
DWQ : ESPRIT Long Term Research Project, No 22469
Contact Person : Prof. Yannis Vassiliou, National Technical University of Athens,

15773 Zographou, GREECE Tel +30-1-772-2526 FAX: +30-1-772-2527, e-mail: yv@cs.ntua.gr

M. Bouzeghoub, F. Fabret, F. Llirbat,

M. Matulovic and E. Simon

ACTIVE-DESIGN: A Generic Toolkit for Deriving Specific Rule Execution Models

Proc. of the Third International Workshop, Rules in Database Systems 97,

Springer Verlag,Lecture Notes in ComputerScience 1312,

Skovde, Sweden, June 1997.

National Technical University of Athens (NTUA)
Informatik V & Lehr- und Forschungsgebiet Theoretische Informatik (RWTH)
Institute National de Recherche en Informatique et en Automatique (INRIA)

Deutsche Forschungszentrum für künstliche Intelligenz (DFKI)
University of Rome «La Sapienza» (Uniroma)

Istituto per la Ricerca Scientifica e Tecnologica (IRST)

D W Q
Foundations of Data Warehouse Quality

http://www.dblab.ece.ntua.gr/~dwq/

ACTIVE-DESIGN:

A Generic Toolkit for deriving speci�c rule execution

models?

Mokrane Bouzeghoub1 and Fran�coise Fabret2 and Fran�cois Llirbat2 and Maja

Matulovic2 and Eric Simon2

1 University of Versailles, 78035 France,

Mokrane.Bouzeghoub@prism.uvsq.fr
2 INRIA, Rocquencourt,78153 France,

FirstName.LastName@inria.fr

Abstract. Active rules or triggers are widely accepted as powerful mech-

anisms to implement applications or systems behaviour. Several rule ex-

ecution models were proposed as extended functionalities for di�erent

database systems. However, these models lack in exibility and adapt-

ability to speci�c database systems or speci�c application requirements.

In this paper, we propose a generic framework which provides a set of

basic functions which can be used to implement any execution model.

This framework, called Active-Design toolkit, can be exploited in many

situations where applications need speci�c model or di�erent models for

di�erent subsets of rules.

1 Introduction

Active systems extend traditional database systems by enabling the automatic

execution of rules when certain events occur. This mechanism is widely accepted

as a uniform and powerful way to implement general system extensions (e.g.,

integrity checking, maintenance of materialized views, management of repli-

cated data, etc.), and business rules in a wide variety of applications. An active

database system is generally considered as a passive database system with three

extra components (see e.g., the Manifesto in [DGG95]):

{ A rule speci�cation language - Rules are speci�ed as an ECA triple: an event

expression (E) that triggers the rule, a condition (C) to be evaluated if the

rule is triggered, and an action (A) to execute if the condition evaluates to

true.

{ An event detector - It detects the occurrences of events and signal them,

together with possible parameters, to a rule execution engine.

{ A rule execution engine - It invokes and synchronizes the execution of rule

conditions and actions with respect to the events that have been signaled.

? This work is partially supported by the European project EP22469 \Foundations on

Data Warehouse Quality (DWQ)"

The execution model underneath an active database system depends on many

parameters (also called dimensions), which describe the operational semantics of

rule execution (see e.g., [WC96, FT95]). These parameters specify for instance

how the events that have occured are used to determine if a rule is triggered, at

which point in time a triggered rule should be executed, or how a rule should be

selected among several other conicting rules.

Usually, an active application makes particular assumptions on the dimensions

of the execution model which seem the most appropriate for the active rules

it intends to use. The problem that sometimes arises in practice is that these

assumptions are not consistent with the execution model supported by the active

database system on which the application has to be developed [KDS97]. To

illustrate this, consider a relational active database system that provides SQL

triggers3. Suppose that your application needs to use active rules that (i) are

triggered at the end of transactions, (ii) consider globally all the events that

have occurred since the beginning of the transaction, and (iii) schedule the rules

according to some priority-based policy. Unfortunately, these dimensions are not

compatible with the restricted SQL triggers currently implemented by existing

products. The application developer will be forced to implement an active rule

monitoring layer, let us call it Active Monitor, on top of the database system.

The SQL triggers provided by the active database system will merely be used

to interrupt the execution of user transactions after each SQL statement, and

pass the control to the Active Monitor. In particular, at each interruption, the

Active Monitor will have to record the event that has just occurred into speci�c

database relations.

Several examples of similar situations are described in [KDS97], concern-

ing experiences of development of active database applications that implement

ad-hoc system extensions or business rules. Usually, the major drawback for ap-

plication developers is that developing and maintaining an Active Monitor is a

quite di�cult task that requires a lot of skill and training.

1.1 Related work

The usual answer given to this problem in the research literature is to design an

active database system that o�ers a powerful parametrized rule execution model,

which can presumably accommodate the requirements of a large class of appli-

cation's semantics. This approach, is emphasized by the Chimera environment

[WC96], Acto [MFLS96], and Naos [Cou96]. In these systems, the user specifying

the rules can choose the appropriate values of the execution model's parameters

that correspond to the desired excution semantics for the rules. In NAOS, the

parametrized execution model is implemented within the O2 database system.

Thus, every application pays the price for active functionalities that are imple-

mented by the database system in order to support the parametrized execution

3 By SQL triggers, we refer to the kind of SQL3-like triggers, which are supported by

most today relational products.

model, but that will possibly be bypassed, and hence not used by the application.

On the positive side, the implementation of the execution model can a priori be

better optimized because it makes use of the database system internals. On the

contrary, Chimera and ACTO follow an approach whereby the target database

system is a \light-weight" active database system, which, for instance, only sup-

ports SQL triggers. The Chimera and ACTO systems behave more like \active

application generators" for the target database system. More concretely, the user

de�nes rules through a speci�c language or interface and then the system (that

is, Chimera or ACTO) generate the appropriate code, including the de�nition of

triggers in the target database system, that is needed to monitor the execution

of the user-de�ned rules.

However, the three above approaches still su�er from the following draw-

backs. First, it is not possible for the application developer to accomodate other

parameters values than the ones hard-wired in those systems. For instance, if

one desires that the action of a rule be executed as an independant transaction,

then if the system does not incorporate this possibility, the application developer

will not be able to add it. Second, the user cannot customize, for optimization

purposes, the implementation of the rules she de�ned. For instance, all these

systems make use of so-called \delta structures" that are used to manage the

history of events that occured within a transaction. However, the application de-

veloper is not able to modify the format and the implementation of these delta

structures. Last, for the above \application generator" approaches, the code that

is generated always incoporate a �xed engine that is not minimal with respect

to the application needs.

1.2 A Toolkit Approach

In this paper, we propose an alternative approach, whereby the implementation

of an active application follows three distinct phases.

The �rst phase consists of using an extensible Toolbox to build an Active

Monitor, on top of a DBMS. Like with Chimera and ACTO, this DBMS is

supposed to be a \light-weight" active system. The minimal requirements to this

system are to support the detection of primitive database events (e.g., as modern

relational systems do), and enable a trigger's action to execute an arbitrary user-

de�ned program in a given language. The Toolbox is speci�c to the target DBMS

because: (i) it makes use of the capabilities of the target DBMS (detection of

events, management of temporary relations, creation of stored procedures, etc),

and (ii) it must be implemented in a language that can be invoked from within

the action of the trigger supported by the DBMS. The Toolbox consists of a set

of reusable building blocks that can be combined to implement a speci�c rule

execution model. The design of the Toolbox is the major contribution of this

paper.

During the second phase, the user de�nes the active rules. Each rule de�-

nition entails the speci�cation of an event part that can be recognized by the

Active Monitor, a condition consisting of a query executable by the DBMS,

and an action that contains statements executable by the DBMS. The condition

and action of a rule may also include and possible speci�c events that can be

recognized by the Active Monitor.

Finally, during the third phase, the user-de�ned rules lead to the generation

of several components. DBMS triggers are generated to detect the events that

contribute to the triggering of the user-de�ned rules, and invoke the Active

Monitor. Speci�c procedures that implement the conditions and actions of rules

are generated. They will be directly invoked by the Active Monitor. Finally, the

necessary information about the user-de�ned rules is loaded into the internal

data structures of the Active Monitor.

In this paper, we focus on the design of the Toolkit used to produce the code

of an Active Monitor. Apart from this introduction, this paper is structured

as follows. In Section 2, we give a formal model of a generic Active Monitor,

which can describe the execution of rules under any execution model. In Section

3, we derive a generic functional architecture for an Active Monitor, and show

how to design the building blocks that are necessary to generate such a func-

tional architecture. We also detail the interfaces of the building blocks. Section

4 concludes.

2 Modeling a Generic Active Monitor

2.1 Preliminaries

An event is described by its name and a sequence of parameters. In this paper,

we consider primitive and complex events: A primitive event may be a user's

noti�cation (explicit event) or a database operation i.e., an insertion, deletion,

updating, selection on a relational table, or any method invocation in an object

database system. A complex event is a combination of primitive events (using

logical, arithmetic and/or temporal operators) An event whose parameters are

instantiated is an event instance. An active rule r is de�ned by a triggering event,

r e, a condition and an action programs. A rule instance of r results from the

triggering of r due to an occurrence of an instance of r e: it is represented by

a triple <r, r i, e i> where e i denotes the instance of r e that triggered r and

r i is the instance identi�er. Executing a rule instance <r, r i, e i> consists in

computing its condition and performing its action when the condition is eval-

uated to true. Condition and action programs may use the e i value as input

parameter.

Throughout this paper, we assume that the rules are triggered by events occur-

ring during the execution of a user program which may be an application pro-

gram or a at transaction. The execution of this program may be interrupted

for executing the rules. We also assume that there is no external event, i.e.,

the occurrences of triggering events are due to the execution of the operations

occurring in the user program or in the corresponding triggered rules.

 Tasks

signalled

events

orders from

controller

to tasks

 Synchronizer

Fig. 1. Execution system

2.2 The model

We represent the execution of a set of rules by means of the notions of tasks,

task synchronizer, event history and task history. Communications beetwen the

tasks and the synchronizer are represented by messages. There is no inter-task

communication. Every time a task sends a message, it is inactive until the syn-

chronizer sends a response. The synchronizer handles the messages in the order

in which they were sent by the tasks, in response to the messages, it may create

tasks or send commands to the waiting tasks. A task represents a rule instance

or an initial program triggering the rules. At every step in the execution pro-

cess, the current set of tasks consists of the active tasks plus the tasks waiting

for a command from the synchronizer. The event history and the task history

respectively contain all the messages sent by the tasks and the commands sent

by the synchronizer from the beginning of the transaction.

2.3 Tasks : State diagram and messages

We describe a rule instance task by the state transition diagram depicted in

Figure 2 with labelled transitions. Grey ovals, dashed ovals, and white ovals re-

spectively represent inactive states (i.e. states where T is waiting for a command

sent by the synchronizer), �nal states of T , and active states (i.e. states where T

performs computations and, possibly, send messages to the synchronizer). There

are four inactive states : triggered, evaluated, interrupted, and wait. A transition

from state S to state S0, noted (S, S0), with a label of the form \R:m" has

the following meaning: \on receive command m from synchronizer" T executes

command m and enters in state S0 (remark that such situation occurs only if S

is an inactive state). On the opposite, a label of the form \S:m" may only occur

if S is an active state, the meaning is: T sends message m to the synchronizer

and enters in state S0 (remark that S0 is necessarily an inactive state).

executing
triggered

evaluated

wait

abandonned

interrupted

wait

done

evaluating

begin_action

continue

end_condition

cond_eval

abandon
ack

begin_ruleR:
S:

R:

R:

R:

R:

R:

end_ruleR:

interruptR:
signal_eventS:

Fig. 2. Rule instance execution state diagram

State triggered is the initial state of T where the task is waiting for the command

begin rule. On receive this command, T enters in active state evaluating where

it computes the condition, sends the message cond eval including the reporting

of the result of the computation, then T enters in the inactive state wait where

it does nothing. At this state, the command received by T depends on the re-

sult of the condition evaluation: if the condition has the value false, T receives

the command abandon and enters in state abandon where it, possibly, executes

protocols ending the task. On the opposite, if the condition holds, T enters into

the evaluated state, and waits for the begin action command. On receive this

command, T enters in the executing state where it executes the action program.

During this execution, T may send messages to the synchronizer (for example

to signal database operations occurred during the execution). After each mes-

sage, T enters in the inactive state wait where it does nothing. In response to

these messages, the synchronizer may send an interrupt command that leads T

in the inactive state interrupted or an ack command (for acknowledgement) that

leads T to continue the program, or an end rule command. This last command

responds to a message signalling the end of the program execution; it leads T in

the �nal state done.

The state transition diagram of the task representing the initial program is given

in Figure 3. This task may be executing, signalling events, or be interrupted for

executing rules.

2.4 Event and Task Histories

The execution of an initial program that triggers active rules can be traced using

two histories: The Event History (EH) and the Task History (TH).

The Event History (EH) contains the messages sent by the tasks, that is the

event instances that occur during the execution of the initial program and of the

rules. Each event instance is described by a triplet <E, args, ts> where:

1. E is the name of the associated event,

executing

interrupted

wait

continue

ack

R:

R:

interruptR:
signal_eventS:

Fig. 3. transaction execution state diagram

2. args contains the event parameter values associated with the event,

3. ts is a timestamp that indicates the time when the event occured (i.e. the

message is sent).

The Task history (TH) records the scheduling of rule instances during the pro-

gram execution. It is a sequence of tuples <r, ri, O, ts > that reects the

commands sent to the tasks during execution of the transaction.

1. r is either a rule identi�er, or the initial program,

2. ri is an identi�er of an instance of r (i.e. a task),

3. O is a command name,

4. ts is a timestamp that indicates the time when the command is taken into

account by the task (i.e. the time when the task changes its state).

Moreover, TH contains a tuple of the form <r, ri, init, ts> per rule instance

ri, where ts indicates the time when the task was created.

2.5 Synchronizer: Built-in functions

The synchronizer may be seen as a process which is awaken by the messages

sent by the tasks. It is in charge of two works: creating new tasks, and sending

commands to the inactive tasks. Creating new tasks raises several problems:

when creating new tasks? what rules are triggered at a certain point in the time?

what instance(s) have to be created for each triggered rule? Sending commands

to the inactive tasks requires to select the task(s) to activate: what are the

selection criteria? Answering these questions fully determines the semantics of

the rule execution.

When creating new tasks? : function check synchro

Function check synchro checks the histories and derives a synchronization point

that may be a processing point, a scheduling point or a null point. This function

may be speci�ed by using two boolean functions Processing and Scheduling:

check synchro() = processing point i� Processing(HT, HE)

check synchro() = scheduling point i� Scheduling(HT, HE)

check synchro() = null point i� :(Processing(HT, HE)

_ Scheduling(HT, HE))

The synchronizer uses the synchronization point returned by check synchro to

take the following decision: it creates new tasks if the point is a processing point,

it sends an ack to the task having sent the last message if the point is a null

point, and otherwise it sends a command to an inactive task.

What are the triggered rules, and the new instances?: function trigger

Function trigger computes a set of rule instances: It checks the histories in order

to compute the triggered rules. Then it computes the instance(s) associated

with each triggered rule. To do that, function trigger, uses three functions:

is triggered, synthesis, and compute interval.

1. compute interval speci�es what subset of elements contained in the histories

must be considered for computing the triggered rules, compute interval may

be speci�ed by means of a formula over the histories.

compute interval : () �! set of event instances

2. synthesis takes a set of event instances and derives a set of event instances,

it may be speci�ed by a formula over compute interval.

3. is triggered takes a rule r, tests if r is triggered with respect to the set of

event instances returned by functions compute interval and synthesis, and

returns the set of rule instances for r.

< r; r i; e i >2 is triggered i� 9e =< E; args > s:t

(r is set oriented and args = fa j<E; a> 2 synthesis(compute interval)g)

or

(r is instance oriented and <E; a > 2 synthesis(compute interval))

Finally, function trigger is speci�ed as :

< r; r i; e i > 2 trigger()) < r; r i; e i > 2 is triggered

Example 1. In Starburst, the rules are set-oriented, compute interval contains

all the event occurrences that have arisen since the last time r was executed

and synthesis speci�es the standard net-e�ect. A possible speci�cation of com-

pute interval could be:

compute interval = f<e; args; ts> 2 EH j 8 <r0; r0 id; begin rule; ts0> 2 TH

(r = r0 and command = begin action)) ts > ts0g

What tasks to activate?: function choose Function choose takes a set of

inactive tasks and selects a set of tasks to activate. It may be speci�ed by a

logical formula over the task history. For example, the SQL triggers are executed

in depth �rst search. Every time an event arises, the rules triggered by this event

are executed. The speci�cation of the function choose may be :

< r; r i; e i > 2 choose() i� <r; r id; init; ts> 2 HT and

8 <r0; r0 id; any; ts0> 2 TH; (ts0 < ts) or

(ts0 = ts `and (r = r0 or r has priority over r'))

2.6 Synchronizer algorithm

Every time the synchronizer receives message e from task t, it uses function

check synchro to compute the associated synchronization point. If this point is

a null point the synchronizer sends an ack command to t, else the procedure

synchro point implements the actions of the synchronizer.

On receive message e from t:

let p = check synchro();

if p is not null

then synchro point(p; t; e);

else send back ack to t

Fig. 4. Synchronization point computation

3 Active-design Toolkit

Our toolkit is based on a generic functional decomposition of an active monitor.

Before describing the toolkit architecture we �rst present our functional view of

an active monitor.

3.1 Functional decomposition of an Active Monitor

The functional organization of an Active Monitor is shown in Figure 6. It consists

of a DBMS, an event manager, a task executor and an execution controller.

The DBMS: It executes the database operations occurring in the initial pro-

gram and the rule condition and action programs. The DBMS may also provide a

detection output interface which computes the event instances (if any) produced

by the operations and signals them to the event manager.

synchro point algorithm

input: a synchronization point p,a task t and a message e

case e is

cond eval: let v denote the result of the condition evaluation reported in e

if v = true then send end condition to t;

else send abandon to t;

signal event: let v denote the event signalled in the message;

if v = end action then send end rule to t;

else send interrupt to t;

end case;

if p is a processing point

then for rt in trigger() do create task(rt); end do

end if

let selectedSet = choose();

for rs in selectedSet do

case current state of rs is

"triggered" : send begin rule to rs;

"evaluated": send begin action to rs;

"interrupted": send continue to rs;

end case;

end do

Fig. 5. Synchro-point algorithm

The Task executor (TE): In particular, it enforces execution commands sent by

the execution controller. For this purpose, it uses the DBMS to perform database

operations such as queries, update operations and transactional commands. It

provides to the execution controller an input interface which consists of the tran-

sition functions of the task state transition diagram (see Figures 2 and 3).

The Task Executor also provides a detection output interface. Indeed, it may

detect some speci�c events during the execution of rules and programs that

cannot be detected by the DBMS. It signals them to the Event Manager. For

example it may signal the end of a condition evaluation and/or the end of an

action execution.

The Event Manager (EM): The Event Manager is called each time an event is

detected. It receives events coming from the DBMS and/or the TE. It follows a

generic behavior that is parametrized by the add event and check synchro func-

tions: When EM receives an event instance e, it �rst adds this instance to the

history by calling the function add event(e), then it checks if a synchronization

point is reached, using the function check synchro which may consult the History

by using various access functions. If a synchronization point p is reached, then

EM transmits p to the Execution Controller.

DBMS

functions
access history

functions
access history

Execution
Controler

Executor

(a) + interrupt_program(p)

continue_program(p)

begin_program(p)

add_event(event)

Synchro_point(p)

execute(op)Events & rules histories
management interface

(a) = , begin_rule(r), abandon(r), evaluated(r), begin_action(r), interrupt(r), continue(r), done(r)

procedure call call to the history mangement interface

signal(event)

Task

Manager
Event

Fig. 6. Functional decomposition of an active application

The Execution Controller (EC): The Execution Controller (EC) is called each

time a synchronization point is reached. EC reacts to synchronization points

by sending commands to the Task Executor. It follows the generic behavior de-

scribed in the procedure Synchro point() (see Figure 5). Its behavior is parametrized

by the trigger and choose functions and the history management access interface.

It may use several Is triggered, synthesis and compute-interval functions.

3.2 The toolkit architecture

The Active-design toolkit consists in a set of reusable building blocks, or

modules that are combined to implement the RE, EM and EC components of an

active monitor. Each module provides a dynamic and a static interface. The dy-

namic interface consists in procedures that are invoked by the generic code of the

active monitor components during the execution of the rules. The static interface

consists in procedures that are called when new rules are de�ned. They generate

C-A execution
detected events

History
management

check-triggered

synchro
check-

Choose

Trigger

binding
E-CA

DBMS

Fig. 7. Toolkit architecture

code and/or static information that will be used during the execution. Figure 7

shows the dependencies between the modules: Each module uses the interfaces

provided by the module(s) right bellow. Other components of our toolkit archi-

tecture (not shown in Figure 7) are libraries of module implementations. There

is one library per module. The designer de�nes the execution model semantics by

selecting one module implementation from each library. For example, the library

associated with the choose module may provide implementations of various rule

execution policies (depth-�rst, iterative with priority, � � �). The toolkit is exten-

sible by adding new implementations to the libraries. In the following, we briey

describe the interfaces of each module.

C-A execution module This module ensures the execution of the condition and

action parts of rules. It implements coupling modes between condition and ac-

tion. The static interface consists of two functions add condition(rulename, CDesc)

and add action(rulename, Adesc) that respectively allow to de�ne a rule condi-

tion and a rule action. The type of the input parameters Cdesc and Adesc may

vary according to the module implementations that are available in the library.

The dynamic interface consists in procedures that execute the condition and/or

action parts of the rules.

detected events module: This block is responsible for the detection of events.

Its implementation depends on the active capabilities of the underlying DBMS

and the implementation of the C-A execution module. Indeed, an event can

be detected by using triggers or by rewriting the code of the programs and/or

rule action parts. The static interface consists of the new event(D-E-D, S-E-D)

procedure. The D-E-D parameter gives the description of the event that must be

detected. The S-E-D parameter indicates the format in which the event must be

transmitted to the history management module. There is no dynamic interface.

History management module: This module is responsible for building the event

history. Its dynamic interface contains (i) the add event(event) procedure that

is used to store events in the history and, (ii)various history access functions.

There is a huge variety of possible implementations. The simplest implementa-

tion stores the history in a simple sequential log of events and provides functions

that allow to consult this log. More complicated implementations store events in

delta relations and compute the net-e�ect of events incrementally. Such imple-

mentations enrich their interface with operations between deltas and functions

that allow to select and consult deltas. We could also implement a module that

constructs composite events. The static interface of such a module would consist

in a composite event speci�cation language.

Check triggered module: This module has in charge to check if a rule is triggered.

In which case, it computes the set of corresponding rule instances. The static

interface consists in the following procedure: new rule(rulename, EG, SYNT, In-

terval) The parameter EG indicates the execution granularity of the rule (tuple

or set oriented), SY NT is a speci�cation of the synthesis function and Intervall

speci�es the compute interval function.

The dynamic interface provides the following functions:

- Is triggered(rulename) returns a set of rule instance identi�ers. This set cor-

responds to the set of triggered instances of rule rulename.

- Triggering event(rulename, rule-instance-id) returns the value of the event as-

sociated to the triggered rule instance rule-instance-id.

E-C-A binding module: This module is responsible for the execution of rule

instances. The static interface consists in the procedure new rule(rulename, EP,

CM). EP indicates if and how the triggering event has to be passed as input

parameter to condition and/or action of the rule. CM indicates the transactional

coupling mode. Several implementations of transactional coupling modes are

feasible depending on the capabilities of the underlying DBMS.

The dynamic interface provides the following procedures:

1. begin rule(rulename, r) where r is a rule instance identi�er. This procedure

prepares the condition evaluation context of the rule instance and starts

its execution. Such context preparation may consist in creating a new pro-

cess, initiating some variables and/or sending transactional commands to

the DBMS (such as start transaction or start sub-transaction
4).

4 If the targeted system provides the nested transactions model

2. end condition((rulename, r) ends the condition evaluation context and pre-

pares the action execution context. For example, it may enforce parameter

passing between condition and action and/or execute transactional com-

mands.

3. begin action(rulename, r) starts the execution of the rule action. It may also

�rst execute some transactional commands depending on transactional cou-

pling modes.

4. interrupt(rulename, r) stops the execution of r action.

5. continue (rulename, r) continues the execution of r action.

6. abandon(rulename, r) and end rule(rulename, r) close the execution context of

r. For example, they may send some transactional commands depending on

the transactional coupling modes.

Let us note that some interface functions may be not provided by some E-C-

A binding modules implementations. For example, the end condition and be-

gin action functions are not provided by implementations that only ensure the

immediate C-A coupling mode.

Check-synchro module : This module has in charge to check if there is a synchro-

nization point. The static interface consists in the new synchropoint(ST,SDesc)

procedure where ST indicates if the synchronization point is a rule processing

or a rule scheduling point. The parameter SDesc describes the function that

has to be checked on the history in order to detect a synchronization point. The

dynamic interface consists in the checksynchro() function that returns a synchro-

point or the value NULL if no synchropoint is detected. the synchropoint.

Trigger module : The trigger module computes a set of triggered rule instances.

Various implementations are possible. The usual implementation computes all

the triggered rule instances. Another implementation may select speci�c rule

instances. The static interface consists in the add rule(rulename, AUX) function

where AUX is auxilliary informations that are used to select rule instances (e.g.,

order priority). The de�nition of the AUX parameter may vary according to the

module implementations. The dynamic interface is the trigger() function that

returns a set of rule instances identi�ers.

Choose module : The choose module computes a set of rule instances to be

executed. Various implementations are possible according to the rule execution

policies. The static interface consists in the add rule(rulename, AUX) function

where AUX is auxilliary informations that is used to select rule instances. The

de�nition of the AUX parameter may vary according to the module implemen-

tations. For example, if the module implementation enforces an iterative execu-

tion with priority, the AUX information provides the priority of the rule. The

dynamic interface is the choose() function that returns a set of rule instances

identi�ers.

4 Conclusion and future work

This paper has addressed the problem of engineering active applications by using

a generic toolkit. The idea is to provide a set of basic functions which can be used

to implement any of the semantic parameters which characterize a rule execution

model. We have de�ned these functions and demonstrated their capability to

implement known execution models. The main features of the toolkit based on

these basic building blocks are (i) its genericity which allows to implement any

rule execution model, (ii) its exibility which allows its adaptation to speci�c

application requirements, and (iii) its extensibility which allows addition of hight

level components to facilitate application development.

Future work wil concern an e�ective implementation of the toolkit libraries and

the organization of these libraries. We also envision the de�nition of some hight

level components which allow the toolkit to be inserted in the context of mid-

dleware tools which facilitate rapid development.

To validate the Active-Design toolkit, we envision to use it for developping up-

date propagation techniques within a datawarehouse architecture.

References

[Cou96] T. Coupaye. Un Mod�ele d'ex�ecution param�etrique pour base de donn�ees ac-

tive. Ph.d. thesis, Universit�e Joseph Fourier - Grenoble 1, 1996.

[DGG95] K. R. Dittrich, S. Gatziu, and A. Geppert. The Active Databse Manage-

ment System Manifesto : A Rulebase of ADBMS Features. In Proc. 2-th

International Workshop on Rules in Database Systems, RIDS'95, volume

985, Athens, Greece, 1995. Lecture in Computer Science, Springer-Verlag.

[FT95] P. Fraternali and L. Tanca. A Structured Approach for the De�nition of the

Semantics of Active Databases. ACM Transactions On Database Systems,

December 1995.

[KDS97] A. Kotz-Dittrich and E. Simon. Active database systems: Expectations, ex-

periences, and beyond. In N. Paton and O. Diaz, editors, Active Rules in

Databases. Springer Verlag, 1997.

[MFLS96] M. Matulovic, F. Fabret, F. Llirbat, and E. Simon. Un Syst�eme de R�egles

�a la S�emantique Param�etrable. In BDA'96, pages 291{311. INRIA, 1996.

Proc. 12-emes Journ�ees Bases de Donn�ees Avanc�ees, Geneve.

[WC96] J. Widom and S. Ceri. Active Database Systems: Triggers and Rules for Ad-

vanced Database Processing. Morgan-Kaufmann, San Francisco, California,

1996.

This article was processed using the LaTEX macro package with LLNCS style

