovery Process 45
When one host needs to send data to another host, the data is transmitted in a series of IP
datagrams. We wish the datagrams be the largest size possible that does not require
fragmentation46 along the path from the source host to the destination host.

Fragmentation by the IP layer raises few problems:

o If one fragment from a packet is dropped, we need to retransmit the whole
packet.

o Load on the routers, which needs to do the fragmentation.
o Some simpler firewalls would block all fragments because they do not contain the

header information for a higher layer protocol needed for filtering.

The Maximum Transfer Unit (MTU) is a link layer restriction on the maximum number of bytes of
data in a single transmission. The smallest MTU of any link on the current path between two
hosts is called the Path MTU.

B.1 The PATH MTU Discovery Process
We use the Don’t Fragment Bit Flag in the IP header to dynamically discover the Path MTU of a
given route. The source host assumes that the PMTU of a path is the known MTU of its first hop.
He will send all datagrams with that size, and set the Don’t Fragment Bit. If along the path to the
destination host, there is a router that needs to fragment the datagram in order to pass it to the
next hop, an ICMP error message (Type 3 Code 4 “Fragmentation Needed and DF set”) will be
generated, since the Don’t Fragment bit was set. When the sending host receives the ICMP error
message he should reduce his assumed PMTU for the path.

The process can end when the estimated PMTU is low enough for the datagrams not to be
fragmented. The source host itself can stop the process if he is willing to have the datagrams
fragmented in some circumstances.

Usually the DF bit would be set in all datagrams, so if a route changes to the destination host,
and the PMTU is lowered, than we would discover it.

The PMTU of a path might be increased over time, again because of a change in the routing
topology. To detect it, a host should periodically increase its assumed PMTU for that link.

The link MTU field in the ICMP “Fragmentation Needed and DF set” error message, carries the
MTU of the constricting hop, enabling the source host to know the exact value he needs to set the
PMTU for that path to allow the voyage of the datagrams beyond that point (router) without
fragmentation.

B.2 Host specification
A host must reduce his estimated PMTU for the relevant path when he receives the ICMP
“Fragmentation Needed and the DF bit was set” error message. RFC 1191 does not outline a
specific behavior that is expected from the sending host, because different applications may have
different requirements, and different implementation architectures may favor different strategies.

45 RFC 1191, http://www.ietf.org/rfc/rfc1191.txt, J. Mogul, S. Deering.
46 When we send a packet that it is too large to be sent across a link as a single unit, a router needs to slice/split the
packet into smaller parts, which contain enough information for the receiver to reassemble them. This is called
fragmentation.

ICMP Usage in Scanning
Version 2.0

79

Copyright Ofir Arkin, 2000
http://www.sys-security.com

The only required behavior is that a host must attempt to avoid sending more messages with the
same PMTU value in the near future. A host can either cease setting the Don’t Fragment bit in the
IP header (and allow fragmentation by the routers in the way) or reduce the datagram size. The
better strategy would be to lower the message size because fragmentation will cause more traffic
and consume more Internet resources.

A host using the PMTU Discovery process must detect decreases in Path MTU as fast as
possible. A host may detect increases in Path MTU, by sending datagrams larger than the current
estimated PMTU, which will usually be rejected by some router on the path to a destination since
the PMTU usually will not increase. Since this would generate traffic back to the host, the check
for the increases must be done at infrequent intervals. The RFC specify that an attempt for
detecting an increasment must not be done less than 10 minutes after a datagram Too Big has
been received for the given destination, or less than 2 minute after a previously successful
attempt to increase.

The sending host must know how to handle an ICMP “Fragmentation Needed and the DF bit was
set” error message that was sent by a device who does not know how to handle the PMTU
protocol and does not include the next-hop MTU in the error message. Several strategies are
available:

• The PMTU should be set to the minimum between the currently assumed PMTU and
57647. The DF bit should not be set in future datagrams for that path.

• Searching for the accurate value for the PMTU for a path. We keep sending datagrams
with the DF bit set with lowered PMTU until we do not receive errors.

A host must not reduce the estimation of a Path MTU value below 68 bytes.

A host MUST not increase its estimate of the Path MTU in response to the contents of a
Datagram Too Big message.

B.3 Router Specification
When a router cannot forward a datagram because it exceeded the MTU of the next-hop network
and the Don’t Fragment bit was set, he is required to generate an ICMP Destination Unreachable
message to the source of the datagram., with the appropriate code indicating “Fragmentation
needed and the Don’t Fragment Bit was set”. In the error message the router must include the
MTU of the next-hop in a 16bit field inside the error message.

Checksum

Link MTUUnused (zero)

Code = 4Type = 3

IP header + 64 bits of original data of the datagram

0 8 16 31

Figure 14: ICMP Fragmentation Required with Link MTU

47 The usage of the lesser between 576 and the first-hop MTU as the PMTU for a destination, which is not connected to
the same network was the old implementation. The results were the use of smaller datagrams than necessary, waste of
Internet resources, and not being optimal.

ICMP Usage in Scanning
Version 2.0

80

Copyright Ofir Arkin, 2000
http://www.sys-security.com

The value of the next-hop MTU field should be set to the size in bytes of the largest datagram that
could be forwarded, along the path of the original datagram, without being fragmented by this
router. The size includes IP header plus IP data and no lower level headers should be included.

Because every router should be able to forward a datagram of 68 bytes without fragmenting it,
the link MTU field should not contain a value less than 68.

B.4 The TCP MSS (Maximum Segment Size) Option and PATH MTU Discovery
Process
The RFC specify that a host that is doing Path MTU Discovery must not send datagrams larger
than 576 bytes unless the receiving host grants him permission.

When we are establishing a TCP connection both sides announce the maximum amount of data
in one packet that should be sent by the remote system – The maximum segment size, MSS (if
one of the ends does not specify an MSS, it defaults to 536 – there is no permission from the
other end to send more than this amount). The packet generated would be, normally, 40 bytes
larger than the MSS; 20 bytes for the IP header and 20 bytes for the TCP header. Most systems
announce an MSS that is determined from the MTU on the interface that the traffic to the remote
system passes out from the system through.

Each side upon receiving the MSS of the other side should not send any segments larger than
the MSS received, regardless of the PMTU. After receiving the MSS value the Path MTU
Discovery process will start to take affect. We will send our IP packets with the DF bit set allowing
us to recognize points in the path to our destination that cannot process packets larger as the
MSS of the destination host plus 40 bytes. When such an ICMP error message arrives, we should
lower the PMTU to a path (according to the link MTU field, or if not used, to use the rules
regarding the old implementation) and retransmit. The value of the link MTU cannot be higher
than the MSS of the destination host. When retransmission occurs resulting from ICMP type 3
code 4 error message, the congestion windows should not change, but slow start should be
initiated. The process continues until we adjust the correct PMTU of a path (not receiving ICMP
error messages from the intermediate routers) which will allow us to fragment at the TCP layer
which is much more efficient than at the IP layer.

ICMP Usage in Scanning
Version 2.0

81

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Appendix C: Mapping Operating Systems for answering/discarding ICMP
query message types

Operating System

Info.

Request

Time Stamp

Request

Address Mask

Request

Address Mask
Request Frag.

IP TTL on

ICMP
datagrams

- In Reply -

IP TTL on

ICMP
datagrams

- In Req. -

Debian GNU/ LINUX
2.2, Kernel 2.4 test 2
(*)

- + - - 255 64

Redhat LINUX 6.2
Kernel 2.2.14 (*)

- + - - 255 64

LINUX Kernel 2.0.x 64 64

FreeBSD 4.0 (*) - + - - 255 255
FreeBSD 3.4 - + - - 255 255
OpenBSD 2.7 - + - - 255 255
OpenBSD 2.6 - + - - 255 255
NetBSD - + - - 255
BSDI BSD/OS 4.0 - + - - 255
BSDI BSD/OS 3.1 - + - - 255

Solaris 2.5.1 - + + + (0.0.0.0) 255 255
Solaris 2.6 - + + + (0.0.0.0) 255 255
Solaris 2.7 (*) - + + + (0.0.0.0) 255 255
Solaris 2.8 - + + + (0.0.0.0) 255 255

HP-UX v10.20 + + - - 255 255
HP-UX v11.0 - - + + (0.0.0.0) 255

Compaq Tru64 v5.0 (*) + + - - 64

Irix 6.5.3 (*) - + - - 255
Irix 6.5.8 (*) - + - - 255

AIX 4.1 (*) + + - - 255
AIX 3.2 (*) + + - - 255

ULTRIX 4.2 – 4.5 (*) + + + + 255

OpenVMS v7.1-2 (*) + + + + 255

Novell Netware 5.1
SP1 (*)

- - - - 128

Novell Netware 5.0 (*) - - - - 128
Novell Netware 3.12 - - - - 128

Windows 95 - - + + 32 32
Windows 98 (*) - + + + 128 32
Windows 98 SE (*) - + + + 128 32
Windows ME (*) - + - - 128 32
Windows NT 4 WRKS
SP 3 (*)

- - + + 128 32

Windows NT 4 WRKS
SP 6a (*)

- - - - 128 32

Windows NT 4 Server
SP4

- - - - 128 32

Windows 2000
Professional (*)

- + - - 128 128

Windows 2000 Server
(*)

- + - - 128 128

ICMP Usage in Scanning
Version 2.0

82

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Networking
Devices

Info.

Request

Time Stamp

Request

Address Mask

Request

Address Mask
Request Frag.

IP TTL on

ICMP
datagrams

- In Reply -

IP TTL on

ICMP
datagrams

- In Req. -

Cisco Catalyst
5505 with OSS
v4.5

+ + + - 60 60

Cisco Catalyst
2900XL with IOS
11.2

+ + - - 255

Cisco 3600 with
IOS 11.2

+ + - - 255

Cisco 7200 with
IOS 11.3

+ + - - 255 255

Intel Express
8100 ISDN
Router (*)

- - + + 64

ICMP Usage in Scanning
Version 2.0

83

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Appendix D: ICMP Query Message Types with Code field !=0

Operating System

Info. Request

Time Stamp Request

Address Mask

Request

ECHO

Request

Debian GNU/ LINUX 2.2,
Kernel 2.4 test 2 (*)

- + (!=0) - + (!=0)

Redhat LINUX 6.2 Kernel
2.2.14 (*)

- + (!=0) - + (!=0)

FreeBSD 4.0 (*) - + (!=0) - + (!=0)
FreeBSD 3.4 - + (!=0) -
OpenBSD 2.7 - + (!=0) - + (!=0)
OpenBSD 2.6 - + (!=0) - + (!=0)
NetBSD - + (!=0) - + (!=0)
BSDI BSD/OS 4.0 (*) - + (!=0) - + (!=0)
BSDI BSD/OS 3.1 (*) - + (!=0) - + (!=0)

Solaris 2.5.1 * + (!=0) + (!=0) + (!=0)
Solaris 2.6 * + (!=0) + (!=0) + (!=0)
Solaris 2.7 (*) * + (!=0) + (!=0) + (!=0)
Solaris 2.8 * + (!=0) + (!=0) + (!=0)

HP-UX v10.20 + (!=0) + (!=0) -
HP-UX v11.0 - - + (!=0) + (!=0)

Compaq Tru64 v5.0 (*) + (!=0) + (!=0) - + (!=0)

Irix 6.5.3 (*) - + (!=0) - + (!=0)
Irix 6.5.8 (*) - + (!=0) - + (!=0)

AIX 4.1 (*) + (!=0) + (!=0) - + (!=0)
Aix 3.2 (*) + (!=0) + (!=0) -

ULTRIX 4.2 - 4.5 (*) + (!=0) + (!=0) + (!=0) + (!=0)

OpenVMS v7.1-2 (*) + (!=0) + (!=0) + (!=0) + (!=0)

Novell Netware 5.1 SP1
(*)

- - - + (!=0)

Novell Netware 5.0 (*) - - - + (!=0)
Novell Netware 3.12 (*) - - - + (!=0)

Windows 95 - - + + (0)
Windows 98 (*) - - (CHANGE) + + (0)
Windows 98 SE (*) - - (CHANGE) + + (0)
Windows ME (*) - - (CHANGE) - + (0)
Windows NT 4 WRKS SP
3 (*)

- - + + (0)

Windows NT 4 WRKS SP
6a (*)

- - - + (0)

Windows NT 4 Server
SP4

- - - + (0)

Windows 2000
Professional (*)

- - (CHANGE) - + (0)

Windows 2000 Server (*) - - (CHANGE) - + (0)

ICMP Usage in Scanning
Version 2.0

84

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Networking Devices

Info. Request

Time Stamp Request

Address Mask

Request

ECHO

Request

Cisco Catalyst 5505 with
OSS v4.5

+ + + + (!0)

Cisco Catalyst 2900XL
with IOS 11.2

+ + - + (!0)

Cisco 3600 with IOS 11.2

 + (!0)

Cisco 7200 with IOS 11.3 + + - + (!0)

Intel Express 8100 ISDN
Router (*)

ICMP Usage in Scanning
Version 2.0

85

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Appendix E: ICMP Query Message Types aimed at a Broadcast Address

Operating System

Info. Request

Broadcast

Time Stamp

Request

Broadcast

Address Mask

Request

Broadcast

Echo Request

Broadcast

Debian GNU/ LINUX
2.2, Kernel 2.4 test 2

 +

Redhat LINUX 6.2
Kernel 2.2.14 (*)

- + - +

FreeBSD 4.0 (*) - - - -
FreeBSD 3.4 - - - -
OpenBSD 2.7 - - - -
OpenBSD 2.6 - - - -
NetBSD
BSDI BSD/OS 4.0 (*)
BSDI BSD/OS 3.1 (*)

Solaris 2.5.1 * + - +
Solaris 2.6 * + - +
Solaris 2.7 * + - +
Solaris 2.8 * + - +

HP-UX v10.20 + + - +

Compaq Tru64 v5.0 (*)

Irix 6.5.3 (*)
Irix 6.5.8 (*)

AIX 4.1 (*)
AIX 3.2 (*)

ULTRIX 4.2 – 4.5 (*)

OpenVMS v7.1-2 (*)

Novell Netware 5.1 SP1
(*)

Novell Netware 5.0 (*)
Novell Netware 3.12 (*)

Windows 95
Windows 98 - - - -
Windows 98 SE (*) - - - -
Windows ME (*) - - - -
Windows NT 4 WRKS
SP 3 (*)

- - - -

Windows NT 4 WRKS
SP 6a (*)

- - - -

Windows NT 4 Server
SP4

- - - -

Windows 2000
Professional (*)

- - - -

Windows 2000 Server
(*)

- - - -

ICMP Usage in Scanning
Version 2.0

86

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Networking Devices

Info. Request

Broadcast

Time Stamp

Request

Broadcast

Address Mask

Request

Broadcast

Echo

Broadcast

Cisco Catalyst 5505
with OSS v4.5

+ + + +

Cisco Catalyst
2900XL with IOS
11.2

+ - - +

Cisco 3600 with IOS
11.2

+ - -

Cisco 7200 with IOS
11.3

+ - - +

Intel Express 8100
ISDN Router (*)

- - - - Big Question
Marks

ICMP Usage in Scanning
Version 2.0

87

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Appendix F: ICMP Query Message Types with TOS! = 0

Operating System

Information

Request
With TOS!=0x00

Time Stamp

Request
With TOS!=0x00

Address Mask

Request
With TOS!=0x00

Echo Request

With TOS!=0x00

Debian GNU/ LINUX 2.2,
Kernel 2.4 test 2 (*)

Not Answering !=0x00 Not Answering !=0x00

Redhat LINUX 6.2
Kernel 2.2.14 (*)

Not Answering !=0x00 Not Answering !=0x00

FreeBSD 4.0 (*) Not Answering !=0x00 Not Answering !=0x00
FreeBSD 3.4 Not Answering Not Answering
OpenBSD 2.7 (*) Not Answering !=0x00 Not Answering !=0x00
OpenBSD 2.6 Not Answering !=0x00 Not Answering !=0x00
NetBSD Not Answering !=0x00 Not Answering !=0x00
BSDI BSD/OS 4.0 (*) Not Answering !=0x00 Not Answering !=0x00
BSDI BSD/OS 3.1 (*) Not Answering !=0x00 Not Answering !=0x00

Solaris 2.5.1 Not Implemented
Solaris 2.6 Not Implemented
Solaris 2.7 (*) Not Implemented !=0x00 !=0x00 !=0x00
Solaris 2.8 (*) Not Implemented !=0x00 !=0x00 !=0x00

HP-UX v10.20 Not Answering
HP-UX v11.0 Not Answering Not Answering !=0x00 !=0x00

Compaq Tru64 v5.0 (*) !=0x00 Not Answering !=0x00

Irix 6.5.3 (*) Not Answering !=0x00 Not Answering !=0x00
Irix 6.5.8 (*) Not Answering !=0x00 Not Answering !=0x00

AIX 4.1 (*) !=0x00 Not Answering !=0x00
AIX 3.2 (*) !=0x00 Not Answering !=0x00

ULTRIX 4.2 – 4.5 (*) 0x00 0x00 0x00

OpenVMS v7.1-2 (*) !=0x00 !=0x00 !=0x00

Novell Netware 5.1 SP1
(*)

Not Answering Not Answering Not Answering 0x00

Novell Netware 5.0 (*) Not Answering Not Answering Not Answering 0x00
Novell Netware 3.12 (*) Not Answering Not Answering Not Answering 0x00

Windows 95 Not Answering Not Answering
Windows 98 (*) Not Answering 0x00 0x00 !=0x00
Windows 98 SE (*) Not Answering 0x00 !=0x00
Windows ME (*) Not Answering 0x00 Not Answering !=0x00
Windows NT 4 WRKS
SP 3 (*)

Not Answering Not Answering !=0x00

Windows NT 4 WRKS
SP 6a (*)

Not Answering Not Answering Not Answering !=0x00

Windows NT 4 Server
SP4

Not Answering Not Answering Not Answering !=0x00

Windows 2000
Professional (*)

Not Answering 0x00 Not Answering 0x00

Windows 2000 Server (*) Not Answering 0x00 Not Answering 0x00

ICMP Usage in Scanning
Version 2.0

88

Copyright Ofir Arkin, 2000
http://www.sys-security.com

Appendix G: DF Bit Echoing

Operating System

Info. Request

Time Stamp

Request

Address Mask

Request

Echo Request

Debian GNU/ LINUX 2.2,
Kernel 2.4 test 2 (*)

Not Answering + (- DF) Not Answering + (- DF)

Redhat LINUX 6.2 Kernel
2.2.14 (*)

Not Answering + (- DF) Not Answering + (- DF)

FreeBSD 4.0 (*) Not Answering + (+ DF) Not Answering + (+ DF)
FreeBSD 3.4 Not Answering + (+ DF) Not Answering + (+ DF)
OpenBSD 2.7 Not Answering + (+ DF) Not Answering + (+ DF)
OpenBSD 2.6 Not Answering + (+ DF) Not Answering + (+ DF)
NetBSD Not Answering + (+ DF) Not Answering + (+ DF)
BSDI BSD/OS 4.0 Not Answering + (+ DF) Not Answering + (+ DF)
BSDI BSD/OS 3.1 Not Answering + (+ DF) Not Answering + (+ DF)

Solaris 2.5.1 Not Answering
Solaris 2.6 Not Answering + (+ DF) + (+ DF) + (+ DF)
Solaris 2.7 (*) Not Answering + (+ DF) + (+ DF) + (+ DF)
Solaris 2.8 Not Answering + (+ DF) + (+ DF) + (+ DF)

HP-UX v10.20 Not Answering
HP-UX v11.0 Not Answering Not Answeting + (+ DF) + (+ DF)

Compaq Tru64 v5.0 (*) + (+ DF) Not Answering - + (+ DF)

Irix 6.5.3 (*) Not Answering + (+ DF) Not Answering + (+ DF)
Irix 6.5.8 (*) Not Answering + (+ DF) Not Answering + (+ DF)

AIX 4.1 (*) + (+ DF) Not Answering + (+ DF)
AIX 3.2 (*) + (+ DF) Not Answering + (+ DF)

ULTRIX 4.2 – 4.5 (*) + (- DF) + (- DF) + (- DF)

OpenVMS v7.1-2 (*) + (+ DF) + (+ DF) + (+ DF)

Novell Netware 5.1 SP1 (*) Not Answering Not Answering Not Answering + (- DF)
Novell Netware 5.0 (*) Not Answering Not Answering Not Answering + (- DF)
Novell Netware 3.12 Not Answering Not Answering Not Answering + (- DF)

Windows 95 Not Answering Not Answering
Windows 98 (*) Not Answering + (- DF) + (- DF) + (+ DF)
Windows 98 SE (*) Not Answering + (- DF) + (- DF) + (+ DF)
Windows ME (*) Not Answering + (- DF) Not Answering + (+ DF)
Windows NT 4 WRKS SP 3 (*) Not Answering Not Answering
Windows NT 4 WRKS SP 6a
(*)

Not Answering Not Answering Not Answering + (+ DF)

Windows NT 4 Server SP4 Not Answering Not Answering Not Answering + (+ DF)
Windows 2000 Professional
(*)

Not Answering + (- DF) Not Answering + (- DF)

Windows 2000 Server (*) Not Answering + (- DF) Not Answering + (- DF)

ICMP Usage in Scanning
Version 2.0

89

Copyright Ofir Arkin, 2000
http://www.sys-security.com

For corrections/additions/suggestions for this research

paper, please send email to ofir@itcon-ltd.com.
Further Information and updates would be posted to

http://www.sys-security.com.

Thank you for reading

Ofir Arkin

The Sys-Security Group

Founder

http://www.sys-security.com
ofir.arkin@sys-security.com

ITCon – Information Technology

Consultants

Senior Security Analyst

http://www.itcon-ltd.com

ofir@itcon-ltd.com

mailto:ofir@itcon-ltd.com
http://www.sys-security.com/
http://www.sys-security.com/
mailto:ofir.arkin@sys-security.com
http://www.itcon-ltd.com/
mailto:ofir@itcon-ltd.com

