
Bridging the Gap between Distributed Shared Memory and
Message Passing

Holger Karl�

Department of Computer Science
Courant Institute of Mathematical Sciences

New York University

Abstract

Using Java for high-performance distributed computing
aggravates a well-known problem: the choice between
efficient message passing environments and more con-
venient Distributed Shared Memory systems which of-
ten provide additional functionalities like adaptive paral-
lelism or fault tolerance—with the latter being imperative
for Web-based computing.

This paper proposes an extension to the DSM-based
Charlottesystem that incorporates advantages from both
approaches. Annotations are used to describe the data de-
pendencies of parallel routines. With this information,
the runtime system can improve the communication ef-
ficiency while still guaranteeing the correctness of the
shared memory semantics. If the correctness of these an-
notations can be relied upon, additional optimizations are
possible, ultimately sharing primitive data types such as
int across a network, making the overhead associated
with accessing and sharing objects unnecessary. In this
case, the annotations can be regarded as a compact rep-
resentation of message passing semantics. Thus, a pro-
gram’s efficiency can be improved by a a step-by-step
incorporation of semantic knowledge. The possibility to
freely mix and to easily switch between unannotated code,
annotated code and shared primitive data types entails a
big flexibility for the programmer.

A number of measurements show significant perfor-
mance improvements for annotations and annotation-
based shared primitive types.

�This work was done while the author was on leave from Humboldt-
Universität Berlin, Graduiertenkolleg “Kommunikationsbasierte Sys-
teme.”

1 Introduction

The Internet has been described as a potential source
for an immense computational capacity. A vast num-
ber of often idle machines are connected and provide—in
principle—enormous resources to tackle large problems.
But distributed computing in the Internet is faced with a
number of challenges that have prevented this vision from
realization so far. Among these obstacles are heterogene-
ity, security concerns, the need to install programs on re-
mote computers, high communication latencies, and the
inherent unreliability of remote machines and the Internet
itself.

The Java programming language successfully ad-
dresses the heterogeneity and security concerns and
removes the need to install programs remotely other
than standard execution environments (typically, a Java-
enabled browser). This makes Java a prime choice for
building environments to execute parallel programs dis-
tributed over the Internet or, more precisely, the World
Wide Web.

A number of research efforts use Java to build such an
environment. Some of them use message-passing inter-
faces, others provide Distributed Shared Memory (DSM)
semantics (cp. Section 2 for details).Charlotte [4] is
such a DSM system—it uses a reliable parallel machine as
programming model and the runtime system implements
this model on top of unreliable machines. Charlotte pro-
vides an object-based shared memory for objects of cer-
tain distributed classes. Main advantages of Charlotte are
easy programmability, fault tolerance with regard to crash
faults of workers, and adaptive parallelism that makes use
of slow machines. Fault tolerance in particular can be re-
garded as indispensable for a parallel system using the
World Wide Web. Additionally, Charlotte is completely

1

implemented in Pure Java and runs on standard Java vir-
tual machines.

But compared to simpler message-passing systems,
Charlotte pays a high overhead for maintaining correct
memory semantics. In a message-passing system on the
other hand, this overhead is avoided by having the pro-
grammer provide precise information which data is trans-
ferred where and when—which is automated by a DSM
system. Additionally, it is a difficult task for a pro-
grammer to provide Charlotte-like capabilities using only
message-passing primitives. A programmer finds him-
self thus faced with the difficult choice between easy pro-
grammability and automatic fault tolerance provided by
a DSM system like Charlotte and high performance ob-
tainable by using simpler message-passing abstractions.
Therefore, a solution is needed that maintains Charlotte’s
advantages for the programmer and improves its effi-
ciency to be competitive with message-passing systems;
of course, such a solution should be implemented in Pure
Java as well. The need for such a solution is particularly
felt in a Web-based environment using Java: high laten-
cies and the unavailability of hardware support for de-
tecting memory access make low-overhead solutions nec-
essary, the complexity of Web-based network computing
calls for higher, fault-tolerant programming models.

This paper presents an annotation-based solution that
bridges the gap between Charlotte’s DSM semantics and
message-passing systems by allowing stepwise refine-
ments of Charlotte programs. In a first step, a Charlotte-
program can be enhanced with annotations that describe
the data requirements of routines (Charlotte’s unit of par-
allel execution). The runtime system can use this in-
formation to improve the communication efficiency; the
standard Charlotte distributed classes guarantee the cor-
rectness of the computation even if the annotations are
wrong. In a second step, after the annotations’ correctness
has been established, efficiency can be further improved
by removing the consistency checks for shared data. In
a third step, primitive data types can be used as a basis
for sharing, additionally foregoing the overhead of ac-
cessing objects. This combines efficient communication
and direct data access with Charlotte’s advantages without
the programmer having to worry about low-level commu-
nication issues. This gradual incorporation of semantic
knowledge closes the gap between the programmability
advantages of DSM and the communication efficiency of
message-passing programs. Additionally, it is also con-
ceivable to generate annotations automatically be means
of a data flow analysis within a compiler.

The next section presents related work. Section 3 in-
troduces the annotation-based extensions for Charlotte
and Section 4 gives experimental results for the various
extensions—both sections use matrix multiplication as a
common example. Section 5 discusses possible exten-
sions of this work and Section 6 gives some conclusions.

2 Related Work

Two areas of distributed computing are of interest: Work
related to using Java for parallel or distributed comput-
ing and more general research into aspects of DSM sys-
tems, in particular the use of annotations for increased ef-
ficiency.

A number of recent projects use Java as an implemen-
tation platform for distributed computing. A PVM-like
interface for Java is described in [8]. ATLAS [2] extends
Cilk’s technologies, e.g., hierarchical work stealing, and
integrates them into Java. Unlike Charlotte, ATLAS needs
daemon processes as compute servers and also makes use
of native code. JavaParty [13] transparently adds remote
objects to Java by introducing a new keywordremote
that is handled by a preprocessor. JavaParty mainly targets
clusters of workstations. The programmer or compiler
generate code to guide data distribution and migration.
JavaParty programs are very similar to Java programs;
their efficiency is comparable to RMI-based implementa-
tions. The ParaWeb project [5] is concerned with provid-
ing an infrastructure for seamless access to heterogeneous
computing resources. A library can be used for explicit
message-passing programs or, with a modified Java Vir-
tual Machine, threads can run remotely and are presented
with the illusion of a single, shared memory. Similarly,
[16] suggests implementing a modified Java Virtual Ma-
chine on top of TreadMarks using a distributed garbage
collector. In [9] it is argued that integrating the global
pointer and asynchronous remote method invocation con-
cept (constituting a global name space) from the Nexus li-
brary is beneficial for web-based supercomputing. Javelin
[6], similar to Charlotte in that it allows standard Web-
browsers to be used, provides brokering functionalities for
computational resources and adds a layer supporting the
implementation of parallel programming models in Java.

Research into DSM in general can be broadly classi-
fied as using hardware support or being an all-software
approach. Among the former, Munin [7] is interesting
as it uses annotations to express expected access patterns
for data (e.g., “producer-consumer”), thereby allowing the

2

run-time system to choose an appropriate consistency pro-
tocol. Since Java does not allow access to low-level sys-
tem concepts such as memory pages and memory protec-
tion, all-software solutions are more relevant. A number
of such systems have been proposed; examples include
object-based systems like Orca [1] and Aurora [11] or C-
based systems like CRL [10] and Cid [12] or Jade [14].

Aurora is an object-based system where the program-
mer can select different consistency models for a shared
object dynamically at runtime by annotating the C++
source code with corresponding function calls. Orca on
the other hand defines an own language for a shared data-
objects model. In Orca, the compiler generates informa-
tion about the usage pattern of shared objects which is
then used by the run-time system to implement efficient
data distribution. CRL is a library of C functions that im-
plement a DSM system. The code must be annotated with
calls explicitly mapping shared data into local memory.
Cid is quite similar to CRL, extending C with source code
annotations to identify global objects. Cid is more gen-
eral than CRL due to better multithreading support and
potential for the programmer to influence data placement.
Jade’s approach is closest to the annotations suggested
here: units of code are identified as tasks and the pro-
grammer provides data access information for these tasks;
Jade’s runtime system dynamically extracts the parallel
execution from this.

3 The Bridge

This section describes the original Charlotte system and
extensions to it that constitute a possible bridge between
Charlotte’s DSM semantics and message-passing seman-
tics.

3.1 Standard Charlotte

A Charlotte program consists of alternating sequential and
parallel steps. A manager application (running as a stand-
alone process) executes the sequential steps and adminis-
ters the parallel steps. In such a parallel step (delimited by
parBegin() andparEnd()), a number ofroutinesare
defined and picked up by any number of workers (which
are applets running in a browser). The end of a paral-
lel step is a barrier synchronization for all the routines in
this step. The current Charlotte implementation does not
allow nested parallel steps. The memory is logically parti-
tioned in private (local to a routine) and shared segments.

The shared memory hasconcurrent read, exclusive write
semantics.1 Charlotte deliberately chooses this conserva-
tive semantics to make the programming model as simple
as possible.

The shared memory is implemented at the data type
level. For a Java primitive type like, e.g.,int , there
is a corresponding Charlotte classDint (distributed int)
that provides the correct distributed semantics. The ac-
tual data access happens via member functionsget()
andset() , since Java does not allow operator overload-
ing. If, upon a read-access, a data item is detected to be
invalid at a worker,2 this worker sends a request for this
data item to the manager and declares it valid upon recep-
tion. During a write access, the object is marked as mod-
ified; all modified objects are sent back to the manager at
the end of a routine. Since the Java applet security restric-
tions impose a star-like topology on communication, this
master-worker structure fits especially well.

Additionally, Charlotte’s memory semantics allow the
use of eager scheduling. A routine can be given to
multiple workers without jeopardizing the correctness of
the computation. Thus, crashed or slow workers can be
compensated for by re-scheduling their routines on other
workers. This entails Charlotte’s fault tolerance and adap-
tive parallelism properties. As an example, Figure 1
shows the skeleton of a matrix multiplication program in
Charlotte;drun is the actual implementation of a routine.

It is important to point out that Charlotte only uses stan-
dard Java mechanisms and does not require a modified
Java Virtual Machine or low-level libraries. In particu-
lar, the distributed classes likeDint are standard Java
classes.

3.2 Annotating Routines

Requesting data from the manager upon read access can
be very time-consuming, particularly in a high-latency en-
vironment. Charlotte tries to amortize this overhead by
copying, for each request, a set of objects (a “page”—not
to be confused with virtual memory pages) from the man-
ager to the worker. Choosing page sizes is difficult: large
pages reduce the frequency of data requests, small page
sizes reduce false sharing (which can occur even though
Charlotte is an object-based system) and redundant com-
munication. Since Charlotte has no way of predicting

1Concurrent read, concurrent writesemantics is possible with some-
what higher overhead in the manager.

2Workers have no valid date at the beginning of a parallel step.

3

== multiply two SizexSize matrices: C = A�B
public class Matrix extends Droutine f

== this is executed by the workers:
== compute row ‘myId’ of C
public void drun (int numRoutines,int myId) f

int sum;
for (int col=0; col<Size; col++) f

sum = 0;
for (int k=0; k<Size; k++)

sum += A[myId][k].get() � B[k][col].get();
C[myId][col].set(sum);

g

g

. . .
== this is executed by the manager:
public void run () f

. . .
== a parallel step with Size routines
== (one for each row):
parBegin();
addRoutine (this, Size);
parEnd();
. . .

g

g

Figure 1: Matrix Multiplication in Charlotte (abbreviated)

which data is going to be used, any page size is merely
a heuristic.

If, on the other hand, the programmer gave Charlotte
some hints which data is actually going to be used by a
routine, Charlotte could send this “read set” along with
the routine itself. The advantage of doing this is two-fold:
there is no latency wasted for data requests and no com-
munication bandwidth is wasted for false sharing (if the
hints given are correct). If the hints turn out to be wrong,
the correctness of the program is still guaranteed since a
read-access to data which was not sent in advance is still
detected and served by standard Charlotte mechanisms.
In this sense, these hints are correctness-insensitive. Ad-
ditionally, it is possible to generate a warning if hints turn
out to be redundant or incomplete.

Hints are given by annotating a routine: a method
dloc read is defined which is called by the runtime sys-
tem to obtain the read set for a given routine (see Figure 2

for an example).3 Since bothdrun and dloc read
are methods of the same object, the association between
a routine and its annotations poses no problem. Similar
hints can be given for the data written by a routine.

public class Matrix extends Droutine f

. . .
public Locations dlocread (int numRoutines, int myId)
f

== compute the read set and store it in loc
Locations loc =new Locations();

== all of B:
loc.add (B);

== row ‘‘myId” of A:
loc.add (A[myId]);

return loc;
g

. . .
g

Figure 2: Annotating a Charlotte routine with its read set.

The manager keeps track of which data is currently
valid at which worker. Thus, if two routines with over-
lapping read sets are given to a worker, only the missing
data is sent with the second routine.

3.3 Relying on Annotations

Assuring the local availability of data at a worker is costly:
essentially, an if-statement has to be executed for every
read access to a shared object and a flag has to be set for
a write access. If the programmer is sure that the anno-
tations describe the read and write behavior of a routine
correctly (e.g., after sufficient testing), or if they are gen-
erated by a compiler, there is no longer any reason for this
overhead since the manager takes care of sending the re-
quired data and the worker knows which data to return to
the manager.

3In the base classDroutine , dloc read just returnsnull . The
classLocations handles descriptions of data sets. In the current
implementation, individual objects, arrays, subarrays and matrixes of
primitive types and Charlotte’s distributed classes can be added directly.
Objects that implementSerializable can be treated in a similar
fashion. It is also possible to extendLocations to handle other,
application-specific classes.

4

This can be accomplished by using unchecked coun-
terparts of Charlotte’s distributed classes (Uint instead
of Dint , etc.), retaining the exact same interface as the
correctness-guaranteeing classes. Moving from checked
to unchecked classes is a mere syntactic change of class
name and constructor.

3.4 Sharing Primitive Types

For these unchecked classes, theget() and set()
methods for such unchecked data are completely trivial—
there is no longer any reason to pay the overhead for their
invocation. As a matter of fact, primitive data types like
int can be used directly—the runtime system uses the
annotations to move data back and forth between man-
ager and worker as needed. Thus, the shared memory se-
mantics of Charlotte can be implemented on top of prim-
itive data types allowing direct access without Java’s high
method invocation overhead (much as it would be done in
a message passing program).

Unlike the unchecked classes, using primitive data
types does change the interface, e.g., theget() and
set() method invocations have to be removed. In par-
ticular, objects are passed by reference, primitive types
by value. This can make the transition to primitive types
awkward for single variables. But since the overhead for
single variables is small in either case, the main advan-
tages lie in the use of annotations for arrays. And arrays
of objects or arrays of primitive types do have the same
passing semantics. Nevertheless, this step requires care-
ful consideration.

Note that it is of course possible to mix objects of the
original Charlotte classes (with or without annotations)
and shared primitive types at will. This allows a program-
mer to use Charlotte’s distributed classes for data with
complicated access patterns and primitive types for more
straightforward data.

3.5 Additional Optimizations

Since the manager keeps track of which data is currently
valid at a worker, it is possible to use this information for
two additional optimizations.

First, the manager can use the difference between a
worker’s valid data set and a routine’s read set as a cri-
terion for choosing which routine to give to a worker.
Choosing the routine which minimizes this difference also

minimizes the amount of data the manager has to sent.4

In a sense, a routine is given to a worker that already has
“co-located” data for this routine (hence “colocation” as a
short term for this heuristic).

Second, for the unchecked shared objects, data move-
ment to the workers is solely the managers responsibility.
It is therefore possible to leave all the workers’ local data
intact at the end of a parallel step (instead of declaring
them invalid as in standard Charlotte) and to overwrite
them with new values only if necessary. If a program
declares shared data as unchanged at the beginning of a
parallel step, the manager will not remove this data from
the workers’ valid data set and therefore not send it again.
This mechanism constitutes inter-step caching. It also al-
lows colocation to take advantage of data send in a previ-
ous step and not to be restricted to overlapping data within
one step.

3.6 Discussion

The most important thing to note for these extensions
is that they allow a gradual improvement of a program:
From Charlotte’s pure DSM to DSM plus hints to shared
objects without correctness checks to sharing primitive
data types the correctness of which is completely based
on annotations (cp. Figure 3). Access to these primitives
types is direct without any method invocations and there-
fore equivalent to what is commonly used in message-
passing systems.

The annotations for read and write data sets of a routine
do look a little like reading and writing data from and to
the network. But since only the data sets are described,
the programmer does not have to worry about streams,
I/O-exceptions, etc. Additionally, only one description is
necessary as opposed to code for sending and receiving
data—by comparison, a message-passing program actu-
ally over-specifies the communication. It is possible to
transform these descriptions into direct send/receive calls,
but the gain should be minimal; e.g., it is difficult to avoid
redundant data transmission with pure message-passing
calls. While this approach does generate some overhead
for the runtime system, the following section will show
that this overhead is well invested.

All Charlotte’s initial advantages like fault tolerance
and adaptive parallelism are maintained—capabilities that

4Assuming the routine is correctly described by the annotations. Oth-
erwise, this is the best guess the manager can make regarding the amount
of communication for a given worker/routine combination.

5

pure
DSM

DSM+
hints

DSM+
unchecked

objects

DSM+
shared

primitives

annotations
with correct-
ness check

correctness-
assuming

annotations

primitive types
instead of objects

Message
passing

program
transformation

Figure 3: Steps between Charlotte’s DSM and a message-passing system.

would be laborious to implement using message-passing
primitives alone. Additionally, a flexible mixture of
purely DSM-based and annotation-supported objects is
possible.

In comparison to related work, CRL and Cid are close
relatives. But Charlotte’s simpler programming model
and the direct use of objects make these annotations eas-
ier to use for a programmer than having to worry about
mapping and locking memory regions, plus having the
additional possibility to use pure DSM objects. Jade’s
annotation technique is also very similar to the approach
proposed here, but it lacks the capability to mix different
levels of correctness guarantees; Jade completely relies on
the correctness of the given annotations.

4 Measurements

This section illustrates the differences between and ad-
vantages of the various approaches with matrix multipli-
cation as an example for measurements. Matrix multi-
plication was deliberately chosen as a problem with only
moderate granularity. Problems with very high compu-
tation/communication (e.g., computing prime numbers)
suffer from the problems addressed by the extensions pro-
posed here only to a much smaller degree.

The environment used for experiments consists of a
number of PentiumPro 200 machines at the Distributed
Systems Laboratory of New York University connected
by a 100 MBit/sec Ethernet and two Pentium 90 at Hum-
boldt University Berlin. A ping between these two sites
typically takes about 130 msec. All machines were run-
ning Linux 2.0. Sun’s Java Development Kit Version
1.1.3 and the Kaffe Virtual Machine Version 0.92 [15] (a
Java just-in-time (JIT) compiler) were used to run the pro-
grams. Runtimes for a purely sequential implementation
are shown in Table 1

JDK Kaffe
Pentium 90 16:5 8:1

PentiumPro 200 9:0 2:3

Table 1: Sequential runtimes (in sec.) for multiplying two
200x200 integer matrices.

The first question asked of an enhancement for a paral-
lel system if of course the one regarding improvements in
runtime. Figure 4 shows the runtime for a 200x200 matrix
multiplication with up to four workers, measured on the
local network at NYU (all numbers are averaged over 10
runs) using JDK, Figure 5 shows the same times using the
Kaffe JIT-compiler. In both figures, as in all the following
ones,Dint refers to standard Charlotte,Dint+A to an-
notated Charlotte with correctness check,Uint indicates
the use of the unchecked class andint sharing primitive
integers instead of objects.5 Times for a message passing
implementation of matrix multiplication (implemented di-
rectly on top of Java IOStreams) are given in both figures.

Both for the interpreted and the compiled version the
improvements in runtime using annotations are striking.
Since the JIT-compiler gives considerably better results,
and JIT-compiler are more and more commonly available
in most browsers, only these times will be discussed in
the following. Nevertheless, it is worthwhile to point out
that the interpreted case behaves in general very similar to
the compiled case. Note that withint , one worker exe-
cutes almost as fast as the sequential version and shows
actual speedup with two or more workers in the inter-
preted version—the message passing implementation suf-
fers from only neglectible overhead with one worker. Fig-

5The actual programs are slightly more complicated than shown in
Figure 1. Using one routine per matrix row is too inefficient—grain
sizes of 5, 10, 25 and 50 rows per routines were used in the experiments
and the best of these results is reported. As is to be expected, for more
workers, optimal grain sizes are decreasing.

6

0

10

20

30

40

50

60

1 2 3 4
No. of Workers

T
im

e
(s

ec
.)

Dint Dint+A Uint int mes.pas.

Figure 4: Run time of Matrix Multiplication on local net-
work (NYU) with JDK. primitive integer (int) and mes-
sage passing.

0

5

10

15

20

25

1 2 3 4
No. of Workers

T
im

e
(s

ec
.)

Dint Dint+A Uint int mes.pas.

Figure 5: Run time of Matrix Multiplication on local net-
work (NYU) with JIT-compiler.

ure 6 shows the absolute speedup of the compiled case
compared with the sequential execution time (thus taking
Charlotte’s overhead into account).

0

0.5

1

1.5

2

2.5

1 2 3 4
No. of Workers

A
b

so
lu

te
 S

p
ee

d
u

p

Dint Dint+A Uint int mes.pas.

Figure 6: Absolute speedups (compared with sequential
program) for the different parallelized versions using JIT-
compiler.

It is particularly interesting to compare the runtimes
needed by the different extensions of Charlotte that have
been introduced in this paper and the message passing
version. First note that the times for message passing
and the Charlotte program with primitive data types are
practically identical,6 proving the claim that with annotat-
ing Charlotte near-message passing efficiency is possible
while still maintaning advantages like fault tolerance.

0

2

4

6

8

10

1 2 3 4
No. of Workers

R
at

io

Dint/Dint+A Dint/Uint Dint/int

Figure 7: Ratios of run times of different optimizations
(compiled case).

Figure 7 shows the ratios of runtimes when compar-

6Actually, in some circumstances the Charlotte version is faster than
the message version. While this may be due to statistical fluctua-
tions, Charlotte’s load balancing capabilities give it an advantage over
a straightforward message passing program.

7

ing standard Charlotte (Dint) with annotated Charlotte
(Dint +A), Charlotte with unchecked distributed obejcts
(Uint) and primitive types (int). The annotations make
data requests unnecessary and send all the data needed for
a routine in one batch—this improves runtime by about
a factor of three (Dint vs. Dint +A). The Uint ver-
sion shows another slight improvement, but the ability to
forego the overhead associates with objects and to share
primitive types adds another factor of two—resulting in an
overall improvement of about a factor of nine over stan-
dard Charlotte.

The runtime using connections with high latencies was
tested with two workers running at Humboldt University
Berlin; runtime and ratios between various methods for
this setup are shown in Figure 8 and Figure 9 respec-
tively.7 Again it is obvious that the shared primitives
version attains a preformance comparable to the message
passing implementation. Unfortunately, since these ma-
chines are considerably slower than the local machines,
the numbers are not directly comparable and no direct
conclusions concerning the respective gains for low- and
high-latency environments are possible.

0

20

40

60

80

100

1 2
No. of Workers

T
im

e
(s

ec
.)

Dint Dint+A int mes.pas.

Figure 8: Times with master at NYU, workers at Berlin
for various versions of Charlotte and message passing.

The optimization in Subsection 3.5 where also pro-
posed with long latencies in mind. For the example of
multiplying a matrixA with two matrixesB1 andB2 in
two consecutive parallel steps, Figure 10 shows the com-
munication time usingDint plus annotations, addition-
ally cachingA between the two steps, and both cachingA

and taking the distribution ofA among the workers into
account for the second parallel step (colocation). While
is a LAN environment the impact of colocation is only

7Uint is not shown since, as seen above, the major improvements
steem from annotations and primitive data types.

0

1

2
3

4

5

6

7

1 2
No. of Workers

R
at

io

Dint/Dint+A Dint/int Dint/mes.pas.

Figure 9: Ratios with master at NYU, workers at Berlin
for various versions of Charlotte and message passing.

small, for high-latency connections colocation can save
up to 25% of runtime. Perhaps even more important is the
fact that the standard deviation of colocation is roughly a
factor of three smaller than the other methods.’

0
2
4
6
8

10
12
14
16
18

NYU
(comp.)

NYU Berlin
(comp.)

Berlin

No. of Workers

T
im

e
(s

ec
.)

Dint+Ann. Caching Colocation

Figure 10: Communication times for matrix multiplica-
tion with Dint plus annotations,Dint plus annotation
and caching, andDint plus annotation and caching and
colocation (averaged over 1000 runs).

5 Future Work

There are a number of possible extensions to this work.
The annotations described here suffer from some limita-
tion imposed by the Charlotteparbegin() /parend()
structure. In particular, it is awkward to use more than
one routine perDroutine object and, hence, annotating
such routines is difficult, too. We are currently investigat-

8

ing a different syntactic approach for both Charlotte and
Calypso (a page-based DSM system [3]). Studying the
applicability of such annotations to Calypso is under way.

Also, the annotation techniques proposed here should
be studied with some more elaborate examples to estab-
lish the difficulty of writing the annotations. The biggest
improvement is to be expected for programs that show
regular data-access behaviour. But since annotated and
pure DSM objects can be freely mixed, even programs
with more difficult structures should be manageable (e.g.,
with speculative annotations).

This can be extended by studying the impact of problem
size and communication/computation ratio on the relative
performance of these optimizations. Generating the anno-
tations by a compiler-based data-flow analysis would also
be most interesting.

Overlapping computation with computation is an or-
thogonal issue. Coordinated execution of multiple work-
ers within one browser is an obvious approach to this
problem.

6 Conclusions

This paper set out to provide a means to bridge the gap
between the DSM-semantics behind Charlotte and sim-
pler, yet more efficient message-passing systems. An
annotation-based method has been proposed to augment
a Charlotte program with information about the data de-
pendencies of routines executing in parallel.

These annotations can have the character of hints, al-
lowing the run time system to improve communication
efficiency while guaranteeing the correctness of the pro-
gram. They can also be used as a precise description of
read and write sets which allows the sharing of primitive
types like int across multiple machines. The stepwise
nature of this concept allows a programmer to gradually
incorporate knowledge about a program’s behavior and to
freely mix pure DSM objects with annotation-based ob-
jects or shared primitive types.

Sharing primitive types results in data access effi-
ciency usually found only in message-passing systems or
hardware-supported DSM systems. By building on top of
Charlotte, this efficiency is now available for Java-based
Web-computing without putting the burden of low-level
communication or locking primitives on a programmer
while properties that are crucial for Web-computing, e.g.,
fault tolerance, are maintained. In this sense, advantages

from DSM systems and message passing are incorporated
in this concept.

The practicability and ease-of-use of this approach has
been shown with matrix multiplication as an example. A
number of measurements substantiate the claim to vastly
improved performance—run time improvements of up to
a factor of nine over standard Charlotte and competitive
with a pure message passing implementation were ob-
served.

This shows that with modest overhead for program-
mer and runtime system, even problems of only moderate
granularity can be efficiently solved in a Java-based DSM
programming environment.

Acknowledgements

Acknowledgements are due to Arash Baratloo for value-
able discussions and to the anonymous referees for point-
ing out related work (in particular, Jade) and helpful com-
ments.

This research was sponsored by the Defense Advanced
Research Projects Agency and Rome Laboratory, Air
Force Materiel Command, USAF, under agreement num-
ber F30602-96-1-0320; by the National Science Founda-
tion under grant numberCCR-94-11590; by the Intel Cor-
poration; and by Deutsche Forschungsgemeinschaft (Ger-
man Research Council).

The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon.

The views and conclusions contained herein are those
of the author and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research
Projects Agency, Rome Laboratory, or the U.S. Govern-
ment.

References

[1] H. E. Bal and M. F. Kaashoek. Object-Distribution
in Orca using Compile-Time and Run-Time Tech-
niques. InConference on Object-Oriented Program-
ming Systems, Languages and Applications (OOP-
SLA ’93), pages 162–177, Washington, D.C., 1993.

9

[2] J. E. Baldeschwieler, R. D. Blumofe, and E. A.
Brewer. ATLAS: An Infrastructure for Global Com-
puting. InProc. of the 7th ACM SIGOPS European
Workshop: Systems support for Worldwide Applica-
tions, Connemara, Ireland, September 1996.

[3] A. Baratloo, P. Dasgupta, and Z. M. Kedem. CA-
LYPSO: A Novel Software System for Fault-
Tolerant Parallel Processing on Distributed Plat-
forms. InProc. of the 4th IEEE Intl. Symp. on High-
Performance Distributed Computing, Washington,
D.C., August 1995.

[4] A. Baratloo, M. Karaul, Z. Kedem, and P. Wyckoff.
Charlotte: Metacomputing on the Web. InProc. of
the 9th Intl. Conf. on Parallel and Distributed Com-
puting Systems, Dijon, France, September 1996.

[5] T. Brecht, H. Sandhu, M. Shan, and J. Talbot.
ParaWeb: Towards World-Wide Supercomputing. In
7th ACM SIGOPS European Workshop, pages 181–
188, Connemara, Ireland, September 1996.

[6] P. Cappello, B. Christiansen, M. F. Ionescu, M. O.
Neary, K. E. Schauser, and D. Wu. Javelin: Internet-
Based Parallel Computing Using Java. InACM
Workshop on Java for Science and Engineering
Computation, 1997.

[7] J. B. Carter, J. K. Bennet, and W Zwaenepoel. Im-
plementation and Performance of Munin. InProc.
of the 13th ACM Symp. on Operating System Princi-
ples, pages 152–164, October 1991.

[8] A. Ferrari. JPVM – The Java Parallel Virtual Ma-
chine. http://www.cs.virginia. edu/˜ajf2j/jpvm.html.

[9] I. Foster and S. Tuecke. Enabling Technologies for
Web-Based Ubiquitous Supercomputing. InProc.
of the 5th IEEE Symp. on High Performance Dis-
tributed Computing, pages 112–110, 1996.

[10] K. L. Johnson, M. F. Kaashoek, and D. A. Wal-
lach. CRL: High-Performacne All-Software Dis-
tributed Shared Memory. InProc. of the Fifteenth
Symposium on Operating Systems Principles, March
1995.

[11] P. Lu. Aurora: Scoped Behaviour for Per-Context
Optimized Distributed Data Sharing. InProc. of
the 11th Intl. Parallel Processing Symposium, pages
467–473, Geneva, Switzerland, 1997.

[12] R. S. Nikhil. Cid: A Parallel “Shared-Memory”
C for Distributed Memory Machines. InProc. of
the 7th Ann. Workshop on Languages and Compilers
for Parallel Computing, volume 892 ofLNCS, pages
376–390, Ithaca, NY, August 1994. Springer-Verlag.

[13] M. Philippsen and M. Zenger. JavaParty—
Transparent Remote Objects in Java. InACM 1997
PPoPP Workshop on Java for Science and Engineer-
ing Computation, Las Vegas, NV, June 1997.

[14] M. C. Rinard, D. J. Scales, and M. S. Lam. Jade:
A High-Level, Machine-Independent Language for
Parallel Programming.IEEE Computer, 1993.

[15] T. Wilkinson. Kaffe—A free virtual machine to run
Java code. http://www.kaffe.org/.

[16] A. Yu, W. Cox. Java/DSM: A Platform for Heteroge-
neous Computing. InProc. of ACM 1997 Workshop
on Java for Science and Engineering Computation,
Las Vegas, NV, June 1997.

10

