
18 1094-7167/02/$17.00 © 2002 IEEE IEEE INTELLIGENT SYSTEMS

I n t e l l i g e n t W e b S e r v i c e s

An Information
Integration Framework
for E-Commerce
Ilario Benetti, Domenico Beneventano, Sonia Bergamaschi, Francesco Guerra, and
Maurizio Vincini, Università di Modena e Reggio Emilia

T he Web has transformed electronic information systems from single, isolated nodes

into a worldwide network of information exchange and business transactions. In

this context, companies have equipped themselves with high-capacity storage systems that

contain data in several formats. The problems faced by these companies often emerge

because the storage systems lack structural and appli-
cation homogeneity in addition to a common ontol-
ogy. The semantic differences generated by a lack of
consistent ontology can lead to conflicts that range
from simple name contradictions (when companies
use different names to indicate the same data con-
cept) to structural incompatibilities (when compa-
nies use different models to represent the same infor-
mation types).

One of the main challenges for e-commerce infra-
structure designers is information sharing and retriev-
ing data from different sources to obtain an integrated
view that can overcome any contradictions or redun-
dancies. Virtual catalogs can help overcome this chal-
lenge because they act as instruments to retrieve infor-
mation dynamically from multiple catalogs and
present unified product data to customers. Instead of
having to interact with multiple heterogeneous cata-
logs, customers can instead interact with a virtual cat-
alog in a straightforward, uniform manner.

This article presents a virtual catalog project called
Momis (mediator environment for multiple informa-
tion sources). Momis is a mediator-based system for
information extraction and integration that works with
structured and semistructured data sources.1,2 Momis
includes a component called the SI-Designer for semi-
automatically integrating the schemas of heteroge-
neous data sources, such as relational, object, XML,
or semistructured sources. Starting from local source
descriptions, the Global Schema Builder generates an
integrated view of all data sources and expresses those
views using XML. Momis lets you use the infra-
structure with other open integration information sys-

tems by simply interchanging XML data files.
Momis creates XML global schema using differ-

ent stages, first by creating a common thesaurus of
intra and interschema relationships. Momis extracts
the intraschema relationships by using inference
techniques, then shares these relationships in the
common thesaurus. After this initial phase, Momis
enriches the common thesaurus with interschema
relationships obtained using the lexical WordNet sys-
tem (www.cogsci.princeton.edu/wn), which identi-
fies the affinities between interschema concepts on
the basis of their lexicon meaning. Momis also
enriches the common thesaurus using the Artemis
system,3 which evaluates structural affinities among
interschema concepts.

System architecture
Like other integration projects, Momis relies on a

semantic approach based on the conceptual schema—
or metadata—of the information sources, and on the
I3 architecture4 (see Figure 1). The system consists
of the following functional elements that communi-
cate using the Corba standard: a common data
model, data wrappers, and a mediator.

Momis defines the common data model, ODMI3,
according to the ODLI3 language, which describes
source schemas for integration purposes. Momis
treats ODMI3 and ODLI3 as subsets of the corre-
sponding languages in the ODMG specification—
according to the proposal for a standard mediator lan-
guage developed by the I3-POB working group.5 In
addition, ODLI3 introduces new constructors to sup-
port the semantic integration process. Momis uses

One of the main

challenges for

e-commerce

infrastructure designers

is to retrieve data from

different sources and

create a unified view

that overcomes

contradictions and

redundancies. Virtual

catalogs, such as the

Momis project, can help

synthesize data and

present it in a unified

manner to the customer.

the second functional element, data wrappers,
over each piece of source data to translate
metadata descriptions of the source into com-
mon ODLI3 representations and to translate a
global query expressed in OQLI3—which is
a subset of OQL-ODMG—into queries
expressed in the source languages. Wrappers
then serve to export the resulting data set.

The third functional element, the media-
tor, consists of two modules: the global
schema builder and the query manager. The
global schema builder processes and inte-
grates ODLI3 descriptions received from
wrappers to derive the information source
representations. The query manager module
performs query processing and optimization,
generates OQLI3 subqueries for the sources,
and synthesizes a unified global answer for
the user.

Momis creates an integrated view of all
sources—called the global virtual view—and
performs revision and validation of the vari-
ous kinds of knowledge used for the integra-
tion. To accomplish this, Momis combines
the reasoning capabilities of description log-
ics with affinity-based clustering techniques.
Momis then exploits a common ontology for
the sources constructed using lexical knowl-
edge derived from WordNet and validated
integration knowledge. Momis expresses the
global virtual view using XML to guarantee
interoperability with other open integration
systems.

The user application interacts with Momis
by straightforwardly querying the global
schema using the OQLI3 language. The query
manager performs this phase by generating
the OQLI3 queries for the wrappers. Using
mapping-description techniques, the query
manager generates the queries automatically
by formulating and optimizing the generic
OQLI3 queries into different subqueries, one
for each involved local data source, and syn-
thesizes a unified global answer.

ODLI3 language
For a semantically rich representation of

source schemas and object patterns, Momis
uses an object-oriented language called ODLI3.
ODLI3 is close to the ODL language because it
is source-independent and can be used to
describe heterogeneous schemas of structured
and semistructured data sources. ODLI3

extends ODL with intensional and extensional
relationships expressing intra- and interschema
knowledge for the source schemas.

You can specify the following relation-
ships in ODLI3:

• SYN (synonym of) is a relationship defined
between two terms ti and tj (where ti ≠ tj) that
are synonyms in every involved source. For
example, you can use ti and tj in every source
to denote a certain concept.

• BT (broader terms) is a relationship defined
between two terms ti and tj, where ti has a
broader, more general meaning than tj. BT

relationships are not symmetric. The
opposite of BT is NT (narrower terms).

• RT (related terms) is a relationship defined
between two terms ti and tj that are gener-
ally used together in the same context in
the considered sources.

An intensional relationship has no impli-
cations on the extension or compatibility of
the structure of the two involved classes. You
can strengthen the intensional relationship
syn, bt, and nt between two classes C1 and
C2 by establishing that they are also exten-
sional relationships. Consequently, you can
define the following extensional relation-

ships in ODLI3:

• C1 SYNext C2 means that the instances of C1

are the same as C2.
• C1 BText C2 means that the instances of C1

are a superset of the instances of C2.
• C1 NText C2 means that the instances of C1

are a subset of the instances of C2.
• C1 DISJext C2 means that the instances of C1

are disjoint from the instances of C2.

We assume a default overlap relationships
among two classes if no extensional relation-
ship is specified. Moreover, extensional rela-
tionships constrain the structure of the two
classes C1 and C2. If an extensional relation-
ship C1 NTextC2 is issued, we enforce a strict
inheritance between C1 and C2 for the com-
mon attributes. Both C1 and C2 might have
additional attributes as we adopt usual descrip-
tion logics semantics (open world semantics).

To illustrate how Momis works, we use
two examples involving different data

JANUARY/FEBRUARY 2002 computer.org/intelligent 19

Database

Wrapper

Database

Wrapper

Relational
source

Wrapper

• Slim WordNet interaction
• Sim ODB-Tools validation
• Tunim Map. table tuning

Query manager

Global schema
metadata repository

WordNet

XML
source

Wrapper

Object
source

Wrapper

Generic
source

Wrapper

User application

User interaction

CORBA interaction

CORBA object

GUI

User
Software tools

Integration designer

Creates

SI-Designer

Global schema builder

Service level

Momis mediator

Data level

Artemis

ODB-Tools

Figure 1. The Momis architecture is divided into three levels: a data level to manage
the information sources, a mediator level to perform the integration of the involved
sources by interacting with integration designer and to execute the global query
processing, and a user level to interact with the designer.

sources that collect information about vehi-
cles. The first data source, shown in Figure 2,
is the Fiat catalog. It contains semistructured
XML information. The second data source,
shown in Figure 3, is the Volkswagen data-
base, a relational database containing infor-
mation about Volkswagens.

Integration process
The Momis approach generates a common

thesaurus, uses affinity analysis to analyze
classes, then clusters the classes and gener-
ates the mediated schema. As mentioned
above, the common thesaurus is a set of ter-
minological intensional and extensional rela-
tionships that describe intra- and interschema
knowledge about classes and attributes of the
source schemas. Momis uses relationships in
the common thesaurus to evaluate the level
of affinity between classes’ intra- and inter-
sources. We introduced the concept of affin-
ity to formalize the kind of relationships that
can occur between classes.

Momis groups classes (that have affinity
in different sources) together in clusters using
hierarchical clustering techniques. The goal
is to identify the classes that Momis will inte-
grate. Momis defines a class for each clus-
ter; this class becomes representative of all
the classes belonging to the cluster. The
global mediated schema for the analyzed
source data consists of all the classes derived
from clusters and is the basis for posing
queries against the sources.

Extracting lexicon relationships
WordNet, a lexical database developed by

the Princeton University cognitive science

lab, was inspired by current psycholinguistic
lexical memory theories. Many regard Word-
Net as the most important research resource
for computational linguistics, textual analy-
sis, and other related areas. The WordNet
database contains 64,089 lemma organized
in 99,757 synonym sets. WordNet’s starting
point for lexical semantics comes from a con-
ventional association between the forms of
the words—that is, the way in which the
words are pronounced or written—and the
concept or meaning they express. These asso-
ciations, which are of the many-to-many kind,
give rise to several properties, including syn-
onymy, polysemy, and so forth.

Synonymy is the property of a concept or
meaning that you can express with two or
more words. In WordNet, you call a synonym
group a synset. Only one synset exists for
each concept or meaning. In WordNet, you
indicate a synset with s, while S indicates the
synsets set. In contrast to synonymy, poly-
semy denotes the property of a single word
that has two or more meanings. WordNet
synthesizes the correspondence between the
form of the words and their meaning in the
lexical matrix M, in which the words’mean-
ing are reported in rows (where each row rep-
resents a synset) and columns that represent
the form of the words.

In Momis, we characterize each matrix ele-
ment as e = (f, m), where f is the base form
and m is the meaning counter. For example,
name,1 refers to the language unit by which a
person is known, whereas name,3 refers to a
person’s reputation. In the remainder of this
article, we indicate the base form and the
meaning counter of an element e = (f, m) with

e.f and e.m. An element of the M matrix can
be null or indefinite. Because Momis only
associates one M row with an s, we use s ∈S
as an M-row indicator. In other words, the
non-null elements of the M[s] row represent
each s element. In the same way, because only
one M column is associated with a base form,
we use the base forms as an M columns index.

Semantic relationships between
schema terms

The concept term lets us associate a defin-
ition with each class or attribute name. We
form a term in Momis with the t = (n, e) cou-
ple, where n indicates a class or attribute
name and e indicates a definition. We qualify
a class or attribute name n by the name of the
source schema to which the class belongs,
as in source_name.class_name. We qualify an
attribute name with the name of the class to
which it belongs, as in source_name.class_name.
attribute_name.

These relationships between synsets form
the starting point for Momis to define seman-
tic relations among words. Some of these rela-
tions exist between single words, while oth-
ers exist between synsets. In this context, we
use the following relations between synsets:
synonymy, hypernymy, hyponymy, olonymy,
meronymy, and correlation. Correlation is a
relation that links two synsets sharing the
same hypernym—that is, the same father.
Because hyponymy and meronymy are in-
verse relations to hypernymy and olonymy,
we represent the set of relations among synsets
with the following equation: W = {Synonymy,
Hypernymy, Olonymy, Correlation}.

Given the synset set S and the relations set
W, we define the function φ: S�W → 2S for
each synset s as the set of synsets associated
through the r ∈W relation, as in the follow-
ing equation:

φ (s,r) = {s′| s′∈S, r ∈W, 〈s′rs〉holds}

Given a synset S set and a set I of words S,
we define the function H: S →2I on the basis
of the lexical matrix M as in the following
equation:

H(s) = {n ∈N | ∃t (n,e), M [s][e.ƒ] = t.n}

We can therefore obtain the relations among
the words on the basis of relations existing
among the synsets that contain those words.
Given a set of words I, we can define the set
of relations among words R, R ⊆ I × W × I as
follows:

20 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n t e l l i g e n t W e b S e r v i c e s

Vehicle(name, length, width, height)
Motor(cod_m, type, compression_ratio, KW, lubrication, emission)
Fuel_Consumption(name, cod_m, drive_trains, city_km_l, highway_km_l)
Model(name, cod_m, tires, steering, price)

Figure 3. Another example of a data source that you can manage with the Momis
system. In this case, it is a relational database that stores information about the
Volkswagen.

<!ELEMENT fiat(car*)>
<!ELEMENT car(name, engine, dimensions, tires, performance, price)>
<!ELEMENT engine(name, cylinders?, layout?, capacity?, compression_ratio?, power_w, fuel_system)>
<!ELEMENT dimensions(length, width, height, luggage_capacity)>
<!ELEMENT performance (urban_consumption, combined_consumption, speed)>
<!ELEMENT name (#pcdata)>...

Figure 2. By using the Momis system, the user can integrate the XML data source. This
DTD represents the schema of a source that stores information about the Fiat.

R={〈tirtj〉|r∈W,titj ∈Ι,∃(s):ti∈Η(s),tj∈φ(s,r), ti≠tj}

The relationships formed from the interac-
tion with WordNet become semantic rela-
tions inserted in Momis’ common thesaurus
according to the following flow: synonymy
⇒ SYN, hypernymy ⇒ BT, olonymy ⇒ RT,
and correlation ⇒ RT.

Using these base principles, we developed
an algorithm that uses the terms related to the
schemata to be integrated as input and the
detected semantic relations as output:

Input I ={ti | ti.n ∈N}
Output R ={〈tirtj〉, r ∈{SYN, BT, RT}}

Starting from the schema to be integrated,

Momis creates the I set. For example, given
a name n, Momis chooses the associated
words. This choice consists of choosing both
a base form and a meaning.

For example, as shown in Figure 4, by
selecting the car.name attribute, we obtain the
name base form from the morphologic proces-
sor. If Momis does not find a base form, if there
is an ambiguity, or if the base form is not sat-
isfactory, you can introduce a base form man-
ually. You can relate a name to one, more than
one, or even no meaning at all. You might
choose to have a name not related to any mean-
ing for several reasons: because the concept is
too complex and it cannot be expressed with
one word; because the concept belongs to a
generic category and is more closely related to
the whole; because the concept is already a
substitute key and does not add any knowl-
edge; or because the concept is used as a for-
eign key and has already been used to extract
relations from the schema structure.

The designer selects one or more mean-
ings from those found in WordNet starting
from the base form. All words related to the
same name share the same base form. Figure
4 illustrates how WordNet obtains all 15
meanings related to the name base form. By
selecting them all—that is, by considering
15 words for the car.name attribute—we
would obtain results not suitable for the
examined context. We show some of them in
the following example:

〈fiat.car.name SYN vw.fuel_consumption.name〉
〈fiat.car.name SYN fiat.engine.name〉

Note that some of these relationships can
look quite strange but they are true in some

particular context. The problem is how to
resolve the meaning ambiguity so that you
can supply a context-suitable couple (base
form and meaning counter) to WordNet for
each source concept. To help you choose the
right meaning for each couple, WordNet indi-
cates a syntactic category. This semiauto-
matic approach helps reduce the task’s com-
plexity. In fact, you can divide a difficult
problem into several more easy ones and
choose each term’s meaning from a list.

In practice, this is an 80–20 problem. That
is, you can work out 80 percent of the words in
20 percent of the time, while the remaining 20
percent occupies 80 percent of the time. To
speed up the 80 percent part, Momis uses a
cache of the already selected couple. In Figure
5, the symbol ⇒ denotes the meaning already
chosen by the designer for the name concept.

The SI-Designer can show the generaliza-
tion hierarchy of the meanings to help you
make the most difficult choices. For exam-
ple, in Figure 5, “engine#2” inherits only
from “causal_agent...” and “engine#3” from
“wheeled_vehicle” and “concern railway
contest,” whereas “engine#1” inherits also
from “machine” and “motor#1.” Thus we
select “engine#1.” At the end of this phase,
the SI-Designer shows the relationships
derived using WordNet (see Figure 6). At this
point, you can delete any of these relation-
ships or add new ones.

The common thesaurus
In the common thesaurus, we express inter-

schema knowledge in the form of termino-
logical relationships (such as SYN, BT, NT, and
RT) and extensional relationships (such as
SYNext, BText, and NText) between classes or
attribute names. Momis constructs the com-
mon thesaurus through an incremental process
during which relationships are added in the
following order: schema-derived relationships
not modified by the user, lexicon-derived rela-
tionships, user-supplied relationships, and
inferred relationships. You can refine lexicon-
derived and user-supplied relationships at each
step of the integration process.

Momis extracts these relationships using
the Source Lessical Integration Module
(SLIM) by analyzing each ODL schema sep-
arately. In particular, Momis extracts each
intraschema RT relationship from the speci-
fication of foreign keys in relational source
schemas. When a foreign key is also a primary
key both in the original and in the referenced
relation, Momis extracts a BT–NT relationship.

The SLIM module extracts the intensional

JANUARY/FEBRUARY 2002 computer.org/intelligent 21

Figure 4. By using a graphical interface within SI-Designer, you can select the correct
meaning of each schema field. By querying the WordNet lexical system, the graphical
interface suggests a list of meanings.

Figure 5. An example of a hypernymy
hierarchy of the term engine.

entity, something

object,
physical_object

instrumentality,
instrumentation

artifact, artefact

locomotive, engine#3,
locomotive_engine, railway_locomotive

wheeled_vehicle

container

vehicle#1 machine

motor#1

engine#1

engine#2

causal_agent, cause,
causal_agency

conveyance,
transport

device

entity, something

relationships by analyzing different source
schemas according to the WordNet-supplied
ontology. You can supply intensional and
extensional relationships to capture specific
domain knowledge about the source
schemata, such as in the Volkswagen source
data in which the model entity is a special-
ization of the vehicle entity. You cannot
extract this relationship automatically using
both the lexical and the structural approaches.
Because of this we supplied the following
relationship: <VW.Model NT fiat.car>.

This is a crucial operation because the new
relationships are required to belong to the
common thesaurus and will be used to gen-
erate the global virtual view. This means that
if you insert a nonsense or incorrect rela-
tionship, the subsequent integration process
can produce an incorrect global schema. Our
system helps you detect incorrect relation-
ships by performing a validation step with
ODB-Tools. Validation is based on the com-
patibility of domains associated with attrib-
utes. In this way, you can determine valid and
invalid terminological relationships. In par-
ticular, let at = <nt, dt> and aq = <nq, dq> be
two attributes with a name and a domain,
respectively. Momis executes the following
checks on terminological relationships
defined for attribute names in the thesaurus:

• <nt SYN nq>: The relationship is valid if dt

and dq are equivalent or if one is a spe-
cialization of the other.

• < nt BT nq>: The relationship is valid if dt

contains or is equivalent to dq.
• < nt NT nq>: The relationship is valid if dt

is contained in or is equivalent to dq.

When you define an attribute domain dt(dq)
using the union constructor, Momis recog-
nizes a valid relationship if at least one
domain dt(dq) is compatible with dq(dt).
Momis infers intensional and extensional
new relationships by exploiting ODL’s infer-
ence capabilities. In the sample domain
schema, ODL infers the following relation-
ships:

<VW.Model RT fiat.dimensions>
<VW.Model NT fiat.engine>
<VW.motor NT fiat.car>

Momis adds these relationships to the com-
mon thesaurus (see Figure 7) and considers
them in the subsequent phase of constructing
global schema. Terminological relationships
defined in each step carry over into the inten-

22 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n t e l l i g e n t W e b S e r v i c e s

Figure 7. An example of the common thesaurus, which is a set of terminological
intensional and extensional relationships that describe intra- and interschema
knowledge about classes and attributes of the source schemas.

Figure 6. An example of interschema relationships extracted by SLIM.

sional level by definition. Furthermore, in
each of the above steps, you can strengthen a
terminological relationship SYN, BT, and NT

between two classes C1 and C2 by establish-
ing that they hold up at the extensional level.

Specifying extensional relationships enables
subsumption computation and consistency
checking between the two classes C1 and C2.
The inferred relationships shown in this arti-
cle are simple. You can compute them using
an inheritance mechanism. On the other hand,
you need description logic inferences to com-
pute subsumption and to check consistency in
more complex schemata and in the presence
of extensional interschema relationships.

Clustering ODLI3 classes
Providing an integrated representation of

heterogeneous information requires that you
determine whether the source schemas con-
tain semantically related ODLI3 classes. We
exploit the knowledge in the common the-
saurus to assess the level of semantic affinity
between ODLI3 classes. For this purpose,
Momis evaluates a set of affinity coefficients
(numerical values in the range [0, 1]) for all
possible pairs of ODLI3 classes based on the
intensional relationships derived from the
common thesaurus. Momis assigns a strength
to each type of intensional relationship.

Affinity coefficients determine the degree
of semantic relationship between two classes
based on their names (name affinity coefficient)
and their attributes (structural affinity coeffi-
cient). Two classes have name affinity if they
are connected through a path in the common
thesaurus: Momis obtains their level of affin-
ity as the product of the intensional relation-
ship strengths that connect the two classes
involved. We define structural affinity between
two classes by using Dice’s function, which
returns an affinity value in the range [0, 1] pro-
portional to the number of attributes that have
affinity in the considered classes. A compre-
hensive affinity value, called a global affinity
coefficient, is the linear combination of the
name and structural affinity coefficients.

In Momis, a hierarchical cluster algorithm
uses global affinity coefficients to classify
ODLI3 classes according to their degree of
affinity. The output of the clustering proce-
dure is an affinity tree, where the classes
themselves are the leaves and intermediate
nodes have an associated affinity value that
helps define the classes in the corresponding
cluster. The Artemis tool environment helps
perform the affinity-based evaluation and
clustering procedures.3

Global class and mapping tables
Starting from clusters generated at the pre-

vious stage, we define a global class for each
cluster that represents the mediated view of
all the cluster’s classes. For each global class,
Momis provides a set of global attributes and,
for each of these attributes, the intensional
mappings of the local attributes—that is, the
attributes of the local classes belonging to the
cluster. Momis obtains the global attributes in
two steps: Union of the attributes of all the
classes belonging to the cluster, and fusion of
the similar attributes. In the second step,
Momis eliminates redundancies semi–auto-
matically by taking into account the relation-
ships stored in the common thesaurus.

For each global class, Momis generates a
persistent mapping table that stores all the
intensional mappings. The table’s columns
represent the set of the local classes that
belong to the cluster; its rows represent the
global attributes. An element MT[L][ag]
represents how Momis maps the global
attribute ag into the local class L. Each ele-
ment MT[L][ag] of the table can assume one
of the following values:

• MT[L][ag] = al: The global attribute ag
maps into the al local attribute.

• MT[L][ag] = al1 and al2 and … and aln:
We use this formula when the value of the
ag attribute is the concatenation of the val-
ues assumed by a set of attributes al that
belong to the same local class L.

• MT[L][ag] = case of al const1: al1,
constn: aln: Momis uses this formula
when the ag global attribute can assume
one value in a set of ali belonging to the
same local class L and when the value
choice depends on a third attribute al
from the same class.

• MT[L][ag] = const: In this case, a global
attribute value does not refer to any local
attribute and a constant value is set by the
designer.

• MT[L][ag] = null: In this case, no attribute
of the class L corresponds to the global
attribute ag.

SI-Designer framework
As described above, the integration

process consists of various steps actually
implemented in separate modules. SI-
Designer is a framework that helps unify the
overall integration process. SI-Designer
gives you a graphical interface to obtain the
global virtual view, relating to each integra-
tion step a specific interaction with a soft-

JANUARY/FEBRUARY 2002 computer.org/intelligent 23

Figure 8. The Artemis module calculates the clusters that compose the Global Virtual
View. Through a graphical interface, you can improve the set of proposed clusters.

ware module. All the modules involved are
available as Corba objects and interact using
established IDL interfaces.

In particular, SI-Designer performs the
following steps:

• In the source acquisition phase, the user
selects the sources to be integrated. A
wrapper performs the translation from the
source description model into the ODLI3

description model.
• In the intensional relationship definition

phase, Momis embeds new relationships
into the common thesaurus. These new
relationships are either schema derived (by
interacting with ODB-Tools system), lex-
icon derived (by interacting with the
WordNet lexical database), or designer
supplied (by being added manually by the
designer).

• In the extensional relationship definition
phase, Momis defines the relationships by
interacting with the integration designer.
Momis exploits these relationships to
detect extensionally overlapping classes.

• In the clustering phase, based on the
knowledge stored in the common the-
saurus, Momis creates the global classes.
The designer may dynamically refine the
Artemis coefficients to improve the clus-
ters’s set. In our example (see Figure 8),
we obtain a cluster including car data con-
tained in the sources and a cluster for the
motor and engine information.

• In the mapping table tuning phase, the user
can modify or add attributes for each global
class generated in the previous phase.

In the final step of the integration process,
you export the global virtual view into an
XML DTD by adding the appropriate XML
tags to represent the mapping table relation-
ships. As mentioned above, by using XML
in defining the global virtual view, you can
then use Momis infrastructure with other
open integration information systems. In
addition, Momis translates the common the-
saurus into an XML file so you have a shared
ontology that different semantic ontology
languages can use.

Related research
Researchers have developed several pro-

jects based on a mediator architecture for het-
erogeneous information integration. The
most popular, the Tsimmis project,6 follows
a structural approach and uses a self-describ-
ing model to represent heterogeneous data

sources. The project uses the Mediator Spec-
ification Language to enforce source inte-
gration and uses pattern-matching techniques
to perform a predefined set of queries based
on a query template. You can only execute
predefined queries in Tsimmis, which means
you must perform a source modification
manually to change the mediator rules.

The Garlic project7 builds on a wrapper
architecture to describe the local source data
with an OO language, while the Sims pro-
ject8 proposes to create a global schema def-
inition by exploiting the use of description
logics (specifically, the Loom language) for
describing the information sources. The use
of a global schema allows the Garlic and
Sims projects to support all possible user
queries instead of a predefined subset.

The Information Manifold system9 pro-
vides a source-independent and query-
independent mediator. Its input schema is a
set of descriptions of the sources. Given a
query, the system creates a plan for answer-
ing the query using the underlying source
descriptions. The Information Manifold pro-
ject integrates algorithms to determine use-
ful information sources and to generate the
query plan. The Information Manifold sys-
tem largely requires that the designer define
the integrated schema manually.

Another approach based on description
logics and ontologies is the Observer system,
which supports semantic interoperation and
formulation of rich queries over distributed
information repositories that use different
vocabularies.10 The idea here is that each
repository has its own ontology. The Observer
system specifies inter-ontology relationships
declaratively (using description logics) in an
inter-ontology manager module to handle
vocabulary heterogeneities for query pro-

cessing. The focus here is on representation of
interontology relationships to solve vocabu-
lary problems at the intensional and exten-
sional levels rather than on using these rela-
tionships for deriving an integrated virtual
view of the underlying information sources.
In our approach, we try to extract as much
information as possible from source descrip-
tions and from WordNet. In this article, we’ve
shown how you can use this information for
affinity evaluation and integration purposes.

The analysis, discovery, and representation
of interschema properties is another critical
aspect of the integration process. The Dike
system11 describes semiautomatic techniques
for discovering synonyms, homonyms and
object inclusion relationships from database
schemas. The Dike system also presents a
semiautomatic algorithm for integrating and
abstracting database schemes.

We are developing Momis’ query
manager component with query-

optimization and answer-composition func-
tionality based on extensional axioms and
integrity constraints.12 Researchers have stud-
ied this approach actively in recent years and
know these techniques as query rewriting and
query answering. One of the original aspects
of the Momis query manager consists of
employing components based on description
logics to perform semantic optimization steps
on both global and local queries to minimize
the number of accessed sources and the vol-
ume of data to be integrated. We plan to
enhance these capabilities.

Another extension we have considered
introducing is intelligent and mobile agents
in the Momis architecture. Exploiting agents
might help improve some of the existing
Momis features and add functionality to the
system. One method is to introduce intelli-
gent mobile agents to carry out the integra-
tion process more efficiently, dynamically
and flexibly. Currently, when we add or
delete a new source, we have to restart the
Momis system. Our aim is to allow source
integration at runtime, possibly by exploit-
ing mobile agents that search for interesting
new sources or check the request of an
administrator for integrating his or her new
source. This will help Momis users face the
high degree of dynamism of the Internet.
Another improvement carried out by the

24 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n t e l l i g e n t W e b S e r v i c e s

In the final step of the integration

process, you export the global

virtual view into an XML DTD by

adding the appropriate XML tags to

represent the mapping table

relationships.

agents could be to broaden the volume of
available data and to improve query-
processing performance in a scalable envi-
ronment. The Miks system includes some of
these preliminary techniques.13

Acknowledgments
This article is an extended version of the article

“SI-Designer: An Integration Framework for E-
Commerce.”14

References
1. D. Beneventano et al., “Information Integra-

tion: The Momis Project Demonstration,”
Proc. 26th Int’l Conf. on Very Large Data-
bases, Morgan Kaufmann, New York, Sept.
2000, pp. 611–614.

2. S. Bergamaschi et al., “Semantic Integration
of Heterogeneous Information Sources,” J.
Data and Knowledge Eng., vol. 36, no. 3,
March 2001, pp. 215–249.

3. S. Castano et al., “Global viewing of hetero-
geneous data sources,” IEEE Trans. on
Knowledge and Data Eng., IEEE Press, Pis-
cataway N.J., 2000.

4. R. Hull et al., “Arpa i3 Reference Architecture,”
http://www.isse.gmu.edu/I3_Arch/index.html.

5. P. Buneman, L. Raschid, and J. Ullman,
“Mediator Languages: A Proposal for a Stan-
dard,” SIGMOD Record, vol. 26, no. 7, July
1997, pp. 39–44.

6. S. Chawathe et al., “The Tsimmis Project:
Integration of Heterogeneous Information
Sources,” Proc. 10th Anniv. of IPSJ, Oct. 1994,
pp. 7–18.

7. M.T. Roth and P. Scharz, “Don’t Scrap It,
Wrap It! A Wrapper Architecture for Legacy
Data Sources,” Proc. 23rd Int’l Conf. on Very
Large Databases, Morgan Kaufmann, New
York, Aug. 25, 1997, pp. 266–275.

8. Y. Arens, C.A. Knoblock, and C. Hsu, “Query
Processing in the Sims Information Media-
tor,” Advanced Planning Technology, May
1996, pp. 61–69.

9. A.Y. Levy, A. Rajaraman, and J.J. Ordille,
“Querying Heterogeneous Information Sources
Using Source Descriptions,” Proc. 22nd Int’l
Conf. on Very Large Databases, Morgan Kauf-
mann, New York, Sept. 3, 1996, pp. 251–262.

10. E. Mena, et al. “Observer: An Approach for
Query Processing in Global Information Sys-
tems Based on Interoperation Across Pre-

Existing Ontologies,” Distributed and Paral-
lel Databases, Jan. 2000, vol. 8, no. 2, pp.
223–271.

11. L. Palopoli et al., “Intensional and Exten-
sional Integration and Abstraction of Hetero-
geneous Databases,” J. of Data and Knowl-
edge Engineering, vol. 35, no. 3, Dec. 2000,
pp. 201–237.

12. D. Beneventano and S. Bergamaschi, “Exten-
sional Knowledge for Semantic Query Opti-
mization in a Mediator Based System,” Proc.

Int’l Workshop on Foundations of Models for
Information Integration, Sept. 2001.

13. G. Gelati, F. Guerra, and M. Vincini, “Agents
Supporting Information Integration: The
Miks Framework,” Proc. AIIA and TABOO
Workshop: From Object to Agents, Pitagora
Editrice, Bologna, Sept. 2001.

14. I. Benetti et al., “SI-Designer: An Integration
Framework for E-Commerce,” Proc. IJCAI01
Workshop on E-Business and the Intelligent
Web, 2001, pp. 97–104.

JANUARY/FEBRUARY 2002 computer.org/intelligent 25

Ilario Benetti is a PhD candidate in information engineering in the Diparti-
mento di Ingegneria dell’Informazione at the Università di Modena e Reggio
Emilia. His research interests include information integration from heteroge-
neous data sources, especially e-commerce applications. He received a Lau-
rea in computer engineering from the University of Modena e Reggio
Emilia.Contact him at Università di Modena e Reggio Emilia, Dipartimento di
Ingegneria dell’Informazione—Via Vignolese 905, 41100 Modena, Italy;
benetti.ilario@unimo.it.

Domenico Beneventano is associate professor in information engineering in
the Dipartimento di Ingegneria dell’Informazione at the Università di Modena
e Reggio Emilia. His research interests include complex object data models
and reasoning techniques applied to databases for knowledge representation
and query optimization. He received a PhD in computer engineering from the
University of Bologna. Contact him at Università di Modena e Reggio Emilia,
Dipartimento di Ingegneria dell’Informazione—Via Vignolese 905, 41100
Modena, Italy; beneventano.domenico@unimo.it.

Sonia Bergamaschi is a professor of databases in the Dipartimento di Ingeg-
neria dell’Informazione at the Università di Modena e Reggio Emilia. Her
research interests include intelligent integration of information, knowledge
representation and management in the context of very large databases that
face theoretical and implementation problems. She is a member of the IEEE
Computer Society and the ACM. Contact her at Università di Modena e Reg-
gio Emilia, Dipartimento di Ingegneria dell’Informazione—Via Vignolese
905, 41100 Modena, Italy; bergamaschi.sonia@unimo.it.

Francesco Guerra is a PhD candidate in information engineering in the
Dipartimento di Ingegneria dell’Informazione at the Università di Modena e
Reggio Emilia. His research interests include intelligent integration of het-
erogeneous information system, especially Web applications. He received a
Laurea in computer engineering from the University of Modena e Reggio
Emilia. Contact him at Università di Modena e Reggio Emilia, Dipartimento
di Ingegneria dell’Informazione—Via Vignolese 905, 41100 Modena, Italy;
guerra.francesco@unimo.it.

Maurizio Vincini is a research associate in information engineering in the
Dipartimento di Ingegneria dell’Informazione at the Università di Modena e
Reggio Emilia. His research interests include the intelligent integration of infor-
mation system based on reasoning tecniques, object oriented database design,
and query optimization. He received a PhD in computer engineering from the
University of Modena and Reggio Emilia. Contact him at Università di Mod-
ena e Reggio Emilia, Dipartimento di Ingegneria dell’Informazione—Via Vig-
nolese 905, 41100 Modena, Italy; vincini.maurizio@unimo.it.

T h e A u t h o r s

