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Abstract. ecashTM is a payment system designed and implemented for
making purchases over open networks such as the Internet. In this paper
we review some of the main cryptographic techniques used throughout
the ecash system. We will focus on security aspects as well as some per-
formance related issues. The central notion of an electronic coin is treated
in detail, and the basic protocols manipulating coins are described.

1 Introduction

Behind the scenes banks, credit-card companies, and other financial institutions
have been processing transactions electronically for several decades now. Two
important developments that will open up the field of electronic payment sys-
tems are now taking place. First, the prospect of electronic commerce over the
Internet is creating a large demand for electronic payment methods for open
networks. Second, the introduction of nation-wide electronic purse schemes is
creating many more places and situations where smart cards can be used for
cost-effective off-line payments.

In this paper we will describe several aspects of the ecash system, mostly
security related, and discuss its place among other payment technologies. Ecash
finds its roots in the work by Chaum (see, e.g., [Cha83,Cha90]), who invented
the notion of electronic (or digital) coins as well as the basic protocols for elec-
tronic cash. Electronic coins possess similar properties as metal coins, among
which is the unique feature that a payment transaction leaves no trace about
the identity of the payer. Currently, ecash technology (as provided by DigiCash,
see http://www.digicash.com for more details) is used by a number of banks
around the globe. These banks issue ecash to their customers, who can then
spend it at affiliated merchants on the Internet.

We will focus on the core protocols that make up the ecash system. For
brevity, we will omit a lot of details and alternative approaches that are taken
into account in the actual system. We do, however, consider some future exten-
sions such as the extension to off-line ecash, where the use of smart cards and
the Internet are combined into a highly versatile and secure privacy-protecting
payment system.
?
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2 Characteristics of Electronic Payment Systems

Although more and more consensus is building up as to which properties are re-
quired of a payment system, we are not going to list and describe these properties
one by one in this paper. Instead, we take a bottom up approach, and describe
some of the basic characteristics of payment systems. From these characteristics
one can then infer the possibilities and impossibilities for the numerous varia-
tions, and what their impact is on the performance and flexibility of the system.

Payment by instruction vs prepaid electronic cash In so-called payment
by instruction type of systems, a payer basically orders the bank to move a sum
of money from her account into a payee’s account. Examples in this category are
credit and debit cards as well as many forms of cheques. The moment at which
the money is actually moved from the payer’s account into the payee’s account
depends on the system, but at all times banks and credit card companies will
try to prevent discrepancies between accounts.

The central security aspect in these systems is to ensure that only legiti-
mate account holders are able to issue payment instructions. Of course, digital
signatures are the solution for doing this over a large, open network such as
the Internet. Since digital signatures only make sense if there is an infrastruc-
ture for certifying public keys, a lot of effort is devoted to just this. See, for
instance, the SET (Secure Electroncic Transaction) proposal, a joint effort by
MasterCard, VISA, and other influential partners, which specifies a hierarchy of
certification authorities on top of the payment protocols, as laid out in the iKP
system [BGH+95].

Prepaid systems are conceptually close to electronic equivalents of cash. Tele-
phone cards, smart card based systems, as well as ecash fall into this category.
The user’s account is debited as soon as the card or device is reloaded with
electronic cash. During payments the electronic cash is released again, and only
then the payee’s account will be credited. In the mean time the issuer keeps a
float corresponding to the outstanding cash.

The central security aspect in this type of system is to ensure that cards
or representations of cash cannot be forged. When forgery happens, the float
will ultimately be insufficient to credit all of the payees’ accounts for received
payments. Of course, it should also be ensured that only legitimate account
holders can reload cash from their accounts. However, this security aspect is
now limited to the infrequent withdrawal protocol, and is no part anymore of
the more frequent payment protocol.

On-line vs off-line In the field of electronic payment systems, the notions on-
line and off-line refer to a specific property of the payment protocol. Although
the payment protocol is functionally a protocol between two parties (payer and
payee) many payment systems require that the payee contacts a third party (e.g.,
the bank or the credit-card company acting as an acquirer) before accepting a
payment. If that is the case, the system is called an on-line payment system; the



communication between a payee and its acquirer may be using any communica-
tion medium (not necessarily the Internet). If such a contact with a third party
is not required during the payment protocol, the system is called off-line. In an
off-line system payees are required to contact their acquirer on a regular basis
for clearing all received payments.

Secret key vs public key authentication A basic requirement of a payment
protocol is that it allows a payee to receive payments from any payer. A pay-
ment can be seen as some sort of authentication of the payer towards the payee
(to show that the payment is authentic). Authentication can be based on secret
key cryptography or on public key cryptography. In the latter case, the payee
only needs to have a public key available in order to verify incoming payments.
Although the costs of equipping smart cards with crypto co-processors are ex-
pected to become marginal, it is important to note that the property of public
verifiability can be obtained using simple smart cards only, provided one applies
a method of what we call signature transport. In such a system, signatures are
created by the issuer only, and later endorsed by the payer during the payment
protocol, depending on a challenge from the payee. The trick is to achieve that
sufficiently many payments can be made between successive reloads, which re-
quires optimal use of the limited amount of EEPROM available on simple smart
cards. The added advantage is that the secret key for creating signatures is only
used by the issuer.

In case authentication is based on secret key (symmetric) cryptography, how-
ever, the payer and payee must have a shared secret key available in order to
complete a payment. A straightforward solution is to give all users the same
secret key, but this is generally considered insecure, as this would mean that
breaking a single smart card (i.e., extracting its secret key) will suffice to break
the complete system. The standard solution is therefore to break the symmetry
between payers and payees by equipping the merchants with a highly secure
tamper-proof box called a SAM that contains a master key. The payers’ keys
are derived from this master key in a process called diversification by applying
a cryptographic hash (e.g., SHA-1) to the concatenation of the master key and
the payer’s card number. The idea is that the SAM is more difficult to break
than a smart card, and also that it is possible to routinely check (as part of the
maintenance) if the SAMs have not been tampered with.

In the EMV standard (developed by Europay, MasterCard, and Visa) a first
step is made toward including public key authentication. To prevent frauds in
which cards with fake card numbers are introduced, each card carries a fixed
RSA certificate that shows the validity of the card number. At the start of each
payment, the certificate can be verified against the public key stored in the POS
terminal. The remainder of the payment protocol again relies on a secret master
key stored in the SAM of the POS terminal.

Counters vs coins A direct way of representing electronic cash is to use a
counter stored on a smart card. Clearly, this is an efficient and flexible method,



and any amount can be paid from the card as long as it does not exceed the
value of the counter. A more involved way is to represent electronic cash by a
set of electronic coins. As with ordinary coins, each electronic coin has a fixed
denomination. Now, any amount can be paid as long as it can be obtained as a
sum of the denominations of a subset of the available coins. By using a suitable
distribution of the coin denominations upon reloading, possibly as a function of
the expected spending pattern, it can be prevented in most cases that a payment
cannot be completed although the total value of the coins is sufficient.

The CAFE project (see, e.g., [BBC+94]) relies on a compromise between
these two basic methods. For each payment the required amount is debited from
a counter but at the same time one special coin is used up. The special coins have
no value by itself. Upon reloading the counter is credited with the withdrawn
amount and the supply of special coins is replenished.

As we will explain later on in this paper, an important property that separates
coins from counters is that electronic coins are the only way to achieve a system
that is secure (in the bank’s interest) and at the same time protects the users’
privacy in a strong sense. Security-wise the nice thing about coins is that no
party except the bank is able to create coins. Hence, the only way to attack the
system is to duplicate coins that are already in circulation, but this is easily
stopped by keeping track of spent coins.

Software-only vs tamper-resistant hardware Assuming that payers and
payees need some computer device to take part in the electronic payment sys-
tem, an important distinction is whether the device contains tamper-resistant
hardware or not. If no part of the device is supposed to be tamper-resistant (that
is, the security of the system does not rely on such an assumption), we call it
software-only. Smart cards and SAMs are examples of tamper-resistant devices.

Some advantages of a software-only system are that it can be distributed
easily and at low cost, it can be run on any computer hence there is plenty of
computing power and disk storage available, and users do not have to acquire
special hardware. Important advantages of the use of tamper-resistant hardware
are that storage and use of secret keys is protected well, and that critical parts
of the system run in a secured environment.

3 Money Flow

We briefly describe the money flow in the ecash system. Where appropriate we
will distinguish between the ecash bank (or issuer/acquirer) and the ecash mint.
The mint is the component of the ecash system where coins are created and where
the databases of spent coins are held. So-called ecash accounts form the interface
between the bank and the mint. In practice, several ways will be provided to
transfer money to and from an ecash account. For example, an ecash issuer may
provide a home-banking application that allows its customers to move money
between their bank accounts and their ecash accounts. Another possibility is



that the bank accepts credit card payments, by means of which users can feed
their ecash accounts.

We concentrate on the basic operations that manipulate ecash coins. Other
important ingredients of electronic commerce protocols, such as certificates and
receipts, are omitted as these parts are more or less independent of the way the
core protocols are implemented.

Withdrawal By means of the withdrawal protocol, users are able to convert
money from their ecash accounts into ecash coins. Access to the ecash account
is only possible if the user is able to sign the withdrawal request, where the
signature is checked against the public key registered with the ecash account.1

The coins obtained in a withdrawal are stored on the user’s hard disk. By default
the coins are stored in a password-encrypted manner to prevent them from being
stolen (copied).

Payment To pay a certain amount, a set of coins is selected such that the values
add up to the required amount. In the on-line ecash system, this set of coins is
then encrypted for the bank, using the bank’s public key, to prevent that the
shop or anybody else can steal (copy) the coins. The shop deposits the payment
at the bank, who credits the shop’s ecash account if all coins are valid and none
of the coins has been spent before. Accepted coins are added to the database of
spent coins so that double-spending will be detected.

Payment deposit In the on-line ecash system this protocol is part of the pay-
ment protocol as executed by the shop. In an off-line ecash system this protocol
is executed at a later moment, preferably in batch mode. An important prop-
erty of the payment protocol is that the payment deposit is made specific to the
payee. That is, a payment deposit for a specific payee cannot be deposited to
any other account than the account of the specified payee.

Coin redemption It is possible to return coins directly to the mint without
using them in a payment. A natural restriction is that the number of coins
that a user redeems is not allowed to exceed the number of coins that has been
withdrawn by the user; a more refined way is to monitor this per coinage and
per denomination. This protocol is used when expired coins are refreshed, or to
improve the distribution of the coin denominations.

1 A simple way to set up ecash clients is to assume that the software and the bank’s
public key are presented to the user securely (e.g., on a sealed floppy disk). The user
also gets an account number and a PIN code from the bank. At home the user installs
the ecash client, generates its own private key/public key pair, and registers it with
its ecash account by sending it to the bank together with the PIN code (everything
encrypted with the bank’s public key). The user’s private key can be stored in a
password-encrypted manner on the hard disk.



Recovery If desired, users are able to resurrect coins that have been lost, for
instance, because of a hard disk crash. By means of a special recovery protocol ex-
ecuted between the user and the mint, all the coins that have been withdrawn by
the user since the previous checkpoint can be reconstructed. The reconstructed
coins are then redeemed at the mint, which will only accept those coins that
have not been spent before.

4 Cryptographic Primitives

RSA signatures For authentication of messages we currently use the RSA
public key cryptosystem. Each participant picks its own RSA key pairs at ran-
dom. The public key consists of a modulus n = pq of prescribed size, where p, q
are two randomly generated primes of equal size, and an exponent e, which is
co-prime with φ(n) = (p− 1)(q − 1). The private key d is the multiplicative in-
verse of e modulo φ(n), that is, the unique number d satisfying de ≡ 1 mod φ(n),
which we denote by 1/e.

To sign a message m ∈ ZZ∗n, where the signer has private key d and public key
(e, n), the signer computes the signature s = md mod n. To verify the signature
we check that se ≡ m mod n; this identity must hold as we have the identity
mde ≡ m mod n, since mφ(n) ≡ 1 mod n for all m ∈ ZZ∗n. Actually, it can be
proved that mde ≡ m mod n for all m ∈ ZZn.

For various reasons (e.g., because RSA signatures as described above can
be existentially forged: select an arbitrary s and take m = se mod n, then s
is a valid RSA signature on the “message” m), the actual message is usually
first transformed into a related message by applying a one-way hash and/or
redundancy-adding function f to it and then signing the result f(m). In the
next section we will see an example of such a function f .

Hybrid encryption The RSA cryptosystem can be used for encryption as well.
To encrypt a message m, 0 ≤ m < n, for a receiver with public key (e, n), the
sender computes the ciphertext c = me mod n and sends c to the receiver. To
decrypt the message, the receiver uses its private key d to compute cd mod n,
which is equal to mde mod n = m.

In practice, the use of public key encryption is often limited to the encryption
of session keys. A symmetric encryption algorithm is then used to encrypt the
actual message with the session key. In the ecash system, we also use such a
hybrid encryption method (or, “envelope method” as it is sometimes called),
where we combine RSA with 3-DES (with 112 bit keys). For reasons of efficiency,
it is often advantageous to use public exponent e = 3; encryption of the session
key then amounts to two modular multiplications, and poses no security risk as
long as some well-known attacks are taken into account.

Other primitives Currently we are using SHA-1 as our cryptographic hash
function for the ecash system. Since a cryptographic hash function is both



e 3 5 7 11 13 17 19 23 29 31 37 41

De $0.005 $0.01 $0.02 $0.04 $0.08 $0.16 $0.32 $0.64 $1.28 $2.56 $5.12 $10.24

Table 1. A binary scheme with k = 12 different denominations

one-way and collision-intractable, it is a powerful primitive that is used for
several purposes throughout the system. We assume that the reader is aware
of such constructions, and refer to the literature for notions such as secure
commitments, cryptographically-strong pseudo random number generators, and
password-encryption schemes.

5 Ecash Coins

We will now have a closer look at the internal structure of ecash coins. For each
coinage (short for a “generation of coins”), the mint will randomly generate a
fresh RSA modulus N = pq, keeping the primes p, q secret by storing them in a
safe place. Preferably the mint’s private keys are only used within the boundaries
of tamper-resistant devices, while backups are kept between several entities using
secret-sharing techniques. In this way, it is prevented as much as possible that
private keys are compromised through attacks by insiders.

The denominations of a coinage are encoded by using different public ex-
ponents (but with the same modulus). Let k denote the number of different
denominations, and let {ei}ki=1 denote the first k odd primes. In order that each
ei is a valid RSA exponent, we have the condition that each ei is co-prime with
φ(N), that is, gcd(ei, φ(N)) = 1 for i = 1, . . . , k.2 We denote the denomination
that is associated with public exponent ei by Dei ; see Table 1 for an example.

To limit the storage space required for ecash coins we take full advantage
of the message recovery facility of RSA signatures. This is particularly useful
because ecash coins are in fact RSA signatures on small messages. Thus we get
the following form, where an ecash coin C of denomination De consists of an
RSA signature only:

C = f(x)1/e mod N. (1)

For concreteness we assume that x is 160 bits long, and let H denote a one-way
hash function whose output length is 160 bits as well (like SHA-1). Function f
is a redundancy-adding function defined by

f(x) = xt ‖ · · · ‖ x1 ‖ x0,

2 This condition may be tested efficiently by precomputing Ek =
∏k

i=1
ei, and verify-

ing whether gcd(Ek, p− 1) = 1 and gcd(Ek, q− 1) = 1. Note that this condition can
easily be met by choosing p, q from the set of safe primes (p = 2p′ + 1, q = 2q′ + 1
with p′, q′ prime), but we do not want to limit the set of candidate primes more than
necessary.



with x0 = x and xi+1 = H(x0 ‖ · · · ‖ xi). Parameter t is fixed such that the
total length of f(x) is about equal to the size of the modulus N . (Actually, the
block xt is truncated such that the integer corresponding to f(x) is always less
than N .) Function f may alternatively be defined by f(x) = yt, with y0 = x
and yi+1 = H(yi) ‖ yi. Note that f itself is clearly not a one-way function, since
f(x) contains the input x as a substring.

In current ecash implementations RSA moduli used for ecash coins are at
least 768 bits long; for this size forgery of ecash coins is considered entirely
infeasible—certainly within the limited time-frame that a coinage is valid. Hence,
a storage of about 100 bytes per coin on the user’s side is required. With today’s
hard drives and memory chips there is absolutely no problem of storing any
sensible number of coins. Over time this will only improve as the required key
length for RSA is expected not to double every year or so, while the storage
capacity of modern devices does.

As for the coin storage at the mint, we have the important observation that
after checking the validity of a coin signature, and checking that the coin has
not been spent before, it suffices to store the coin number only. As described
above, we have fixed the size of the coin number at 20 bytes. The only condition
on the size of the coin numbers is that it is large enough to prevent that the
same coin number is accidently generated for coins of the same coinage. (As
a slight refinement, note that it suffices that the coin numbers are unique per
denomination.) By the standard result of the birthday paradox, the probability
that no two coins will be equal when the coin numbers are picked uniformly at
random from {0, 1}160 is bounded by approximately e−B(B−1)/2161

, as long as at
most B coins of the same type are generated. This shows that the probability
that two coin numbers collide is truly negligible for any practical number of coins
B. Since the number of coins per coinage is limited anyway (see Section 8), this
analysis in principle shows that the size of the coin numbers can also be limited
to 64–80 bits (8–10 bytes), say, if desired. Hence, a 1Gbyte hard disk can already
store in the order of a 100 million coin numbers.

6 Protocols

We consider the withdrawal of ecash coins, the payment protocol (which includes
payment deposit), and the recovery protocol. Each protocol is described at a
level of detail that permits us to explain the main security features of the ecash
system.

6.1 Withdrawal

For each ecash coin to be withdrawn from a user’s bank account, the user and
the mint execute an instance of Chaum’s blind signature protocol [Cha83]. This
protocol is executed in parallel as many times as required to withdraw the desired
amount. The distribution of the coin denominations is chosen in such a way that



User Mint
[N = pq]

x ∈R {0, 1}160 (coin number)
r ∈R ZZ∗N (blinding factor)

M ← f(x)re mod N

−−−−−
M
−−−−−−→

Debit account with De

S←M1/e mod N

←−−−−−
S
−−−−−−

C← S/r mod N

Ce ?
≡ f(x) mod N

Store coin C

Fig. 1. Withdrawal of a coin C = f(x)1/e mod N of denomination De

it is guaranteed that—no matter how the money is spent—at least a certain
number of payments can be made.

The withdrawal protocol for a single coin is depicted in Figure 1. Apart from
the random coin number x, the user also picks a random number r ∈ ZZ∗N , whose
e-th power is used to blind the “message” f(x) to be signed by the mint. Since
r ∈ ZZ∗N its inverse 1/r exists, hence the blinding factor can be removed again
to obtain the coin C = f(x)1/e mod N . The complete withdrawal protocol also
consists of two moves, and basically runs as follows. First, the user sends an
authenticated withdrawal request message to the mint, which contains among
other things a list of M -messages, one for each coin to be withdrawn. Then,
assuming that there is enough money in the user’s ecash account, the mint will
answer with a withdrawal reply message, which contains the corresponding list
of S-messages.

Regarding the security of this part of the ecash system, the important ques-
tion that needs to be answered is whether it is infeasible to obtain more or other
coins than prescribed by the withdrawal protocol of Figure 1. The answer is that
an in-depth security analysis shows that (in a reasonable model) any way to ob-
tain more or other coins than prescribed by the withdrawal protocol is equivalent
to breaking the RSA assumption. (The RSA assumption roughly states that it is
infeasible to compute y1/e for randomly selected y ∈ ZZ∗n.) For the scope of this
paper, we will confine ourselves to two aspects of this analysis that are specific
to the ecash system.

First, there is the fact that we use not just one, but a number of public
exponents with the same RSA modulus to encode the different denominations
within a coinage. This raises the question whether, for instance, coins of lower
denominations cannot be combined into coins of higher denominations. More
formally, the question is whether for randomly selected M ∈ ZZ∗N , it is feasible



to compute, say, M1/ek from the values {M,M1/e1 , . . . ,M1/ek−1}. Recall that
the ei’s are pairwise co-prime. For a very different purpose, but equally appli-
cable to our setting, Shamir [Sha83] has shown that this question is answered
in the negative: he showed that given the values {M,M1/e1 , . . . ,M1/ek−1} the
computation is just as difficult as if these values weren’t given at all.

Second, there is the fact that the mint will just accept any message M , and
return S = M1/e mod N to the user—but each time debiting the user’s account
with De, even if the user picks the message M of the wrong form. So, there is no
guarantee that the message M is of the prescribed form f(x)re, where the user
knows x, r, which contrasts with the usual setting for RSA signatures, where the
signer will ensure that each message signed is of the required form f(m), say. In
fact, by means of an example we will now show that it is possible to obtain valid
coins while deviating from the prescribed protocol. Still, the user’s account is
debited with the total value of the obtained coins, so there’s no security problem.

Consider the following approach. We are going to obtain two coins C1 =
f(x1)1/e1 and C2 = f(x2)1/e2 of denominations De1 and De2 , respectively. How-
ever, instead of just asking the mint to sign f(x1) and f(x2), respectively, we do
it as follows.

1. Ask the mint to sign M1 = f(x1)e2f(x2)e1 for denomination De1 , which
results in S1 = M

1/e1
1 .

2. Subsequently, ask the mint to sign M2 = S1 for denomination De2 , which
results in S2 = M

1/e2
2 = M

1/e1e2
1 = f(x1)1/e1f(x2)1/e2 .

3. Finally, using the fact that gcd(e1, e2) = 1, hence there exist integers t1, t2
such that t1e1 + t2e2 = 1, we extract the coins C1 and C2 from S2:

St2e22 f(x1)t1f(x2)−t2 = f(x1)(t2e2+t1e1)/e1 = C1,

St1e12 f(x1)−t1f(x2)t2 = f(x2)(t1e1+t2e2)/e2 = C2.

So, although we do not follow the protocol as described in Figure 1, we are able
to obtain two valid coins anyway. (If desired, it is possible to blind the second
request to the mint (step 2), such that the mint cannot detect the deviation.)
The net result, however, is not very encouraging: we have obtained two coins for
a total value of De1 + De2 , but also the account has been debited with exactly
this amount.

Extending work by Shamir [Sha83] and work by Akl and Taylor [AT83],
Evertse and van Heyst showed that for a very general class of deviations from
the prescribed protocol, nothing is to be gained [EH92,EH93]. As shown by
Chaum [Cha90], “deviations” as exemplified above can even be used to improve
the efficiency of the withdrawal protocol. For example, it is perfectly safe to
collapse steps 1 and 2 in the above deviation of the protocol, where the mint
issues a signature w.r.t. exponent e1e2 (charging, of course, De1 + De2 for this
service). This cuts the communication costs with the mint by a factor of two,
and also saves the mint from performing one signature. Needless to say, this
method can be extended to collapse the withdrawal of any number of coins, as
long as each denomination does not occur more than once.



6.2 Payment

A simplified version of the payment protocol runs as follows. Before the payment
actually takes place, payer and payee have to come to an agreement on what the
object is that is going to be purchased and for which amount X. We assume that
the result of this negotiation is recorded in the string pay-spec. A basic property
of the payment protocol is that the bank will not learn anything about the string
pay-spec, except for its hash value. To prevent that the possible values of the
string pay-spec are limited to a small set (and hence that the bank is able to
guess the value of pay-spec from its hash value), it is required that pay-spec is
also randomized (by including some random string, often referred to as a “salt”).

Next, the payer will select a set of coins C1, . . . , Cl from its coin supply, such
that the total value of these coins is equal to the requested amount X. To pay
a payee with identity IDshop, the payer then assembles a payment message that
consists of the concatenation of pay-spec, and an encrypted message Y for the
bank:

Y = EPKbank
(IDshop ‖ H(pay-spec) ‖ C1 ‖ . . . ‖ Cl),

where E( ) denotes a hybrid RSA encryption method (using 3-DES), as explained
in Section 4. Upon receiving this message, the payee will then sign and forward a
payment deposit message consisting ofH(pay-spec), and the encrypted message
Y to the bank. Finally, the bank decrypts Y and checks the values of IDshop,
and H(pay-spec), and then proceeds to check the validity and freshness of the
coins C1, . . . , Cl. Only if all coins are accepted, the payment is accepted as well,
which means that the coins are added to the database of spent coins and that
the payee’s account is credited with the amount X.

A few remarks regarding security. It is important that neither the payee
nor any eavesdropper can extract the coins from the payment message. For this
reason, the coins are encrypted with the bank’s public key. (Note that public
key encryption is required in this case, because the bank and payer cannot use
a shared secret key, as the payer needs to remain anonymous.) Also, note that
although the string pay-spec itself is never shown to the bank, the payee is sure
that the payer used the same string, since the bank compares the hash values
provided by the payer and payee, respectively. In this way the transaction details
remain hidden from the bank; if required, however, either the payer or the payee
can later reveal the string pay-spec which can then be checked against the data
stored at the bank.

Finally, let us briefly describe how interrupted payments can be resolved, in
case the payer and payee aren’t able to recover from interruptions by normal
means. Due to network problems, for example, the payment protocol may be
interrupted at several stages, but to the payer it only matters whether (i) the
payment wasn’t processed by the bank, or in any case it was not credited to
the payee’s account, or whether (ii) the payment was processed by the bank and
credited to the payee’s account. To find out about the status of a payment, the
payer can either redeem the coins C1, . . . , Cl on an individual basis, or find out
about the complete payment by submitting message Y to the bank.



In the latter case, the payer proves to be the owner of the payment by
revealing the value of pay-code, to which the user committed by including
H(pay-code) in the message Y—this commitment is omitted in the above de-
scription. If the payment turns out to be credited to the payee’s account, the
bank signs a statement to this effect, which the user can then show to the payee
to prove that the payment arrived at the payee after all.

6.3 Recovery

In the previous section we have mentioned two ways to recover from interrupted
payments. Similarly, there are measures to recover from interrupted withdrawals
(applying techniques from the field of transaction processing, see, e.g., [GR93]).
In this section we describe the basic idea behind a special recovery protocol that
allows users to recover from more severe problems as well. For example, in the
exceptional event that all information on the user’s hard disk gets corrupted, the
recovery protocol allows a user to start all over again, and to get reimbursed for
the supply of coins that were stored on the hard disk at the time of the crash.

We are able to do so provided the random coin numbers and blinding factors
as used in the withdrawal protocol of Figure 1 are generated in a pseudo-random
fashion. As part of the set up procedure of an ecash client, the user will obtain
what we call a recovery string, which the user must store in a safe place. The
seed of the PRNG is fully determined by the recovery string (and some other
information private to the user). As part of the recovery protocol, user and
mint than cooperate to reconstruct all coins that have been withdrawn since the
previous checkpoint. Subsequently, all reconstructed coins are redeemed and the
user gets reimbursed for the coins that have not been spent before.

So much for a brief description of the recovery protocol. At this level of detail
the following three remarks regarding security and privacy are in order. First, it
is clear that the recovery string must be sufficiently long such that it is infeasible
to find it by exhaustive search, say at least 16 bytes. Second, it is important that
the mint ensures that the recovery protocol does not yield coins that have never
been actually withdrawn by the user. To this end the mint does some additional
bookkeeping per withdrawal (since the last checkpoint). And, finally, note that
whenever a user requests a recovery some privacy is lost, because the bank learns
which coins have been spent since the last checkpoint.

7 Privacy

We present the by now standard argument why the ecash system protects the
privacy of its users [Cha83]. To fully protect the users’ privacy, the system
must satisfy the requirement of unlinkability; a system in which each user gets
a pseudonym is not sufficient to protect the privacy of its users.

Unlinkability This property says that it should be impossible to determine
whether any two payment transactions originate from the same user or not.



A moment’s thought will show that the property of unlinkability implies that
individual payment transactions are not traceable to the user who acted as the
payer in such a transaction: if they were traceable, two payment transactions
are linked whenever they can be traced back to the same user.

To appreciate the strength of unlinkability, consider the following scenario.
When you buy a prepaid telephone card you can do this completely anonymously
at a newsstand (paying cash). Later when you use the card in a public phone
the telephone company will have no clue that it is you making the phone call
because you bought it anonymously. That is, the individual telephone calls are
untraceable, as they cannot be connected to your identity. Suppose however that
the telephone company gives every card a unique number, which is quite realistic
as this is a basic mechanism to detect fraud (i.e., to find cards on which the total
spent is larger than the card’s value). Then it is easy to keep a file per card of
all phone numbers called from that card (and possibly the time and date of
the calls as well). Since a similar file is kept per home-phone as well, a simple
pattern matching procedure will in many cases reveal the identity of a card’s
owner. Thus, although the card is obtained anonymously (and the card number
acts as a pseudonym), the identity of the card’s owner can be revealed anyway
because all calls from the same card are linkable.

We now argue why the ecash protocols protect the users’ privacy. Consider
a fixed denomination De. Referring to Figure 1, we will show that any of the
signatures S issued by the mint to any of its users will match equally well with
any of the coins C spent by any of the users. So, let SA denote a signature of
denomination De that has been issued to some user A, and let CB denote any
coin of denomination De that has been spent by some user B (users A and B are
not necessarily different). The mint knows that signature SA has been issued to
user A, but the mint does not know that coin CB belongs to user B. Unlinkability
now holds on account of the following reasoning: since for any pair (SA, CB) there
exists a unique blinding factor rAB ∈ ZZ∗N that satisfies CB = SA/rAB mod N ,
we have that each signature issued by the mint matches equally likely with any
of the coins spent. There is no bias between the case that A = B and the case
that A 6= B, which implies that there is no way the bank will be able to link
coins that belong to the same user.

8 Coinages

In practice, an ecash mint will work with several coinages at the same time. For
each coinage the mint generates a fresh RSA modulus, as described in Section 5.
Hence, there is a one-to-one correspondence between the RSA moduli and the
coinages. Apart from the RSA modulus, a coinage has at least the following
attributes: the identity of the mint, the sequence of denominations, the currency,
and a key schedule (i.e., expiration dates) as in Figure 2. These attributes are
distributed with each coinage. Note that the private key can in fact be removed
as soon as withdrawals are deactivated, while the public key must be available
until the coinage becomes invalid.
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Fig. 2. Life-cycle of a coinage

There are two main reasons why coinages are refreshed on a regular basis, say
every six months. First, there is the standard reason for refreshing keys, namely
to limit the risk that the secret key is compromised. There are two direct ways
this may happen. In the first method, the attacker will try to find the secret
key from the public key only, possibly using the mint as a signing oracle. In the
second method, the attacker simply tries to get hold of the secret key by breaking
into the bank or into its computer network, possibly assisted by insiders.

The other reason is to limit the size of the “spent coin” databases. Using
a scheme like that of Figure 2, spent coins are first stored on disk to enable
fast checking for duplicates. After some time the coins are moved to tape, and
during that period it will still be possible to check for duplicates, but using a
slower procedure (which is only available so that users can return coins when
they haven’t used their ecash for a longer period of time). Eventually, a coinage
will become invalid and the tapes can be removed.

Apart from a division in time, where coinages are refreshed every six months
say, we can also use a division in space. That is, instead of viewing all users as
one big set of users, it makes sense to divide the users in clusters. Each cluster
is chosen sufficiently large such that the behaviour of the individual users is
not visible. The advantage is that by limiting the size of a cluster that the
corresponding parts of the “spent coin” database are independent of each other,
which enhances the scalability of the system.

The way the bank divides its users into clusters should be publicly verifiable,
and not at the discretion of the bank (to prevent the bank from introducing
a few small clusters). There are many ways to accomplish such a fair division
into clusters. A simple idea is to first take a cryptographic hash of the user’s
identities, and then define 2t clusters, t ≥ 0, by looking at the first t bits of the
hash value. Assuming that the bank cannot influence (the representation of) the
user’s identities, the users are thus evenly spread over the clusters.

9 Some Extensions

Credentials If desired, other types of clusters like age-groups can also be en-
coded in the ecash system by reserving a different coinage for each age-group.
Certain shops could then be made to accept ecash from certain age-groups only.
Clearly, this is just an example of the general token functionality that can be



achieved with the ecash protocols. The token functionality is in turn subsumed in
the general notion of electronic credentials, which encompasses things as diverse
as theatre tickets, driver’s licenses, passports, diplomas, etc. (e.g., see [Cha92]).
A crucial property of a credential system is that it allows credentials to be shown
in such a way that only the part of the credential relevant to the situation is
revealed. For example, when using your driver’s license to show that you are over
twenty, the protocol for showing this fact should only reveal to the doorman that
your day of birth is more than twenty years ago, but should give him no clue
about your exact age. The cryptography behind these protocols is based on the
general notion of proofs of knowledge.

Off-line electronic cash It is interesting to consider the development of privacy-
protecting off-line cash protocols. To be precise we are considering off-line pre-
paid electronic coin systems with public key authentication, where tamper-
resistant hardware is used only by the payers (see Section 2). A basic concept
of these systems is Chaum’s one-show blinding paradigm, which says that the
privacy of a user is completely protected as long as the user spends each coin
not more than once; however, if a user is able to manipulate its payment device
such that some coins are used more than once, the protocols are such that the
identity of the double spender can be computed. Since the introduction of the
one-show blinding paradigm and the first solutions to the problem ten years ago
[CFN90], the protocols have now developed into an efficient and relatively simple
system for off-line cash.

A problem with early off-line cash systems was the fact that they heavily re-
lied on computationally expensive cut-and-choose techniques. As a consequence,
both the computational and communication complexity of these protocols was
quadratic in the security parameter. A system avoiding cut-and-choose was first
proposed in [Fer94], which is based on RSA and achieves linear complexity. Lin-
ear complexity is also achieved in [Bra94a], this time based on a clean Discrete
Log setting: using Schnorr’s identification protocol [Sch91] and derived prim-
itives, a relatively simple and efficient system is obtained with a rich set of
security properties. Then [Bra94b] presents a general construction (which can
be used to built systems either based on RSA or based on Discrete Log). In
[Sch95] a system is presented which even withstands parallel attacks by two or
more users and is efficient as [Bra94b]; however, the technique only works for a
Discrete Log setting. The work on the CAFE system indicates that this type of
payment systems can be implemented in a practical way.
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