
Engineering Component-based Net-Centric Systems
for Embedded Applications

Jens H. Jahnke
University of Victoria, Dept. of Computer Science

Engineering Office Wing 321
Victoria, V8W3P6, Canada B.C.

+1 (250) 472 4542

jens@acm.org

ABSTRACT
The omnipresence of the Internet and the World Wide Web
(Web) via phone lines, cable-TV, power lines, and wireless RF
devices has created an inexpensive media for telemonitoring
and remotely controlling distributed electronic appliances. The
great variety of potential benefits of aggregating and
connecting embedded systems over the Internet is matched by
the currently unsolved problem of how to design, test,
maintain, and evolve such heterogeneous, collaborative
systems. Recently, component-oriented software development
has shown great potential for cutting production costs and
improving the maintainability of systems. We discuss
component-oriented engineering of embedded control software
in the light of emerging requirements of distributed, net-centric
systems. Our approach is based on applying the graphical
specification language SDL for composing complex networks
of embedded software components. From the SDL
specification, we generate internet-aware connector
components to local embedded controller networks. The
described research is carried out in a collaborative effort
between industry and academia.

Categories and Subject Descriptors
D.3.3 [Software Engineering]: Design Tools and Techniques
– component-orientation, network integration

General Terms
Design

Keywords
Component-oriented development, embedded software, SDL,
network-centric computing

1. INTRODUCTION
During the last decade, miniaturized computers (micro
controllers) programmed with dedicated application software
(embedded systems) have replaced conventional electronics in
almost every application domain [1]. The cost effectiveness of
mass-produced, multi-purpose micro controllers and the
flexibility provided by the embedded control software has
created a great spectrum of new applications.

Today, embedded systems are ubiquitous. They can be found in
a vast variety of products ranging from cars over cellular
phones and cameras up to household appliances. Home
networking is now considered to be one of the computer
industry's fastest growing markets. The omnipresence of the
Internet and the World Wide Web (Web) via phone lines,
cable-TV, power lines, and wireless RF devices has created an
inexpensive media for telemonitoring and remotely controlling
distributed electronic appliances.

Traditionally, the emphasize in developing software for
embedded systems has been on maximizing run-time and
memory efficiency to minimize hardware costs as much as
possible. In the presence of continuously decreasing hardware
costs and the increasing complexity of tasks controlled by
embedded systems, additional goals like maintainability and
reliability have recently gained importance. In particular, these
requirements are of utmost importance in safety critical
applications domains, e.g., like transportation, factory control,
and telecommunication. Still, current industrial development
practices (processes, tools, and techniques) for software in
embedded systems lags far behind the state-of-the-art in normal
software engineering areas. Despite all the progress made in the
general software engineering arena (e.g., specification
languages, frameworks, CASE tools, code generation etc.),
most embedded software is still developed using primitive
programming languages like assembler or C without formal
design or requirements analysis. This development practice is
inefficient for complex systems because it impedes software
reuse and maintenance. Moreover, it requires significant
amount of expertise and is prone to error. These problems have
begun to become even more severe with the current trend to
interconnect embedded systems in net-centric architectures.
The great variety of potential benefits of aggregating and
connecting embedded systems over the Internet is matched by
the currently unsolved problem of how to design, test,
maintain, and evolve such heterogeneous, collaborative
systems.

A component-oriented approach can be used to tackle the
problems stated above. Recently, the notion of reusable
software components has proven extremely useful in various
software engineering domains. Most currently available
integrated software development environments provide an
extensible library of user interface components to rapidly
prototype graphical user interfaces [2]. In the area of
embedded control systems, component oriented software
development has shown to cut production costs and improve
the maintainability of systems [3]. In this paper, we present an
approach to component-oriented engineering of embedded
control software for network-centric systems. This approach is
based on applying the graphical specification language SDL [4]
for composing complex networks of embedded software
components. From the SDL specification, we generate internet-
aware connector components to local embedded controller
networks. The described research is carried out in a
collaborative effort between the University of Victoria and
Intec Automation Inc.

The core of this paper is divided in two parts: the following
section describes architectural requirements and aspects for net-
centric embedded components. Subsequently, Section 3
outlines our approach to meet these requirements. Related work
is discussed in Section 4. We close with concluding remarks in
Section 5.

2. NET-CENTRIC EMBEDDED
COMPONENTS

The ongoing miniaturization of micro controller hardware in
combination with the broad acceptance of the Internet in the
private and the public sector has created a huge market for
networked embedded devices. Experts predict a significant
market in particular in the area of home networking. Beginning
with the alarm sensors, door and window locks, heating,
lighting, and ranging over all kinds of electronic appliances
(e.g., VCRs, TV, oven, etc.), the possibilities for networked
applications are countless. Access to the Internet allows for
monitoring and controlling selected parts of such networks
from remote locations. For example, a home alarm system
could directly be connected to a security agency or the police
station. The similar setup can be used to remotely control
home appliances from a computer at work or a cellular phone.

In order to make such applications affordable for a broad
number of customers and due to the high dynamicity of
embedded systems networks, ease of development and
maintenance is a number one requirement. In contrast to
conventional programming techniques and languages that
require a significant amount of expertise and time, component-
oriented software development is based on a plug & play
paradigm: the developer composes an application by (1)
selecting predefined software components from a component
library, (2) customizing generic parameters of these
components, and (3) connecting them to obtain the entire
application. In general, reusable software components have
been defined as units of composition with contractually
specified interfaces and explicit context dependencies only.
They can be deployed independently and are subject to
composition by third parties [6].

In the domain of network-centric embedded systems, we have
to consider components on different levels of abstraction (cf.
Figure 2). On the lowest abstraction level, the primitive
components represent the basic building blocks for micro
controller programs. We denote such primitive components as
process components, because they perform basic functions in
the control process. Process components can for example be
analog or digital sensors, (PID) controllers, pulse width
modulators, etc. A micro controller program can be developed
as a configuration of several connected process components.
This configuration can again be treated as a more abstract
component, i.e., an application block component. Several
application block components can be composed to build a local
component network (LCN). An example for an LCN would be
a single home network of embedded micro controllers (cf.
Figure 2). Several such LCNs can again be composed to global
component networks (GCNs). For this composition the LCNs
can be treated as black box components with defined interfaces
and behavior.

Process components
In addition to their embedded code, process components have
to provide a clear interface to facilitate reuse. In fact, a process
component with a single interface might provide several
variants of implementations for different embedded micro
controller platforms, e.g., Motorola, Siemens, Intel X86, etc.
Furthermore, if we consider network-centric applications,
process components should provide user interfaces for tele-
monitoring, operating, and configuring their parameters. These
user interfaces will typically be executed on a different host
than the system that executes the functional embedded code.
Moreover, in a heterogeneous net-centric environment, there is
the need for various versions of user interfaces for different
client platforms, e.g., visual GUIs for workstations and hand-
held PCs, audio controls for telephone lines, etc. Figure 1
summarizes these aspects of process components.

Operati ng
Dialog

Interface
Definition

Configure

Dialog
Embedded

Code

Figure 1. Aspects of Net-Centric Process Components

Application Block Components
An application block consists of all process components that
run on a single micro controller. Typically, process
components are executed concurrently. Consequently, each
micro controller has to have the central scheduler kernel
managing this parallel execution. The application block itself
is treated as a composite component with a precisely defined
interface. Typically, the interface defines a set of possible
incoming and outgoing signals (or events) with or without
associated data parameters.

Local Component Networks
The rationale behind the distinction between the local and
global component networks is that they require different
technologies because of their different requirements for
performance and flexibility. LCNs are local networks of micro
controllers with relatively high interdependency. They have to
perform their task efficiently and cost effectively. Abstraction
mechanisms like location transparency and dynamic service
binding are less important than real time characteristics,
runtime optimization, and a small footprint of the micro
controller operating system. Thus, it is not needed nor
desirable to use heavyweight communication middleware (e.g.
CORBA or CORBA/RT [7]) to integrate application block
components in LCNs.

Global Component Networks
In comparison to LCNs, the architecture of the global
component network (GCN) is much more dynamic. New
services are added on the fly and integrated with existing
devices. Existing services are retired, modified, relocated, or
removed from the network. Moreover, some remote services
might not be available all the time. This results in a
continuously evolving configuration of distributed embedded
systems. In order to deal with this pace of evolution, GCNs

require powerful mechanisms and middleware to hide various
details of system implementation and deployment from the
client of the network.

Another characteristic of GCNs is that the degree of
heterogeneity is significantly higher than in LCNs. Middleware
technology for GCNs has to enable the integration of
components that were not specifically developed to work
together. This means that their interfaces might not fit exactly.
Of course, it is possible to develop adapters to integrate
incompatible component interfaces. Still, in a highly dynamic
network, the effort involved in manually coding such adapters
is often not practical. Therefore, the integration middleware has
to provide means for rapidly mapping component interfaces.
Introspection and interface query mechanisms are extremely
important for building spontaneous collaborations of
components and performing (partial) mappings at run time.

Obviously, the described transparency and introspection
mechanisms have their price in terms of memory and runtime
overhead. Compared to LCNs, however, the real time
requirements in a GCN are much lower. Likewise, a GCN can
employ larger and more powerful computers to serve as
gateways among different LCNs.

Local
Component

Network

Process Components

Application Block
Component

Global Component Network

PID
Controller

Thermo-
Sensor

PCW
Modulator

Figure 2. Architecture of network-centric embedded components

3. microSynergy – ENGINEERING NET-
CENTRIC EMBEDDED
COMPONENTS

This section describes a component-oriented approach to
engineering embedded micro controller software in a network-
centric environment. This research has been carried out in tight
collaboration with Intec Automation Inc., a local company in
the area of embedded systems. Our approach is mainly based
on a combination of readily available net-centric component
technology (Java Beans [2]) with the emerging Jini [5]
connectivity middleware and a rapid approach for interface
mapping based on the graphical specification language SDL
[4]. In the future, Intec Automation intends to implement the
result of our studies with the current prototype (called
microSynergy) in a product for rapidly developing and evolving
distributed embedded applications. We will now use the
architectural structure of net-centric embedded networks
(introduced in the previous section) to systematically describe
our approach.

3.1 Realization of Process Components
In Section 2, we argued that there are various aspects to
embedded process components for net-centric applications (cf.
Figure 1). Net-centric process components themselves are
executed in a distributed fashion. In particular, their user
interfaces are typically executed remotely from the micro
controller that runs the embedded code performing the actual
functions. Figure shows an architectural overview on the
approach to deploying and executing process components
chosen for microSynergy. Note, that distributed libraries are
employed as repositories for the different user interfaces and
the embedded code of process components, respectively. This
approach reflects on the previously discussed distributed nature
of net-centric embedded components. In Figure 3, we use
numbers to uniquely identify process components, and we use
different shapes to mark the parts that implement their different
aspects. More precisely, we use ovals for representing
embedded code and squares (resp. diamonds) for representing
user interface code for configuration purposes (resp.
operational purposes).

1 1 1

microServer
Java/Jini

Configure / Operation
UI library

Emb. code
library

1 2
3 1 1

2 1 2
3 1 3

2 1 1 1
1 1 3

eJava VM

Java VM

Configuration Tool
(microCommander)

load
components

native

acquire UI

deliver UI 2
3

2’
3’

lookup
UIs

Figure 3. microSynergy architecture for deploying

and executing Process Components

The configuration of process components and their deployment
on the micro controller(s) is performed using an integrated
development environment (IDE) called microCommander. This
activity replaces the traditional manual programming coding
activity. Using microCommander is similar to using modern
component-based IDEs for user interfaces [2]. The IDE
provides predefined user interfaces for any deployed
components that can be arranged on a canvas for configuration,
simulation, and incremental debugging purposes.

Figure 4 shows such a canvas for the example of a home heater
controller, using three process components, namely a
thermometer, a PID-controller, and a pulse-width-modulator
that is connected to a simulated heater. Note that the actual
connections between deployed components are established
using the configuration dialog for each component. For
example, the upper-left part of Figure 5 shows that the
configuration dialog of the PID controller component defines
that its input (“Source”) is connected to the (analog) output of
the thermometer component. Other process components can be
connected in a similar fashion to build complex embedded
applications. The actual embedded code is written to the micro
controllers’ non-volatile Flash memory. Because of the strong
limitation of resources on the embedded platform, the code for
each component type exists just once even if it might be
instantiated multiple times.

The user interfaces (for configuration or operation purposes)
can be executed on remote hosts distributed over the Internet
(cf. Figure 3). These remote hosts might have very different
hardware and software characteristics, ranging from small
personal devices like cell phones and palm tops, over smart
TVs, up to PC workstations and mainframes. We solve a part of
this heterogeneity problem by using Java as the
implementation language for the user-interface parts of process
components. Java runtime environment can be found on almost
every computing platform. Subsets of Java (eJava – embedded
Java or pJava – personal Java) are increasingly used for small
devices .

Still, just using Java solves only a part of the heterogeneity
problem. Obviously, different versions of user interfaces are
needed to adhere to the various characteristics of the different
client platforms. Moreover, not all micro controllers do have
TCP/IP ports to the Internet onboard. They typically employ
proprietary protocols using inexpensive RS-232, RS-485 or
similar ports. We have introduced an additional network server
object (called microServer in Figure) to solve both problems:

?? microServer translates the internet protocol (TCP/IP) to
the native protocol understood by the micro controller,
and

?? it sends appropriate user interfaces to remote clients. For
this purpose, each remote client has to determine the type
of the required user interface (e.g., cell phone, web
browser, graphical, textual etc.). Then, a Java object that
represents the appropriate visual control is looked up from
the user interface repositories and sent to the client.

3.2 Networks of application block
components

The technology described so far provides means for
component-oriented development of software for micro
controllers and their remote configuration and operation.
Additional mechanisms are needed for networking several such
application blocks. Two main issues have to be addressed:

(1) the interfaces of each application block component
has to be declared, and

(2) the mapping between the interfaces of collaborating
application block components has to be defined.

3.2.1 Interfaces of application blocks
Interaction between embedded micro controllers is represented
as an exchange of signals (or events), possibly with data
parameters. For the example, let us assume that we would like
our sample heater controller to understand four external input
signals, namely switchNorm for switching the heater to normal
operation, switchLow for switching the heater to low heat,
setTemp for setting the standard temperature (normal heat
mode), and turnOff for turning it off. Additionally, we would
like our heater controller to send an external signal when it is
turned on or off, respectively. In our approach, we use
dedicated process components, so-called in-gates and out-gates

for letting the developer add ports for input and output signals,
respectively. These gate components can be deployed in the
“drag&drop” style analogously to other process components.
They can be connected to internal events and data sources that
are relevant in external applications.

More precisely, each instance of an in- and out-gate has a
unique name that defines the name of the signal associated to it.
Out-gates have a data input that can be connected to any data
output of local process components. In addition, out-gates have
another input strobe that sources a digital input. Whenever the
state of strobe changes, the out-gate component generates an
external signal name(data), where name is the name of the gate
and data is the current value at the data input.

Analogously, in-gate components have a data output that can
be sourced by any other process component. In addition, in-
gates have a digital output pending and a digital input clear.
Incoming messages are queued in instances of in-gate
components. Whenever the queue is not empty the pending
output is active (set to 1). Messages (and their data values) can
be cleared by triggering the clear input of an in-gate (cf. Figure
6).

3.2.2 Collaboration among application blocks
The possibility of deploying in- and out-gate components on
micro controllers provides a simple yet powerful mechanisms
for defining external interfaces to application block

Figure 4. Component-based IDE microCommander

components. The actual interaction among several such net-
centric micro controllers is defined with a tool separate from
microCommander, called microSynergy editor. This tool is
based on the graphical specification and description language
SDL [4]. SDL has been developed for the specification of
complex, event-driven, real-time, and interactive applications
involving many concurrent activities that communicate using
discrete signals. Being developed by the International
Telecommunications Union (ITU), SDL initially was intended
to serve as a specification language for telecommunication
systems. Today, it is increasingly adopted for other application
areas, in particular, in the domain of engineering embedded
systems. A major advantage of SDL over alternative
specification languages like e.g., the Unified Modeling
Language (UML) [8], is its formally defined and standardized
syntax and semantics. Moreover, SDL has a graphical notation,
as well, as an equivalent textual representation. This feature
facilitates the exchange of SDL data among different tools.

Figure 6. Design of In/Out Gate Components

Upon invocation the microSynergy editor hooks up to a
selected LCN by connecting to the TCP/IP enabled

microServer component that controls the LCN (cf. Figure 3).
Then it requests this microServer to introspect all application
blocks existing in the LCN and queries them for their in- and
out-gate components. Figure 7 shows a simple interface as the
result from introspecting the previously discussed application
block heater controller. In this example, application block
HeaterController comprises four in-gates (setLow, setNorm,
turnOff, and setTemp) and two out gates (turnedOn and
turnedOff).

According to the graphical SDL syntax, microSynergy
visualizes the application blocks deployed on each micro
controller as rectangles. Figure 8 shows an SDL model with our
sample application block Heater Controller and two additional
application blocks Alarm Control and Lighting Control. In
order to combine these distributed micro controllers to a
collaborative network, we need a mechanism to dispatch
external signals between among them. Note that in the general
case, we cannot simply map in-gates to out-gates, because we
have to provide mechanisms for a-posteriori integration of
components. This means that have to be able to integrate micro
controllers in distributed applications in a way that were not
anticipated during their development. Consequently, there is
the requirement for more sophisticated connectors than simple
channels or pipes for signals.

Interface HeaterController;
In Signal setLow(), setNorm(), turnOff(),
 setTemp(integer);
Out Signal turnedOn(), turnedOff();

Endinterface HeaterController;

Figure 7. Interface of Heater Controller

Figure 5. Configuration Dialog for component PIDController

We use SDL to specify and generate these sophisticated
connectors. The example in Figure 9 contains one such
connector block named LCN Control. microSynergy renders
connector blocks differently from application blocks (dashed
border) to make it easy for the developer to distinguish between
both concepts. Note that the developer is free to specify more
than one connector blocks serving different purposes. We have
chosen SDL channels for connecting connector blocks to
application block components. Channels are represented as
(directed) lines in Figure 8. Rectangular brackets are used for
specifying the signal names that travel in each direction. The
tool validates that these names correspond to names of in- and
out-gates of the connected application block components.

Figure 8. SDL model of LCN Property Management

According to the formal SDL semantics, channels delay signals
during transport by a non-deterministic duration. Therefore, no
assumptions can be made about the arrival time of two signals
that have been sent to two different channels at the same time.

In addition to channels, SDL provides the notion of signal
routes and non-delaying channels for connecting blocks. We
decided to use standard (delaying) channels, because the
current implementation of our signal distribution mechanism
does not consider hard real-rime constraints. We are aware of
the fact that this decision restricts our current approach to
applications that do not require real-time communication
among distributed micro-controllers. Still, there are a large
number of net-centric applications that meet this requirement.

For the actual specification of connector blocks, we use the
concept of (extended) finite state machines (FSMs) provided by
SDL. This is illustrated in Figure 9 for the example connector
block LCN Control. An FSM (in SDL) consists of states
(represented as rectangles with round corners) and transitions
(represented by directed arcs). The initial starting state is
clearly marked by an oval. In contrast to other state machine
models (e.g., UML State Charts), transitions are always drawn
from top to bottom and states can have multiple occurrences in
the diagram.

For our example, let us assume that the developer of the Alarm
Controller used microCommander to deploy an in-gate
component in such a way that a signal armed(stat) is send
whenever the Alarm Controller is switched on or off. Note that
in this example stat is a parameter (with value 1 or 0)
representing the status of the alarm controller, i.e., on or off,
respectively. Furthermore, let us assume that the LCN
developer now wants to integrate the alarm controller with the
heater controller of the property. The idea is to switch the
heater to low temperature mode whenever the property’s
residents are absent, that is, whenever the alarm control is

Figure 9. Specification of connector LCN Control

armed. This scenario requires a mapping between the
armed(stat) signal of the alarm controller and the setLow (resp.
setNorm) signal of the heater controller.

Figure 9 shows that such a mapping can easily be created using
FSMs. The SDL symbol for an in-going signal is a rectangle
with a cut out (“in-going”) triangle. Inverse to this, the SDL
uses a rectangle with an “out-going” triangle to specify an out-
going signal. The left-hand side of Figure 9 specifies that if an
armed(stat) signal occurs while the LCN is in state unnamed,
the LCN will change states to armed if the condition stat=1
holds. In this case the desired signal setTempLow is generated.
The middle part of Figure 9 shows an analogous specification
for setting the heater control mode back to normal whenever
the alarm controller is unarmed.

Note that signals of type armed(stat) are created whenever the
alarm controller is switched on or off. Hence, initially, the LCN
Controller does not have information of the status of the alarm
controller, until the first status switch has occurred. Therefore,
we have specified a signal statusAlert? that is initiated by the
LCN Controller at startup. StatusAlert? triggers the alarm
controller to publish its current status, i.e., to send an
armed(stat) signal. Such a status enquiry can easily be
implemented as a convention of all net-centric micro
controllers by configuring a dedicated in-gate component with
microCommander. Note that this can be done without prior
knowledge about the specific networked applications the
controllers will participate in.

The right-hand side of Figure 9 shows another example for
networking the alarm controller with the lighting control
system. Here, microSynergy allows for treating the light
switches as additional sensors for the alarm system: an
alarm(room) signal is raised, whenever a light is switched and
the system is armed. On the other hand, the light is
automatically switched on in a room where the alarm controller
has detected an alarm. Note signal symbols with a double
triangle mark priority signals in SDL (e.g., alarm(room) in
Figure 8).

There are many additional SDL modeling concepts that we
currently do not cover within microSynergy, e.g., macros,
procedures, exceptions, etc. Still, even the currently supported
subset of SDL is powerful enough to create flexible mappings
between embedded application block components running on
distributed micro controllers.

Deployment of Connector Components
The generation of executable from the described SDL
specification of connector components is straightforward.
Analogously to several other SDL tools, we could generate
procedural code (e.g., in C or C++) that handles the signal
distribution in the microServer that controls the selected LCN.
The problem of this approach is, however, that this code would
have to be compiled and linked statically to the rest of the
microServer software. Hence, this solution does not meet our
requirement of being able to dynamically deploy and change
connector components at run-time.

Therefore, we have chosen an interpretative approach. We
translate the SDL specifications into highly compact scripts

that can dynamically be downloaded and executed by a
microServer. Since the embedded platform that executes
microServer only has very limited resources, we did not use
any off-the-shelf scripting interpreter like. Rather we defined
very concise binary format called CEL (Connector Execution
Language). Compilation of the specified FSMs to CEL is done
in two steps (cf. Figure 11). Firstly, we unparse the FSMs into a
textual representation based on XML. This textual
representation is called Connector Description Language
(CDL). We generate CEL in a subsequent compilation step.
The CEL scripts are then send to the microServer target via the
Internet.

Note that we use an XML-based textual representation instead
of the native SDL text format because it is simpler and enables
us to leverage from a great variety of readily available libraries
and tools for the development of the compiler. Figure 10 shows
the beginning of a CDL script generated from the FSM in
Figure 9. Basically, each state flow from top to bottom in
Figure 9 is translated into a so-called thread in CEL. Threads
have a start state and a sequence of statements that can be out
signals <OUT>, in signals <IN>, conditions <CSTMT>, and
state transitions <TRANS>. Note that Figure 10 only shows
the left-most thread from Figure 9. In addition to threads, a
CEL connector contains the names of all connected
components in a so-called link section <LINK>.

Figure 10. CDL generated for connector LCN Control

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE CONNECTOR SYSTEM "CDL.dtd">
<CONNECTOR id="LCNControl">
 <LINK>LightingController</LINK>
 <LINK>HeaterController</LINK>
 <LINK>AlarmControl</LINK>
 <THREAD state="*START*">
 <STMT>
 <OUT>statusAlert?</OUT>
 <TRANS>unarmed</TRANS>
 <IN param="stat">armed</IN>
 <CSTMT>
 <COND>
 <PARAM>
 <VAR idr="stat"/>
 </PARAM>
 <REL op="EQ"/>
 <PARAM>
 <CNST>1</CNST>
 </PARAM>
 </COND>
 <STMT>
 <OUT>setTempLow</OUT>
 <TRANS>armed</TRANS>
 </STMT>
 <STMT>
 <TRANS>unarmed</TRANS>
 </STMT>
 </CSTMT>
 </STMT>
 </THREAD>
 <THREAD state="armed">
 <!—REST OF CONNECTOR SKIPPED -->

3.3 Global networking of embedded

components
Network evolution is one of the major challenges that have to
be resolved in a successful approach to integrating global
component networks (GCNs). Today, there exist a number of
distribution middleware products, e.g., CORBA, DCOM, DCE,
Java/RMI, Jini, etc. [13]. In our opinion, the concepts provided
by Jini are most suitable for networking highly dynamic
networks in distributed embedded applications. Jini technology
has been publicly released in January 1999 by Sun
Microsystems. It has been built on top of Java technology.
Thus, it is actually not a middleware in the traditional sense,
because it does not deal with heterogeneous programming
languages like, e.g., CORBA. Rather, it is a connection
technology that has specifically been developed for Java. At
first sight, choosing a language-specific platform for
integrating distributed components might appear unwise.
However, by building on top of Java, Jini technology is
leveraged by all modern software engineering concepts that
have been built into this net-centric programming language,
e.g., portability, mobility, component-orientation, introspection,
security etc. Given the omnipresence of Java execution
environments on all kinds of platforms starting from micro
controllers to workstations, trading language independence
against the benefits attached to Java technology appears to be a
small sacrifice. Java is about to become a major integration
technology for GCNs in the foreseeable future. Even for LCNs
Java has become increasingly relevant. However, depending on
the specific requirements and constraints of particular LCNs,
application-specific protocols and platforms will remain
important in this area. Still, Java/Jini nicely interfaces with
these other emerging network technologies like Bluetooth
(proximity-based wireless networking), JetSend (intelligent
service negotiation), HAVi (Home Audio-Video
interoperability) [9].

A central feature of Jini is that it provides mechanisms for
dynamically building and evolving distributed communities by
plugging components in and out the network. Each community
has a Jini Lookup Service which acts as a broker between
available Jini services and their clients. Generally, a GCN
includes many such lookup servers. When a component that
offers or requests Jini services is plugged into the network, it
tries to find at least one lookup server. This is typically done
using the Jini multicast request protocol [5].

In a future version of microSynergy, we intend to use this
protocol to register the microServers of each LCN with at least
one Jini lookup server. Note that the encircled Int in Figure 12
stands for a registered interface of an LCN. Analogously, local
microServers can query the Jini lookup service for the
interfaces of all LCNs in their “network neighborhood”. With
this information, the developer can use techniques similar to
the approach presented in Section 3.2.2 in order to federate
several LCNs to global networks.

Dealing with evolution
In contrast to other distribution technologies, Jini service
objects cannot be used for an indefinite period of time. Rather,
Jini introduces the concept of resource leasing, i.e., resources
can be reserved (leased) for a certain time frame only. When
this time has expired and the service is still needed, the lease
has to be renewed. This simple but effective concept provides
Jini networks with a sort of self-healing quality, because proxy
objects for services that become unavailable will expire over
time. Moreover, Jini clients necessarily have to take into
account that services can become unavailable. In a way, the
leasing mechanism has a function similar to a garbage
collector: it eventually removes all traces of services that have
become unavailable.

Figure 11. Deployment of Connector Components

4. Related work
The idea of constructing software by configuring and
connecting proven, reusable components (as opposed to manual
programming) has existed for several decades. During the 90’s
component-oriented construction has gained increasing interest
in the commercial section. This popularity has been driven by
the availability of reusable frameworks and pattern libraries for
object-oriented languages like C++ and Java [10] [11]. Johnson
gives a good overview on the pros and cons of employing
components and other reusability technology for software
construction [12]. One prominent problem of component and
framework reuse is how to efficiently store, maintain, and look
up a generally very large number of reusable components.
Several representation and query languages and algorithms
have been proposed for this purpose, e.g., by Sahraouim and
Benyahia [13]. Even though the problem of component-
oriented construction for general software has not yet been
sufficiently solved, current industrial practice proves that this
approach becomes viable and productive for specific
application domains. For example, component-oriented
techniques play an important role in constructing current
graphical user interfaces, e.g., Java Beans [2].

Stewart has shown that similar advantages of domain-
dedication apply for the use of component-orientation in the
design of embedded systems [3]. The notion of making
component reuse feasible by focusing on a particular domain is
related to the idea of product lines as presented in [14]. In this
sense, microCommander and microSynergy is clearly focused
on supporting control applications. They might not provide
enough freedom for developing other types of embedded
system application, e.g., software for cellular phones.

Our approach to connect different application block
components is related to work performed in the area of
architectural interconnectors, e.g., as presented by Allan and

Garlan [15]. The difference to our approach is that it is
currently restricted to asynchronous (signal-based)
communication only. Furthermore, we deal with a-posteriori
integration. Finally, we have chosen SDL for specifying the
integration among components. This is in contrast to many
other modeling approaches that employ the Unified Modeling
Language (UML) for this purpose [8]. We have made this
decision because SDL has a formal semantics and is widely
used in the embedded systems domain [4].

5. Conclusion
We have presented an approach to component-oriented
development of net-centric embedded systems. This approach
is based on a graphical composition paradigm of reusable
process components. In contrast to traditional component-based
development of embedded software, microCommander also
considers reusable user interfaces for operating and configuring
components. These user interfaces can be used to monitor
parameters of components from a remote location on the
Internet. Furthermore, we have discussed requirements and
characteristics for a hierarchical architecture for collaborative
networks of embedded controllers. Such networks will play an
increasingly important role in our society. We have described
an approach for creating flexible mappings between distributed
micro controllers based on SDL specifications. This approach
has been implemented and evaluated in the microSynergy
development tool in tight collaboration with our industrial
partner Intec Automation Inc. Intec has a keen interest in
exploiting our results and integrating them in their integrated
development environment. Our future work will include a
large-scale case study to evaluate and refine our technique. We
have identified a possible candidate for such a study at the
Herzberg Institute of Astrophysics at the National Research
Council of Canada.

Figure 12. Federation of several LCNs to global networks based on Jini technology

Jini
Lookup
Service

Jini
Lookup
Service

MC1

MC2

MCn

microServer
Gateway
(Jini/Java)

LCN

Internet
Java/Jini

Jini
Lookup

Service(s)

publish
service
proxy

Int

Int

lookup service

introspect and
access service

delegate
service

Acknowledgements
We would like to express our gratitude towards the Advanced
Systems Institute of British Columbia (ASI) and Intec
Automation Inc. for their ongoing support and funding of our
research.

References
1. Estrin, D., R. Govindan, and J. Heidemann, Embedding the

Internet. Communications of the ACM, 2000. 43: p. 38-50.
2. Deitel, H.M. and P.J. Deitel, Java : how to program. 1999,

Prentice Hall: Upper Saddle River, N.J.
3. Stewart, D. Designing Software Components for Real-Time

Applications. in Embedded System Conference. 2000. San
Jose, CA, USA.

4. Ellsberger, J., D. Hogrefe, and A. Sarma, SDL - Formal
Object-oriented Language for Communicating Systems.
1997: Prentice Hall Europe.

5. Edwards, W.K., Core Jini. 2nd ed. The Sun Microsystems
Press series. 2001, Upper Saddle River, NJ: Prentice Hall.
xliii, 962.

6. Szyperski, C., Component Software, Beyond Object-
Oriented Programming. 1997: Addison-Wesley.

7. Polze, A., D. Plakosh, and K.C. Wallnau, A study in the use
of CORBA in real-time settings model problems for the
manufacturing domain. 1997, Carnegie Mellon University,
Software Engineering Institute: Pittsburgh.

8. Stevens, P. and R.J. Pooley, Using UML software
engineering with objects and components. 2000, New York:
Addison-Wesley.

9. Jini Technology and Emerging Network Technologies.
2001, Sun Microsystems.

10. Nierstrasz, O., S. Gibbs, and D. Tsichritzis, Component-
Oriented Software Development. Communications of the
ACM, 1992. 35(9): p. 160-165.

11. Leavens, G.T. and M. Sitaraman, Foundations of
component-based systems. 2000, Cambridge, [England] ;
New York: Cambridge University Press. ix, 312.

12. Johnson, R. Components, frameworks, patterns. in 1997
symposium on Symposium on software reusability. 1997.
Boston, USA: ACM Press.

13. Mili, H., H. Sahraouim, and I. Benyahia. Representing and
querying reusable object frameworks. in Symposium on
software reusability. 1997. Boston, USA: ACM Press.

14. Donohoe, P., Software product lines : experience and
research directions : proceedings of the First Software
Product Lines Conference (SPLC1), August 28-31, 2000,
Denver, Colorado. 2000, Boston, MA: Kluwer Academic.
xv, 532.

15. Allen, R. and D. Garlan. Beyond definition/use:
architectural interconnection. in Proceedings of the
workshop on Interface definition languages. 1994. Portland,
USA: ACM Press.

