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ABSTRACT 
The omnipresence of the Internet and the World Wide Web 
(Web) via phone lines, cable-TV, power lines, and wireless RF 
devices has created an inexpensive media for telemonitoring 
and remotely controlling distributed electronic appliances. The 
great variety of potential benefits of aggregating and 
connecting embedded systems over the Internet is matched by 
the currently unsolved problem of how to design, test, 
maintain, and evolve such heterogeneous, collaborative 
systems. Recently, component-oriented software development 
has shown great potential for cutting production costs and 
improving the maintainability of systems. We discuss 
component-oriented engineering of embedded control software 
in the light of emerging requirements of distributed, net-centric 
systems.  Our approach is based on applying the graphical 
specification language SDL for composing complex networks 
of embedded software components. From the SDL 
specification, we generate internet-aware connector 
components to local embedded controller networks. The 
described research is carried out in a collaborative effort 
between industry and academia. 

Categories and Subject Descriptors 
D.3.3 [Software Engineering]: Design Tools and Techniques 
– component-orientation, network integration 

General Terms 
Design 

Keywords 
Component-oriented development, embedded software, SDL, 
network-centric computing 

 

 

 

 

 

 

 

1. INTRODUCTION 
During the last decade, miniaturized computers (micro 
controllers) programmed with dedicated application software 
(embedded systems) have replaced conventional electronics in 
almost every application domain [1]. The cost effectiveness of 
mass-produced, multi-purpose micro controllers and the 
flexibility provided by the embedded control software has 
created a great spectrum of new applications. 

Today, embedded systems are ubiquitous. They can be found in 
a vast variety of products ranging from cars over cellular 
phones and cameras up to household appliances. Home 
networking is now considered to be one of the computer 
industry's fastest growing markets. The omnipresence of the 
Internet and the World Wide Web (Web) via phone lines, 
cable-TV, power lines, and wireless RF devices has created an 
inexpensive media for telemonitoring and remotely controlling 
distributed electronic appliances.  

Traditionally, the emphasize in developing software for 
embedded systems has been on maximizing run-time and 
memory efficiency to minimize hardware costs as much as 
possible. In the presence of continuously decreasing hardware 
costs and the increasing complexity of tasks controlled by 
embedded systems, additional goals like maintainability and 
reliability have recently gained importance. In particular, these 
requirements are of utmost importance in safety critical 
applications domains, e.g., like transportation, factory control, 
and telecommunication. Still, current industrial development 
practices (processes, tools, and techniques) for software in 
embedded systems lags far behind the state-of-the-art in normal 
software engineering areas. Despite all the progress made in the 
general software engineering arena (e.g., specification 
languages, frameworks, CASE tools, code generation etc.), 
most embedded software is still developed using primitive 
programming languages like assembler or C without formal 
design or requirements analysis. This development practice is 
inefficient for complex systems because it impedes software 
reuse and maintenance. Moreover, it requires significant 
amount of expertise and is prone to error. These problems have 
begun to become even more severe with the current trend to 
interconnect embedded systems in net-centric architectures. 
The great variety of potential benefits of aggregating and 
connecting embedded systems over the Internet is matched by 
the currently unsolved problem of how to design, test, 
maintain, and evolve such heterogeneous, collaborative 
systems.  



  

A component-oriented approach can be used to tackle the 
problems stated above. Recently, the notion of reusable 
software components has proven extremely useful in various 
software engineering domains.  Most currently available 
integrated software development environments provide an 
extensible library of user interface components to rapidly 
prototype graphical user interfaces [2].  In the area of 
embedded control systems, component oriented software 
development has shown to cut production costs and improve 
the maintainability of systems [3]. In this paper, we present an 
approach to component-oriented engineering of embedded 
control software for network-centric systems.  This approach is 
based on applying the graphical specification language SDL [4] 
for composing complex networks of embedded software 
components. From the SDL specification, we generate internet-
aware connector components to local embedded controller 
networks. The described research is carried out in a 
collaborative effort between the University of Victoria and 
Intec Automation Inc. 

The core of this paper is divided in two parts: the following 
section describes architectural requirements and aspects for net-
centric embedded components. Subsequently, Section 3 
outlines our approach to meet these requirements. Related work 
is discussed in Section 4. We close with concluding remarks in 
Section 5. 

2. NET-CENTRIC EMBEDDED 
COMPONENTS 

The ongoing miniaturization of micro controller hardware in 
combination with the broad acceptance of the Internet in the 
private and the public sector has created a huge market for 
networked embedded devices.  Experts predict a significant 
market in particular in the area of home networking.  Beginning 
with the alarm sensors, door and window locks, heating, 
lighting, and ranging over all kinds of electronic appliances 
(e.g., VCRs, TV, oven, etc.), the possibilities for networked 
applications are countless.  Access to the Internet allows for 
monitoring and controlling selected parts of such networks 
from remote locations.  For example, a home alarm system 
could directly be connected to a security agency or the police 
station.  The similar setup can be used to remotely control 
home appliances from a computer at work or a cellular phone.   

In order to make such applications affordable for a broad 
number of customers and due to the high dynamicity of 
embedded systems networks, ease of development and 
maintenance is a number one requirement.  In contrast to 
conventional programming techniques and languages that 
require a significant amount of expertise and time, component-
oriented software development is based on a plug & play 
paradigm: the developer composes an application by (1) 
selecting predefined software components from a component 
library, (2) customizing generic parameters of these 
components, and (3) connecting them to obtain the entire 
application. In general, reusable software components have 
been defined as units of composition with contractually 
specified interfaces and explicit context dependencies only.  
They can be deployed independently and are subject to 
composition by third parties [6]. 

In the domain of network-centric embedded systems, we have 
to consider components on different levels of abstraction (cf. 
Figure 2). On the lowest abstraction level, the primitive 
components represent the basic building blocks for micro 
controller programs. We denote such primitive components as 
process components, because they perform basic functions in 
the control process. Process components can for example be 
analog or digital sensors, (PID) controllers, pulse width 
modulators, etc. A micro controller program can be developed 
as a configuration of several connected process components. 
This configuration can again be treated as a more abstract 
component, i.e., an application block component.  Several 
application block components can be composed to build a local 
component network (LCN).  An example for an LCN would be 
a single home network of embedded micro controllers (cf. 
Figure 2).  Several such LCNs can again be composed to global 
component networks (GCNs).  For this composition the LCNs 
can be treated as black box components with defined interfaces 
and behavior.  

Process components 
In addition to their embedded code, process components have 
to provide a clear interface to facilitate reuse. In fact, a process 
component with a single interface might provide several 
variants of implementations for different embedded micro 
controller platforms, e.g., Motorola, Siemens, Intel X86, etc. 
Furthermore, if we consider network-centric applications, 
process components should provide user interfaces for tele-
monitoring, operating, and configuring their parameters. These 
user interfaces will typically be executed on a different host 
than the system that executes the functional embedded code. 
Moreover, in a heterogeneous net-centric environment, there is 
the need for various versions of user interfaces for different 
client platforms, e.g., visual GUIs for workstations and hand-
held PCs, audio controls for telephone lines, etc. Figure 1 
summarizes these aspects of process components. 
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Figure 1. Aspects of Net-Centric Process Components 
 

Application Block Components 
An application block consists of all process components that 
run on a single micro controller.  Typically, process 
components are executed concurrently.  Consequently, each 
micro controller has to have the central scheduler kernel 
managing this parallel execution.  The application block itself 
is treated as a composite component with a precisely defined 
interface. Typically, the interface defines a set of possible 
incoming and outgoing signals (or events) with or without 
associated data parameters.  



  

Local Component Networks 
The rationale behind the distinction between the local and 
global component networks is that they require different 
technologies because of their different requirements for 
performance and flexibility. LCNs are local networks of micro 
controllers with relatively high interdependency.  They have to 
perform their task efficiently and cost effectively.  Abstraction 
mechanisms like location transparency and dynamic service 
binding are less important than real time characteristics, 
runtime optimization, and a small footprint of the micro 
controller operating system.  Thus, it is not needed nor 
desirable to use heavyweight communication middleware (e.g. 
CORBA or CORBA/RT [7]) to integrate application block 
components in LCNs. 

Global Component Networks 
In comparison to LCNs, the architecture of the global 
component network (GCN) is much more dynamic.  New 
services are added on the fly and integrated with existing 
devices. Existing services are retired, modified, relocated, or 
removed from the network.  Moreover, some remote services 
might not be available all the time.  This results in a 
continuously evolving configuration of distributed embedded 
systems.  In order to deal with this pace of evolution, GCNs 

require powerful mechanisms and middleware to hide various 
details of system implementation and deployment from the 
client of the network.  

Another characteristic of GCNs is that the degree of 
heterogeneity is significantly higher than in LCNs. Middleware 
technology for GCNs has to enable the integration of 
components that were not specifically developed to work 
together. This means that their interfaces might not fit exactly. 
Of course, it is possible to develop adapters to integrate 
incompatible component interfaces. Still, in a highly dynamic 
network, the effort involved in manually coding such adapters 
is often not practical. Therefore, the integration middleware has 
to provide means for rapidly mapping component interfaces. 
Introspection and interface query mechanisms are extremely 
important for building spontaneous collaborations of 
components and performing (partial) mappings at run time. 

Obviously, the described transparency and introspection 
mechanisms have their price in terms of memory and runtime 
overhead.  Compared to LCNs, however, the real time 
requirements in a GCN are much lower.  Likewise, a GCN can 
employ larger and more powerful computers to serve as 
gateways among different LCNs. 
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Figure 2. Architecture of network-centric embedded components 



  

3. microSynergy – ENGINEERING NET-
CENTRIC EMBEDDED 
COMPONENTS 

This section describes a component-oriented approach to 
engineering embedded micro controller software in a network-
centric environment. This research has been carried out in tight 
collaboration with Intec Automation Inc., a local company in 
the area of embedded systems. Our approach is mainly based 
on a combination of readily available net-centric component 
technology (Java Beans [2]) with the emerging Jini [5] 
connectivity middleware and a rapid approach for interface 
mapping based on the graphical specification language SDL 
[4]. In the future, Intec Automation intends to implement the 
result of our studies with the current prototype (called 
microSynergy) in a product for rapidly developing and evolving 
distributed embedded applications. We will now use the 
architectural structure of net-centric embedded networks 
(introduced in the previous section) to systematically describe 
our approach. 

3.1 Realization of Process Components 
In Section 2, we argued that there are various aspects to 
embedded process components for net-centric applications (cf. 
Figure 1). Net-centric process components themselves are 
executed in a distributed fashion. In particular, their user 
interfaces are typically executed remotely from the micro 
controller that runs the embedded code performing the actual 
functions. Figure  shows an architectural overview on the 
approach to deploying and executing process components 
chosen for microSynergy. Note, that distributed libraries are 
employed as repositories for the different user interfaces and 
the embedded code of process components, respectively. This 
approach reflects on the previously discussed distributed nature 
of net-centric embedded components. In Figure 3, we use 
numbers to uniquely identify process components, and we use 
different shapes to mark the parts that implement their different 
aspects. More precisely, we use ovals for representing 
embedded code and squares (resp. diamonds) for representing 
user interface code for configuration purposes (resp. 
operational purposes). 
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Figure 3. microSynergy architecture for deploying 

and executing Process Components 

The configuration of process components and their deployment 
on the micro controller(s) is performed using an integrated 
development environment (IDE) called microCommander. This 
activity replaces the traditional manual programming coding 
activity. Using microCommander is similar to using modern 
component-based IDEs for user interfaces [2]. The IDE 
provides predefined user interfaces for any deployed 
components that can be arranged on a canvas for configuration, 
simulation, and incremental debugging purposes.  

Figure 4 shows such a canvas for the example of a home heater 
controller, using three process components, namely a 
thermometer, a PID-controller, and a pulse-width-modulator 
that is connected to a simulated heater. Note that the actual 
connections between deployed components are established 
using the configuration dialog for each component. For 
example, the upper-left part of Figure 5 shows that the 
configuration dialog of the PID controller component defines 
that its input (“Source”) is connected to the (analog) output of 
the thermometer component. Other process components can be 
connected in a similar fashion to build complex embedded 
applications. The actual embedded code is written to the micro 
controllers’ non-volatile Flash memory. Because of the strong 
limitation of resources on the embedded platform, the code for 
each component type exists just once even if it might be 
instantiated multiple times.  

The user interfaces (for configuration or operation purposes) 
can be executed on remote hosts distributed over the Internet 
(cf. Figure 3). These remote hosts might have very different 
hardware and software characteristics, ranging from small 
personal devices like cell phones and palm tops, over smart 
TVs, up to PC workstations and mainframes. We solve a part of 
this heterogeneity problem by using Java as the 
implementation language for the user-interface parts of process 
components. Java runtime environment can be found on almost 
every computing platform. Subsets of Java (eJava – embedded 
Java or pJava – personal Java) are increasingly used for small 
devices . 

Still, just using Java solves only a part of the heterogeneity 
problem. Obviously, different versions of user interfaces are 
needed to adhere to the various characteristics of the different 
client platforms. Moreover, not all micro controllers do have 
TCP/IP ports to the Internet onboard. They typically employ 
proprietary protocols using inexpensive RS-232, RS-485 or 
similar ports. We have introduced an additional network server 
object (called microServer in Figure ) to solve both problems: 

?? microServer translates the internet protocol (TCP/IP) to 
the native protocol understood by  the micro controller, 
and 

?? it sends appropriate user interfaces to remote clients. For 
this purpose, each remote client has to determine the type 
of the required user interface (e.g., cell phone, web 
browser, graphical, textual etc.). Then, a Java object that 
represents the appropriate visual control is looked up from 
the user interface repositories and sent to the client. 

 



  

3.2 Networks of application block 
components 

The technology described so far provides means for 
component-oriented development of software for micro 
controllers and their remote configuration and operation. 
Additional mechanisms are needed for networking several such 
application blocks. Two main issues have to be addressed: 

(1) the interfaces of each application block component 
has to be declared, and 

(2) the mapping between the interfaces of collaborating 
application block components has to be defined. 

 

3.2.1 Interfaces of application blocks 
Interaction between embedded micro controllers is represented 
as an exchange of signals (or events), possibly with data 
parameters. For the example, let us assume that we would like 
our sample heater controller to understand four external input 
signals, namely switchNorm for switching the heater to normal 
operation, switchLow for switching the heater to low heat, 
setTemp for setting the standard temperature (normal heat 
mode), and turnOff for turning it off. Additionally, we would 
like our heater controller to send an external signal when it is 
turned on or off, respectively. In our approach, we use 
dedicated process components, so-called in-gates and out-gates 

for letting the developer add ports for input and output signals, 
respectively. These gate components can be deployed in the 
“drag&drop” style analogously to other process components. 
They can be connected to internal events and data sources that 
are relevant in external applications. 

More precisely, each instance of an in- and out-gate has a 
unique name that defines the name of the signal associated to it. 
Out-gates have a data input that can be connected to any data 
output of local process components.  In addition, out-gates have 
another input strobe that sources a digital input. Whenever the 
state of strobe changes, the out-gate component generates an 
external signal name(data), where name is the name of the gate 
and data is the current value at the data input. 

Analogously, in-gate components have a data output that can 
be sourced by any other process component. In addition, in-
gates have a digital output pending and a digital input clear. 
Incoming messages are queued in instances of in-gate 
components. Whenever the queue is not empty the pending 
output is active (set to 1). Messages (and their data values) can 
be cleared by triggering the clear input of an in-gate (cf. Figure 
6). 

3.2.2 Collaboration among application blocks 
The possibility of deploying in- and out-gate components on 
micro controllers provides a simple yet powerful mechanisms 
for defining external interfaces to application block 

Figure 4. Component-based IDE microCommander             



  

components. The actual interaction among several such net-
centric micro controllers is defined with a tool separate from 
microCommander, called microSynergy editor. This tool is 
based on the graphical specification and description language 
SDL [4]. SDL has been developed for the specification of 
complex, event-driven, real-time, and interactive applications 
involving many concurrent activities that communicate using 
discrete signals.  Being developed by the International 
Telecommunications Union (ITU), SDL initially was intended 
to serve as a specification language for telecommunication 
systems.  Today, it is increasingly adopted for other application 
areas, in particular, in the domain of engineering embedded 
systems.  A major advantage of SDL over alternative 
specification languages like e.g., the Unified Modeling 
Language (UML) [8], is its formally defined and standardized 
syntax and semantics. Moreover, SDL has a graphical notation, 
as well, as an equivalent textual representation.  This feature 
facilitates the exchange of SDL data among different tools. 

 

 

Figure 6. Design of In/Out Gate Components 

 
Upon invocation the microSynergy editor hooks up to a 
selected LCN by connecting to the TCP/IP enabled 

microServer component that controls the LCN (cf. Figure 3). 
Then it requests this microServer to introspect all application 
blocks existing in the LCN and queries them for their in- and 
out-gate components. Figure 7 shows a simple interface as the 
result from introspecting the previously discussed application 
block heater controller. In this example, application block 
HeaterController comprises four in-gates (setLow, setNorm, 
turnOff, and setTemp) and two out gates (turnedOn and 
turnedOff). 

According to the graphical SDL syntax, microSynergy 
visualizes the application blocks deployed on each micro 
controller as rectangles. Figure 8 shows an SDL model with our 
sample application block Heater Controller and two additional 
application blocks Alarm Control and Lighting Control. In 
order to combine these distributed micro controllers to a 
collaborative network, we need a mechanism to dispatch 
external signals between among them. Note that in the general 
case, we cannot simply map in-gates to out-gates, because we 
have to provide mechanisms for a-posteriori integration of 
components. This means that have to be able to integrate micro 
controllers in distributed applications in a way that were not 
anticipated during their development. Consequently, there is 
the requirement for more sophisticated connectors than simple 
channels or pipes for signals.  

Interface HeaterController; 
In Signal setLow(), setNorm(), turnOff(),  
            setTemp(integer); 
Out Signal turnedOn(), turnedOff(); 

Endinterface HeaterController; 

 

Figure 7. Interface of Heater Controller 

Figure 5. Configuration Dialog for component PIDController  



  

We use SDL to specify and generate these sophisticated 
connectors. The example in Figure 9 contains one such 
connector block named LCN Control. microSynergy renders 
connector blocks differently from application blocks (dashed 
border) to make it easy for the developer to distinguish between 
both concepts. Note that the developer is free to specify more 
than one connector blocks serving different purposes. We have 
chosen SDL channels for connecting connector blocks to 
application block components. Channels are represented as 
(directed) lines in Figure 8. Rectangular brackets are used for 
specifying the signal names that travel in each direction. The 
tool validates that these names correspond to names of in- and 
out-gates of the connected application block components.  

 

Figure 8. SDL model of LCN Property Management 

According to the formal SDL semantics, channels delay signals 
during transport by a non-deterministic duration.  Therefore, no 
assumptions can be made about the arrival time of two signals 
that have been sent to two different channels at the same time. 

In addition to channels, SDL provides the notion of signal 
routes and non-delaying channels for connecting blocks.  We 
decided to use standard (delaying) channels, because the 
current implementation of our signal distribution mechanism 
does not consider hard real-rime constraints. We are aware of 
the fact that this decision restricts our current approach to 
applications that do not require real-time communication 
among distributed micro-controllers. Still, there are a large 
number of net-centric applications that meet this requirement. 

For the actual specification of connector blocks, we use the 
concept of (extended) finite state machines (FSMs) provided by 
SDL. This is illustrated in Figure 9 for the example connector 
block LCN Control. An FSM (in SDL) consists of states 
(represented as rectangles with round corners) and transitions 
(represented by directed arcs).  The initial starting state is 
clearly marked by an oval.  In contrast to other state machine 
models (e.g., UML State Charts), transitions are always drawn 
from top to bottom and states can have multiple occurrences in 
the diagram.  

For our example, let us assume that the developer of the Alarm 
Controller used microCommander to deploy an in-gate 
component in such a way that a signal armed(stat) is send 
whenever the Alarm Controller is switched on or off. Note that 
in this example stat is a parameter (with value 1 or 0) 
representing the status of the alarm controller, i.e., on or off, 
respectively. Furthermore, let us assume that the LCN 
developer now wants to integrate the alarm controller with the 
heater controller of the property. The idea is to switch the 
heater to low temperature mode whenever the property’s 
residents are absent, that is, whenever the alarm control is 

Figure 9. Specification of connector LCN Control 



  

armed.  This scenario requires a mapping between the 
armed(stat) signal of the alarm controller and the setLow (resp. 
setNorm) signal of the heater controller.  

Figure 9 shows that such a mapping can easily be created using 
FSMs. The SDL symbol for an in-going signal is a rectangle 
with a cut out (“in-going”) triangle. Inverse to this, the SDL 
uses a rectangle with an “out-going” triangle to specify an out-
going signal. The left-hand side of Figure 9 specifies that if an 
armed(stat) signal occurs while the LCN is in state unnamed, 
the LCN will change states to armed if the condition stat=1 
holds. In this case the desired signal setTempLow is generated. 
The middle part of Figure 9 shows an analogous specification 
for setting the heater control mode back to normal whenever 
the alarm controller is unarmed.  

Note that signals of type armed(stat) are created whenever the 
alarm controller is switched on or off. Hence, initially, the LCN 
Controller does not have information of the status of the alarm 
controller, until the first status switch has occurred. Therefore, 
we have specified a signal statusAlert? that is initiated by the 
LCN Controller at startup. StatusAlert? triggers the alarm 
controller to publish its current status, i.e., to send an 
armed(stat) signal. Such a status enquiry can easily be 
implemented as a convention of all net-centric micro 
controllers by configuring a dedicated in-gate component with 
microCommander. Note that this can be done without prior 
knowledge about the specific networked applications the 
controllers will participate in. 

The right-hand side of Figure 9 shows another example for 
networking the alarm controller with the lighting control 
system. Here, microSynergy allows for treating the light 
switches as additional sensors for the alarm system: an 
alarm(room) signal is raised, whenever a light is switched and 
the system is armed. On the other hand, the light is 
automatically switched on in a room where the alarm controller 
has detected an alarm. Note signal symbols with a double 
triangle mark priority signals in SDL (e.g., alarm(room) in 
Figure 8). 

There are many additional SDL modeling concepts that we 
currently do not cover within microSynergy, e.g., macros, 
procedures, exceptions, etc. Still, even the currently supported 
subset of SDL is powerful enough to create flexible mappings 
between embedded application block components running on 
distributed micro controllers. 

Deployment of Connector Components 
The generation of executable from the described SDL 
specification of connector components is straightforward. 
Analogously to several other SDL tools, we could generate 
procedural code (e.g., in C or C++) that handles the signal 
distribution in the microServer that controls the selected LCN. 
The problem of this approach is, however, that this code would 
have to be compiled and linked statically to the rest of the 
microServer software. Hence, this solution does not meet our 
requirement of being able to dynamically deploy and change 
connector components at run-time.  

Therefore, we have chosen an interpretative approach. We 
translate the SDL specifications into highly compact scripts 

that can dynamically be downloaded and executed by a 
microServer. Since the embedded platform that executes 
microServer only has very limited resources, we did not use 
any off-the-shelf scripting interpreter like. Rather we defined 
very concise binary format called CEL (Connector Execution 
Language). Compilation of the specified FSMs to CEL is done 
in two steps (cf. Figure 11). Firstly, we unparse the FSMs into a 
textual representation based on XML. This textual 
representation is called Connector Description Language 
(CDL). We generate CEL in a subsequent compilation step. 
The CEL scripts are then send to the microServer target via the 
Internet. 

Note that we use an XML-based textual representation instead 
of the native SDL text format because it is simpler and enables 
us to leverage from a great variety of readily available libraries 
and tools for the development of the compiler. Figure 10 shows 
the beginning of a CDL script generated from the FSM in 
Figure 9. Basically, each state flow from top to bottom in 
Figure 9 is translated into a so-called thread in CEL. Threads 
have a start state and a sequence of statements that can be out 
signals <OUT>, in signals <IN>, conditions <CSTMT>, and 
state transitions <TRANS>.  Note that Figure 10 only shows 
the left-most thread from Figure 9. In addition to threads, a 
CEL connector contains the names of all connected 
components in a so-called link section <LINK>. 

 

Figure 10. CDL generated for connector LCN Control  

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE CONNECTOR SYSTEM "CDL.dtd"> 
<CONNECTOR id="LCNControl"> 
 <LINK>LightingController</LINK> 
 <LINK>HeaterController</LINK> 
 <LINK>AlarmControl</LINK> 
 <THREAD state="*START*"> 
  <STMT> 
   <OUT>statusAlert?</OUT> 
   <TRANS>unarmed</TRANS> 
   <IN param="stat">armed</IN> 
   <CSTMT> 
    <COND> 
     <PARAM> 
      <VAR idr="stat"/> 
     </PARAM> 
     <REL op="EQ"/> 
     <PARAM> 
      <CNST>1</CNST> 
     </PARAM> 
    </COND> 
    <STMT> 
     <OUT>setTempLow</OUT> 
     <TRANS>armed</TRANS> 
    </STMT> 
    <STMT> 
     <TRANS>unarmed</TRANS> 
    </STMT> 
   </CSTMT> 
  </STMT> 
 </THREAD> 
 <THREAD state="armed"> 
             <!—REST OF CONNECTOR SKIPPED --> 



  

 
3.3 Global networking of embedded 

components 
Network evolution is one of the major challenges that have to 
be resolved in a successful approach to integrating global 
component networks (GCNs).  Today, there exist a number of 
distribution middleware products, e.g., CORBA, DCOM, DCE, 
Java/RMI, Jini, etc. [13].  In our opinion, the concepts provided 
by Jini are most suitable for networking highly dynamic 
networks in distributed embedded applications. Jini technology 
has been publicly released in January 1999 by Sun 
Microsystems.  It has been built on top of Java technology.  
Thus, it is actually not a middleware in the traditional sense, 
because it does not deal with heterogeneous programming 
languages like, e.g., CORBA.  Rather, it is a connection 
technology that has specifically been developed for Java.  At 
first sight, choosing a language-specific platform for 
integrating distributed components might appear unwise.  
However, by building on top of Java, Jini technology is 
leveraged by all modern software engineering concepts that 
have been built into this net-centric programming language, 
e.g., portability, mobility, component-orientation, introspection, 
security etc.  Given the omnipresence of Java execution 
environments on all kinds of platforms starting from micro 
controllers to workstations, trading language independence 
against the benefits attached to Java technology appears to be a 
small sacrifice. Java is about to become a major integration 
technology for GCNs in the foreseeable future. Even for LCNs 
Java has become increasingly relevant. However, depending on 
the specific requirements and constraints of particular LCNs, 
application-specific protocols and platforms will remain 
important in this area. Still, Java/Jini nicely interfaces with 
these other emerging network technologies like Bluetooth 
(proximity-based wireless networking), JetSend (intelligent 
service negotiation), HAVi (Home Audio-Video 
interoperability) [9]. 

A central feature of Jini is that it provides mechanisms for 
dynamically building and evolving distributed communities by 
plugging components in and out the network. Each community 
has a Jini Lookup Service which acts as a broker between 
available Jini services and their clients. Generally, a GCN 
includes many such lookup servers. When a component that 
offers or requests Jini services is plugged into the network, it 
tries to find at least one lookup server. This is typically done 
using the Jini multicast request protocol [5].  

In a future version of microSynergy, we intend to use this 
protocol to register the microServers of each LCN with at least 
one Jini lookup server. Note that the encircled Int in Figure 12 
stands for a registered interface of an LCN.  Analogously, local 
microServers can query the Jini lookup service for the 
interfaces of all LCNs in their “network neighborhood”. With 
this information, the developer can use techniques similar to 
the approach presented in Section 3.2.2 in order to federate 
several LCNs to global networks. 

Dealing with evolution 
In contrast to other distribution technologies, Jini service 
objects cannot be used for an indefinite period of time. Rather, 
Jini introduces the concept of resource leasing, i.e., resources 
can be reserved (leased) for a certain time frame only. When 
this time has expired and the service is still needed, the lease 
has to be renewed. This simple but effective concept provides 
Jini networks with a sort of self-healing quality, because proxy 
objects for services that become unavailable will expire over 
time. Moreover, Jini clients necessarily have to take into 
account that services can become unavailable. In a way, the 
leasing mechanism has a function similar to a garbage 
collector: it eventually removes all traces of services that have 
become unavailable. 

Figure 11. Deployment of Connector Components 



  

4. Related work 
The idea of constructing software by configuring and 
connecting proven, reusable components (as opposed to manual 
programming) has existed for several decades. During the 90’s 
component-oriented construction has gained increasing interest 
in the commercial section. This popularity has been driven by 
the availability of reusable frameworks and pattern libraries for 
object-oriented languages like C++ and Java [10] [11]. Johnson 
gives a good overview on the pros and cons of employing 
components and other reusability technology for software 
construction [12]. One prominent problem of component and 
framework reuse is how to efficiently store, maintain, and look 
up a generally very large number of reusable components. 
Several representation and query languages and algorithms 
have been proposed for this purpose, e.g., by Sahraouim and 
Benyahia [13]. Even though the problem of component-
oriented construction for general software has not yet been 
sufficiently solved, current industrial practice proves that this 
approach becomes viable and productive for specific 
application domains. For example, component-oriented 
techniques play an important role in constructing current 
graphical user interfaces, e.g., Java Beans [2]. 

Stewart has shown that similar advantages of domain-
dedication apply for the use of component-orientation in the 
design of embedded systems [3]. The notion of making 
component reuse feasible by focusing on a particular domain is 
related to the idea of product lines as presented in [14]. In this 
sense, microCommander and microSynergy is clearly focused 
on supporting control applications. They might not provide 
enough freedom for developing other types of embedded 
system application, e.g., software for cellular phones.  

Our approach to connect different application block 
components is related to work performed in the area of 
architectural interconnectors, e.g., as presented by Allan and 

Garlan [15]. The difference to our approach is that it is 
currently restricted to asynchronous (signal-based) 
communication only. Furthermore, we deal with a-posteriori 
integration. Finally, we have chosen SDL for specifying the 
integration among components. This is in contrast to many 
other modeling approaches that employ the Unified Modeling 
Language (UML) for this purpose [8]. We have made this 
decision because SDL has a formal semantics and is widely 
used in the embedded systems domain [4]. 

5. Conclusion 
We have presented an approach to component-oriented 
development of net-centric embedded systems. This approach 
is based on a graphical composition paradigm of reusable 
process components. In contrast to traditional component-based 
development of embedded software, microCommander also 
considers reusable user interfaces for operating and configuring 
components. These user interfaces can be used to monitor 
parameters of components from a remote location on the 
Internet. Furthermore, we have discussed requirements and 
characteristics for a hierarchical architecture for collaborative 
networks of embedded controllers. Such networks will play an 
increasingly important role in our society. We have described 
an approach for creating flexible mappings between distributed 
micro controllers based on SDL specifications. This approach 
has been implemented and evaluated in the microSynergy 
development tool in tight collaboration with our industrial 
partner Intec Automation Inc. Intec has a keen interest in 
exploiting our results and integrating them in their integrated 
development environment. Our future work will include a 
large-scale case study to evaluate and refine our technique. We 
have identified a possible candidate for such a study at the 
Herzberg Institute of Astrophysics at the National Research 
Council of Canada. 

Figure 12. Federation of several LCNs to global networks based on Jini technology 
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