
Using the VTuneTM Performance Enhancement Environment
for the Pentium® III Processor’s Streaming SIMD Extensions

1

Programming Methods for the Pentium® III Processor’s
Streaming SIMD Extensions Using the VTune™

Performance Enhancement Environment

Joe H. Wolf III, Microprocessor Products Group, Intel Corporation

Index words: VTuneTM, Intel® C/C++ Compiler, intrinsics, vector class library, vectorization, event-
based sampling, Intel® Performance Library Suite.

ABSTRACT
This paper describes the programming methods available
to software developers wishing to utilize the performance
capabilities of the Streaming SIMD Extensions of the
Pentium III processor. The tools in the VTune™
Performance Enhancement Environment, Version 4.0,
have unique capabilities that help software developers
understand the Streaming SIMD Extensions, develop
applications for them, and performance tune those
applications.

The tools are the Intel® C/C++ Compiler, the VTune
Performance Analyzer, the Intel® Architecture
Performance Training Center, the Intel® Performance
Library Suite, and the Register Viewing Tool. The
programming methods offered by these tools are as
follows:

(1) Intrinsics. These are function-like calls the user
inserts in an application for which the Intel C/C++
compiler generates inlined code.

(2) Vector Class Library. This is a C++ abstraction of the
intrinsics.

(3) Vectorization. This is a special case of compiler
optimization that finds loops operating upon arrays of
char, short, int, or float, and creates a more efficient
loop using the SIMD instructions.

(4) The Intel Performance Library Suite. These libraries
have highly tuned routines to take advantage of the
Streaming SIMD Extensions for a number of
commonly used algorithms. The libraries include the
Intel® Signal Processing Library, the Intel® Image
Processing Library, the Intel® Recognition

Primitives Library, the Math Kernel Library, and the
Intel® JPEG Library.

In addition, the VTune Performance Analyzer offers a
number of ways of looking at the performance of an
application, and gives feedback on ways to tune for the
Pentium III processor. Examples of several of these
features are given.

INTRODUCTION
Intel® MMX™ technology was introduced into the
Intel® Architecture in 1996. It provided, and still
provides, unique performance opportunities through a
Single-Instruction, Multiple-Data (SIMD) instruction set
architecture (ISA) for integer-based code. However,
when it was introduced, and for almost two years
afterwards, the only way for developers to access and
utilize the SIMD technology was through assembly, either
assembly files or inlined assembly in C or C++ code.
While assembly programming arguably may offer the best
performance compared to compiled high-level languages,
it is difficult and inefficient to write, performance tune,
maintain, and port to new ISA’s. Clearly, developers
wanted then, and demand now, high-level language
support for the SIMD ISA’s like that of MMX technology
and the Streaming SIMD Extensions of the Pentium III
processor.

This demand for high-level language support was the
motivation behind developing the VTuneTM Performance
Enhancement Environment, Version 4.0. Its unique
development methods allow programmers to obtain all of
the performance available in the SIMD ISA through high-
level language support in the Intel® C/C++ Compiler,
VTune Analyzer, and Performance Library Suite.

Intel Technology Journal Q2, 1999

Using the VTuneTM Performance Enhancement Environment
for the Pentium® III Processor’s Streaming SIMD Extensions

2

An example of a simple loop is given in the first section
of this paper on the Intel C/C++ Compiler. This example
is expanded by showing different methods of support for
the Streaming SIMD Extensions, as well as by giving
guidelines for optimal use of the methods. The same
example is also used in the VTune Analyzer section to
illustrate how to find performance-critical sections of an
application suitable for recoding using the Streaming
SIMD Extensions. Also shown are methods of using the
VTune Analyzer to obtain advice for recoding or tuning
the application, and methods of getting information on
cache utilization vital to analysis for insertion of prefetch
or streaming stores.

There is little or no performance difference between the
methods, but each offers significant performance
improvements over the scalar floating-point
implementation. This performance improvement comes
at a fraction of the development costs associated with
writing assembly code. The conclusion is that the user
has several different programming options using the
SIMD ISA, the only differences being coding style and
efficiency of implementation.

THE INTEL® C/C++ COMPILER
The Intel® C/C++ Compiler is a highly-optimizing
compiler that plugs into the Microsoft∗ Developer’s
Studio environment. It is a C++ standard conforming
compiler that is also language, debug, and object format
compatible with Microsoft’s Visual C++, Versions 4.2
and higher.

The compiler offers several options for programmers to
utilize the Streaming SIMD Extensions: inlined assembly,
intrinsics, vector class libraries, and vectorization. Since
the Streaming SIMD Extensions require 16-byte
alignment of data for maximal performance, the compiler
offers several different methods to ensure that data are
properly aligned. All of these methods are discussed in
detail in this section.

Data and Stack Alignment
Data must be 16-byte aligned to obtain the best
performance with the Streaming SIMD Extensions of the
Pentium® III processor. In addition, exceptions can occur
if the aligned data movement instructions are used, but
data are not properly aligned. To eliminate these
problems, the compiler provides the following
mechanisms:

∗All other brand names are the property of their respective
owners.

• A new data type, __m128, that can be thought of as a
struct of four single-precision floats or an XMM
register. Data that are declared with this type are
automatically aligned to a 16-byte boundary, whether
they be global or local data.

• Another new data object for use in C++ code is the
F32vec4 class. This is a class object whose data
member is a __m128 data item. The compiler treats
these objects similarly to the __m128 type.

• __declspec(align(16)) is a new specifier for data
declarations that tells the compiler to align the given
data items. This is particularly useful for global data
items that may be passed into routines where the
Streaming SIMD Extensions are used. For example:

__declspec(align(16)) float buffer[400];

The variable, buffer, could then be used as if it
contained 100 objects of type __m128 or F32vec4. In
the following example, the construction of the
F32vec4 object, x, will then occur with aligned data.
Without the __declspec(align(16)) , however, a fault
may occur. An example of such usage is

void foo() {

F32vec4 x = *(__m128 *) buffer;

...

}

• In some cases, for better performance, the compiler
will align routines with __m64 (the MMX™
technology, or integer SIMD data type) or double
data to 16-bytes by default. The compiler also has a
command-line switch, -Qsfalign16, which can be
used to limit the compiler to only do the alignment in
routines that contain Streaming SIMD Extensions’
data. The default behavior is to use -Qsfalign8,
which says to align routines with 8- or 16-byte data
types to 16-bytes.

The compiler automatically aligns the stack frame for
both debug and non-debug code for functions in which
these extensions are used. The actual layout of the stack
frames are shown in detail in [1]. References [2] and [5]
give more details and examples of how to efficiently use
these extensions.

INTRINSICS
Intrinsics are C-like function calls for which the compiler
generates optimal inlined code. Each intrinsic maps to a
specific Streaming SIMD Extensions instruction, or an
MMX™ technology instruction. Most take __m128 or
__m64 (integer) data types as their arguments. Even
though there is a one-to-one mapping between an intrinsic

Intel Technology Journal Q2, 1999

Using the VTuneTM Performance Enhancement Environment
for the Pentium® III Processor’s Streaming SIMD Extensions

3

and its corresponding assembly instruction, the intrinsics
are much more efficient to write than assembly code
because the compiler takes care of register allocation and
instruction scheduling for the programmer. There are also
a number of data initialization intrinsics to easily allow
the loading of a __m128 data type (or an XMM register).

The example shown in Figure 1 shows a simple loop
written in C++. This loop is used as an example
throughout this article.

float xa[ARRAY_SIZE], xb[ARRAY_SIZE],

xc[ARRAY_SIZE];

float q;

void do_c_triad() {

for (int j = 0; j < ARRAY_SIZE; j++) {
xa[j] = xb[j] + q * xc[j];

 }
}

Figure 1: Original C++ triad loop

This figure shows a single-precision floating-point triad
operation. It performs a scaling of a vector (q *xc[j]),
adding it to another vector, and storing the result. Note
that there is no re-use of the data in the loop.

Figure 2 gives some examples of the syntax of some
intrinsics that may be used for coding the example in
Figure 1.

__m128 _mm_set_ps1(float f)

__m128 _mm_load_ps(float *mem)

__m128 _mm_mul_ps(__m128 x, __m128 y)

__m128 _mm_add_ps (__m128 x, __m128 y)

void _mm_store_ps(float *mem, __m128 x)

Figure 2: Intrinsic syntax

_mm_set_ps1() is used to replicate or broadcast a scalar
float variable or constant across a __m128 variable.

_mm_load_ps() is used to load a __m128 variable from a
memory location, such as a float array.

_mm_mul_ps() and _mm_add_ps() each take two __m128
operands and perform a multiply or addition, respectively,
returning the result in a __m128 data type.

_mm_store_ps() takes a __m128 variable and stores it to
the given memory location.

A complete listing of the intrinsics can be found in
references [2] and [6] along with a complete listing of the
Pentium® III processor instructions.

#define VECTOR_SIZE 4

__declspec(align(16)) float xa[ARRAY_SIZE],

xb[ARRAY_SIZE], xc[ARRAY_SIZE];

float q;

void do_intrin_triad() {
 __ m128 tmp0, tmp1;

tmp1 = _mm_set_ps1(q);
for (int j = 0; j < ARRAY_SIZE; j+=VECTOR_SIZE){

tmp0 = _ mm_mul_ps(*((__m128 *) & xc[j]), tmp1);
 *(__ m128 *) & xa[j] =

_mm_add_ps(tmp0, *((__m128 *) & xb[j]));
 }
}

Figure 3: Intrinsics encoding of the triad loop

Recoding the example in Figure 1 using the intrinsics
entails several considerations:

1. Since the example loop is operating on global data,
be sure the data is 16-byte aligned. This requires the
use of __declspec(align(16)) for the float array
declaration in the global program scope.

2. In any SIMD encoding of a loop, strip-mining or
adjusting the loop iteration count by the vector size
(the number of elements able to be operated upon per
SIMD operation) is necessary. Therefore, the
iteration count in this example is reduced by four, the
size of a Streaming SIMD Extension’s XMM register
or data type. This is done via the j+=VECTOR_SIZE
loop index variable increment.

3. We used the _mm_set_ps1() intrinsic to broadcast the
scalar q across the tmp1 _mm128 variable. Also note
that this is used outside of the loop since it is
invariant to the loop.

4. Rather than explicitly loading from the arrays xb and
xc into __m128 types using the _mm_load_ps()
intrinsics, we coerced them into __m128 types for
use as operands to the _mm_mul_ps() and

Intel Technology Journal Q2, 1999

Using the VTuneTM Performance Enhancement Environment
for the Pentium® III Processor’s Streaming SIMD Extensions

4

_mm_add_ps() intrinsics. This gives the compiler
complete control over the register allocation, and it
allows it to determine when it is really necessary to
do the loads. Similarly, the result of the add intrinsic
was cast directly to the result array, xa, rather than
using the _mm_store_ps() intrinsic. The compiler
generates the appropriate store instruction for the
programmer.

One can see that the compiler does a lot of the work for
the programmer when the intrinsics are used, enabling the
programmer to be much more efficient at encoding an
SIMD algorithm.

SIMD INTRINSICS USAGE GUIDELINES
The following are guidelines for getting optimal
performance from the intrinsics. All of these are
excerpted from the Intel® C/C++ Compiler, Version 4.0,
release notes.

1. Do not use static or extern variables when a local
variable could be used. Static and extern variables
are not usually kept in registers. In addition, C
language alias rules usually cause assignments
through pointers to alias static and extern variables,
thus restricting instruction scheduling.

Not So Good:

void foo (m128 *dst,m128 *src, m128 junk) {
 static m128 t;
 int i;

 for (i = 0; i < 1000; i++, dst++, src++)

 {
 t = _mm_mul_ps(*src, junk);
 *dst = _mm_add_ps(*dst, t);
 }
}

Better:

void foo (__m128 *dst, __m128 *src, m128
junk) {
 m128 t;
 int i;

 for (i = 0; i < 1000; i++, dst++, src++)

 {
 t = _mm_mul_ps(*src, junk);
 *dst = _mm_add_ps(*dst, t);
 }

}

2. Do not reference the address of variables or
parameters. Using the address of a variable or
parameter, via the address operator, &, makes the
variable no longer a candidate for being kept in a

register. It therefore must be kept in memory,
possibly causing poor performance. Also, like static
and extern variables, any assignments through
pointers will now alias the variable, constraining
instruction scheduling. This is particularly bad for
parameters, because referencing the address of any
parameter aliases all other parameters in the Intel
C/C++ Compiler, Version 4.0, implementation.

Not so good:

void f(float *dst, float dscale, int n) {
 m128 t1; int i;
 t1 = _mm_load_ps1(&dscale);

 for (i = 0; i < n; i++) {
 *(__m128 *)dst =

_mm_mul_ps(*(__m128 *)dst, t1);
 dst += 4;
 }
}

Better:

void f(float *dst, float dscale, int n) {
 m128 t1; int i;
 t1 = _mm_set_ps1(dscale);

 for (i = 0; i < n; i++) {
 *(__m128 *)dst =

_mm_mul_ps(*(__m128 *)dst, t1);
 dst += 4;
 }
}

3. Where possible, make loop bounds compile-time
constants. When this is not possible, make the
expressions for the loop bounds refer only to local
variables whose addresses are never taken. This
helps ensure that the loop termination condition
doesn't cause unnecessary work inside the loop.

Not So Good:

 int i, n;
 get_bounds(&n);
 /* In this example, we'll have to reload n

 and do the divide every loop iteration,

 causing poor performance. */
 for (i = 0; i < n / 4; i++) { ... }

Better:

Intel Technology Journal Q2, 1999

Using the VTuneTM Performance Enhancement Environment
for the Pentium® III Processor’s Streaming SIMD Extensions

5

 int i,n, l_end;
 get_bounds(&n);
 l_end = n / 4;
 for (i = 0; i < l_end; i++) { ... }

4. Code the loops using intrinsics so the last thing the
loop does is write values back into memory. Use
local variables for intermediate calculations. This
allows the scheduler maximum freedom to rearrange
the code, and it keeps the number of memory
references to a minimum. It is a general problem in
the C/C++ language that references through pointers
alias other references through pointers.

Not so good:

 m128 *dst, *src, c; int i, n;
 for (i = 0; i < n; i += 2) {
 dst[i] = _mm_add_ps(src[i], c);
 dst[i+1] = _mm_add_ps(src[i+1], c);
 }

Better:

 m128 *dst, *src, c, t1, t2; int i, n;
 for (i = 0; i < n; i+= 2) {
 t1 = _mm_add_ps(src[i], c);
 t2 = _mm_add_ps(src[i+1], c);
 dst[i] = t1;
 dst[i+1] = t2;
 }

5. Do not use the following intrinsics in loops:

 _mm_set_ps()
 _mm_setr_ps()
 _mm_set_ps1()
 _mm_set_ss()

These intrinsics are used for data initialization of
__m128 data types and do not correspond directly to
machine instructions. There are typically several
machine instructions needed to implement each of
these and therefore they may have a high run-time
cost. The best way to use these intrinsics is to set a
local __m128 variable to be the result produced by
the intrinsic prior to entering a loop, and then use the
local variable within the loop. The example in Figure
3 illustrates this.

6. For short loops, where loop unrolling is desired for
improved performance, unroll the loop in the source
code. Loop unrolling is a technique for replicating
the operations in a loop and reducing the number of
iterations correspondingly. For further information
and examples on loop unrolling, refer to reference
[8].

Not So Good:

 m128 *a, *b, *c; int i;
 for (i=0; i < 16; i++) {
 a[i] = _mm_add_ps(b[i], c[i]);
 }

Better:

 m128 *a, *b, *c, t1, t2; int i;
 for (i=0; i < 16; i+=2) {
 /* This loop has been unrolled twice */
 t1 = _mm_add_ps(b[i], c[i]);
 t2 = _mm_add_ps(b[i+1], c[i+1]);
 a[i] = t1;
 a[i+1] = t2;
 }

Vector Classes
The vector classes provide an easy, efficient way of using
the intrinsics in C++ code. The class, F32vec4, is defined
for the floating-point Streaming SIMD Extensions. The
I32vec2, I16vec4 and I8vec8 classes are defined for the
three different types of data used in MMXTM technology
(char, short, and int). Each of these are abstractions of
the __m64 and __m128 data types and the intrinsics
supported for them. The implementation for these classes
is provided with the Intel C/C++ Compiler in the ivec.h
(integer SIMD) and fvec.h (float SIMD) header files. The
member functions are overloads of the basic operators,
like *, +, -, /, square root, and comparisons. Users may
redefine and extend the classes to their own liking.

The example in Figure 4 shows the encoding of the triad
function using the F32vec4 class.

#define VECTOR_SIZE 4

__declspec(align(16)) float xa[ARRAY_SIZE],

xb[ARRAY_SIZE], xc[ARRAY_SIZE];

float q;

void do_fvec_triad() {

 F32vec4 q_xmm = (q, q, q, q);

 F32vec4 * xa_xmm = (F32vec4 *) & xa;

 F32vec4 * xb_xmm = (F32vec4 *) & xb;
 F32vec4 * xc_xmm = (F32vec4 *) & xc;

for (int j = 0;

j < (ARRAY_SIZE/VECTOR_SIZE); j++) {
xa_xmm[j] = xb_xmm[j] +

q_xmm * xc_xmm[j];

 }

}

Figure 4: Vector class encoding of the triad loop

Intel Technology Journal Q2, 1999

Using the VTuneTM Performance Enhancement Environment
for the Pentium® III Processor’s Streaming SIMD Extensions

6

Note the following when using the vector classes:

1. There are several constructors defined to allow
constants, variables, or pointered data (for example,
arrays) to be converted to an SIMD class object. In
the example in this figure, we used the broadcast or
replication constructor to load the scalar q_xmm . To
keep constructor usage and memory references to a
minimum, we coerced the input global arrays to
pointers to F32vec4 objects for use in the loop.

2. Since we cast the arrays of floats to be pointers to
F32vec4 objects (xa_xmm, xb_xmm, xc_xmm), the
memory references in the loop are to arrays of
F32vec4 objects, where each object is a __m128 type.
Therefore, we iterate over individual F32vec4 objects
so we have to keep the loop index increment set to 1.
We then changed the loop exit condition to be the
original array size divided by the vector size to reflect
the compressed operations.

The vector classes provide a very clean implementation of
the SIMD code. Since the classes contain overloaded
operators for the most common operations, a programmer
can redefine float data types to be the F32vec4 classes and
get the benefit of the Streaming SIMD Extensions
everywhere the class is used, with minimal program
changes.

Vectorization
The final method of support for SIMD coding in the Intel
C/C++ Compiler is through vectorization. This is where
the compiler attempts to generate the appropriate SIMD
code for a given array operation within a loop with some
hints from the programmer. The hints are in the form of
#pragma’s in C or C++, and/or command-line switches
that guide the compiler. There are a number of each, so
the reader is advised to consult the Intel C/C++ Compiler
User’s Guide, [2], for more details. The most commonly
used hints are given in Figures 5, 6, and 7.

#define VECTOR_SIZE 4

__declspec(align(16)) floatxa[ARRAY_SIZE],

xb[ARRAY_SIZE], xc[ARRAY_SIZE];

float q;

void do_vector_triad() {

#pragma vector aligned
for (int j = 0; j < ARRAY_SIZE; j++) {

xa[j] = xb[j] + q *xc[j];

 }

}

Figure 5: Compiler vectorization of the triad loop

The example in Figure 5 is easily vectorized by the
compiler. The only hint needed is the #pragma vector
aligned. This tells the compiler that the data are properly
aligned so that the aligned data move instructions can be
used. Without this, or its corresponding command-line
option, the compiler would have to generate the unaligned
move instructions, causing a significant loss of
performance compared to the aligned instructions.

In Figure 6, we show an example of a slightly different
version of the triad loop where the data are passed into the
routine as parameters.

#define
VECTOR_SIZE 4__declspec(align(16))
float

xa[ARRAY_SIZE
],xb[ARRAY_SIZE]

,
xc[ARRAY_SIZE
];float

q;
void do_vector_triad(float

*a, float
*b, float *c)

{#pragma vector
alignedfor (int j = 0; j < ARRAY_SIZE;

j++) {a[j] = b[j] + q *
c[j]; }

}

Figure 6: Pointer version of the triad loop

Passing the arrays into the loop as shown in Figure 6
greatly impacts the vectorizability of the routine. This is
because the compiler is now looking at pointered data
instead of simple array references. As a result, the
compiler must now assume that there are conflicts in the
memory references in the loop where data written on one
iteration may be used on the next, preventing a
straightforward SIMD encoding of the loop. This is due
to pointer aliasing. For example, to ensure program
correctness, the compiler may assume that xa may be
pointing to xb[1], causing the value stored into xa[j] on
every iteration to be reused as xb[j] on each subsequent
iteration.

In order for the compiler to not have to make such
assumptions, a new keyword, restrict, has been
implemented. It tells the compiler that the data to which a
pointer points is only accessible via that pointer variable
in the current scope. Figure 7 shows its use.

Intel Technology Journal Q2, 1999

Using the VTuneTM Performance Enhancement Environment
for the Pentium® III Processor’s Streaming SIMD Extensions

7

#define VECTOR_SIZE 4

__declspec(align(16)) floatxa[ARRAY_SIZE],

xb[ARRAY_SIZE],xc[ARRAY_SIZE];

float q;

void do_vector_triad(float *restrict a,

float *restrict b,

float *restrict c) {

#pragma vector aligned

for (int j = 0; j < ARRAY_SIZE; j++) {

a[j] = b[j] + q * c[j];

 }

}

Figure 7: restrict keyword usage

Now the compiler is allowed to assume that each pointer
reference is to different arrays or memory locations.

Vectorization Restrictions
The following are restrictions on the use of vectorization:

1. Loops must be countable; in other words, the
iteration count must not change within the loop:

Good: for (i=0; i<N; i++) …

 while (i<100) { … i = i + 2; … }

Bad: while (p) { … p=p->next …}

2. The body of a loop must consist of a single basic-
block. In other words, there can be no if-statements
and no internal branching. The loop must also have a
single entry and exit.

3. The supported datatypes are float, char, short, and
int. Do not mix these data types within the loop.

4. Alignment for Streaming SIMD Extensions data is up
to the user. Use the #pragma vector aligned on a
loop-by-loop basis, or the –Qvec_alignment2
command-line option to state that all vectorizable
data are properly aligned. If vectorized data are not
aligned (and cannot be aligned), the compiler will use
movups, the unaligned memory reference instruction.

5. The data accesses in the loop must be single-unit
strides, or accessed contiguously in increments of
one.

6. Assignments to scalar data are not allowed. The
scalar memory references must be on the right-hand
side of the equal sign.

7. There can be no function calls in the loop. This
includes the intrinsic/transcendental calls like sqrt()
or cos().

The compiler generates messages stating if a loop was
vectorized and gives a reason if it was not. This is done
through the –Qvec_verbose{0,1,2,3} compiler switch,
where the number indicates the level of detail in the
messages. Although the restrictions above limit the types
of loops that may be vectorized, a user can use the
vectorization messages to coerce the compiler into
vectorizing a loop. It may take a few iterations of
compile, look at the messages, restructure the loop, add
pragmas, and re-compile. However, this can be
significantly less time consuming than recoding the loop
in intrinsics.

Performance Considerations
The difference in performance between the methods is
negligible. The vector class implementation can
sometimes be slightly degraded compared to the intrinsics
because of C++ overhead. However, this should be rare.
The performance of each these methods is typically
within 10%-15% of the performance of optimized hand-
coded assembly. This difference, however, is more than
offset by the ease of coding, maintainability, and
portability using C or C++.

VTUNE™ PERFORMANCE ANALYZER
The VTune™ Performance Analyzer (or VTune
Analyzer) is a tool that gives a user a graphical view of
the performance of an application via a number of
different methods, and it gives feedback on tuning the
applications. The following is a brief description of each
of these methods.

Event-Based Sampling
Event-based sampling is the most commonly used method
for analyzing application performance with the VTune
Analyzer. It allows the user to select any of a number of
different events implemented in the processor. These
events allow the user to hone in on specific aspects of an
application’s use of the processor from clocktick events or
time, to specific types of operations that retired, to
penalties that occur.

The processor is sampled after a specified number of the
chosen events have occurred and the program counter
address is noted. The analyzer then reports where in the
user’s program, or any other program running on the
system, the events occurred.

The analyzer displays this information in a Modules
report. This is a bar graph showing the occurrences of the
events for all applications and modules making use of the

Intel Technology Journal Q2, 1999

Using the VTuneTM Performance Enhancement Environment
for the Pentium® III Processor’s Streaming SIMD Extensions

8

processor, and in which events were collected. The
Hotspots report is similar; it shows the same information
for a single module.

For Streaming SIMD Extensions performance tuning, use
event-based sampling with the Clockticks and Floating-
point operations retired events and the event ratios, an
indication of where the most time is spent performing
floating-point operations is given. In this way likely

candidates for Streaming SIMD Extensions coding can be
found.

Double-clicking on a hotspot bar takes one to the source
code corresponding to the occurrence of the events in the
graph. Figure 8 shows the Modules and Hotspots report
for a simple application using the clockticks event.
Figure 9 shows the source code view for an application
that shows both the Clockticks and Floating-point
operations retired event occurrences.

Figure 8: Modules and Hotspots report

Intel Technology Journal Q2, 1999

Using the VTuneTM Performance Enhancement Environment
for the Pentium® III Processor’s Streaming SIMD Extensions

9

Figure 9: Source code view

Code Coach
The Analyzer’s Code Coach analyzes the source code
using some information from the compiler and offers
advice on ways to tune the application. The advice ranges
from tips on restructuring search algorithms, to
unnecessary casts or conversions of data types, to advice

on using the intrinsics or Performance Library Suite to
take advantage of the Streaming SIMD Extensions or
MMXTM technology.

The advice is obtained by double-clicking on a statement
in a source code view. Figure 10 shows the Coach advice
for the do_c_triad() function used in Figure 1.

Figure 10: Streaming SIMD Extensions Code Coach advice

Intel Technology Journal Q2, 1999

Using the VTuneTM Performance Enhancement Environment
for the Pentium® III Processor’s Streaming SIMD Extensions

10

Dynamic Analysis
Dynamic analysis uses the same software simulator the
Pentium® II and Pentium® III processor architects used in
designing the processors. It is useful for honing in on
specific micro-architectural information for hotspots
identified by event-based sampling such as penalties and

retirement time. It is especially useful for analyzing
branch mispredictions and cache utilization. The basic
method of using dynamic analysis is to select a region of
code to be simulated. Figure 11 shows the dynamic
analysis results for the do_intrin_triad() function in
Figure 3.

Figure 11: Dynamic analysis results

The dynamic analysis results shown in Figure 11 indicates
that there are a lot of cache misses potentially impacting
performance. This suggests the loop is a candidate for
using the prefetching or streaming store instructions of the
Streaming SIMD Extensions.

CONCLUSION
We have shown several unique methods of taking
advantage of the performance capabilities of the
Streaming SIMD Extensions of the Pentium® III
processor. The performance of each method is very close
to that of optimized hand-coded assembly, but the
development costs associated with these methods are
significantly lower than those of assembly programming.
There are several other tools provided with the VTuneTM

Performance Enhancement Environment that are not
described in this article. These are the Intel®
Performance Library Suite, the Intel® Architecture
Performance Training Center (please see reference [7]),
and the Register Viewing Tool. Each of these tools

provides further performance improvement capabilities
and invaluable information on the use of the Streaming
SIMD Extensions. Combined, these tools make the
VTune Performance Enhancement Environment, Version
4.0, the definitive toolkit for Streaming SIMD Extensions
programming.

REFERENCES
The following documents are referenced in this paper, and
they provide background or supporting information for
understanding the topics presented.

1. "AP-589: Software Conventions for the Streaming
SIMD Extensions" at
http://developer.intel.com/vtune/cbts/strmsimd/589do
wn.htm. Order No. 243873-001, Intel Corporation,
1998.

2. Intel® C/C++ Compiler User's Guide, Order No.
664711-007, Intel Corporation, 1998.

Intel Technology Journal Q2, 1999

Using the VTuneTM Performance Enhancement Environment
for the Pentium® III Processor’s Streaming SIMD Extensions

11

3. C++ Class Libraries for SIMD Operations, Order
No. 693500-002, Intel Corporation, 1998.

4. "AP-814: Software Development Strategies for the
Streaming SIMD Extensions" at
http://developer.intel.com/vtune/cbts/strmsimd/814do
wn.htm. Order No. 243648-001, Intel Corporation,
1998.

5. “AP-833: Data Alignment and Programming Issues
for the Streaming SIMD Extensions with the Intel®
C/C++ Compiler” at
http://developer.intel.com/vtune/cbts/strmsimd/833do
wn.htm. Order No. 243872-001, Intel Corporation,
1998.

6. “Intel® Architecture Software Developer’s Manual,
Volume 2: Instruction Set Reference” at
http://developer.intel.com/design/pentiumii/manuals/
243191.htm. Order No. 243191, Intel Corporation,
1999.

7. Intel Architecture Training Center at
http://developer.intel.com/vtune/cbts/contents.htm,
Intel Corporation, 1999.

8. Intel Architecture Optimization Reference Manual,
Order No. 730795-001, Intel Corporation, 1999.

AUTHOR’S BIOGRAPHY
Joe Wolf is a staff software engineer with the Platform
Tools Operation in the Microprocessor Products Group.
He has been with Intel since 1996 and has worked in
compiler development, technical marketing, and customer
support. Before joining Intel, he was a compiler
developer for nine years working in the supercomputing
industry, focusing on vector and multi-processing and
code generation. He received an M.S. degree in computer
science from California Polytechnic State University, San
Luis Obispo in 1987, and a B.S. degree in Management
Information Systems from the University of Arizona in
1984. His e-mail is joe.wolf@intel.com.

