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ABSTRACT

We propose an efficient vector quantization (VQ) technique which we call sequential

scalar quantization (SSQ).  The scalar components of the vector are individually quantized in a

sequence, with the quantization of each component utilizing conditional information from the

quantization of previous components.  Unlike conventional independent scalar quantization

(ISQ), SSQ has the ability to exploit inter-data correlation.  At the same time, since quantization

is performed on scalar rather than vector variables, SSQ offers a significant computational

advantage over conventional VQ techniques, and is easily amenable to a hardware

implementation.  In order to analyze the performance of SSQ, we appeal to asymptotic

quantization theory where the codebook size is assumed to be large.  Closed form expressions are

derived for the quantizer mean squared error (MSE).  These expressions are used to compare the

asymptotic performance of SSQ with other VQ techniques.  We also demonstrate the use of

asymptotic theory in designing SSQ for a practical application, color image quantization, where

the codebook size is typically small.  Theoretical and experimental results show that SSQ far

outperforms ISQ with respect to MSE, while offering a considerable reduction in computation

over conventional VQ at the expense of a moderate increase in MSE.

1.  INTRODUCTION

Vector quantization (VQ) has found increasing use in data compression applications such

as image and speech coding.  The technique is an extension of scalar quantization to the vectorial

case, and is motivated by the well known result from Shannon's rate distortion theory that

superior performance can always be achieved by coding vectors rather than scalars.  As with

scalar quantization, the objective in VQ design is to minimize a distortion criterion such as mean

squared error (MSE).  An iterative error minimization algorithm developed by Lloyd for scalar

quantization was extended to the vector case by Linde, Buzo, and Gray [1].  The iterative nature

of this algorithm makes it computationally very intensive.  A host of other suboptimal but

computationally simpler VQ techniques have been reported in the literature either as an

alternative to the Linde-Buzo-Gray (LBG) algorithm, or as an initial step that may be refined by



2

the LBG technique.  Excellent reviews of these techniques may be found in [2, 3, 4].  Until

recently, the general class of VQ techniques has not received much attention for practical

implementation because of the high computational cost, and the lack of codebook structures that

are amenable to hardware implementation.

In this paper, we propose a VQ technique, which we call sequential scalar quantization

(SSQ).  Although similar ideas have been alluded to in the literature [3, 4], to our knowledge,

this method has not been theoretically analyzed or seriously pursued in any application.  As the

name implies, the basic idea behind the technique is to sequentially quantize the scalar

components of a vector, rather than to quantize the vector as a whole.   The main computational

savings arises from the fact that we are quantizing along  scalar rather than vector dimensions.

At the same time, due to its sequential nature, SSQ possesses the ability to exploit the correlation

and statistical dependency between scalar components of a vector.  As is the case with any other

VQ technique, SSQ attempts to minimize a distortion measure.  In order to analyze and optimize

the performance of SSQ with respect to this measure, we appeal to asymptotic or high-rate

quantization theory, where the number of output quantization levels is assumed to be very large.

This theory allows us to derive closed form expressions for the distortion resulting from SSQ as

a function of the quantizer design parameters, and to find the optimum parameter values that

minimize the distortion.  It also proves to be a very useful tool in quantizer design even when the

number of output levels is small.

While SSQ may be used in any scenario that is amenable to vector quantization, we have

investigated its use in the application of color image quantization, where a high quality color

image is to be displayed on a low cost display device with a small palette of colors.  Several VQ

techniques have been applied to this problem.  Braudaway [5] and Gentile et al. [6] used the

LBG iterative algorithm for palette selection; Orchard and Bouman [7] utilized a tree-structured

splitting VQ technique; and  Balasubramanian and Allebach [8] reported a merging VQ

approach.  In [9], we describe in detail an algorithm that employs SSQ for color palette design.

The algorithm uses the results of the asymptotic analysis developed in this paper to optimize the

palette design with respect to a squared error criterion.  We show that with the sequential
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technique, the palette design is performed very efficiently, while the resulting structure of the

palette allows the mapping between image pixels and palette colors to be performed with no

computation.  In addition, the resulting image quality is comparable with or superior to that

obtained from other color quantization algorithms.  In this paper, we focus on a theoretical

analysis of SSQ within a general VQ context, and include a brief discussion of its application to

color quantization.  The reader is referred to [9] for details of this application.

2.  VECTOR QUANTIZATION

In this section, we formally define the VQ problem and introduce some notation.  We will

use lower case letters to denote real variables and vectors, while random variables and vectors

will be written with upper case letters.  Vectors will be represented by boldface notation.  We

denote by p( ) the probability density function of a random variable or vector, and by P( ) the

probability of an event.  Rk refers to the k-dimensional space of reals.

Let X be a random vector in Rk  with probability density function p(x).  An N point k-

dimensional vector quantizer Q: Rk → Rk is a function whose domain is the set of all possible

values of X and whose range is a set of N vectors C = {y1,...,yN} called a codebook.  Such a

quantizer defines a partition S = {S1,...,SN} of N regions in Rk, where Si = {x ∈ Rk : Q(x) = yi}.

The quantization consists of two steps:  the codebook design, which involves an appropriate

selection of the output vectors y1,...,yN; and the mapping of each input vector to one of the output

vectors according to the rule Q(x) = yi if x ∈  Si.   In practice, the vector mapping consists of an

encoder which assigns to each input x a channel symbol, and a decoder which maps each channel

symbol to a unique output vector in the codebook.  Define a distortion measure d(x,y), d: Rk  ×

Rk →  [0, ∞ ).   The  quantizer is designed to minimize the expected distortion Dk =

E{d(X,Q(X))} between its input and output.  Here, E{ } denotes expected value with respect to

the input distribution p.  The distortion measure that we will be using is the mean-squared error

(MSE),

      Dk = 1
k

E X − Q(X) 2{ } ,        (1)
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where || || denotes Euclidean distance.  Later, we will also discuss weighted squared error

measures.  The two necessary conditions for a quantizer to be optimal with respect to the MSE

distortion are that (i) the yi are chosen to be the centroid of x in Si, i.e.  yi = E{X | x  ∈ Si}; and

(ii) each input x is quantized to  one of the yi's according to a nearest neighbor rule, i.e. Si = {x∈

Rk : || x - yi ||2 ≤ ||x  - yj ||2, j = 1,...,N} [4].  These two conditions are the basis for the iterative

codebook design algorithm that was initially proposed by Lloyd for scalar quantization, and then

generalized to the vector case by Linde, Buzo and Gray [1].  The nearest neighbor mapping rule,

which involves an exhaustive distance calculation between the input vector and each output

vector in the codebook, introduces significant computation in the iterative scheme.  Moreover, in

general, there is no guarantee that the iterations converge to a global minimum in MSE.  (In the

1-dimensional case, the iterations will converge to a global minimum if the distribution p(x) is

known to satisfy certain properties such as log concavity [4]).  Other suboptimal but more

efficient VQ techniques  such as tree-structured VQ have been proposed [4].  Efficient strategies

have also been devised to reduce the time taken for nearest neighbor searches [4].  We will use

the term conventional VQ to refer to all methods that quantize a vector as a whole entity.

3.  SCALAR QUANTIZATION OF VECTORS

As alluded to above, the primary disadvantage of VQ is its associated complexity, which

increases rapidly with the dimensionality of the vector and the codebook size.  Another

suboptimal but computationally simpler  approach to quantize a vector X  = [ X1,...,Xk]t is to

quantize each of its individual scalar components Xi, 1 ≤ i  ≤ k . This may be done either

independently or in a sequential fashion.

3.1  Independent Scalar Quantization (ISQ)

This is the conventional method of scalar quantization.  A codebook Ci of scalar outputs

is designed independently for each scalar component Xi, 1 ≤ i ≤ k, according to its marginal

distribution p(xi). The final codebook is a k-fold Cartesian product of the k scalar codebooks, and

is therefore known as a product code.  A 2-D example of this scheme is shown in Fig. 1a for a

rotated uniform distribution.  The symbols x denote output vectors, which are taken to be the
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centroids within each region.  In this example, the codebook size is 25.  Vector mapping may be

accomplished by independently encoding each Xi to a channel symbol through a set of k lookup

tables (LUT's). This is depicted in Fig. 1b for k  = 3.  The outputs of the k  LUT's are

independently decoded to scalar outputs Y1,..,Yk, which constitute the output vector Y  =

[Y1,...,Yk]t = Q(X) .  Since the codebook design only involves quantization of scalar variables,

and the encoding operation only entails indexing into LUT's, ISQ involves far less computation

than conventional VQ.  However, with this scheme,  many output vectors are wasted in regions

where the input has zero probability of occurrence, as is seen in Fig. 1a.

3.2  Sequential Scalar Quantization (SSQ)

With this approach, the first scalar X1 is quantized to some predetermined number of

levels N1 based on its marginal distribution p(x1).  Each subsequent Xi, 2  ≤ i ≤ k, is then

quantized based on a set of conditional distributions of Xi within regions formed from the

quantization of the scalars X1,...,Xi-1.  A 2-D example of SSQ is shown in Fig. 2a for the same

uniform distribution.  In this example, first X1 is quantized to N1=5 levels.    This results in a

partition of intervals B1j, 1 ≤ j ≤ 5, in R, or columns B2j in R2.  Next, we quantize X2 but confine

the quantization to the columns formed from the quantization of X1.  This results in a 2-D

quantizer with N2=18 output vectors in R2.   The encoding of input vectors may be performed

through a sequential or multistage LUT, as shown in Fig. 2b for 3-D vectors.  The input to the

first LUT is X1.  The output symbol bi-1 of the (i-1)th LUT, 2 ≤ i ≤ k, is then fed to the input of

the i-th LUT along with the i-th scalar component Xi.  Finally, the output symbol bk of the last

encoder is decoded to one of the output vectors in the codebook C.  As is the case with ISQ,  the

codebook design only involves scalar quantization, while the encoding operation entails no

computation, and is easily amenable to a hardware implementation.  Hence, there is a significant

computational advantage to be gained by using SSQ rather than conventional VQ methods.  In

addition, SSQ places its output vectors only within the region of support of the input distribution,

thus requiring fewer output codevectors than ISQ to achieve the same quality level.  In the next

section, we compare qualitatively the performance of ISQ and SSQ.
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3.3  Comparison of SSQ and ISQ

Makhoul et al. [3] provide an excellent qualitative discussion of the advantages of using

conventional VQ over ISQ in terms of four properties of the input data: linear dependency;

nonlinear dependency; shape of the input distribution; and vector dimensionality.  They argue

that conventional ISQ can only make use of two of these properties, namely linear dependency

and distribution shape, whereas VQ can exploit all four properties.  Lookabaugh and Gray [10]

quantified the VQ advantage in terms of the four properties.  Here, we qualitatively compare ISQ

and SSQ in terms of how well they exploit each of these four properties.  Some of the examples

of input distributions are taken from [3].

(a) Linear Dependency:   This refers to the statistical correlation between the vector

components.  The 2-D distribution in Fig. 1a represents data that are correlated.  As was

observed previously, ISQ places some vectors in regions of zero probability because it uses only

marginal statistics and cannot take into account the inter-data correlation. On the other hand,

since SSQ uses a combination of marginal and conditional statistics, or effectively the joint

statistics, this technique takes inter-data correlation into account and place all its output vectors

within the support of the distribution.  Note that if we rotate the uniform distribution to align

with the two axes, then the data are both uncorrelated and independent.  In this case, ISQ and

SSQ offer equivalent performance.

(b) Nonlinear Dependency:   This is the residual dependency that remains after the correlation

between components has been removed.  Consider the distribution in Fig. 3, which has a constant

value in the shaded area.  It is easily shown that X1 and X2 are uncorrelated but not independent,

i.e., there exists a nonlinear dependency between them.  With the ISQ scheme of Fig. 3a, each

scalar is quantized according to its marginal distribution.  Since the 2-D codebook is a Cartesian

product of the two 1-D codebooks, some output vectors will fall inside the shaded rectangular

annulus where the input distribution is zero.  The SSQ scheme shown in Fig 3b will, however,

place all its vectors in the shaded area, thus again offering performance superior to that of ISQ.
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(c) Shape of the Input Distribution:   This property refers to the ability of the quantizer to place

its output vectors according to the shape of the input distribution in multidimensional space.

Ideally, we would expect the output vectors to be more densely spaced where the distribution

takes on larger values.  Consider two jointly Gaussian random variables with a correlation

coefficient of zero.  These random variables are uncorrelated and independent.  Their distribution

is shown schematically in Fig. 4a with ISQ and in Fig 4b with SSQ.  Notice that ISQ results in

densely spaced output vectors  in the regions A, B, C, and D, even though the probability density

takes on relatively small values in these areas.  SSQ suffers from the same drawback only in

regions A and B and not around C and D.  This subtle difference in how the quantizers space

their codevectors yields an interesting and surprising result: namely that SSQ can outperform

ISQ even when the input data is independent!  In Sec. 5.3, we will formally show this result for

the Gaussian distribution in the asymptotic case where the number of quantization levels

becomes large.

(d) Vector Dimensionality:  This property refers to the ability of VQ to pack arbitrarily shaped

quantization regions in multidimensional space.  The nearest neighbor condition for optimality

can often only be achieved with non-rectangular polytopal quantization regions.  However,  ISQ

and SSQ are confined to producing cells that are rectangular polytopes; therefore, they are both

inferior to conventional VQ in this respect.

In summary, SSQ can be a powerful quantization technique, because while it affords

many of the performance advantages of conventional VQ, it also enjoys the computational

simplicity of scalar quantization.  In the sections below, we will quantify the performance of

SSQ and compare it to ISQ and VQ.

4.  ASYMPTOTIC QUANTIZATION THEORY

As pointed out earlier, the minimization of MSE is, in general, a nonlinear iterative

problem.  Thus, the MSE cannot be written in closed form as a function of the number of

quantization levels, except for the most trivial uniform distribution.  However, if the number of
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output quantization levels N is allowed to become asymptotically large, then it is possible to

arrive at approximate closed form error expressions [4].  The idea behind asymptotic theory is

that the number of output quantization levels is assumed to be large enough (or equivalently, the

quantization cells small enough) and the probability distribution of the source is assumed to be

locally smooth enough so that within any quantization cell, this distribution is approximately

uniform.  The MSE's within each quantization region, which are known in closed form for a

uniform distribution, are appropriately summed to yield an approximation for the overall MSE.

The asymptotic analysis not only provides intuition about the behavior of the quantizer, but also

can serve as a valuable guide in the design of the quantizer even for small N.  In the section

below, we briefly outline basic asymptotic results that have been developed for scalar and vector

quantizers.  The reader is referred to [4, 11, 12] for details.

4.1  Asymptotic Scalar Quantization

Let  X be a random variable with distribution p(x).  Consider a 1-D quantizer Q: R → R

with N output points.  Let N(x)dx be the number of quantization levels that lie in the interval [x,

x+dx].  We define the quantizer density function λ(x) as

λ(x) = lim
N→∞

N(x)

N
 .                  (2)

Thus for sufficiently large N, the quantity Nλ(x)dx is approximately the number of quantization

levels in the interval [x, x+dx].  It follows by definition that integrating  λ(x) over its entire

domain will result in 1.  It may be shown [4] that the MSE of the quantizer may be approximated

by an integral

D = E{[ X − Y ]2 } ≈ 1
12N2

p(x)

λ ( x)2∫ dx .             (3)

where Y = Q(X) is the quantizer output.  Equation (3) is known as Bennett’s distortion integral.

Using Ho
..
lder©s inequality or the calculus of variations, it may be shown that the function λ(.)

that minimizes D  is given by

λ(x) = p(x)1/3

p(x)1/3dx∫
 ,            (4)
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and the resulting minimum distortion is given by

D ≈ 1
12N2

p(x)
1/3

 ,                  (5)

where we have used the notation

p(x)
m

≡ p(x)mdx∫[ ]1/m

 .       (6)

If we wish to find the conditional MSE E{[X - Y]2 | A} given the event A, we simply replace the

marginal distribution p(x) in (3) - (6) with the conditional distribution  p(x | A).

4.2  Asymptotic Vector Quantization

Extending the analysis to k-dimensional vectors, let X be a random vector in Rk with

distribution p(x); p: Rk → R, and let Q be an N point quantizer; Q: Rk → Rk.  We may define the

quantizer density function λ(x); λ: Rk → R, in a manner analogous to (2), so that Nλ(x)dx is the

number of quantization levels in an incremental volume dx around x.  Na and Neuhoff [12]

extend Bennett's distortion integral (3) to the vector case yielding

Dk ≈ 1
N2/k

mk(x)

λ(x)2/k∫ p(x)dx ,                        (7)

where Dk is the MSE as defined in (1), and mk(x) is a function characterized by the shapes of the

cells in the vicinity of x, known as the inertial profile function.  Gersho [11] conjectures that for

large N, the optimal quantizer is one whose quantization cells are tessellations of a congruent

polytope.  This result implies that mk(x) = Mk is a constant with respect to x and may be taken

outside the integral in (7).  As with the scalar case, (7) can be minimized with respect to λ(x),

yielding

λ(x) = p(x)k /(k+2)

p(x)k /(k+2) dx∫
 ,                 (8a)

and Dk ≈ Mk

N2/k
p(x)

k /(k+2)
,           (8b)

where ||p(x)||m is defined in a manner analogous to (6).  Equation (8b) serves as a lower bound on

MSE performance for an N point VQ in k-dimensional space.  It is easily shown that the inertial

profile M1 for an interval in R is equal to 1/12, so that (8b) reduces to (5) for the case k = 1.
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5.  ASYMPTOTIC ANALYSIS OF SSQ

We now analyze the asymptotic behavior of SSQ in a manner similar to that used to

derive the results in Sec. 4.  Since SSQ is fundamentally different from either ISQ or

conventional VQ, we cannot simply use the results of Sec. 4; rather, we will have to rederive the

theory for the sequential structure.  The basic results will provide us with the tools necessary for

such a derivation.  We begin in Sec. 5.1 by precisely defining the SSQ structure and making

explicit the variables that we are free to choose in the design of the quantizer.

5.1  The SSQ Design Problem

Given an input random vector X = [X1,...,Xk]t in Rk with distribution p(x), we wish to

design a codebook of N output vectors C = {y1,...,yN} by sequentially quantizing the scalar

components X1,...,Xk.  To simplify the notation, we will assume that the components are

quantized in the order X1, X2,..., Xk.  The quantization of a scalar coordinate to a fixed number of

levels requires some rule Φ to place the decision and reconstruction levels along that coordinate.

This rule will be treated as a design variable.

We begin by designing an N1 level quantizer for X1 using the marginal distribution p(x1).

N1 is a design variable which we shall momentarily assume to be fixed.  This quantization

creates a partition P'
1 = {B'11,..., B'1N1

} of intervals in R, or a partition P2 = {B21,..., B2N1
} of

cylinder sets in R2.  We denote by B'
1j

 the j-th quantization region in R, and by B2j  the cylinder

set in R2 given by B2j = B'1j × R.  Next, we design a quantizer for  X2, which creates a refinement

P'2  = {B'21,..., B'2N2
} of  P 2  containing N2 quantization regions.  Here N2 is again a design

variable.  The refinement is obtained by quantizing X2 within each B2j to some predetermined

number of levels n2j based on its conditional distribution p(x2 |B2j).  Referring to Fig 2a, we have

n21 = 3, n22 = 4, etc.  Note that the  n2j’s must sum to N2.

We may generalize this discussion to quantization of the i-th scalar component Xi, 2 ≤ i ≤

k.  The result of quantization along the dimension xi-1 is a partition P'
i-1 of Ni-1 regions in Ri-1, or

a partition Pi of Ni-1 cylinder sets in Ri.  The i-th quantizer produces a refinement P'i  of  Pi  with

Ni regions, where Ni ≥ Ni-1.  This is accomplished by quantizing along xi within each of the
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cylinder sets Bij, 1 ≤ j ≤ Ni-1, to nij levels according to the conditional distributions p(xi | Bij).

The Ni’s are design variables that must satisfy the constraint 1 ≤ N1 ≤ N2 ≤ ... ≤ Nk = N, where N

is the desired number of codewords in Rk.   Furthermore, for each i, 2 ≤ i ≤ k, the nij’s are also

design variables that must satisfy the constraint

nij
j =1

Ni−1

∑ = Ni   .           (9)

Our objective is to pick the design variables Ni, nij, and the quantization rule Φ along each

coordinate xi to minimize the overall MSE Dk given in (1) for a fixed codebook size Nk = N.

Since the MSE is a separable distortion measure, we may write

Dk = 1
k

di
i =1

k

∑   ,      (10)

where di = E{[Xi - Yi]2} is the MSE along xi resulting from the quantization Yi = Q(Xi). In the

following section, we will obtain approximate analytical expressions for the di's in the

asymptotic case. 

5.2  Asymptotic Optimization of SSQ

  We now derive an asymptotic theory for SSQ that provides us with closed form

expressions for the MSE of the quantizer in terms of the aforementioned design variables.  This

allows the optimization of the quantizer with respect to these variables.  For the subsequent

analysis, we make the following assumptions: 1) the number of quantization levels Ni, 1 ≤ i ≤ k,

and the relative allocations nij are large; 2) the probability distribution p(x) of the source is

relatively smooth; 3) the rule Φ for placing decision and reconstruction levels along a scalar

dimension x is completely specified by the quantizer density function λ(x); 4) quantization along

xi will attempt to minimize only the MSE di along that dimension, and in particular will not

affect the MSE's d1,...,di-1 due to previous quantizations; 5) the probability of quantizer overload

is assumed to be negligible [4].

We will derive in detail the error expressions for the case where X is a 3-D vector.  The

results generalize to k dimensions in a  straightforward manner.  We begin by quantizing X1 to N1
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levels using the marginal distribution p(x1).  We obtain from (3) the asymptotic approximation to

the MSE along x1

d1 ≈ 1
12N1

2

p(x1)

λ ( x1)2∫ dx1  .      (11)

The optimal quantizer spacing λ(x1) that minimizes d1 is given by (4) with p(x) replaced by p(x1),

and from (5), the resulting minimum d1 is

d1 ≈ 1
12N1

2
p(x1) 1/3

  .      (12)

Next, we derive an expression for d2, the MSE along x2, by conditioning on the cylinder

sets B2j formed from quantizing X1

d2 = E{[X2 − Y2 ] 2 } ,

    = E{[X2 − Y2 ] 2 | B2 j }
j =1

N1

∑ P(B2 j ),           (13)

where for brevity, we have used P(B2j) to denote P([X1, X2]t ∈ B2j).  Note that within each  B2j,

the random variable X2 has conditional distribution p(x2 | B2j) and is quantized to n2j levels.  We

may use (3) to approximate the conditional distortion within each  B2j for large n2j

      E{[ X2 − Y2 ] 2 | B2 j } ≈ 1
12n2 j

2

p(x2 | B2 j )

λ ( x2 | B2 j )
2∫ dx2 ,          (14)

where λ (x2 | B2j) denotes the relative density of quantization levels along x2 within B2j.  We

know from (4) that the optimal λ(x2 | B2j) that minimizes (14) is

     λ(x2 | B2 j ) =
p(x2 | B2 j )

1/3

p(x2 | B2 j )
1/3dx2∫

    .                 (15)

 Substituting (15) into (14), we get a minimum error expression similar to (5), which can then be

substituted into (13) to yield

     d2 ≈ 1
12

1
n2 j

2
p(x2 | B2 j ) 1/3

P(B2 j )
j =1

N1

∑  .                 (16)

Now we are left with the relative allocations n2j, 1 ≤ j ≤ N1 which may be chosen to minimize

(16) subject to the constraint (9) that they sum to N2.  This is a straightforward constrained

minimization problem that is easily solved by a Lagrangian method to yield the optimal

allocations
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     n2 j = N2

p(x2 | B2 j ) 1/3
P(B2 j )[ ]1/3

p(x2 | B2l ) 1/3
P(B2l )[ ]1/3

l =1

N1

∑
  .                (17)

The resulting minimum d2 is given by

    d2 ≈ 1
12N2

2
p(x2 | B2 j ) 1/3

P(B2 j )[ ]1/3

j =1

N1

∑








3

  .           (18)

For large N1, we use the smoothness restriction on p(x) to rewrite (18) as a Riemann sum and

approximate it by an integral (see Lemma 1 of Appendix)

d2 ≈ N1
2

12N2
2

p(x2 | x1) 1/3
p(x1)λ

2(x1)[ ]1/3
dx1∫{ } 3

 ,        (19a)

     = N1
2

12N2
2

p(x2 | x1)
1/3

p(x1)5/3

1/3

p(x1)1/3 dx1∫{ } 2









   ,        (19b)

where (19b) is obtained by substituting for λ(x1) from (4) into (19a).  Looking at (12) and (19b),

we see that the asymptotic assumptions allow us to express the MSE along each coordinate as a

product of a term that depends on the number of quantization levels and a constant term that

depends on the input statistics.  This factorization is an important result as will be seen shortly.

We can carry through a similar analysis to obtain the MSE d3 along x3. This time we

condition on the cylinder sets B3j, 1 ≤ j ≤ N2  formed from quantization of X2

d3 = E{[X3 − Y3 ] 2 }  ,

    = E{[X3 − Y3 ] 2 | B3 j }
j =1

N2

∑ P(B3 j )  ,

    ≈ 1
12

1
n3 j

2
p(x3 | B3 j ) 1/3

P(B3 j )
j =1

N2

∑   ,         (20a)

    ≈ 1
12N3

2
p(x3 | B3 j ) 1/3

P(B3 j )[ ]1/3

j =1

N2

∑








3

,       (20b)

where (20b) is obtained by minimizing (20a) with respect to the n3j subject to the constraint (9)

that they sum to N3.    Assuming that the joint distribution p(x1,x2) is locally smooth, we may

once again approximate (20b) by an integral

d3 ≈ N2
2

12N3
2

p(x3 | x1, x2 )
1/3

p(x1, x2 )λ2(x1, x2 )[ ]1/3
dx2dx1∫∫{ } 3

,      (21)
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where λ(x1, x2) is the 2-dimensional quantizer density function that defines the relative spacing

of output vectors in 2-D space.  We may derive an approximate expression for λ(x1, x2) in terms

of our known 1-D  marginal and conditional quantizer density functions λ(x1), λ (x2|x1) (see

Lemma 2 of Appendix), and substitute this into (21) to yield

d3 ≈ N2
2

12N3
2

p(x3 | x1, x2 )
1/3

p(x1, x2 )5/3 p(x1)4/9

1/3

p(x1, x2 )1/3 p(x1)2/9 dx1dx2∫∫{ } 2









   .           (22)

Once again, we have factored the error as the product of a constant and a term that depends only

on the number of quantization levels.  Substituting (12), (19b), and (22) into (10), we see that the

overall 3-D MSE D3 is of the form

D3 ≈ 1
36

1
N1

2
α1 + N1

2

N2
2

α 2 + N2
2

N3
2

α 3







  ,                (23)

where α i are the constant terms associated with di, 1 ≤ i ≤ 3.  Recall that N3 = N is the known

codebook size.  The expression (23) may be successively minimized with respect to N1 and N2 to

yield the optimal allocations

      N1 = N2
1/2 α1

α 2







1/4

  ;   N2 = N3
2/3 α1α 2

α 3







1/3

.                (24)

The resulting distortion is

D3 ≈ A3

α1α 2α 3( )1/3

N3
2/3

  ,                     (25)

where A3 = (21/3 + (1/2)2/3)/182/3 ≈ 0.275.

Generalizing to k-dimensional vectors, it may be shown using arguments similar to the

one presented above, that the overall MSE Dk for an N point SSQ is given by

Dk ≈ 1
12k

Ni −1
2

Ni
2

i =1

k

∑ α i    ,                (26)

where N0 ≡ 1 and Nk = N.  The term αi is a function of the conditional distribution p(xi | x1,...,xi-1)

and all lower order distributions.  We may optimize Dk with respect to the Ni's and obtain

expressions similar to (24), where each Ni is defined successively in terms of Ni+1.  The resulting

overall MSE is of the form
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  Dk ≈ Ak

N2/k
α i

1/k

i =1

k

∏   ,                     (27)

 where Ak is a dimension dependent number.

Several points are worth noting here.  First of all, (27) does not, in general, give the

globally minimum MSE over all sequential quantizers.  This is due to our simplifying

assumption that the quantization rule λ along each coordinate is chosen to minimize the MSE

only along that coordinate, i.e. the optimization is performed in a greedy rather than joint

fashion.  Secondly, we have only considered the case where the scalar components are quantized

in the order X1, X2, ..., Xk.    In general,  since the  terms α i depend on conditional densities, they

will be different for different quantization orderings.  Hence, in theory, we must evaluate (27) for

all k! possible orderings, and pick the one that yields the minimum Dk.  In practice, the specific

application may impose a natural order of quantization (as we will see later).  Failing this, some

simple criterion such as variance along each coordinate may be used to determine an order that

yields a possibly suboptimal but acceptable solution.

Thirdly, comparing (27) with (8b), the lower bound on the MSE that is achieved by the

optimal vector quantizer, we see that asymptotically, the MSE for both SSQ and optimal VQ in k

dimensions decreases as 1/N2/k.  This implies that a fixed percentage loss in performance,

independent of N, will be incurred by using SSQ instead of the optimal VQ method.  The loss

will depend on the relative values of the constants in (8b) and (27), which in turn depend on the

joint, conditional, and marginal statistics of the source X.  The suboptimal performance of SSQ is

explained by the rectangular cell shapes resulting from this technique, and the fact that SSQ may

not achieve the optimal density of quantization points in k-dimensional space given by (8a).

Finally, we remark that the analysis developed above can be generalized to any r-th power

distortion measure for r ≥ 1, the only restriction being that the measure be separable along the

scalar coordinates.

5.3  Analysis of SSQ for a Gaussian Source Distribution

We will use the analysis above to evaluate and compare the asymptotic performance of

SSQ, ISQ, and VQ for the case where the input is a 2-D Gaussian random vector.  Let X = [X1,
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X2]t be characterized by the jointly Gaussian density N[µ1, µ2, σ1, σ2, ρ].  We have used the

usual convention that µ1 and µ2 are the means along x1 and x2; σ1 and σ2 are the standard

deviations, and ρ is the correlation coefficient.  Since µ1 and µ2 do not affect the analysis in any

way, we will assume them to be zero.  We note first of all that if p(x) is a 1-D Gaussian density

with variance σ2, then p(x)m when properly normalized is also Gaussian with variance σ2/m.

Secondly, if p(x1,x2) is jointly Gaussian, then the conditional density p(x2|x1) is also Gaussian

with mean ρσ2x1/σ1 and variance σ22(1-ρ2).  These two facts allow us to easily evaluate the

integrals in  (12) and (19b) and obtain the constants α1 and α2.  Noting that N2 = N is fixed, we

may find the optimal N1 from (24), substitute this into (12) and (19b), and average the two 1-D

MSE's to yield a surprisingly simple expression for the 2-D MSE

D2
SSQ≈ 0.777π

N
σ1σ2 1− ρ2 .                (28)

Equation (28) tells us that the error is inversely related to the correlation coefficient ρ.  This

makes sense because the sequential scheme, which uses the conditional distribution p(x2|x1) to

quantize X2, will offer improved performance when X1 provides more information about X2, i.e.

when ρ is larger.  Note also that the performance of SSQ is independent of the order in which the

scalar components are quantized.

We may compare SSQ with the lower bound given in (8b) for our example distribution.

We will use M2 = 0.08, as this corresponds to a hexagonal  packing of cells, which is the optimal

scheme in 2-D [9]. This yields the lower bound

D2
OPT ≈ 0.642π

N
σ1σ2 1− ρ2 .                (29)

Since SSQ is restricted to rectangular cell shapes, we would obtain a tighter lower bound on its

performance if we let  M2 = 1/12 in (8b), which corresponds to VQ with square cell shapes.  This

results in the fraction 0.642 in (29) being replaced by 0.667.  Hence, there is a 16.5% loss in

using SSQ over a VQ scheme with square cells.  Finally, if we assume that X1 and X2 are

quantized independently according to their marginal distributions,  with optimal bit allocations

among the two coordinates, then we obtain the following asymptotic error [4]
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D2
IND ≈ 0.886π

N
σ1σ2.                     (30)

As expected, the performance of ISQ does not depend on the inter-data correlation coefficient ρ.

As ρ increases, we see the increased advantage of using either SSQ or VQ rather than ISQ.  If we

let ρ = 0 (i.e., X1 and X2 are both uncorrelated and independent), and compare (28) and (30), we

arrive at the interesting result that SSQ outperforms ISQ even when the components are

independent!  This result was alluded to earlier, and is due to the ability of SSQ to exploit the

shape of the input distribution.

5.4  Weighted Distortion Measures

Although the mean squared error is a mathematically tractable metric, it may not be an

appropriate measure of distortion for a given application.  This is certainly true in image

processing problems, where MSE often does not correlate well with visually perceived error.

Variations of the squared error metric have been sought [3] to better reflect the application

dependent distortion criterion.  An example of this is the weighted squared error defined as

Dk
W = 1

k
E X − Y[ ] t W X − Y[ ]{ }   ,      (31)

where W is a k  ×  k positive definite weighting matrix.  In general, (31) is not a separable

distortion measure, and therefore does not readily lend itself to the foregoing analysis.  However,

without loss of generality, we may assume that W is symmetric, in which case we may factor it

into the form W = Pt W' P, where W' is a diagonal matrix and P is a k × k orthogonal matrix [3].

Letting X' = Pt X, and Y' = Pt Y, it is easily seen that Dk
W is given by

Dk
W = 1

k
wii

i =1

k

∑ ©di ©    ,          (32)

where wii' is the i-th diagonal element of W', and di' = E{[Xi' - Yi']2}.    Hence, the distortion

measure is made separable by an orthogonal transformation of the data; and the foregoing

analysis is valid with α i being replaced by αi' = wii' α i  in Equations (23) - (27).

5.5  Entropy Constrained SSQ

So far we have looked at the problem of minimizing the distortion while keeping the

codebook size N fixed.  If VQ is the only compression scheme in a given application, then the
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rate of the coder is given by R = log2(N/k) bits per source letter.  In coding applications,

however, the output of VQ is often additionally compressed with a lossless coder.  From

Shannon's noiseless source coding theorem, we know that the rate of a lossless coding scheme is

bounded from below by the entropy of the input to the coder, which in our case is the output of

the VQ.  Hence, it would be in our interest to design the VQ to minimize the distortion while

constraining the entropy of the output, rather than the codebook size.

It has been shown [11] that the minimum entropy VQ scheme for asymptotically large N

is one that achieves a uniform distribution of output points, i.e. λ(x) is a constant in k-

dimensional space.  SSQ achieves this uniform distribution in the trivial case where all marginal

and conditional quantizer density functions are identically uniform.  This is equivalent to

quantizing each component independently with a uniform quantizer.  Hence, SSQ offers no

performance advantage over ISQ if we wish to perform entropy constrained quantization.  On the

other hand, VQ has an advantage over both ISQ and SSQ, because for the same uniform

distribution λ(x)  of output vectors, VQ with its arbitrary cell shapes can pack its cells in a more

efficient way into a finite volume in k-dimensional space than is possible with either SSQ or ISQ.

6.  APPLICATION TO COLOR IMAGE QUANTIZATION

We will briefly describe how the analysis developed above may be used in a practical

application, where the assumptions that the number of quantization levels is large and the input

distribution is smooth may no longer be valid.  The reader is referred to [9] for details.  The

problem we address is that of quantizing a color image to a small palette of colors.   Such

quantization is often necessitated by hardware limitations with low cost display and printing

devices.  We will focus on the display application, where the user is often allowed to choose a

palette of (usually 256) colors from a much larger set of 224 ≈ 16 million colors.

In the present context, the input to the quantizer is a 3-D RGB color vector X, and the

output codebook is the desired palette.  We wish to design the quantizer to minimize the MSE for

a fixed palette size N.  In order to perform the quantization in a visually meaningful space, we

transform the image from RGB to YCrCb luminance-chrominance coordinates.  A color
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histogram of the image is generated, which serves as the input probability distribution p(x), and

quantization is performed first on the chrominance components, followed by luminance. This

ordering is motivated by the intuitively appealing idea of first assigning hues to the various

objects in the image and then providing fine luminance shading to each hue.

In general, we have noticed that the functional form in (23) is a fairly good model for  the

experimental MSE with color image data.   However, when the number of quantization vectors

becomes small, the constant terms αi are not well modeled by the integral expressions given in

(12), (19b), and (22).  To overcome this problem, we perform a preliminary quantization using

some arbitrary N1, N2; measure the experimental MSE’s d1, d2, d3 along the 3 coordinates; and

obtain empirical estimates of α i by equating each di, 1 ≤ i ≤ 3 to the corresponding term in (23)

[9].  Substituting these estimates into (24), we obtain our optimal N1 and N2, which are then used

for the final quantization.

In order to quantize X1 to N1 levels, we first compute λ(x1) from (4).  We then partition

the x1 axis into N1 intervals such that the area under λ(x1) within each interval is equal to 1/N1.  It

may be shown that with such a scheme, the fraction of quantization levels in an interval [x,x+dx]

will approach λ(x)dx as N1 becomes large [9].  The centroid of the data within each interval is

then chosen to be the output level for that interval.  The same procedure is used to quantize along

the subsequent scalar dimensions xi, i = 2,3 using the conditional quantizer density functions

λ(xi|Bij).   This quantization rule works well when the marginal and conditional distributions are

relatively smooth.  However, it can result in a non-optimal positioning of decision and output

levels when there are severe discontinuities in the 1-D histograms.  We have developed

techniques to detect and correct for such cases [9].

A common artifact that appears in color quantization is false contouring, where smooth

color transitions in the original image are represented by a small number of palette colors.  The

contouring tends to be more visually objectionable along the luminance coordinate than along

chrominance.  To alleviate this problem, we use a simple weighted MSE measure, where the

MSE along luminance is weighted K times as much as that along chrominance, for some K>1.
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Finally, the mapping between input image pixels and output palette colors is performed

through the sequential LUT shown in Fig. 2b.  In practice, the LUT structure is easily

implemented in hardware, thus enabling the pixel mapping to be performed in real time.

7.  EXPERIMENTAL RESULTS

The results presented in this section are intended to verify the theoretical analysis

developed in Sec. 5, and to assess the performance of SSQ on simulated and experimental data.

7.1  Verification of SSQ Analysis

We performed quantization using SSQ on 2-D simulated Gaussian data and compared the

resulting experimental MSE with the theoretical expression given in (28).  Figure 5 shows a plot

of the percentage difference between experimental and theoretical MSE as a function of the

number of quantization levels N for two examples of jointly Gaussian distributions.  We see that

in both cases, as N becomes large, the experimental error converges to the formula (28), thus

confirming the validity of the analysis, at least in 2 dimensions.

7.2  Scalar Quantization According to λ(x)

In Sec. 6, we described an asymptotically optimal quantization rule to partition a scalar

dimension into N intervals.  Namely, the decision levels are positioned so that the area under the

function λ(x) given in (4) is equal within each interval.  We compared this method, which we call

the lambda technique, with the scalar version of the binary splitting (BSP) algorithm [7] and the

Lloyd-Max (LM) quantizer [4] for a simulated Gaussian source distribution.  Since the Gaussian

density is log concave, the LM algorithm yields a globally minimum solution and serves as a

lower bound on quantizer performance.  The lambda technique was used as a starting point for

the LM iterations.  Figure 6 compares the performance of the three quantizers for various N.  In

order to obtain a meaningful comparison, we normalized the MSE of each algorithm by that of

the LM algorithm.  For small N, the MSE due to the lambda technique is only about 5 % higher

than the minimum MSE.  As N increases, the lambda technique converges to the minimum MSE

solution, verifying that this technique is indeed asymptotically optimal.  The BSP algorithm

results in a consistently higher relative MSE, suggesting that at least for 1-D Gaussian data, this
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is not an optimal strategy even in the asymptotic sense.  We have also compared the lambda

technique and BSP as scalar quantization strategies in the SSQ algorithm applied to 3-D color

image data, and have observed that  the lambda technique results in superior image quality.

7.3  Performance of SSQ on Experimental Data

We now present some results on 3-D color image data that lend support to the qualitative

comparison of ISQ, SSQ, and VQ offered in Sec. 3.3.  The data was derived from a 512 × 512

color image, a monochrome version of which is shown in Fig. 9.  ISQ was designed to quantize

each of the three color components independently according to its marginal distribution using the

lambda technique.  The relative number of quantization levels along each coordinate was chosen

in proportion to the variance along that coordinate [3].  SSQ was implemented as described in

Sec. 6; and a fast BSP algorithm [13] was chosen as the conventional VQ technique.  Once

again, we wished to evaluate these algorithms relative to some lower bound on MSE

performance.  Since an attempt to find the globally minimum MSE quantizer would be

impractical, we used the LBG algorithm [1] to arrive at a local minimum in MSE.  We ran the

LBG algorithm with ISQ, SSQ, and BSP as starting points, and chose the minimum of the three

resulting MSE's as a lower bound.  Figure 7 shows a plot of the MSE's of ISQ, SSQ, and BSP

normalized by the minimum MSE from LBG for various N.  As anticipated, the performance of

SSQ is far superior to that of ISQ, while BSP offers a moderate improvement over SSQ.  We

deduce that the superior performance of SSQ over ISQ is a result of the exploitation by SSQ of

linear and nonlinear dependencies in the data; while the improved performance of BSP over SSQ

is due mainly to the fact that the former is not constrained to cells that are rectangular

parallelepipeds.

Figure 8 shows the execution times on a SUN SPARCstation 2 of ISQ, SSQ, and BSP on

the same image data set for various N.  We have broken down the execution time of each

algorithm into that required for codebook design and that needed to map input vectors (or in this

case pixels) to codebook vectors.  The latter is often the quantity of greater interest in practical

applications.  In terms of codebook design, SSQ involves more computation than ISQ, but is

considerably faster than BSP. Moreover, as is characteristic of conventional VQ techniques, the
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required time for BSP increases with N, whereas this is not the case with SSQ and ISQ.  In terms

of the mapping step, both SSQ and ISQ use LUT's, and thus require no computation.  In contrast,

the BSP technique uses a binary tree to perform mapping [7], hence requiring a considerable

amount of computation that increases with the codebook size.  These results are somewhat

indicative of the asymptotic complexities of the three algorithms.  If Ni is the number of input

training vectors, then the complexity of the codebook design is O(Ni log2N) for BSP [7, 13], and

O(Ni) for both SSQ and ISQ [9].  If Nt is the number of test vectors to be quantized, then for the

mapping, BSP requires O(Nt log2N) computation, while SSQ and ISQ require O(Nt) operations.

Figure 9 compares the original image with an image that was quantized to 256 colors

using the SSQ algorithm described in Sec. 6.  A luminance weighting of Κ  = 4 was used.  This

weighting has the effect of considerably reducing the visibility of contouring artifacts, hence

yielding a visual quality that is superior to that achieved by other techniques [9].

8.  CONCLUSIONS

We have proposed an efficient technique for quantizing vectors which we call sequential

scalar quantization.  A theoretical analysis of SSQ in the asymptotic case yields intuitive and

useful results that allow us both to compare this method with other quantization strategies and to

design a practical quantizer.  We have theoretically and experimentally demonstrated the fact that

SSQ yields considerably improved performance over conventional independent scalar

quantization, while offering a significant computational advantage over conventional VQ.

Moreover the resulting sequential structure of this technique lends itself very easily to a hardware

embodiment.  While we have successfully applied SSQ to the color image quantization problem,

this technique is of potential use in any vector quantization application where computational cost

is an important consideration, and a moderate loss in quantitative performance can be tolerated.
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11.  APPENDIX

Lemma 1:  Let X be a random vector in Rk with probability density function p(x).  For p(x)

sufficiently smooth and N1 sufficiently large, the following approximation holds

p(x2 | B2 j ) 1/3
P(B2 j )[ ]1/3

j =1

N1

∑ ≈ N1
2/3 p(x2 | x1)

1/3
p(x1)λ ( x1)2[ ]1/3

dx1∫  ,         (i)

 where B2j and λ(x1) are as defined in Sec. 5.

  Proof:   Recall that quantization along x1 divides this dimension into N1 intervals B'1j, 1 ≤ j ≤

N1.  Let ∆j be the width of interval B'1j, and let yj be any point within B'1j.  Given that N1 is large

and p(x) is smooth, we may assume that the marginal density p(x1) is approximately constant

within any interval ∆j so that

P(B2 j ) = P([X1, X2 ] t ∈ B2 j ) = P(X1 ∈ B©1 j ) ≈ p(yj )∆ j  .          (ii)

Consider an interval [yj, yj+dyj] around the point yj, where dyj >>  ∆j.  We have

∆j = (length of interval [yj, yj+dyj]) / (# of quantization levels in [yj, yj+dyj]) ,

     =  
dyj

N1λ(yj )dyj

   =  
1

N1λ(yj )
  .            (iii)

Now  P(B2 j )
1/3 ≈ p(yj )∆ j[ ]1/3

    (from (ii)) ,     (iva)

    =
p(yj )

∆ j
2













1/3

∆ j = N1
2p(yj )λ

2 ( yj )[ ]1/3
∆ j         (from (iii)) .     (ivb)

Also, for small ∆j  we have p(x2 | B2 j ) = p(x2 | X1 ∈ B©1 j ) ≈ p(x2 | yj ).        (v)

Substituting (ivb) and (v) into the left hand side of (i), we have
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p(x2 | B2 j ) 1/3
P(B2 j )[ ]1/3

j =1

N1

∑ ≈ N1
2/3 p(x2 | yj ) 1/3

p(yj )λ ( yj )
2[ ]1/3

j =1

N1

∑ ∆ j  .       (vi)

The right hand side of (vi) is a Riemann sum which may be approximated by the integral on the

right hand side of (i).

Lemma 2:  Let the quantizer density function λ(x1) along x1 be given by (4) with p(x) replaced

by p(x1).  For each fixed x1, let the quantizer density function λ(x2 | x1) along x2, be  given by (4)

with p(x) replaced by p(x2 | x1).  Then the 2-D quantizer density function λ(x1, x2)  is given by

λ(x1, x2 ) ≈ p(x1, x2 )1/3 p(x1)
2/9

p(x1, x2 )1/3 p(x1)
2/9dx2dx1∫∫

 .      (vii)

Proof:  Consider an incremental rectangular area in 2-D space ∆ (y1j, y2k) = ∆(y1j)∆(y2k)

surrounding a quantization value [y1j, y2k]t, 1 ≤ j ≤ N1, 1 ≤ k ≤ n2j.   By definition of λ(), we may

make the following approximations:

(1) the number of quantization levels along x1 within this interval is N1λ(y1j)∆(y1j);

(2) for each quantization level y1j along x1 within this interval, the number of quantization

levels along x2 is approximately n2j λ(y2k | y1j)∆(y2k), where n2j  is as defined in Sec. 5.1;

(3) the total number of quantization levels within ∆(y1j, y2k) is N2λ(y1j, y2k)∆(y1j, y2k).

We assume that the quantity in (2) is constant for each y1j within a small enough interval ∆(y1j).

Therefore we can approximate the quantity in (3) by a product of (1) and (2)

N2λ ( y1 j , y2k )∆( y1 j , y2k ) ≈ N1λ ( y1 j )∆( y1 j )[ ] n2 jλ ( y2k | y1 j )∆( y2k )[ ]
⇒         λ ( y1 j , y2k ) ≈ N1

N2

n2 jλ ( y2k | y1 j )λ ( y1 j )  .     (viii)

We may substitute for n2j with the optimum choice given in (17)

λ ( y1 j , y2k ) ≈ N1

p(x2 | B2 j ) 1/3
P(B2 j )[ ]1/3

p(x2 | B2l ) 1/3
P(B2l )[ ]1/3

l =1

N1

∑
λ ( y2k | y1 j )λ ( y1 j ) .       (ix)
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We now approximate the discrete probabilities P(B2j) and P(B2l) by continuous probability

density functions.  Substituting (iii) into (ii) to approximate P(B2j) in the numerator above, and

using (ivb) to approximate P(B2l)1/3 in the denominator , we have

      λ ( y1 j , y2k ) ≈
p(x2 | B2 j ) 1/3

p(y1 j )[ ]1/3

λ ( y1 j )
−1/3

p(x2 | B2l ) 1/3
p(y1l )λ ( y1l )

2[ ]1/3
∆ l

l =1

N1

∑
λ ( y2k | y1 j )λ ( y1 j ) .      (x)

As was done in Lemma 1, we argue that for small ∆(y1j) and ∆l,  we may replace B2j and B2l

above with y1j and y1l  respectively.  Finally, we replace all discrete quantization variables y1j,

y2k, with continuous variables x1, x2,  and approximate the Riemann sum in the denominator of

(x) by an integral to obtain

         λ ( x1, x2 ) ≈
p(x2 | x1)

1/3
p(x1)[ ]1/3

p(x2 | x1)
1/3

p(x1)λ ( x1)2[ ]1/3
dx1∫

λ ( x2 | x1)λ ( x1)2/3  .         (xi)

If we now substitute the appropriate expressions for λ (x1) and λ (x2 |x1) according to the

hypothesis of the lemma, we obtain the desired result (vii).



x2

x1

x x x xx

x xx x x

x xx x x

x x xx x

x x xx x

(a)

y1

y 2

y
3

X1

2X

3X

LUT 1

LUT 2

LUT 3

Decoder

Decoder

Decoder

Y

(b)

Fig. 1  (a) 2-D example and (b) encoder-decoder
operation in independent scalar quantization.
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Fig. 2  (a) 2-D example and (b) encoder-decoder
operation in sequential scalar quantization.
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Fig. 3  (a) Independent and (b) sequential scalar
quantization on uncorrelated data
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Fig. 4  (a) Independent and (b) sequential scalar
quantization of 2-D jointly Gaussian independent
data.
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Fig. 5  Percentage discrepancy ∆  between
experimental and theoretical MSE's as a
function of the codebook size N for 2-D
Gaussian data (Case 1: σ12 = 1/3, σ22 = 1/6, ρ
= 0.8; Case 2: σ12 = σ22 = 1/4, ρ = 0).
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Fig. 6  Comparison of MSE performance of
the lambda technique and binary splitting
(BSP) relative to the Lloyd Max (LM)
quantizer as a function of the codebook size N
for 1-D Gaussian data.
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Fig. 7  Comparison of MSE performance of
independent scalar quantization (ISQ),
sequential scalar quantization (SSQ), and
binary splitting (BSP) relative to the Linde-
Buzo-Gray (LBG ) quantizer as a function
of the codebook size N for 3-D color image
data.

Fig. 9  Comparison of monochrome versions of
original color image (left) and image quantized to 256
colors using SSQ (right).
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Fig. 8  Comparison of execution times for
codebook design and pixel mapping on a
SUN SPARCstation 2 for independent scalar
quantization (ISQ), sequential scalar
quantization (SSQ), and binary splitting
(BSP) as a function of the codebook size N
for 3-D color image data.


