
Storing XML in
Databases

As eXtensible Markup Language
(XML) becomes the data stan-
dard for e-business, the amount

of XML data being exchanged will
grow exponentially. While enterprises
may initially conceive of those XML
documents and messages as transitory
images of data in a legacy infrastruc-
ture, a requirement to store that XML
data for fast and accurate retrieval is
likely. This will happen because:

• Only the XML view of the data will
correspond to the e-business transac-
tions the end user actually carries out.
It will be easier to analyze and audit
operations based on the unified XML
view than the fragmented transac-

tions in the diverse back-end systems.
• Generating an XML view of data in an

underlying system can be expensive;
caching it in XML format may maxi-
mize performance where the same
information is accessed repeatedly.

• Once there’s a requirement for persis-
tent XML storage, the features of a
Database Management System
(DBMS) will also be required. The
“value proposition” for a DBMS is
the same for XML data as any other
type of data. A DBMS provides ser-
vices to an application that are too
critical, too difficult, or too costly to
be left to application developers.
These include the ability to commit
or rollback transactions, efficient

eAI Journal • October 2001 53

XML RDBMS (Normalized)
• Data in single hierarchical structure • Data in multiple tables
• Nodes have element and/or attribute values • Cells have a single value
• Elements can be nested • Atomic cell values
• Elements are ordered • Row/column order not defined
• Schema optional • Schema required
• Direct storage/retrieval of simple docs • Joins necessary to retrieve simple docs
• Query with XML standards • Query with SQL retrofitted for XML

Figure 1 — Mismatches Between XML Data and Relational Databases

By Michael Champion

queries, scalability, and backup and
restoration utilities.

This article explains how native-
XML databases efficiently and reliably
store XML content better than relation-
al or partial XML databases. It includes
a “walk-through” of the storage and
retrieval process as it supports an e-bus-
iness transaction.

XML Database Management
Approaches

While there are good reasons to store
XML persistently in a database, this
presents a challenge. There are funda-
mental mismatches between the XML-
structured data and the data model vir-
tually all mainstream RDBMS products
support. Entire books have been written
on this subject, but Figure 1 summarizes
the essential differences.

You can think of solutions to the
challenge as points along a spectrum
from the “pure relational” approach to
“post relational” approach (though most
real-world systems are a combination).

Pure Relational
The relational model of databases

offers one answer: Normalize the XML
data into rows and columns, with each
cell containing an “atomic” text value.
Any hierarchical or network data model
can be translated into normalized rela-
tions, so in principle any document can be
decomposed for relational storage. The
techniques for normalizing tree structures
are discussed in advanced RDBMS text-
books. Similarly, Wrox Press’s Profes-
sional XML Databases provides a check-
list of 18 rules (Chapter 3) that give
detailed suggestions about how to mode a
structure specified by an XML DTD in a
relational database.

The problem is that there’s a signifi-
cant gap between relational model prin-
ciples and the actual practice of RDBMS
vendors and users. Normalizing XML
structures into RDBMS relations can be
fiendishly complex for designers, time-
consuming for programmers, and opera-
tionally inefficient for Database Admin-
istrators (DBAs) or users. The more
“document-like” the data model — that
is, when there are recursive elements,
mixed content, and a less rigid structure
— the more difficult it is to devise prac-
tical RDBMS models for XML data.
Furthermore, there are well-known chal-
lenges in using Structured Query

Language (SQL) to effectively query
normalized recursive data models such
as a bill of material. Relational purists
use the challenges of building bills of
material applications to illustrate SQL’s
lack of adherence to the theories underly-
ing the relational model (e.g., Fabian
Pascal’s Practical Issues in Database
Management: A Reference for the Think-
ing Practitioner, Chapter 7). Ordinary
users can be forgiven for being daunted
by the challenges of effectively normaliz-
ing and querying hierarchical XML doc-
uments using today’s SQL databases!

Post-Relational
Relational database vendors have

responded to the challenges of serializ-
ing the data from object-oriented pro-

grams and object-oriented databases by
adding features useful for simplifying
XML data management. Most funda-
mentally, RDBMS systems have added
Large Object (LOB) data types that
allow arbitrary types and amounts of
data to be stored and retrieved in a sin-
gle “cell” of a table. Similarly, RDBMS
vendors (and the SQL standard) have
added other “post-relational” features
such as:

• Support for “cells” containing repeat-
ing groups of data

• Full-text search capabilities.

These features make it easier for non-
specialists to build effective database
applications that don’t fit the constraints
of the pure relational model. It’s not a
big stretch for the RDBMS turned
“object-relational” vendors to add con-
venient XML extensions to their prod-
ucts that exploit new post-relational and
text-retrieval features. Additional utili-

ties ease the burden of modeling XML
hierarchies to work with the underlying
relational and post-relational storage
models. World Wide Web Consortium
(W3C) recommendations for XML,
such as the XPath query syntax and the
Document Object Model (DOM) Appli-
cation Program Interface (API), are pri-
marily supported in the utilities. Once
SQL or proprietary text-search exten-
sions have located records, the XML
utilities provide tools for representing
the results as XML and manipulating the
XML with DOM, Xpath, etc. Current
XML-enabled database systems don’t
support a complete, seamless round trip
of arbitrary XML content into and out of
a database. None of them support the
complete XPath specification as a query
language into the database itself.

We see several features added to
object-relational databases to make it
relatively easy to store and retrieve
XML data. Different vendors take dif-
ferent approaches, but all add XML
support on top of existing features
rather than as a fundamentally new stor-
age model inside the database engine.
Even Oracle 9i’s “native XML SQL data
type” is essentially just a Character
Large Object (CLOB) that supports
some proprietary extensions to SQL for
XML processing.

Native XML
To work with XML data in a main-

stream DBMS, either the end user or the
DBMS vendor must use relatively sophis-
ticated techniques to overcome the mis-
match between XML data and existing
technologies. An alternative approach is
to build a DBMS from the bottom up to
easily store, retrieve, and query XML-
structured data. Such “native XML” data-
base systems expose the data and the pro-
cessing model via XML standards. An
XML document is the fundamental unit
of storage. XML DTDs or schemas,
rather than RDBMS schemas, define the
properties of document collections.
XPath or another XML-specific query
language locates documents meeting
some search criteria. Some products
allow XML data to be processed in the
actual database engine (as opposed to
some external utility) with Simple API
for XML (SAX), DOM, and XML Style-
sheet Language Transformations
(XSLTs), XLink, etc.

A native XML database doesn’t ask
the user to worry about how to map

54 eAI Journal • October 2001

There are

mismatches between

the XML-structured

data and the data

model RDBMS

products support.

XML structures onto some non-XML
underlying data model or processing
language. No native XML database
product supports every detail of every
XML specification, but the XML stan-
dards define a large percentage of the
interfaces to native XML DBMS prod-
ucts. There’s little need for a 1,000-
page book on native XML database
programming, because those familiar
with XML specifications and tools
already know about 95 percent of what
they need to know to use native XML
database products!

This conceptual advantage of using a
native XML DBMS to handle XML
data can translate into concrete opera-
tional advantages, too. The code
required to partition XML documents
into multiple tables and CLOBs and to
translate queries and merge results from
multiple underlying database structures
provides additional processing overhead
and points of failure compared with the
more straightforward native XML
approach. While performance and relia-
bility depend on a complex mixture of
factors, native XML databases provide a
more scalable, reliable platform in
which to store XML than object-rela-
tional databases. Since native XML
databases tend to focus on doing one
thing well rather than being a “universal
database” solution, the workload for
DBAs and Web administrators is con-
siderably reduced. In short, the “total
cost of ownership,” (considering the
hardware, programming, administra-
tion, and training) is likely to be signif-
icantly lower for XML applications
built on a native XML database.

Choosing an RDBMS or
XMLDB

Of course, native XML databases
aren’t a universal solution for all data
management needs — or even XML
data management needs. When is an
RDBMS the more appropriate back-end
or when is a native XML DBMS the
better choice? RDBMS systems are
probably best for maintaining the
integrity of data, and XML DBMS sys-
tems are best for maintaining XML doc-
uments. The distinction between “docu-
ments” and “data” is fuzzy and the rise
of XML has further blurred the bound-
ary. Let’s try to clarify it a bit.

“Data” describes propositions about
the world. RDBMS systems (to the
extent they’re truly based on E. F. Codd’s

relational model of data) provide a well-
established methodology for maintain-
ing the logical consistency of these
propositions. For example, the relational
model of data provides a good method-
ology to keep information on customers,
orders, fulfillment status, and accounts
receivable in a consistent state. In a
properly normalized database, a change
to a customer’s address will automatical-
ly be reflected in the address associated
with that customer’s orders.

XML has mechanisms that let a
developer minimize redundant storage
of common data (e.g., the customer
address needed for order fulfillment)
and to include this common data via
external entity references or XLink
expressions. Nevertheless, there’s no

well-established formal model or
methodology for this and XML databas-
es generally leave the processing of
entity references or XLink expressions
to the calling application. Even in a
world where many customer transac-
tions are conducted via XML, it proba-
bly makes sense to maintain mission-
critical data in RDBMS systems. That is
because the relational model has been
developed and refined to maintain the
crucial logical consistency among vari-
ous propositions about business reality
in the database.

Soon, however, many of the actual
interactions between producers and con-
sumers will be conducted via XML
messages (SOAP-based Web services,
asynchronous ebXML messages, etc.).
So those orders, cancellations, credit
checks, requests for quotations, invoic-
es, etc. are documents that are the elec-
tronic equivalent of paper business doc-
uments. Such documents may be gener-
ated from data in an RDBMS, but once

produced, they must maintain a different
conception of “integrity.” The document
must reflect the snapshot of reality that
produced it, even if “reality” changes.

Consider again customer orders.
Orders may reflect binding contracts
between the producer and consumer. In
that case, it’s usually desirable to main-
tain the history of orders exactly as
received, possibly guaranteed by a digi-
tal signature. Normalizing the XML
data reflecting a digitally signed order
for storage would make this impossible.
In this case, we don’t want to invalidate
the digital signature on the order actual-
ly received to process a customer’s
change of address. Of course, XML-
enabled RDBMS products generally
allow storage of XML in round-trip
form as a CLOB. However, there are
significant restrictions on the ability to
perform queries on CLOB data. Native
XML databases, on the other hand, are
well-suited for an application such as
maintaining a reliable, non-repudiable
log of XML business transactions that
supports queries.

Furthermore, “documents” (as op-
posed to “data”) may be produced by
and written for humans, so it will tend
to contain XML structures that are diffi-
cult to normalize into RDBMS form.
The structures may also be complicated
to extract and query using post-relation-
al tools. Books that describe how to
work with XML in RDBMS systems
generally suggest that designers avoid
mixed content and recursive content
models in XML schema that will be
stored relationally. We can easily turn
around the argument and suggest that
real-world XML content that’s difficult
to store relationally can be stored much
more easily and efficiently in a native
XML database!

Native XML

databases aren’t a

universal solution

for all data manage-

ment needs.

eAI Journal • October 2001 55

Michael Cham-
pion is a member of
the W3C’s Document
Object Model Work-
ing Group and co-
editor of the core
XML portion of the
DOM Level 1 rec-

ommendation. He is currently senior advi-
sor, New Technologies R&D, at Software
AG, Inc. Voice: 734-905-1838; e-Mail:
Mike.Champion@SoftwareAG-USA.com;
Website: www.softwareagusa.com.

About the Author

