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Abstract

A novel shape description method based on the Morphological Signature Transform (MST)

is presented in this dissertation. The MST uses multiresolution morphological image processing

by non-convex multiple structuring elements. A binary image which contains the object shape

to be described is represented by means of a multiresolution pyramid. The method is based on

the successive morphological erosions of the input image at di�erent resolutions by primary and

rotated structuring elements. The areas of successively eroded images are computed for each

structuring element at each pyramid level. The obtained set of numbers is arranged into vectors,

ordered, and used as a shape descriptor. Experimental results demonstrate that the method is

robust against noise and invariant to translation, rotation, and scale change.

A new method for the selection of the optimal structuring element is presented in the second

part of dissertation. For a given class of shapes the optimal structuring element for MST method

is selected by means of a genetic algorithm. The optimization criteria is formulated to enable

a robust shape matching. Experiments have been performed on a class of model shapes. The

proposed optimal shape description method is applied to the problem of shape matching which

evolves in many object recognition applications. Here, an unknown object is matched to a set of

known objects in order to classify it into one of �nite number of classes.

An application of the developed theory to the medical image registration problem constitutes

the third part of dissertation. A new method for 3-D registration of Magnetic Resonance (MR)

and Positron Emission Tomographic (PET) images of the brain is presented in this paper. It is



based on the combination of the Iterative Principal Axis Registration (IPAR) method and the

shape description method based on the Morphological Signature Transform (MST). The new

method is called the IPAR/MST registration method. Experimental results using a physical

brain phantom and a real data demonstrate that the IPAR/MST method improves the accuracy

of the conventional IPAR method.
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Chapter 1

Introduction

Perception capability is a characteristic of intelligent beings. Perception and intelligence are

means for adaptation to varying conditions of the environment. To develop arti�cial systems with

the ability to perform tasks that require interaction with the environment, it is necessary to study

biological systems and emulate their functionality. The human visual perception system is one of

the most complex and advanced in nature. For these reasons, a considerable amount of research

is done today to understand the underlying neuropsychological processes. The most important

task of the visual perception system and higher cognitive levels is recognition (understanding) of

objects. The components of shape understanding process are shape description, discrimination,

and recognition. In this dissertation we address the problem of shape description and matching.

New methods and experimental results are presented which demonstrate the usefulness of the

proposed techniques.
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A novel shape description method based on the multiresolution morphological image pro-

cessing is presented in this dissertation. The method is useful for description of both binary

and gray-scale images. Multiple convex and/or non-convex structuring elements are used to

create unique shape signatures used to describe a shape. Simple shape descriptors like area are

used to describe shape signatures. The usability of the method is tested on two applications:

shape matching and medical image registration. Shape matching is performed by computing the

distance between shape descriptor vectors.

A new approach for optimal shape matching is presented. The shape matching is optimal in

the sense of the most robust shape discrimination. An advanced genetic algorithm is developed

to determine the optimal structuring element for shape matching.

The developed morphological shape description method is applied to a medical multi-modality

image registration problem. Here, multiple images from medical imaging modalities are regis-

tered. Registration combines the information coming from di�erent sources to enable a better

study and diagnosis of various diseases.

1.1 Outline of Dissertation

An overview of mathematical morphology is given in Chapter 2. It provides some historical notes

and a formal introduction to mathematical morphology. Binary and gray-scale morphology are

treated in separate sections and basic properties presented.

Chapter 3 provides an overview of existing shape description methods. Several theories

of visual form perception are briey addressed. An attempt is made here to classify shape

12



description methods into several groups. Most representative methods with applications are

briey described.

A new framework for morphological shape description [157, 159] is described in Chapter 4. It

explains a new method for morphological shape description which is based on Morphological Sig-

nature Transform (MST). It also provides experimental results which demonstrate the feasibility

of method for shape matching.

A method for optimal shape matching [161, 160] is presented in Chapter 5. An advanced

genetic algorithm for optimal 2-D structuring element is explained and used in determining the

optimal structuring element for morphological signature transform based shape description and

matching. Experimental results are provided which demonstrate the quality of optimal shape

matching.

A concept of multi-modality multi-reference registration is proposed in Chapter 6. Here,

a MR (Magnetic Resonance) image of the brain is registered to a PET (Positron Emission

Tomography) image of the same brain. Images are registered by a combination of IPAR (Iterative

Principal Axis Registration) [4, 2] and morphological signature transform shape description based

technique [158]. A novel multi-grid algorithm with high computational e�ciency is presented.

Experimental results demonstrating the feasibility of the approach are presented.

A new method for selection of the optimal 3-D structuring element for multi-modality image

registration is developed in Chapter 7. The obtained optimal structuring element is used for

MST-based medical image registration. Experimental results demonstrate the accuracy of the

method.

13



Finally, a discussion on the dissertation work is presented in Chapter 8. It summarizes

the methods and the results presented in this work and discusses possible directions for future

research.
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Chapter 2

Mathematical Morphology: An

Overview

2.1 Introduction

The foundations of mathematical morphology were established by Minkowski [192] at the begin-

ning of this century. Later, Matheron [184] and Serra [262, 263, 264] continued to develop the

�eld. Recently, a new wave of interest for morphological operations and their applications to

divergent �elds has emerged.

A number of concepts closely related to mathematical morphology have been investigated in

literature. Neighborhood operations with applications in cellular architectures for image process-

ing are studied in [93, 232, 235]. Other operations related to mathematical morphology include

min-max neighborhood operators [197, 213, 300] and order statistic �lters [129, 5, 224, 227].
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Mathematical morphology is a powerful tool for image processing. It has no equivalent among

conventional linear image processing methods. The non-linear nature of morphological operations

represents both advantage and disadvantage. The advantage is in powerful shape processing

capabilities that come from their non-linear nature. The disadvantage of non-linearity lies in the

fact that it is not possible to construct a conventional algebraic framework with all conveniences

of linear systems. However, some weaker algebraic structures (most importantly lacking inverse

elements) can be formed [44, 57, 61, 69, 115, 242, 243].

A number of researchers investigated applications of mathematical morphology to biomedical

image processing [187, 188, 277, 140, 39], geodesic image analysis [147, 148], range image analysis

[222], edge enhancement [194], texture analysis [300, 221], image smoothing [170], segmentation

[190], interpolation [212], and decomposition [210, 211].

Many contributions have been made in the �eld of shape analysis: shape recognition [44, 295,

171, 270, 314, 313, 288], shape description [259, 248, 275, 159, 161], shape matching [267, 159,

161],

Numerous papers have been published on theoretical development of the mathematical mor-

phology [110, 111, 244, 279, 116, 280, 58, 247, 293, 292, 64, 294]. Morphological operations have

also been implemented using neural networks [274].

The foundations of the mathematical morphology are in set theory, integral geometry, convex

analysis, stereology, and geometrical probabilities [191, 169, 175]. Additional material on the

mathematical morphology can be found in [263, 281, 109, 88, 175].

In the following sections an introduction to Euclidean binary and gray scale morphological
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operations is presented.

2.2 Theoretical Background

The mathematical morphology is based on the Boolean algebra structure constructed using the

notion of lattice. Therefore to establish the basis for the development of morphology we �rst

de�ne the necessary mathematical structures [263, 62].

For generality, letW be a set which contains sets (objects) on which morphological operations

are performed. Some common examples forW are: W = R
2 (two-dimensional space) orW = R

3

(three-dimensional space), where R denotes the set of real numbers. Examples of discrete case

are W = Z
2, and W = Z

3, where Z denotes a set of positive and negative integers. Discrete

case describes the situation that occurs in practical realizations on computers.

De�nition 2.1 A relation M is a subset of the Cartesian product of the sets L� L.

M � L� L (2.1)

Then for a; b 2 L we say that

aMb() (a; b) 2M (2.2)

The left side of Equation 2.2 is read "a is in relation M with b". 2

Having de�ned the notion of relation we proceed with the de�nition of a partial order rela-

tionrelation.
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De�nition 2.2 Let L be a set, M be a relation on L�L, and a; b; c 2 L. A partial order relation

M is a relation having the following properties.

1. aMa (reexivity)

2. aMb() bMa (symmetry)

3. aMb & bMc =) aMc (transitivity)

A total order relation is a partial order relation which satis�es 8a; b 2 L, either aMb, or bMa.

2

De�nition 2.3 The pair (L;M) is called a partially ordered set if M is a partial order relation

on L. The pair (L;M) is called a totally ordered set if M is a total order relation on L. 2

The following are the de�nitions for general,distributive,bounded, and complemented lattice

which are required to construct a Boolean algebra structure.

De�nition 2.4 A quartet (L;M;_;^) is called a (general) lattice if the following conditions are

met.

1. (L;M) is a partially ordered set.

2. _ is a least upper bound (supremum) operation.

3. ^ is a greatest lower bound (in�mum) operation.

4. Every subset K � L has a least upper bound and a greatest lower bound which belong to L.

Supremum and in�mum operations _ and ^ must have the following properties.
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1. x _ y = y _ x and x ^ y = y ^ x (commutation)

2. x _ (y _ z) = (x _ y) _ z and x ^ (y ^ z) = (x ^ y) ^ z (association)

3. x _ x = x and x ^ x = x (idempotence)

4. x _ (y ^ x) = x and x ^ (y _ x) = x (absorption)

2

De�nition 2.5 A quartet (L;M;_;^) is called a distributive lattice if the following conditions

are met.

1. (L;M;_;^) is a general lattice

2. x ^ (y _ z) = (x ^ y) _ (x ^ z) and x _ (y ^ z) = (x _ y) ^ (x _ z) (distributivity)

2

De�nition 2.6 A sextuple (L;M;_;^; p; q) is called a bounded lattice if the following conditions

are met.

1. (L;M;_;^) is a general lattice.

2. 9 p 2 L j pMx 8x 2 L (smallest element)

3. 9 q 2 L j xMq 8x 2 L (largest element)

2
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De�nition 2.7 A septet (L;M;_;^;0 ; p; q) is called a complemented lattice if the following con-

ditions are met.

1. (L;M;_;^; p; q) is a bounded lattice.

2. 8x 2 L 9 x0 2 L j x _ x0 = q and x ^ x0 = p (complement)

2

Finally, we de�ne the notion of Boolean algebra which is the foundation of mathematical

morphology.

De�nition 2.8 A septet (L;M;_;^;0 ; p; q) is called a Boolean algebra if the following conditions

are met.

1. (L;M;_;^; p; q) is a bounded and a distributive lattice.

2. (L;M;_;^;0 ; p; q) is a complemented lattice.

2

The following example illustrates the de�nitions of relation, lattice, and Boolean algebra on

a familiar n-dimensional real vector space.

Example 2.9 Let W = R
n and let L = P(W ) be a partitive set of W . The familiar set subset

operation � is a partial order relation on L. The pair (L;�) is a partially order set. The

quartet (L;�;[;\) is a lattice, where the operators [ and \ are the standard set union and

intersection operators. (L;�;[;\) is also a distributive lattice. The sextuple (L;�;[;\;�;
) is
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a bounded lattice, where � denotes the empty set and 
 denotes the full set. Using the standard

set complement operation c we have that (L;�;[;\;c ;�;
) is a complemented lattice. Finally,

(L;�;[;\;c ;�;
) is also a Boolean algebra. 2

2.3 Binary Morphology

2.3.1 De�nitions

In this section, de�nitions of basic morphological operations are presented. We again consider a

set W whose subsets are sets we want to manipulate. Typical examples are W = R
2 (images)

and W = R
3 (volumes). Note that W = R

n is a real vector space.

De�nition 2.10 The multiplication of a set by a real number is de�ned as

rX =
[
x2X

frxg (2.3)

where r 2 R, and X � W . The multiplication of a vector by a real number which appears in

Equation 2.3 is the conventional real number by vector multiplication. 2

De�nition 2.11 The translation of a set by a real vector is de�ned as

Xy = fx + y j x 2 Xg (2.4)

where y 2 W , and X � W . The vector addition which appears in Equation 2.4 is the conventional

vector addition. 2
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De�nition 2.12 The symmetric set �
X of a set X is de�ned as

�
X = fx 2 W j �x 2 Xg (2.5)

where X � W . 2

The basis of mathematical morphology are Minkowski set addition and subtraction opera-

tions. In the following de�nitions let P be the partitive set (a set of all subsets) of W .

De�nition 2.13 Minkowski addition � : P�P ! P and Minkowski subtraction 	 : P�P ! P

are de�ned by

X � Y =
[
y2Y

Xy (2.6)

X 	 Y =
\
y2Y

Xy (2.7)

where X; Y 2 P. 2

The notation � : P � P ! P means that the function � takes two elements of the set P as

arguments and produces another element of the set P as result. Note that the elements of the

set P are subsets of W .

Morphological erosion and dilation [184, 262] operations are the basic and among the most

useful operations for image processing purposes. Most other operations are derived from these

two.
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De�nition 2.14 The morphological dilation D : P � P ! P and its dual the morphological

erosion E : P � P ! P are de�ned by

D(X;B) = X � �
B =

[
y2B

X�y (2.8)

E(X;B) = X 	 �
B =

\
y2B

X�y (2.9)

where X;B � W . 2

Morphological opening and closing were introduced by Matheron [184] and are among the

most powerful in mathematical morphology.

De�nition 2.15 Morphological opening and closing are de�ned as

X �B = X 	 �
B �B (2.10)

X �B = X � �
B 	B (2.11)

2

Proposition 2.16 Morphological opening can also be computed using the following expression.

X �B =
[
x2W

fBx j Bx � Xg (2.12)

2
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�g/morphology/image.ps

�g/morphology/kernel.ps

Figure 2.1: The original image and the structuring element.

Equation 2.12 reveals the nature of the opening operation. If set B has the disk shape, the

opening can be thought of as a "rolling ball" algorithm where the set B (often called a structuring

element) is rolled along the interior border of X to eliminate all �ne structure of X which cannot

be accessed by B.

2.3.2 Examples

In this section, the examples of the basic morphological operations are presented.

An example image and a structuring element are shown in Figure 2.1. Figures 2.2, 2.3, 2.4,

and 2.5 illustrate the morphological erosion, dilation, opening, and closing, respectively. The

image on the left shows the result of operation while the image on the right shows the resulting

image superimposed on the original image.
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�g/morphology/erosion.ps �g/morphology/erosion-comb.ps

Figure 2.2: Morphological erosion operation.

�g/morphology/dilation.ps �g/morphology/dilation-comb.ps

Figure 2.3: Morphological dilation operation.
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�g/morphology/opening.ps �g/morphology/opening-comb.ps

Figure 2.4: Morphological opening operation.

�g/morphology/closing.ps �g/morphology/closing-comb.ps

Figure 2.5: Morphological closing operation.
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2.3.3 Basic Properties

One of the main properties of morphological operations is non-invertibility. Shape processing

capabilities of morphological operations are a result of how these operations are de�ned. However,

these operations are not invertible. The reason for this is the fact that a certain amount of

information gets lost in the process of non-linear computation. The goal of any morphological

processing is a controlled loss of irrelevant information through successive transformations [263].

Some of the properties that any morphological operation is tested for are the following:

1. Increasing property.

2. Anti-extensivity.

3. Idempotence.

4. Homotopy.

We provide de�nitions of above properties as follows.

De�nition 2.17 A morphological operation  is increasing if it preserves inclusion

X � Y =)  (X) �  (Y ) (2.13)

2

The increasing property is signi�cant because the increasing mapping will preserve the inclusion

operations (ordering with respect to �).
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De�nition 2.18 A morphological operation  is anti-extensive if it shrinks

 (X) � X (2.14)

2

The operation which shrinks reduces the size of the result so that the operation result is a subset

of the original set.

De�nition 2.19 A morphological operation  is idempotent if

 [ (X)] = X (2.15)

2

Idempotence is a very important property of morphological operations. This property of certain

morphological operations shows their fundamental di�erence compared to linear operations. The

important di�erence lies in the fact that a �ltering operation can be performed in only one step.

Successive applications of an idempotent operation do not make any di�erence.

De�nition 2.20 A morphological operation  is homotopic if it preserves the operand's homo-

topic tree. 2

The homotopic tree shows the topological information about the object topology. A homotopic

operation will preserve the topological properties of the operand.
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A concept of duality is very important in mathematical morphology. Each morphological

operation has its dual operation. Actually, as soon as we de�ne a new operation  we can

automatically de�ne its dual operation  � in the following way

 
�(X) = [ (Xc)]c (2.16)

The dual operation of an increasing operation is an increasing operation.

Proposition 2.21 Minkowski addition is an increasing but not idempotent operation. It is also

an extensive operation if the structuring element contains the origin. Minkowski addition is a

commutative, associative, and translation invariant operation. It distributes over the set union.

X � Y =) X � Z � Y � Z (2.17)

X � Y = Y �X (2.18)

(X � Y )� Z = X � (Y � Z) (2.19)

(X � Y )t = Xt � Y (2.20)

X � (Y
[
Z) = (X � Y )

[
(X � Z) (2.21)

where X; Y; Z 2 P and t 2 W . 2

Proposition 2.22 Minkowski subtraction is not idempotent and it does not preserve homotopy.

It is anti-extensive only if coordinate system origin belongs to the set that is subtracted. It is an
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increasing operation.

X � Y =) X 	 Z � Y 	 Z (2.22)

(X 	 Y )	 Z = X 	 (Y � Z) (2.23)

(X 	 Y )t = Xt 	 Y (2.24)

X 	 (Y
[
Z) = (X 	 Y )

\
(X 	 Z) (2.25)

(X
\
Y )	 Z = (X 	 Z)

\
(Y 	 Z) (2.26)

where X; Y; Z 2 P and t 2 W . 2

Minkowski add and subtract are dual operations and the following relation holds.

Theorem 2.23 Duality theorem for Minkowski addition and subtraction.

(X � B)c = X
c 	 B (2.27)

2

This means that instead computing the Minkowski addition of a set it is possible to compute the

Minkowski subtraction of the set complement and then complement the result.

Theorem 2.24 Duality theorem for dilation and erosion.

D(X;B)c = E(Xc
; B) (2.28)
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2

The duality relation between erosion and dilation in Equation 2.28 is a direct consequence of

Proposition 2.23. In other words, it is su�cient to implement only one morphological operation

(erosion or dilation) and its dual operation can be performed according to Equation 2.16.

The erosion of set X by a set B can be visualized as a union of points by which B translated

�ts within X. The following proposition illustrates this point.

Proposition 2.25 Another formulation of dilation.

D(X;B) = fx 2 W j Bx � Ag (2.29)

2

Proposition 2.26 Opening is an anti-extensive, idempotent, and increasing operation. Closing

is an extensive, idempotent, and increasing operation. 2

Theorem 2.27 Duality theorem for opening and closing.

(X �B)c = X
c �B (2.30)

2

Here we introduce a short notation that will be used later in the text.
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De�nition 2.28 A short notation B
n
is de�ned as

B
n =

n timesz }| {
B � B � � � � � B (2.31)

where B � W and n 2 N . 2

Note that in general Bn 6= nB. However we have the following result.

Proposition 2.29 The following statement holds

B is convex () B
n = nB

(2.32)

where B � W and n 2 N . 2

2.4 Gray Scale Morphology

Gray scale morphology is a generalization of binary morphology to gray scale functions so that

the power of morphology can also be applied to functions. The concept of gray scale morphology

can be related to and derived from the binary morphology using an elegant approach proposed

by Sternberg [281, 109]. In his classical paper [281], he proposed a notion of umbra which can

be used for representing gray scale morphological operations in terms of binary morphological

operations. An alternative way of generalizing from binary to gray scale morphology is by a

threshold decomposition of gray scale images into binary images [262, 118, 176]. In the following

sections a formal development of gray scale morphology using the concept of umbra is presented.
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2.4.1 Umbra and Surface Concepts

The concepts of top surface of a set and the umbra of the surface are introduced �rst. Here, a set

in N -dimensional Euclidean space W = E
N can be thought of as a gray scale function of N � 1

variables. This is done by assuming that �rst N � 1 coordinates of N -tuple x 2 W are in the

domain of a gray scale function while N -th coordinate is the gray scale value. The top surface

of a set W is de�ned on the �rst N � 1 coordinates and has the value equal to the maximum

value of corresponding gray scale values.

De�nition 2.30 The top surface of a set. Let A � E
N
be a set, where E

N
is N-dimensional

Euclidean space and let F = fx 2 EN�1 j (x; y) 2 A for some y 2 Eg. The top surface of A is a

function T [A] : F �! E de�ned as

T [A](x) = maxfy j (x; y) 2 Ag (2.33)

2

De�nition 2.31 The basic de�nition of umbra. A set S � E
N�1�E is an umbra if and only if

(x; y) 2 S =) (x; z) 2 S 8z � y (2.34)

2
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De�nition 2.32 The umbra of a function. Let F � E
N�1

and f : F �! E. The umbra of f ,

U [f ] � E
N�1 � E, is de�ned as

U [f ] = f(x; y) 2 F � E j y � f(x)g (2.35)

2

Note that the umbra of a function is an umbra.

2.4.2 Gray Scale Operations

Now that the concept of the surface of a set and the umbra of a function is established we proceed

with a de�nition of gray scale equivalents of Minkowski addition, Minkowski subtraction, dilation,

and erosion.

De�nition 2.33 The gray scale versions of the basic morphological operations. Let F;G � E
N�1

and f : F �! E and g : G �! E. Minkowski addition and subtraction, dilation, and erosion

are de�ned by

f � g = T [U [f ]� U [g]] (2.36)

f 	 g = T [U [f ]	 U [g]] (2.37)

D(f; g) = T [D(U [f ]; U [g])] (2.38)

E(f; g) = T [E(U [f ]; U [g])] (2.39)
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2

The expressions in De�nition 2.33 are an elegant way of de�ning gray scale operations through the

use of binary morphology. However, they are not convenient for practical computation. Before

we proceed with expressions for practical use the notion of the symmetric function operator is

introduced.

De�nition 2.34 The symmetric function f
s
of a function f is given by

f
s(x) = f(�x) (2.40)

2

Note that the gray scale dilation and erosion are de�ned consistently with their binary equiva-

lents.

Proposition 2.35 Alternative ways for expressing dilation and erosion.

D(f; g) = f � gs (2.41)

E(f; g) = f 	 gs (2.42)

2

Proposition 2.36 gives practical expressions for the computation of gray scale operations.
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Proposition 2.36 Practical expressions for basic gray scale operations. Let F;G � E
N�1

and

f : F �! E and g : G �! E.

(f � g)(x) = max
z2F;x�z2G

[f(z) + g(x� z)] (2.43)

(f 	 g)(x) = min
z2D;x�z2G

[f(z)� g(x� z)] (2.44)

D(f; g)(x) = max
z2F;z�x2G

[f(z) + g(z � x)] (2.45)

E(f; g)(x) = min
z2F;z�x2G

[f(z)� g(z � x)] (2.46)

2

The Equations 2.44 and 2.45 are similar to convolution expressions from linear system theory

where addition is replaced by max (min) operations and where multiplication is replaced by

addition (subtraction). However, this is where similarity ends since, unlike convolution, they

exhibit a nonlinear behavior.

De�nition 2.37 Gray scale opening and its dual closing are de�ned by

(f � g)(x) = [(f 	 gs)� g](x) (2.47)

(f � g)(x) = [(f � gs)	 g](x) (2.48)

2

The opening operation performs a 'rolling ball' algorithm by creating resulting function points

by translating the function g 'under' the surface de�ned by the function f . The closing is the
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dual operation of opening.

2.4.3 Basic Properties

We begin with the basic properties of umbra and surface. The surface and the umbra operations

are inverses of each other in the following sense.

Proposition 2.38 The surface operation is an inverse of the umbra operation. Let F � E
N�1

and f : F �! E. Then

T [U [f ]] = f (2.49)

2

On the other hand the umbra operation is not an inverse of the surface operation

Proposition 2.39 The composition of surface and umbra operations. Let A � E
N
. Then

A � U [T [A]]] (2.50)

The equality in Equation 2.50 holds if and only if A is an umbra. 2

The umbra homomorphism theorem [109] establishes the homomorphism between binary and

grayscale operations.

Theorem 2.40 The umbra homomorphism theorem. Let F;G � E
N�1

and f : F �! E and

g : G �! E. Then

U [f � g] = U [f ]� U [g] (2.51)
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U [f 	 g] = U [f ]	 U [g] (2.52)

2

Let us introduce some notation before we proceed further.

De�nition 2.41 Maximum and minimum operations for functions. Let F;G � E
N�1

and f :

F �! E and g : G �! E. Then

(f max g)(x) = max(f(x); g(x)) (2.53)

(f min g)(x) = min(f(x); g(x)) (2.54)

2

De�nition 2.42 � and � relations for functions. Let F;G � E
N�1

and f : F �! E and

g : G �! E. Then

f � g () f(x) � g(x) 8x 2 EN�1 (2.55)

f � g () f(x) � g(x) 8x 2 EN�1 (2.56)

2

The relations between the umbra and min and max operators are shown bellow.

38



Proposition 2.43 The relation between the umbra and min and max operators. Let F;G �

E
N�1

and f : F �! E and g : G �! E. Then

U [f max g] = U [f ]
[
U [g] (2.57)

U [f min g] = U [f ]
\
U [g] (2.58)

2

Proposition 2.44 The relation between the umbra and function � operator. Let F;G � E
N�1

and f : F �! E and g : G �! E. Then

f � g () U [f ] � U [g] (2.59)

2

Proposition 2.45 The relation between the top surface and set � operator. Let A;B � E
N
.

A � B =) T [A](x) � T [B](x) (2.60)

2

The following basic properties of grayscale operations are a consequence of the umbra homo-

morphism theorem.

Proposition 2.46 Gray scale Minkowski addition is an extensive operation. It is a commutative,

associative, and translation invariant operation. It distributes over the set union. Let F;G;H �
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E
N�1

and f : F �! E, g : G �! E, and h : H �! E.

f � g =) f � h � g � h (2.61)

f � g = g � f (2.62)

(f � g)� h = f � (g � h) (2.63)

(f � g)t = ft � g (2.64)

f � (gmax h) = (f � g)max(f � h) (2.65)

where t 2 EN�1
. 2

Proposition 2.47 Minkowski subtraction is not idempotent and it does not preserve homotopy.

It is anti-extensive only if coordinate system origin belongs to the set that is subtracted. It is an

increasing operation. Let F;G;H � E
N�1

and f : F �! E, g : G �! E, and h : H �! E.

f � g =) f 	 h � f 	 h (2.66)

(f 	 g)	 h = f 	 (g � h) (2.67)

(f 	 g)t = ft 	 g (2.68)

f 	 (gmaxh) = (f 	 g)min(f 	 h) (2.69)

(f min g)	 h = (f 	 h)min(g 	 h) (2.70)

where t 2 EN�1
. 2
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Proposition 2.48 Gray scale opening is an anti-extensive, idempotent, and increasing opera-

tion. Gray scale closing is an extensive, idempotent, and increasing operation. 2

Theorem 2.49 Duality theorem for gray scale opening and closing. Let F;G � E
N�1

and

f : F �! E and g : G �! E. Then

� (f � g) = (�f) � g (2.71)

2

2.5 Discussion and Comments

A certain amount of confusion has been present in literature on mathematical morphology. The

reason for this is a presence of two di�erent approaches to de�nitions of the basic morphological

operations. Actually, there are three levels of di�erences that introduce confusion to de�nitions.

1. The way how operations are de�ned (mathematical de�nitions).

2. The way how operations are called (names).

3. The notation that is used (symbols).

The �rst approach has been proposed by Serra [262, 263]. The second approach has been proposed

by Sternberg [281]. In an attempt to present and clarify di�erences of these two approaches in

three levels mentioned above we present a table which contains a summary of both approaches.

Table 2.1 has three main columns corresponding to three crucial levels of di�erence (actual
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Serra Sternberg

De�nition Name Notation Name Notation

S
b2B Ab

Minkowski
addition

A� B
Minkowski

addition

or dilation
A� B

S
b2B A�b dilation A� �

B - -
T
b2B Ab

Minkowski

subtraction
A	 B Minkowski

subtraction
-

T
b2B A�b erosion A	 �

B erosion A	 BS
yjBy�A

By opening (A	 �
B)�B opening (A	 B)�BT

yjBy�A
c B

c

y
closing (A� �

B)	B closing (A� B)	B

Table 2.1: A comparative table of de�nitions, names, and notations.

de�nition, name, and notation). Rows of the table correspond to operations. The table shows

that there are not many di�erences in operation de�nitions vs. names. The only di�erence

is in de�nition of dilation. The erosion, opening, and closing are de�ned consistently in both

approaches. There are many more di�erences in operation notation vs. name or de�nition. For

example, the symbol 	 denotes Minkowski subtraction in Serra's notation but the same symbol

denotes erosion in Sternberg's notation. The names dilation and Minkowski addition denote the

same operation in Sternberg's work but denote di�erent operations in Serra's work.

Both approaches have its advantages and disadvantages. However, these name and notation

di�erences mainly inuence the way how ideas are formalized in written form and do not change

the underlying operation. The Serra's approach is slightly more complicated but gives nicer

duality relations. In Sternberg's approach the expressions for opening and closing are more

simple but the resulting duality relations are not ideal.
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The approach used in this work is the same as used by Serra. The author feels that this

question is important to the extent of its inuence to the formal formulation of the theory.

However, the importance of these di�erences must not be overestimated as it is the underlying

philosophy of morphological operations which is important and common for both approaches.
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Chapter 3

Algorithms for Shape Description: An

Overview

3.1 Introduction

The shape of the object is a silhouette of the object (e.g. obtained by illuminating the object by

an in�nitely distant light source). The procedures (segmentation, etc.) used to obtain the shape

from a given gray-scale image are not discussed here. Algorithms that we present here assume

that they are given a binary image i.e. the shape of the object. A shape description method

generates a descriptor vector (also called a feature vector) from a given shape (binary image).

The required properties of a shape description scheme are invariance to translation, scale, and

rotation. This is required because these three transformation do not change the shape of the

object.
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The problem of shape description is one of the most important problems in image analysis. It

has been pursued by many authors and there is a huge amount of work related to it. A number

of review papers have been written on the topic of shape analysis [206, 207, 1]. Books dealing

with shape analysis include [289, 67, 198, 253, 254, 149, 126, 308, 13, 133, 258, 108, 107].

In an attempt to create a systematic overview of the subject it is possible to classify methods

according to several di�erent criteria. Pavlidis [206] has used the following classi�cations. One

classi�cation is based on whether the algorithm uses only boundary points to create a description

or it also looks in the interior of the shape. Two classes of algorithms are called boundary (or

external) and global (or internal), respectively. Examples of the former class are algorithms which

parse the shape boundary [66, 309, 137, 199, 99, 47, 136, 284] and various Fourier transforms of

the boundary [312, 102, 240, 217, 296]. Examples of global methods include the medial axis (also

called symmetric axis) transform (MAT) proposed by Blum and described in [23, 196, 24, 66, 25,

213, 199, 47], moment based approaches [128, 285, 17, 238], and methods of shape decomposition

into other primitive shapes [73, 200, 8, 138, 132].

Another classi�cation of shape description algorithms can be made on the basis of whether

the result of the analysis is a scalar or a non-scalar. For example, MAT produces another

image (containing symmetric axis) and is therefore called a space-domain technique. On the

other hand, scalar transform techniques produce numbers (scalars) as result. Examples of later

methods include various Fourier [312, 102, 240, 217, 296] and moment-based [128, 285, 17, 238]

procedures for shape analysis.

A third classi�cation of the shape analysis methods can be made on the basis of information
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preserving. Methods which allow the accurate (or at least su�ciently accurate) reconstruction of

the shape from its descriptor are called information preserving methods as opposed to methods

only capable of partial reconstruction called information nonpreserving techniques. An example

of information nonpreserving methods is area to perimeter square ratio. Many signi�cantly

di�erent shapes can have the same area to perimeter square ratio. Therefore it is not possible

to reconstruct the original shape knowing only its area to perimeter square ratio. Many simple

shape descriptors su�er from the same problem.

Some of the most important shape descriptor methods are briey described in the following

sections. Section 3.2 emphasizes the role and importance of research in interdisciplinary �elds like

visual perception, cognition, psychology, and physiology. Sections 3.3 and 3.4 present boundary

scalar and space domain techniques, respectively. Sections 3.5 and 3.6 address most characteristic

global scalar and space domain methods, respectively. Finally, Section 3.7 presents various

approaches to shape matching.

3.2 Visual Form Perception

To understand the nature of the human processing of shape one has to study the cognitive science.

In particular, the visual cognition and perception are of interest for study of shape description.

There is a huge amount of interdisciplinary literature available on the topic. Introductory and

more advanced books and articles dealing with visual perception and cognition include [289, 297,

317, 43, 103, 164, 21, 134, 231].

The human visual perception and cognition system is one of the most so�sticated and versatile
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in nature. Its ability to understand the organization of surrounding nature has been unsurpassed

by a large margin by arti�cially created reasoning systems. The human visual perception and

psychology are studied intensively in order to understand complex underlying processes and to

develop arti�cial systems for visual perception and cognition.

3.2.1 Theories of Visual Form Perception

There have been several schools in psychology attempting to formalize the mechanisms of behav-

ior, in general, and visual perception as one aspect of it. Hake [106] discussed several approaches

to representation of natural forms. Zusne [317] presented an overview of contemporary theories

of visual form. An in-depth discussion of visual perception theories in psychology is outside the

scope of this work, therefore we limit ourselves to a brief discussion of selected topics.

The Gestalt school of psychology [318] has played a revolutionary role with its novel approach

to visual form. A more detailed exposition of the subject of Gestalt theory can be found in [301,

70, 141, 144]. The Gestalt theory is a non-computational theory of visual form, this being a

disadvantage for practical engineering applications. However, according to Zusne "it is still the

only theory to deal with form in a comprehensive fashion" ([317], p. 108). There have been

many books on Gestalt laws presenting various lists of principles. These lists range from six to

more then hundred. Here, we give a list of laws for visual forms as proposed by Zusne [317].

1. Visual form is the most important property of a con�guration.

2. Visual form is either dynamic or the outcome of dynamic processes which underlie them.
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3. All visual forms possess at least two aspects, a �gured portion called �gure and a back-

ground called ground.

4. Visual forms may possess one or several centers of gravity about which the form is organized.

5. Visual forms are transposable (with respect to translation, size, orientation, and color)

without loss of identity.

6. Visual forms resist change. They tend to maintain their structure against disturbing forces.

7. Visual forms will always be as good (regular, symmetric, simple, uniform, exhibiting the

minimum amount of stress) as the conditions (pattern stimulus) allow.

8. Forms may fuse to produce new ones.

9. A change in one part of form a�ects other parts of the form (law of compensation).

10. Visual forms tend to appear and disappear as wholes.

11. Visual forms leave aftere�ect that make them easier to remember (law of reproduction).

12. Space is anisotropic, it has di�erent properties in di�erent directions.

Another approach to a theory of visual form is found in Hebb's work. Hebb presented a

neuropsychological theory of behavior in his book The Organization of Behavior [113]. In his

theory, Hebb emphasized the role of the neural structures in the mechanism of visual perception.

His work inuenced a number of researchers in the �eld of arti�cial neural networks. As opposed

to Gestalt school, Hebb argues that form is not perceived as a whole but consists of parts. The
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organization and mutual spatial relation of parts must be learned for successful recognition. This

learning aspect of perception is the central point in Hebb's theory. The main mechanism which

integrates simpler elements of perception are eye movements. The simpler elements are angles

and lines. Hebb also introduced a notion of cell assemblies. Cell assemblies are neurons grouped

together so that repeated �rings will lower the synaptic resistance causing neurons in the group

to mutually excite each other. Hebb's theory was mostly qualitative and not computational.

Gibson [89] developed a third comprehensive theory of visual perception. First principle of

his theory is that the space is not a geometric or abstract but a real visual space characterized by

forms that are in it. Gibson's theory is centered around perceiving real three-dimensional objects,

not their two-dimensional projections. Second principle is that there is a real world stimulus

behind any simple or complex visual perception. The stimulus is in the form of gradient which is

a property of surface. The examples of physical gradients are changing size of texture elements

(depth dimension), degree of convergence of parallel edges (perspective), hue and saturation of

colors, and shading. Gibson points out that the Gestalt school has been occupied with the study

of two-dimensional projections of three-dimensional world and that its dynamism is no more then

the ambiguity of interpretation of projected images. In his classi�cations, there are ten di�erent

kinds of form.

1. Solid form. (Seeing an object means seeing a solid form.)

2. Surface form. (Slanted and forms with edges.)

3. Outline form. (A drawing of edges of a solid form.)
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4. Pictorial form. (Representations which are drawn, photographs, paintings, etc.)

5. Plan form. (A drawing of edges of a surface projected on a at surface.)

6. Perspective form. (A perspective drawing of a form.)

7. Nonsense form. ( Drawings which do not represent a real object.)

8. Plane geometric form. (An abstract geometric form not derived from or attempting to

make a solid form visible.)

9. Solid geometric form. (An abstract part of a three-dimensional space bounded with imag-

inary surfaces.)

10. Projected form. (A plane geometric form which is a projection of a form.)

These forms are grouped into three classes as follows.

1. Real objects: solid and surface forms.

2. Representations of real objects: outline, pictorial, plan, perspective, and nonsense forms.

3. Abstract (non-real) objects: Plane geometric forms, solid geometric forms, and projected

forms.

The �rst class is the "real" class consisting of objects form the real world. The second class are

representations of real objects. The third class are abstractions which can be represented using

symbols but do not correspond to real objects (because they have no corresponding stimulus in

the real world). This partition is very clear in Gibson's work.
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At least three separate levels of theory will be required: �rst a theory of how we

perceive the surface of objects{a theory of slant-shape or, in older words, of shape-

constancy; second, a theory of how we perceive representations, pictures, displays,

and diagrams; and third, a theory of how we apprehend symbols. ([90], p. 412.)

A tutorial on the visual cognition with emphasize on shape recognition was written by

Pinker [219] (see also [41]).

3.2.2 Recent Advances

Marr et al. [177, 178, 181, 182, 180, 183] made signi�cant contributions with the study of human

visual perception system. In Marr paradigm [179] a focus of research is shifted from applications

to topics corresponding to modules of the human visual system. An illustration of this point

is shape from x research which represent an important part of the total research in computer

vision [1]. Papers dealing with shape from x techniques include: shape from shading [127], shape

from contour [125, 290], shape from texture [89], shape from stereo [120], and shape from fractal

geometry [37].

In [178] Marr developed a primal sketch paradigm for early processing of visual information.

In his method, a set of masks is used to measure discontinuities in �rst and second derivative of the

original image. This information is then processed by subsequent procedures to create a primal

sketch of the scene. The primal sketch contains locations of edges in the image and is used by

subsequent stages of the shape analysis procedure. Marr and Hildreth [180] developed further the

concept of the primal sketch and proposed a new edge detection �lter based on the zero crossings
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of the Laplacian of the two-dimensional Gaussian distribution function. In his approach, zeros of

Laplacian indicate the inection point in the edge to detect edge positions. Marr and Nishihara

[181] proposed a set of criteria for evaluation of shape description methods: accessibility, scope

and uniqueness, and stability and sensitivity. Accessibility shows how easy (or di�cult) is to

compute a shape descriptor in terms of memory requirements and computational time. Scope

shows the class of shapes that can be described by the method. Uniqueness shows whether a

one-to-one mapping exists between shapes and shape descriptors. Stability and sensitivity show

how sensitive a shape descriptor is to a "small" changes in shape.

Brady [30] proposed another set of criteria for representations of shape.

� Rich local support. This criteria requires that a representation is information preserving

(rich) and can be computed locally. Local support is important for representation of oc-

cluded objects.

� Smooth extension and subsumption. This criteria ensures that local descriptions can easily

produce global descriptions. This is a kind of continuity of representation.

� Propagation. This criteria adds a hierarchical property to representation in the sense that

perceptual subparts are propagated from local to global levels of representation.

Brady illustrated this criteria on the Generalized Cylinder representation for three-dimensional

objects and the Smoothed Local Symmetries representation for two-dimensional shapes [31].

Koenderink [142] and Koenderink and van Doorn [143] have studied the psychological aspects

of visual perception and proposed several interesting paradigms. Conventional approaches to
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shape are often static in the sense that they treat all shape details equally as global shape

features [143]. A dynamic shape model was developed where the visual perception is performed

on several scales of resolution. Such notions of order and relatedness are present in visual

psychology and absent in conventional geometrical theories of shape. It has been argued that

there exist the manuals of art theory [96] which have not been given the attention they deserve

and which contain the practical knowledge accumulated over centuries [143]. In art as well as

in perception, a shape is viewed as a hierarchical structure. A procedure for morphogenesis

based on a multiple levels of resolution was developed [143]. Any shape can be embedded in

a "morphogenetic sequence" based on the solution of the partial di�erential equation which

describes the evolution of the shape through multiple resolutions.

Many authors agree about the signi�cance of high curvature points for visual perception.

Attneave and Arnoult [10, 11] performed psychological experiments to investigate the signi�cance

of corners for perception. In the famous Attneave's cat experiment a drawing of a cat was used

to locate points of high curvature and connect them to create a simpli�ed drawing of the cat.

After a brief presentation the cat would be recognized reliably in the drawing. It was suggested

that such points have high information content. To approximate curves by straight lines the

high curvature points are the best place to brake the lines. In that case the resulting image

retains the maximal amount of information necessary for successful shape recognition. For the

purpose of shape description points of high curvature are taken to be a corners and shape can be

approximated by a polygon. A variety of algorithms for polygonal approximation of the shape

[204, 206, 87, 166, 307, 306] has been developed. Davis [46] combined the use of high curvature
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points and line segment approximations for polygonal shape approximations.

Ho�man and Richards [121, 241] argue that when the visual system decomposes objects it

does so at the points of high negative curvature. This agrees with the principal of transversal-

ity [104] which is found in nature. The principal of transversality says that when two arbitrarily

shaped convex objects interpenetrate each other the meeting point is a boundary point of concave

discontinuity of their tangent planes.

Leyton [152] demonstrated the Symmetry-Curvature theorem which claims that any curve

section that has only one curvature extremum has one and only one symmetric axis which

terminates at the extremum itself. (For more information on symmetric axis see Section 3.6.1.)

This is an important result because it establishes the connection between to important notions in

visual perception. In [153], Leyton developed a theory which claims that all shapes are basically

circles which changed form as a result of various deformations cause by external forces like

pushing, pulling, stretching, etc. Two problems were considered. The �rst was the inference

of the shape history from a single shape, and the second was the inference of shape evolution

between two shapes. A concept of symmetry-curvature was used to explain the process which

deformed the object. Symmetric axes show directions along which deformation process most

likely took place. In [152], Leyton proposed a theory of nested structures of control which, he

argues, governs the functioning of the human perceptual system. It is a hierarchical system

where at each level of control all levels bellow are also included in information processing.

Pentland [215, 216] investigated methods for representation of natural form by means of frac-

tal geometry [167, 168, 14, 53, 37, 75]. He argued that fractal functions are appropriate for
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natural shape representation because many physical processes produce fractal surface shapes.

This is due to the fact that natural forms repeat whenever possible and non-animal objects have

a limited number of possible forms [287, 282]. Most existing schemes for shape representation

were developed for engineering purposes as opposed to the purpose of perception. Fractal rep-

resentation can produce objects which much better correspond to the human model of visual

perception and cognition.

Lowe [165] proposed a computer vision system that can recognize three-dimensional objects

from unknown viewpoints and single two-dimensional images. The procedure is non-typical and

uses three mechanisms of perceptual grouping to determine the three-dimensional knowledge

about the object as opposed to a standard bottom-up approach. The disadvantage of bottom-up

approaches is that it takes an extensive amount of information to perform recognition of the

object. Instead, the human visual system is able to perform recognition even with very sparse

data or partially occluded objects. The conditions that must be satis�ed by perceptual grouping

operations are as follows.

� The viewpoint invariance condition. This means that observed primitive features must

remain stable over a range of viewpoints.

� The detection condition. There must be enough information available to avoid accidental

mis-interpretations.

The grouping operations used by Lowe are the following. Grouping on the basis of proximity

of line end points was used as one viewpoint invariant operation. The second operation was

grouping on the basis of parallelism which is also viewpoint independent. The third operation
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was grouping based on collinearity. Preprocessing operation consisted of edge detection using

Marr's zero crossings in the image convolved with a Laplacian of Gaussian �lter. In the next

step a line segmentation was performed. Grouping operations on a line segmented data were

performed to determine possible locations of objects.

3.3 Boundary Scalar Transform Techniques

Boundary scalar transform algorithms typically consist of two major steps. In the �rst step, a one-

dimensional function is constructed from the two-dimensional shape boundary. The constructed

one-dimensional function is used in the second step to describe the shape of the two-dimensional

boundary. Note that, in this approach, the shape is described indirectly by means of a one-

dimensional characteristic function of the boundary instead of the two-dimensional boundary

itself. Techniques used in the second step of this approach are divided into those based on the

Fourier transform of the characteristic function and those based on a stochastic process modeling

of the characteristic function.

3.3.1 From 2-D Shape to 1-D Boundary Representation

The methods in this group �rst generate a one-dimensional real or complex function from the

shape boundary. 2-D shape can be represented using a real or complex 1-D function. In this

Section we present several possible 1-D boundary representations of the shape that have been

used in the literature.

Zahn and Roskies [312] and Bennet and McDonald [19] have used a tangent angle versus arc
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�g/centroid.ps

Figure 3.1: The centroid-to-boundary distance approach.

length function. The tangent angle at some point is measured relative to the tangent angle at

the initial point.

Granlund [102], Richards and Hemami [240], and Persoon and Fu [217] have used a complex

function of the form x(t) + jy(t), where t is the arc length parameter.

Another way to create a one-dimensional representation of the boundary is to measure the

distance from the shape centroid to the points on the shape boundary. There are several pos-

sible ways to construct the required one-dimensional function from the given shape using the

centroid-to-boundary distance approach. Here, we mention three centroid based procedures for

constructing the required function. The shape, its centroid and boundary points are shown in

Figure 3.1.

In the �rst method, lines are drawn from the centroid O to boundary points A0; : : : ; AN�1 so
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that angles between lines are constant and equal 2�=N . The function is now constructed as

f(i) = d(O;Ai) (3.1)

where i = 0; : : : ; N � 1 and d(A;B) is the Euclidean distance between the points A;B.

In the second method, the distance between subsequent boundary points is used for the

one-dimensional function values. Using the same notation we have

f(i) =

8>>><
>>>:
d(Ai; Ai+1) for 0 � i < N � 1

d(AN�1; A0) for i = N � 1

(3.2)

where i = 0; : : : ; N � 1.

In the third method, a shape boundary is approximated with a polygon of N sides so that all

sides have the same length. Let Ai be the polygon vertices where i = 0; : : : ; N � 1. In addition,

let a(AB) be the function which returns the angle between the line AB and a reference line. The

one-dimensional function is then given by

f(i) =

8>>><
>>>:
a(AiAi+1) for 0 � i < N � 1

a(AN�1A0) for i = N � 1

(3.3)

where i = 0; : : : ; N � 1.

Chang, Hwang, and Buehrer [35] constructed the function of distance from the centroid to the

feature points. In their method, the feature points are the points of high curvature. There are
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two approaches for detection of high curvature points. The �rst is to compute curvature directly

from the boundary curve. The second approach is to perform a polygonal approximation of the

shape and use the polygon vertices as feature points. This is based on the fact that corners are

points of high curvature. The computed distances are saved in an linked list. The distances are

ordered to achieve rotation invariance. The distances are also divided by the minimal distance

to achieve scale invariance. Translation invariance is automatically achieved through the use of

centroid.

3.3.2 Fourier Transform of Boundary

The shape description methods under this category use the Fourier Transform of the 1-D bound-

ary representation to characterize the shape.

The Zahn and Roskies method [312] is presented in more detail to illustrate this approach to

shape description. Let fk, k = 0; : : : ; L�1 be the tangent angle at the point k measured relative

to the angle at point zero (i.e. f0 = 0). An example shape and its tangent angle are shown in

Figure 3.2. Let lk be the arc length from the initial point to the point k and L be the total arc

length. The boundary is parsed in a clockwise direction producing negative angles relative to

initial point. Consider a new function which depends on parameter ranging from zero to 2�.

a(tk) = fk + tk (3.4)
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Figure 3.2: The tangent angle function.

where

tk =
2�

L

lk (3.5)

and 0 � tk < 2�. The second summand in Equation 3.4 is added to compensate for the negative

slope of function fk. The behavior of the resulting function is such that in the case of the circle

or regular polygon the function ak is equal to zero. If non-regular shape is described a non-zero

ak function results. It can be shown that

a0 = a2� = 0 (3.6)

The Fourier transform is now applied to the function a and resulting coe�cients are used for
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shape description. The complex shape descriptors are given as

Sn =
1

2�

Z 2�

0
a(t)e�jntdt (3.7)

Due to the arc length normalization the shape descriptor is invariant to scale change. The shape

descriptor is invariant to translation because the tangent angle function is invariant to the shape

position. Rotation of the object (i.e. the variation of the starting point) causes phase change

in the resulting Fourier transform, therefore looking at the magnitude of the Fourier coe�cients

will ensure rotation invariance of the method.

The major advantage of the method is that it is easy to implement and is based on a well

developed theory of Fourier analysis. The disadvantage is in the fact that Fourier transform does

not provide local shape information. After the Fourier transform the local shape information

gets distributed into all coe�cients and is not localized in the frequency domain. Tangent angle

versus arc length representations su�er from a very high noise sensitivity because it is di�cult

to determine the tangent angle for noisy contours.

3.3.3 Bending Energy Concept

Young, Walker, and Bowie [309] proposed an interesting notion of bending energy. According to

this approach a shape can be represented by its bending energy de�ned by

E =
1

P

Z
P

0
jK(p)j2dp (3.8)
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where K(p) is the curvature function, p is the arc length parameter, and P is the total curve

length. To actually compute the bending energy the Equation 3.8 was not used directly but

instead the Fourier transform of the boundary was computed �rst. Using Fourier coe�cients and

Parseval's relation the bending energy was computed in a more e�cient way. In addition, the

authors proved that the circle was the shape having the minimum average bending energy.

3.3.4 Stochastic Methods

Most methods in this class are based on the modeling of the centroid to boundary points distance

function. The process of distance function formation from the object shape is presented in the

Section 3.3.1. The distance function is modeled using various stochastic process models. The

parameters of the model are then used as shape descriptors.

On the terminology side, a notion of time-series is often used in stochastic processes for

signals that depend on time. In stochastic shape boundary analysis, a distance function is

modeled instead a time function. Regardless of this fact, in some literature, the term "time-

series modeling" is still used to refer to the shape boundary problem as mentioned above.

Kashyap and Chellappa [137] proposed a use of circular autoregressive models (CAR) for

representation of centroid to boundary points distance function. A CAR model is characterized

by a set of unknown parameters and an independent noise sequence. Let rt be a distance function

where t = 1; : : : ; N . Since boundary is closed, rt is a periodic function

rk = rk+N (3.9)
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A particular CAR model that was utilized is the same one used by Huang [130]. It is a stochastic

process de�ned with the following m-th order di�erence equation

rt = � +
mX
j=1

�jrt�j +
q
�!t (3.10)

where t = 1; : : : ; N and

!i = !i+N (3.11)

E[!i] = 0 (3.12)

E[!i!j] = ��ij (3.13)

and f!1; : : : ; !Ng are independent random variables with normal distribution N(0; 1). The Kro-

necker's delta function is de�ned as

�ij =

8>>><
>>>:

1 i = j

0 i 6= j

(3.14)

The parameters f�; �1; : : : ; �m; �g are unknown and need to be estimated. The maximum like-

lihood (ML) parameter estimation [230, 305, 201] was used. The ML estimated parameters �i

are translation, rotation, and scale invariant. Note that the rotation invariance holds only for

angles which are multiples of 2�=N . Parameters � and � are not scale invariant but the quotient

�=

p
� is. Therefore, the vector [�1; : : : ; �m; �=

p
�]T is used as a shape descriptor. Kashyap and

Chellappa further investigated coding and reconstruction schemes and showed that stochastic
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methods could be used for description of closed boundaries.

Dubois and Glanz [65] used the same autoregressive model as in [137] but investigated three

additional methods for improving pattern classi�cation (shape matching) performance. The clas-

si�cation was then performed by computing the weighted Euclidean distance between unknown

object descriptors and training objects. The �rst improvement was the weighting of the descrip-

tor vector so that components which were common within a training class were emphasized while

components which vary were de-emphasized. It has been shown that the optimal feature weight is

inversely proportional to the standard deviation of the feature of the class training set [261]. The

second improvement consisted in the rotation of the coordinate system and scaling the rotated

axes [261]. This groups the members of one pattern class closer in the new coordinate system.

The third modi�cation included the use of hyperplanes to divide the pattern space. The least

mean squared error procedure [54] yields the optimal hyperplane parameters. The experimental

result showed that the normalized AR model parameters useful shape descriptors.

Das, Paulik, and Loh [45] developed a bivariate technique for autoregressive modeling of

shape boundary. Using their technique they obtained even better experimental results.

The linear AR model has been compared with the non-linear model of the quadratic Volterra

type given by

rt =
mX
j=1

ajrt�j +
pX

u=0

qX
v=0

guvrt�urt�v + et (3.15)

where rt is the centroid to boundary points distance function [136]. According to Kartikeyan

and Sarkar, the linear AR models may not be su�cient for recognition of more complicated

(non-convex) shapes. For better accuracy a higher order linear model is necessary to increase
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Figure 3.3: The arc height concept.

dimension of the shape descriptor vector. The use of over�tted AR models may lead to poor

recognition performance. However, non-linear models can provide higher accuracy necessary to

describe more complicated shapes. The experiments demonstrated that the quadratic Volterra

models performed better classi�cation then the linear AR model [136].

The disadvantage of AR boundary modeling is that in the case of complex boundaries a small

number of AR parameters is not su�cient for description. For this reason, He and Kundu [112]

combined the use of the AR model with the hidden Markov model. The shape boundary was

partitioned into a number of segments and each segment was described using the AR modeling.

The obtained vectors were analyzed using the hidden Markov model.

3.3.5 Arc Height Method

Lin, Dou, and Wang [155] used the Arc Height Function (AHF) to characterize the shape bound-

ary. The arc height concept is shown in Figure 3.3 and is de�ned as follows. An arc chord AB
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of prede�ned length is positioned on the boundary. The symmetric axis passing through OC is

drawn perpendicular to the arc chord AB. The length of the line segment OC is called the arc

height at the position A. As arc chord is moved along the curve a mapping between the arc

length and the arc height de�nes the AHF. The AHF is then used to characterize the shape.

3.4 Boundary Space Domain Techniques

The boundary space domain methods take shape boundary as input and produce result in the

pictorial or graph form. Space domain techniques often appear in various structural approaches

to shape recognition. The reason for this is that in structural methods a recognition system

processes the visual information in stages starting from the early preprocessing phase to a higher

levels where the �nal interpretation of the visual scene is performed. A characteristic of these

processing stages is that they produce an image, a graph, or other non-scalar as opposed to

approaches described in Section 3.3 which produce a scalar result. This is why such methods are

called the space domain methods. Some examples of the space domain techniques are presented

in the following sections.

3.4.1 Chain Code

Freeman [77] has proposed a method for coding of line drawings called the chain coding. A

more detailed overview of the chain code methods and algorithms by Freeman can be found in

[78]. The generalized chain code [80] is shown in Figure 3.4. The nodes surrounding the node

A are enumerated counter-clockwise in ascending order from inside out. Ring 1 contains nodes
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Figure 3.4: The generalized chain code.

0 � 7, Ring 2 contains nodes 8 � 23, Ring 3 contains nodes 24 � 47, etc. A generalized chain

representation is denoted by rings that are used. For example, a (1; 3) code uses line segments

from point A to all points from ring 1 and ring 3. Code (1) is the basic chain code with eight

segments from A to points from ring 1. A conventional code (1) is used in the following text to

introduce some basic notation [78]. A link ai is a directed line segment of length
p
2 for directions

i = 1; 3; 5; 7 and of length one for directions i = 0; 2; 4; 6 (assuming grid spacing is equal to one).

A chain is an ordered sequence of links written in the form

A = a1a2a3 : : : an (3.16)

The links a and b form an inverse pair if

a = b+ 4(mod8) = b
�1 (3.17)
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Note that the addition in Equation 3.17 is performed modulo eight. Inverse of a chain is computed

as

(a1 : : : an)
�1 = a

�1
n
: : : a

�1
1 (3.18)

Length of the chain can be computed as

L = ne + no

p
2 (3.19)

assuming the grid spacing of one. ne is the number of links having even code while no is the

number of links with odd code. Integration of a function speci�ed by its chain code and the

function value at the starting point of the chain is given by

I =
NX
i=1

aix(yi�1 +
1

2
aiy) (3.20)

where aix and aiy are x and y components of the link ai. and

yi = yi�1 + aiy (3.21)

and y0 is the ordinate of the chain starting point. The �rst moment about x axis is computed as

m01 =
NX
i=1

1

2
aix[y

2
i�1 + aiyyi�1 +

1

3
a
2
iy
] (3.22)
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The second moment about x axis is computed as

m02 =
NX
i=1

1

3
aix[y

3
i�1 +

3

2
aiyy

2
i�1 + a

2
iy
yi�1 +

1

4
a
3
iy
] (3.23)

The distance between two points connected by the chain A can be computed as

m02 = [(
NX
i=1

aix)
2 + (

NX
i=1

aiy)
2]1=2 (3.24)

The above basic operations should illustrate the exibility and versatility of the chain code for

algorithm realization.

In [79], Freeman used a chain code description of the boundary to extract the critical points

which he use then to generate shape description which is invariant to translation, rotation, and

scale. He also presented another chain-code approach which is based on the centroidal pro�le of

the shape. The centroidal pro�le is a plot of centroid to boundary points distance.

Parui and Majumder [202] used a modi�ed chain code to perform a symmetry analysis. The

shape boundary is represented in a hierarchical way so that at highest level a lower number of

polygon vertices is used while at the lowest level the �nest polygonal approximation is utilized.

The search for the symmetric axis position is done starting at highest level with transition to

lower levels as the position of the symmetry axis is more accurately determined.
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3.4.2 Syntactic techniques

Structural descriptions may be viewed as graphs and as such are suitable for formulation in

terms of formal languages [81, 205, 83, 84, 117]. Syntactic methods have several important

advantages. They attempt to emulate the structural and hierarchical nature of the human visual

perception system. Another advantage is that the theory of formal languages, that syntactic

methods rely on, is a well developed �eld. The main disadvantage of this approach is that shape

(or shape boundary) must �rst be encoded to provide the input to the parser. Typically a low

level segmentation of the image must be performed to extract di�erent types of line and curve

segments and corners [209]. The obtained boundary features are then formed in a string.

S = s1; s2; : : : ; sn (3.25)

String element si can represent di�erent things like a chain-code element, a side of polygonal

approximation, or an arc. The string of feature symbols is then parsed according to a grammar to

detect the shape of the object. In addition to deterministic (nonstochastic) grammars stochastic

grammars have been investigated [81]. Fu [82] presented the method for image modeling based

on stochastic grammars. Attributed grammars manipulate attributes (semantics) at the time of

parsing the grammar (syntax). Attributes are usually some primitive shape features.

The theory of formal languages, established by Noam Chomsky, has been used in many �elds

including compiler design, automata theory, computer languages, pattern recognition, and image

processing. First, the basic terminology of formal languages is introduced. An alphabet is a set
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of words (symbols). Words are combined together to form a sentence. A language is a set of

sentences that can be composed using the words from the alphabet. Formal languages are de�ned

using grammars. Grammars are sets of syntax rules describing how sentences can be generated

using available vocabulary. A grammar G is a the quartet G = (N;�; P; S), where N denotes

the set of nonterminal symbols, � is the set of terminal symbols, P is the set of production

rules, and S 2 N is the start symbol. The language L(G) is a set of sentences generated by the

grammar G. The sentences have the following properties.

1. Each sentence is composed of terminal symbols only.

2. Each sentence can be derived from S using the appropriate sequence of production rules

from P .

Formal grammars are divided into four classes. Type 0 grammars have the unrestricted form

of production rules. Type 1 are context-sensitive grammars where productions depend on the

context. Type 2 are context-free grammars and type 3 grammars are regular grammars. Context-

free and regular grammars have been used most in practise [84].

3.4.3 Boundary Approximations

Two most popular schemes for curve approximation are polygonal and spline approximations.

Polygonal approximations are used to approximate the shape boundary using the polygonal

line. Methods are based on the use of the minimal error, the minimal polygon perimeter, the

maximal internal polygon area, or the minimal external polygon area as approximation criteria.
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The error measures which are used most are maximal error (yielding various minimax methods)

and integral square error.

One of the most popular methods in this group is the split-and-merge algorithm [208]. In

this approach, a curve is split in segments until some acceptable error is obtained. At the same

time split polygonal segments are merged if the resulting segment approximates the curve within

some maximum error. Pavlidis [204] used partial derivatives of the integral square error function

to direct Newton's method in search for the optimal breakpoints.

Wu and Leou [306] used a di�erent optimization criteria to derive polygonal approxima-

tions. The internal maximum area, the external minimum area, or the minimum area deviation

polygonal approximations were used in their work.

Bengtsson and Eklundh [18] presented a hierarchical method where the shape boundary is

represented by polygonal approximation. The split-and-merge algorithm was used to create

the polygonal approximation. The scale-space approach [303] was used to track the position of

inection point on the boundary curve. Stable shape features are those which remain unchanged

over scale. Tangents at border points are estimated using polynomial approximation to yield a

multi-scale representation of the curve.

Splines have been very popular for interpolation of functions and approximation of curves.

Ikebe and Miyamoto [131] wrote an overview of spline applications for shape design, representa-

tion, and restoration. Mathematical treatment of splines is presented in several books [50, 9, 139]

while the computer graphics perspective is presented in [91, 195, 15, 245].

Let t0; t1; : : : ; tn be points satisfying t0 < t1 < � � � < tn. These points are called knots. A
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function S of degree k 2 N is called a spline function of degree k if it satis�es the following

conditions.

1. S is a polynomial of degree � k.

2. S has a continuous k � 1-st derivative on [t0; tn].

The above conditions are used to determine the actual spline coe�cients for each interval [ti; ti+1].

Cubic splines (k = 3) are used most in applications. Splines have a very nice property of

minimizing curvature. In other words, they approximate a given function with a curve having the

minimum average curvature. This makes them perfect candidates for a "natural" representation

of curves. The disadvantage of splines in interpolation problems is that a local function value

change changes complete spline representation. B-splines are constructed so that a local function

value change does not spread to the rest of the intervals. B-splines have the following properties.

1. Ni;k(t) = 0 for t � ti and t=geqti+k+1.

2. Ni;k(t) > 0 for t 2 (ti; ti+k+1).

3.
P

iNi;k(t) = 1.

4. Ni;k(t) has a continuous k � 1-st derivative.

5. Ni;k(t) can be computed using a recursive formula.

where Ni;k(t) is a k-th order B-spline.

B-splines can be used for interpolation of plane curves given by parametric equations (x(t); y(t)).

Each parametric equation is interpolated independently in that case.
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Surface are often represented by means of a family of curves. The simplest solution is just a

pointwise linear interpolation between curves. This technique is called lofting and is used widely

in shipbuilding and aircraft industries [131].

3.4.4 Scale-Space Techniques

This groups contains methods which rely on the scale-space representation. Witkin [303] pro-

posed a scale-space �ltering approach which provides a representation useful for representing

signi�cant object features. The representation was created by tracking the position of inection

points in signals �ltered by low-pass Gaussian �lters of variable widths. The inection points

which remain present in the representation were expected to be "signi�cant" object characteris-

tics.

Babaud et al. [12] proved the uniqueness of Gaussian kernel for scale-space �ltering. Gaussian

kernel has the desirable property of saving inection points when width of the �lter is increased.

In other words, contours in scale-space image cannot disappear as �lter width is increased. The

only �lter having such property is the Gaussian �lter.

Asada and Brady [7] proposed a new approach based on ideas developed by Marr et al.

to introduce a representation called the curvature primal sketch. It is a scale-space approach

for representation of curvature and is similar to Marr's primal sketch for edge detection. The

shape boundary is �ltered with Gaussian functions of increasing width to obtain a multi-scale

representation of shape boundary. The curvature is then computed at di�erent scales to obtain

the curvature primal sketch.
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Mokhtarian and Mackworth [193] applied the scale-space approach to the description of planar

shapes using the shape boundary. The curvature along the contour was computed and smoothed

with variable width Gaussian �lters. The scale space image of the curvature function was used

as a hierarchical shape descriptor which is invariant to translation, scale, and rotation.

The concept of multiscale �ltering is also present in mathematical morphology. Chen and

Yan [36] used a variable size structuring element to perform various morphological operations.

Dill et al. [56] studied the role of the leukocyte locomotion. They created multiple smoothed

versions of a leukocyte boundary to extract skeletons. The boundary was represented using the

chain 1-code. A Gaussian �lter of variable width was used to create smoothed versions of the

boundary. The skeleton was computed using a technique based on Arcelli's algorithm [6]. This

algorithm improves the noise sensitivity and the sensitivity to global convexities.

3.4.5 Boundary Decomposition

The methods in this group decompose the shape boundary into curve segments.

H. Liu and M. Srinath [156] developed a procedure for shape classi�cation using contour

matching. The input to the procedure was an object shape. The Sobel edge detector was used

to compute x and y direction gradients and the tangent angle along the boundary by

� = tan�1
�y

�x

(3.26)

The tangent angle function was convolved with the derivative of Gaussian function to �nd the

smoothed curvature function. The boundary was segmented at the points of high curvature. The
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curve matching was performed in two steps. In �rst step, individual segments for two shapes

were compared. In second step, groups of segments were compared and group was disquali�ed if

less then three consecutive segments matched. The �nal step was used to measure the distance

between two shapes. This was done using the chamfer 3=4 distance transform [28, 29] which

approximates the Euclidean distance transform very good but is not so computationally intensive.

The chamfer 3=4 distance transform was computed for the �rst boundary. The second boundary

was superimposed on the distance transform of the �rst boundary and the average distance

value was computed. Experimental results demonstrated the feasibility of the method for shape

matching.

3.5 Global Scalar Transform Techniques

Methods classi�ed here compute a scalar result based on the global shape. Moment based

methods are among most popular methods from the group of global (or internal) scalar transform

methods. Shape vectors and matrices are among less known methods for shape description.

3.5.1 Moments

Moments were �rst used in mechanics for purposes other then shape description. Recent surveys

of the �eld are written by Prokop and Reeves [238] and with more general approach by Weiss [299].

Two-dimensional Cartesian moment mpq of order p+ q of a function f(x; y) is de�ned as

mpq =
Z 1

�1

Z 1

�1

x
p
y
q
f(x; y)dxdy (3.27)
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In discrete case we have

mpq =
M�1X
0

N�1X
0

x
p
y
q
f(x; y) (3.28)

where M;N are the image size parameters. The use of moments for shape description was initi-

ated by Hu [128]. He proved that the moment-based shape description is information preserving.

Moments mpq are uniquely determined by the function f(x; y) and vice versa the moments mpq

are su�cient to accurately reconstruct original function f(x; y). The zeroth order moment m00 is

equal to the shape area assuming that f(x; y) is a silhouette function having value one within the

shape and zero outside the shape. First order moments can be used to compute the coordinates

of the center of mass as

xc =
m10

m00

(3.29)

yc =
m01

m00

(3.30)

Second order moments are called moments of inertia. They can be used to determine the principal

axes of the shape. Principal axes are axes with respect to which there are maximum and minimum

second order moments.

Moments of projections are actually one-dimensional moments of projection functions. Let

v(x) =
Z 1

�1

f(x; y)dy (3.31)

be a projection of function f(x; y) to the x axis. The projection moments to x axis are then
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given as

mp =
Z 1

�1

x
p
v(x)dx = mp0 (3.32)

For successful application to shape description a method must be invariant to translation,

rotation, and scale. Therefore the moments de�ned in Equation 3.27 are not useful for shape

description. Hu [128] proposed seven invariant moments (also called moment invariants). These

moments do not depend on position, orientation, or scale of the shape.

A generalization of moment transform to other transform kernels is possible if Equation 3.27

is rewritten as

mpq =
Z 1

�1

Z 1

�1

Pp(x)Pp(y)f(x; y)dxdy (3.33)

A conventional transform kernel x
p
y
q is replaced by a more general form Pp(x)Pp(y). Particularly

appealing is to use orthogonal polynomials for moment transform kernel [285]. In this case the

moments produce a minimal information redundancy [238]. This is important for the optimal

utilization of the information available in a given number of moments. Some of the orthogonal

polynomial systems that have been investigated [285] include Legandre, Zernike, and pseudo-

Zernike polynomials.

The advantage of moment methods is that they are mathematically concise. The disadvantage

is that it is di�cult to correlate high-order moments to shape features. As with most scalar

transform methods the local information and shape features cannot be detected.

Another transform approach is the Fourier transform of the shape. Similarly to moment

approach it is impossible to 'sense' local shape features and it is also computationally intensive.
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Figure 3.5: The shape matrix concept.

The problem of invariance to translation, scale, and rotation is also present in this approach.

3.5.2 Shape Matrices and Vectors

Shape matrix and vector approaches use a global shape information to create a numerical (matrix

or vector) description of the shape.

Goshtasby [99] used a matrix to represent the pixel values corresponding to a polar raster

of coordinates centered in the shape center of mass. The idea is illustrated in Figure 3.5. A

polar raster of concentric circles and radial lines are positioned in the shape center of mass.

Line OA represents the axis of the polar coordinate system. The binary value of the shape

is sampled at intersections of circles and radial lines. The shape matrix is formed so that the

circles correspond to matrix columns and radial lines correspond to matrix rows. The scheme is
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invariant to translation, rotation, and scaling.

Algorithm 3.1 The shape matrix description method.

1. Let L be the maximum radius of the shape S

2. Create an m� n matrix and call it M

3. For i = 0 to n� 1

(a) For j = 0 to m� 1

i. if (iL=(n� 1); 2�j=m) 2 S

then M(i; j) = 1

else M(i; j) = 0

The maximum radius of the shape is equal to the radius of the circle centered in the shape center

of mass which contains the shape.

Example 3.1 The shape matrix for shape shown in Figure 3.5 is given as follows. In this
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example, m = 8 and n = 7.

M =

2
666666666666666666666666666666664

1 1 1 1 1 1 1

1 1 1 1 0 0 0

1 1 1 1 0 0 0

1 1 1 1 1 0 0

1 1 1 1 0 0 0

1 1 1 1 0 0 0

1 1 1 1 0 0 0

1 1 1 1 0 0 0

3
777777777777777777777777777777775

(3.34)

2

In the method used by Taza and Suen [284], shapes were described by means of shape ma-

trices and a comparison of matrices was performed to classify unknown shapes into a one of the

known classes. A scheme for the weighting of matrix entries was developed for more objective

comparison. The weighting was based on the fact that sampling density is not constant with

the polar sampling raster. Without weighting the innermost shape samples are implicitly given

much more importance then peripheral shape pixels since sampling density is much higher in the

center of the shape.

Parui, Sarma, and Majumder [203] proposed a shape description scheme based on the relative

areas of the shape contained in concentric rings located in the shape center of mass. Let L be

the maximum radius of the shape S to be described. Let Tk be the k-th ring of n concentric rings
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obtained by sectioning the maximum radius L into n equal segments. Note that S � [n
i=1Ti. Let

xi =
A(S \ Ti)
A(Ti)

(3.35)

where A(:) is the function that returns the area of its argument. In other words xi is the area of

shape S contained in ring Ti relative to the area of the ring itself. The shape descriptor vector is

formed as x = [x1 : : : xn]
T . The authors demonstrated that the shape vector scheme can be used

for shape matching.

3.5.3 Morphological Methods

A number of approaches to shape description based on mathematical morphology have been

investigated. In this section, shape description methods based on the area of morphologically

processed images are presented.

Maragos [170, 173] proposed the concept of pattern spectrum. The pattern spectrum for

continuous images is de�ned by

PSX(r; B) =
�dA(X � rB)

dr

(3.36)

where B is a unit disk structuring element and A(X) denotes the area of the set X. The pattern

spectrum of a set X is obtained by openingX by a disk of variable size. The areas of the resulting

sets were measured. The pattern spectrum is de�ned as the derivative of the area function with

respect to r, the radius of the disk structuring element. The de�nition for discrete images is as
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follows.

PSX(n;B) = A[X � nB �X � (n+ 1)B] for n � 0 (3.37)

PSX(�n;B) = A[X � nB �X � (n� 1)B] for n � 1 (3.38)

Similar expressions are also presented for gray scale morphology.

The pattern spectrum approach is related to a notion of granulometries �rst studied by

Matheron [184] and more recently by Dougherty [60, 59, 63]. Granulometries are a result of a

sieving operation applied to binary images. It is a sieving operation because the structure in the

image is �ltered according to components (or particles) size. Let Ek be a sequence of structuring

elements such that Ek+1 � Ek = Ek+1. Then

S � E1 � S � E2 � � � � (3.39)

The sequence of openings S�Ek is called a granulometry. Let A(k) = Area(S�Ek) be a sequence

of areas of successive openings. The decreasing function A(k) is called a size distribution. Note

that the negative derivative (or di�erence in discrete case) of the area sequence is equal to the

Maragos' pattern spectrum.

Shih and Pu [275] proposed another "spectrum" transformation which is called G-spectrum.

It is an extension of the work of Goutsias and Schonfeld (see Section 3.6.2). G-spectrum is

de�ned by

Gn(X) =
Card(X 	 An)� Card( n[(X 	 An+1)])

Card(X)
(3.40)
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The authors proved that their representation is less redundant then granulometric size distribu-

tions or pattern spectrum.

Another set of techniques were derived from the concept of morphological covariance [262].

Loui et al. [163] used the geometrical correlation function (GCF) for representation of two-

dimensional shapes. Let X � R
n be a compact set and B�

h
be a structuring element consisting

of two points at a distance h at an angle � relative to 00. The morphological covariance [262] is

de�ned by

C(h) = Mes [X 	 B�

h
] (3.41)

where Mes is a set measure which returns the area of the binary set. Note that

X 	 B�

h
= X

\
X

�

�h (3.42)

is the intersection of the original set X with its translated version. The translation is done into

the direction �. Some properties of covariance function are

C(0) = Mes [X] (3.43)

C(1) = 0 (3.44)

C(h) = C(�h) (3.45)

C(h) � C(0) (3.46)
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The GCF is de�ned by

K�(h) =
Mes [X 	 B�

h
]

Mes Y
(3.47)

where Y is a prede�ned shape. It is also possible to use Y = X. The authors used GCF for

shape description and matching. The method has rotation and translation invariance. If scale

invariance is desired a preprocessing step of rescaling can be added. The shape descriptor is

either maximum or minimum K� function. The maximum K�max
and minimum K�min

have the

following property.

A[K�max
] � A[K�] 8� 2 [0; �] (3.48)

A[K�min
] � A[K�] 8� 2 [0; �] (3.49)

where A[K�] is computed by

A[K�] =
N�1X
h=0

K�(h) (3.50)

The rotation invariance was achieved through the use of minimum or maximum correlation

functions. The experimental results have shown that the method is useful for shape matching.

Maragos [171, 172] related the mean absolute error criterion for signal matching to a mor-

phological correlation function. The morphological cross-correlation function is de�ned by

�fg(k) =
1X

n=�1

min[f(n+ k); g(n)] (3.51)

where n; k 2 Z
d
; d 2 N and f; g : Zd �! R. �ff (k) is the morphological auto-correlation
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function. The morphological cross-correlation function can be related to the minimum absolute

error matching as follows. Since ja � bj = a + b � 2min(a; b) the minimization of the absolute

error is equivalent to a maximization of min(a; b). If mean error is minimized then the later

term has the form of the morphological cross-correlation de�ned in Equation 3.51. A similar

argument has been used in the past for minimization of the mean square error. In that case

(a� b)2 = a
2 + b

2 � 2ab and minimization of the mean square error leads to a maximization of

conventional linear cross-correlation function between signals.

3.6 Global Space Domain Techniques

Global space domain methods are based on the analysis of the global shape. The resulting shape

descriptor is a non-scalar (e.g. a graph or an image). Most representative methods from this

group are discussed in the following sections.

3.6.1 Medial Axis Transform

The most popular and the most studied global space domain method is the medial axis transform

(MAT) originally proposed by Blum [23, 24]. The idea of these approaches is to represent the

shape using a graph and hope that important shape features are preserved in the graph. On

terminology side, a term the medial axis was originally used by Blum. A skeletal pair consisting

of the skeleton and the "quench" function is used by Calabi [33]. The terms the prairie �re

transform, symmetric axis transform, and skeleton transform have been used in literature to refer

to the same approach. Additional material on the topic can be found in [196, 66, 213, 199, 47].
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This approach is motivated by the study of neural physiology and visual psychology. In

particular, Blum hypothesized that a process of image formation on the retina is a chain reaction

in the following sense. When an object image is formed on the retina a certain number of excited

neurons are �red, lowering the excitation levels of neighboring neurons and causing them to �re a

short interval of time later (inhibition). The process is repeated until the whole area of the object

is "tiled" with �ring neurons. The inhibited neurons cannot �re again for some short time due to

underlying neurophysiological processes [98]. Therefore the wave front of the �ring cells cannot

move back towards the retinal areas containing inhibitory neurons. This mechanism is similar

to the spreading of prairie �re. In fact, the �rst approach Blum used was a temporal function

showing the arc length of wave front versus time. This approach did not show very useful for

shape description purposes. Blum's second concept - a concept of medial axis has proven to be

more useful for shape description purposes.

The purpose of the medial axis transform is to extract the skeletal, stick-like �gure from

the object. This �gure can, hopefully, be used to describe the object shape. The formation

of the skeleton can be explained on the following example. Let object interior be composed of

a burnable dry grass while object exterior be composed of unburnable wet grass. If �re is set

simultaneously at all points of the shape boundary, it will propagate towards the center of the

shape. However, at some positions the wave front from one direction will intersect the �re wave

front coming from another direction. Points of wave front collision are called quench points. The

skeleton of the �gure is de�ned as the set of quench points. More formally, let d(x;B) be the
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Figure 3.6: The medial axis transform.

closest distance from the point x to the boundary B of the shape. It is de�ned as

d(x;B) = inffd(x; y) j y 2 Bg (3.52)

There are some points in the object shape with the following property

for some x 2 B 9 a; b 2 B j d(x;B) = d(x; a) = d(x; b) (3.53)

The union of such points is called the medial axis (or skeleton) S of the shape. An illustration

of this method is shown in Figure 3.6. The quench function of the skeleton is de�ned by

q(x) = d(x;B) (3.54)

The pair (S; q) is called a skeletal pair. The skeletal pair is important because it contains su�cient

information for complete shape reconstruction. The reconstruction process is as follows.
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1. for each x 2 S do

(a) Position a disk of radius q(x) at location x

The union of all disks is equal to the original shape.

The wave front propagation can be computed using the distance transform methods [218, 255]

or using the shrinking operation [196]. Gray scale images have been processed using the min-max

operators [197, 213, 92]. The shrinking and related Boolean-nature local neighborhood operators

have been used intensively in cellular array image processors [68, 237, 233, 249, 250, 234, 86, 236].

The disadvantage of the medial axis transform is that it is very sensitive to noise in the shape

boundary. Even small changes in the shape can cause signi�cant changes in the topology of the

MAT graph. Another di�culty is in the practical realization in discrete spaces [189]. The change

from continuous to discrete space causes some di�culties. For example, the MAT graph of a

connected object may not be connected.

To �ght the problem of noise, Blum and Nagel [25] proposed a generalized medial axis trans-

form, based on the touching circle de�ned as a circle which is tangent to the shape boundary

without intersecting it. The r-symmetric axis of the shape is de�ned as union of all points which

have a touching circle of radius greater then r and has at least two touching points with the

boundary. The requirement that the radius is greater then r prevents little noisy spikes to gen-

erate skeleton segments. The two touching point requirement limits the choice to the skeleton

points only. The generalized skeleton has shown to have the better noise robustness [25]. The

concept of symmetry and symmetric axis was developed further in works of Brooks [32] and

Brady [31].
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The problem of determining the axis of symmetry is related to an inverse problem - a gen-

eration of shapes from their symmetric axis. Object generated in such a way are called ribbons.

The synthesis of ribbon-like object is done by means of the axis and the generator. The gen-

erator shape is a geometric �gure which moves along the axis and changes size as it moves.

In Blum's approach a disk was used as the generator and constructed shapes are called Blum

ribbons. L-ribbons are generated using the line segment. L-ribbons with �xed angle between

the line segment and the axis are called Brooks ribbons [32]. L-ribbons with �xed angle between

the line segment and the side of the ribbon are called Brady ribbons [31]. Rosenfeld [252] and

Ponce [229] did a comparison of various ribbon generating procedures.

In the following text we present several de�nitions of symmetry which have been proposed in

the literature. The symmetry is always de�ned in terms of a condition that has to be satis�ed

for two points to form a symmetry. The line connecting two points is called a line of symmetry.

The middle point is a point in the middle of the line of symmetry. The axis of symmetry is

formed as a union of middle points.

The skew symmetry [135] is a symmetry where lines connecting corresponding (symmetrical)

points are perpendicular to the axis of symmetry. This is a mirror-type symmetry. The notion

of parallel symmetry was proposed by Ulupinar and Nevatia [290]. This symmetry assumes that

there is a continuous monotonic mapping between parameters in parametric representation of

symmetric curves so that tangent angles of both curves are the same. Let ci(p) = (xi(p); yi(p))

where i = 1; 2 be the parametric curve equations and �i(p) be the tangent angle equation. For

c1 and c2 to be parallel symmetric there must exist a function f(p) such that c1(p) = c2(f(p)).
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Brady [31] developed a notion of smooth local symmetry. Here, two points form a local symmetry

if the angles between the curve normals at two given points and the line connecting the points

are the same.

A hierarchical (multiresolution) approach to the skeleton analysis was presented by Pizer,

Oliver, and Bloomberg [228]. In his approach, a hierarchy by scale was used to construct a series

of skeletons. The multiscale approach has been demonstrated to improve the noise properties of

the representation [228].

Rom and Medioni [246] proposed a hierarchical representation of shape using axial shape

description. This approach combines several paradigms mentioned above. The original shape

was broken into parts at negative curvature minima of the shape boundary [121]. The obtained

parts were represented using smooth local symmetry ribbons. To capture the global relationship

between parts the parallel was used. Typically, the procedure to determine the axes is compu-

tationally expensive and produces many unwanted axes. The unwanted axes can be eliminated

using various approaches [42]. In the �nal stage, a recursive procedure was performed for shape

decomposition. In each step of the recursive procedure the axial representation of the shape was

made and its smallest parts removed. The shape was then recreated and the procedure repeated.

The series of produced shapes represent the decomposition. In [256] B-splines were used to �nd a

boundary approximation from the edge map. The procedures for computation of skew, parallel,

and smooth local symmetries were presented for B-spline approximated boundary.

Leymarie and Levine [151] developed a new method for extraction of symmetry axis which

does not su�er of discretization problems as many other algorithms do. The method was based
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on the use of snakes for active contour representation, high curvature points on the boundary,

and symmetric axis transform. The result was a dynamic multi-scale skeleton representation.

Axes of symmetry were primarily extracted from binary images but Gauch and Pizer [85]

proposed a method for extraction of the intensity axis of symmetry from gray scale images. The

method was applied to a shape-based image segmentation where it was possible to identify parts

of the object corresponding to di�erent components of the intensity axis of symmetry.

Maragos and Schafer [174] used mathematical morphology to extract skeleton subsets for

e�cient coding of binary images. Lantuejoul showed [262] that, for subsets of R2, the skeleton

could be computed by

SK(X) =
[
r>0

[(X 	 rB)� (X 	 rB) � drB] (3.55)

where rB is the open disk of radius r and drB denotes a closed disk of in�nitesimally small

radius dr. Serra [262] showed that, for discrete binary images sampled on a hexagonal grid, the

skeleton could be computed by

Sn(X) = (X 	 nB)� (X 	 nb) �B (3.56)

SK(X) =
N[
n=0

Sn(X) (3.57)

where B is a unit disk consisting of seven pixels in hexagonal grid. The morphological skeleton
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transformation has an exact inverse given by

X =
N[
n=0

[Sn(X)� nB] (3.58)

This transform pair was the basis for binary image decomposition. The skeleton subsets Sn were

encoded using block and run-length coding methods [130]. The coding was e�cient because

skeleton subsets are thin binary images.

3.6.2 Shape Decomposition

In shape decomposition techniques a shape is represented as a combination of component shapes.

The idea is to represent a complex shapes in terms of simple components. Pavlidis stated the

problem of global shape analysis (decomposition) as follows.

Among the boundary points �nd sets of points which are closely related. Such sets

may be used to assign labels to corresponding parts of the object [207].

In this approach, shape decomposition is based on the properties of boundary points. Several

authors have used this approach for shape decomposition. Decomposition criteria can be de�ned

in terms of the medial-axis transform, can require convex components, or visibility of boundary

points. In the medial axis transform approach two boundary points are labeled related if they are

both on the circle which is contained in the object shape. A decomposition criteria can be for-

mulated to require that the line segment between two points on the boundary is contained in the

shape that is described. This kind of criteria leads to decomposition in the convex components.
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Boundary point clustering [266, 265] is a probabilistic method which requires that decomposition

is done so that each point in the boundary is visible by most other points. Decomposition on

the basis of k-nearest neighbors [22] related atoms corresponding to approximating polygon sides

instead of boundary points. In stroke detector approaches points are related if they are close

to each other across the boundary. Semantic considerations about shapes being described were

taken into account in the method for shape decomposition by collinearity [138]. The method

was based on heuristics based on human concepts of collinearity. Experiments veri�ed the ef-

fectiveness of approach. Vanderheydt et al. [291] used fuzzy subset theory [310, 311] to direct

decomposition based on convex and concave boundary points and polygonal approximation of

the boundary. The method was applied to the problem of the chromosome shape analysis.

Pitas et al. [223, 220, 225, 222, 226] developed a morphological method for shape decomposi-

tion. This is an alternative for skeleton subset decomposition from given in Equation 3.57. Let

B be a disk structuring element. Then the morphological decomposition proposed by Pitas et

al. is given by the following recursive expression.

Xi = (X �X 0
i�1) � riB (3.59)

X
0
i

=
i[

j=1

Xj (3.60)

X
0
0 = ; (3.61)
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where ri is the radius of the structuring element at level i. The object can be reconstructed using

the following expression.

X =
k[
i=1

Xi (3.62)

k is the number of components Xi 6= ;. Sets Xi are simple objects of the form Xi = Li � riB

where Li is a point or a line. If B has a circular shape then Xi are called Blum ribbons (see

Section 3.6.1). Hence, this decomposition technique breaks the shape into "simple" components

which are Blum ribbons. This is an advantage since one of desired properties of a decomposition

scheme is that the resulting components are intuitively simple.

Schonfeld and Goutsias [259, 260, 100] proposed another scheme for morphological shape

decomposition. Let Bn, n = 0; : : : ; N � 1 be a sequence of structuring elements such that

(0; 0) 2 Bn and Bn 6= f(0; 0)g 8n. Let  n, n = 0; : : : ; N � 1 be a sequence of set transformations

such that

X 	 An+1 �  n[X 	 An+1] � X 	 An (3.63)

A morphological representation is given by

Rn(X) = X 	 An �  n[X 	 An+1] (3.64)

where

A0 = f(0; 0)g (3.65)

An+1 = An �Bn (3.66)
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and

N = max
n
fn j X 	 An 6= ;g (3.67)

The original set X can be reconstructed using

X =
N[
n=0

(Rn(X)� An) (3.68)

A simple example for set transformation  is  (X) = X. In that case Equation 3.64 becomes

Rn(X) = X 	 An �X 	 An+1 (3.69)

The obtained decomposition is called a generalized morphological segmentation. Another choice

for transformation  is  (X) = (X�Bn)�An. This decomposition is called a generalized reduced

morphological skeleton. The authors prove that the later decomposition is the "optimal" in the

class of invertible morphological decompositions. It is optimal in the sense of minimizing the

probability of error in reconstruction in the presence of noise.

3.7 Shape Matching

Shape matching is a procedure for classifying an unknown shape to one of prede�ned classes. Its

name comes from the fact that an unknown shape is matched to a number of known shape can-

didates (class representatives). The shape matching procedure is a basis for object recognition.

This section presents several representative approaches to shape matching.
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3.7.1 Minimum Distance Classi�er

The most popular way of matching shapes described by their "feature" vectors is using various

distance measures. A feature vector (also called a shape descriptor) consisting of n shape features

is a vector x 2 Rn. The problem of shape classi�cation is a problem of assigning an unknown

vector x to a one of the classes characterized by shape descriptors xi where i = 1; : : : ; m. The

problem is solved by measuring a distance di =k x� xi k for i = 1; : : : ; m and selecting the class

using the minimal distance criteria. In other words, the unknown shape is classi�ed to a class k

such that dk � di 8i = 1; : : : ; m.

Mathematically speaking, a distance is a function d : Rn � R
n ! R having the following

properties.

1. d(x; y) � 0 and d(x; y) = 0() x = y

2. d(x; y) = d(y; x) (symmetry)

3. d(x; y) � d(x; z) + d(z; y) (triangle inequality)

where x; y; z 2 R
n. There are several distance functions used in practise. Euclidean distance

describes the conventional distance that is used in everyday life. It has the advantage of rep-

resenting conventional distance but is computationally expensive to compute. For that reason,

other distance measures like city-block, chessboard, octagonal, or chamfer are often used in

practise [28, 29].
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3.7.2 Distance Transforms

A distance transform is a transform of a binary image which shows the distance of each pixel

to the object in the image. Distance transforms can be computed using sequential or parallel

algorithms [29].

The parallel algorithm is given by

v
m(i; j) = min (k; l) 2 F (vm�1(i+ k; j + l) + c(k; l)) (3.70)

where vm(i; j) is the pixel value at step m and F is the region of support of a mask c(k; l) of the

size M �M . The initial image v0(i; j) if size N �N is created from the binary image as follows

v
0(i; j) =

8>>><
>>>:

0 for pixels inside the shape

1 for pixels outside the shape

(3.71)

The mask depends on the distance computed. The procedure is repeated until no pixel value

changes in the distance image.

The sequential algorithm parses the image in two steps with two di�erent masks.

1. for i = M+1
2
; : : : ; N do

(a) for j = M+1
2
; : : : ; N do

i. vm(i; j) = min(k;l)2F (v
m�1(i+ k; j + l) + c(k; l))

2. for i = N � M+1
2
; : : : ; 1 do
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Figure 3.7: A parallel, forward, and backward distance transform masks.

(a) for j = N � M+1
2
; : : : ; 1 do

i. vm(i; j) = min(k;l)2B(v
m�1(i+ k; j + l) + c(k; l))

where F and B are the regions of support of the forward and the backward masks, respectively.

An example of a forward and a backward masks of size 5� 5 is shown in Figure 3.7. The center

pixel is marked with 0.

Shih and Mitchell [273] developed a morphological distance transform. They used the gray

scale morphological erosion which is de�ned in Equation 2.46. It has a very similar structure to

Equation 3.70 and that is why it is appropriate for distance transform computation. Gray scale

structuring elements of the form shown in Figure 3.8 were used for the computation of Euclidean

distance, city-block distance, and chessboard distance transforms [273]. It is very important that

the structuring element size (region of support) is larger then any object in the binary image.

This introduces a di�culty because morphological operations with large structuring elements are
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Figure 3.8: Gray scale structuring elements for distance transform.

not e�cient and most hardware implementations of morphological operations can deal with �xed

(small) size structuring elements. The authors performed a decomposition of large structuring

elements into smaller ones [315, 269, 271, 272, 276]. The size of small structuring elements was

3� 3. The city-block distance is given by d4(x; y) = jx1 � x2j+ jy1 � y2j and the corresponding

structuring element is given by k(x; y) = �(jxj + jyj). An example city-block distance mask of

the size 5� 5 is shown bellow.

k5 =

2
6666666666666666664

�4 �3 �2 �3 �4

�3 �2 �1 �2 �3

�2 �1 0 �1 �2

�3 �2 �1 �2 �3

�4 �3 �2 �3 �4

3
7777777777777777775

(3.72)
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This (and any larger size city-block) mask can be decomposed in the following way.

k5 = k3 � k3 (3.73)

and in general for any larger size structuring element

k2n+1 =

n timesz }| {
k3 � � � � � k3 (3.74)

where

k3 =

2
666666664

�2 �1 �2

�1 0 �1

�2 �1 �2

3
777777775

(3.75)

is the 3�3 city-block structuring element. Similarly, the chessboard distance structuring element

can be decomposed using the following simple structuring element.

k3 =

2
666666664

�1 �1 �1

�1 0 �1

�1 �1 �1

3
777777775

(3.76)

Further examples of the Chamfer 3-4 and the Chamfer 5-7-11 distance structuring elements can

be found in [273]. For approximation of Euclidean distance, Shih and Mitchell propose a more

complex method since the Euclidean structuring element cannot be decomposed using the above

scheme.
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3.7.3 String Matching

Many boundary space domain shape description methods produce a description of the shape in

the form of the string of symbols denoting elements of the shape boundary. The classi�cation of

shapes (patterns) in the pattern space then reduces to comparison of strings. The comparison of

strings has found applications in many approaches including syntactic methods [84], polygonal

methods [166], and chain code methods. A general overview of string matching techniques can

be found in the book by Sanko� and Kruskal [257] or in the review paper by Kruskal [146].

Strings can be classi�ed into attributed and non-attributed. Attributed strings have some

additional information associated with each element of the string. Additional information is used

to provide more accurate shape description and discrimination. Another classi�cation of strings

is in linear and cyclic strings. Cyclic strings solve the problem of starting point selection in

description of the shape boundary [166]. Shape matching using linear strings is more sensitive

to the choice of starting point.

Non-attributed strings can be compared using the Levenshtein distance. The Levensthein

distance between two strings is de�ned as the minimum number of editing operations (insert,

delete, or change) required to transform one string to the other. The weighted Levensthein

distance assigns some weight (or cost) to each editing operation. For attributed strings a distance

between attribute vectors is combined with the distance between non-attributed part of the string

to produce the total distance [83].

A simple measure of string similarity is presented in [97]. In this method, the number of

di�erences in the string elements is counted and compared to the number of matches. The

102



ratio of the number of matched elements to the ratio of non-matched ones is used as a distance

measure. The problem of starting point selection is solved so that the distance is computed for

each circularly shifted relative position of strings. A good shape discrimination performance has

been demonstrated.

3.7.4 Graph Matching

The model-based approach to recognition is based on the relational model of the object [286,

32, 268, 38]. The relational model describes the relations between the object primitives. The

primitives are simple shape components in terms of which a complex shape is described. The

relational model can be represented by means of a graph. Hence, a graph matching becomes an

important tool for model shape matching.

Wong [304] developed a technique for model matching by subgraph isomorphism. Three-

dimensional objects were represented using attributed graphs. An attributed graph is a "con-

ventional" graph with attributes added to its branches and nodes. The input image was �rst

represented using a two-dimensional line drawing. The characteristic points on the drawing were

vertices and edges. Vertices are a result of intersection of three surfaces while edges are formed

at junction of two surfaces. Several line and junction labeling schemes have been proposed in the

literature [40, 34]. Wong further developed a new labeling scheme having thirteen generalized

junction types. A model graph is a graph showing the structure of a three-dimensional object.

A model graph has the following properties.

1. The total number of nodes is equal to the total number of vertices.
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2. The total number of branches is equal to the total number of edges.

3. Exactly three branches are incident with each node.

4. The total number of nodes is even.

5. The total number of branches is 3m=2 where m is the total number of nodes.

The attributes assigned to each node are the set of allowable junction types and the set of al-

lowable neighbor junction types. A projection graph is a graph showing the structure of the

two-dimensional drawing that is a projection of a three-dimensional object. Projection graphs

are the subgraph isomorphisms of the three-dimensional model graphs. There are several known

algorithms for graph matching presented in the literature [26]. A high complexity of available al-

gorithms is reduced here because junction type constraints were used to eliminate wrong matches.

Two nodes matched if they were in the allowable junction types table of each other. The recursive

matching procedure worked as follows. Nodes in both graphs were enumerated and each node

was matched to other nodes until the match was found. If a mismatch is found the algorithms

backtracks and examines other possibilities.

Among many other applications, neural networks [114, 316, 76, 119] have also been used for

shape matching. Lin et al. [154] used the Hop�eld network [123, 124, 186] to solve the surface and

vertex correspondence problems in three-dimensional object recognition systems. The network

consisted of neurons organized into a two-dimensional array where rows corresponded to the

features of the input shape and columns corresponded to the model shape features. An energy
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function was a sum of three terms.

E = �
X
i

X
k

X
j

X
l

CikjlVikVjl +
X
i

(1�
X
k

Vik)
2 +

X
k

(1�
X
i

Vik)
2 (3.77)

where Cikjl is the coe�cient determining the connection strength between the neuron ik and

the neuron jl. It is positive if the feature i is similar to the feature k and if the feature j is

similar to the feature l, otherwise it is negative. The �rst term in Equation 3.77 represents the

compatibility constraint. The second and third terms are constraints which force that there is

only one active output in each row and column. This is required so that each input feature can

correspond to a one and only one model feature. The authors speci�ed di�erent coe�cients Cikjl

for the problems of surface and vertex matching.

Basak er al. [16] have used a similar Hop�eld network to perform a matching of shapes

represented using the relational model [268, 38]. The relational shape descriptions can be speci�ed

in terms of graphs. The authors formulated an energy function which imposes the following

constraints. The following assumes N �N array of neurons where rows and columns correspond

to candidate and model shape primitive. Each primitive was a relational shape descriptor.

1. Each candidate primitive must correspond to a one model primitive.

2. The total number of matched primitive is equal to N .

3. Two primitives are matched if they have nearly the same number of attributes and similar

attribute values.

4. There exist identical spatial constraints between candidate and model primitives.
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The proposed technique was successfully applied to the problem of character recognition which

has been studied intensively in literature [101].

3.7.5 Medial Axes Matching

Trahanias [288] developed a method for matching of medial axes. In his approach, a medial axis

was represented in terms of its components (Equation 3.57). A skeleton function [SKF (X)](x; y)

was constructed so that to each pixel belonging to the component n a value n+ 1 was assigned.

[SKF (X)](x; y) =

8>>><
>>>:
n+ 1 for (x; y) 2 Sn(X)

0 otherwise

(3.78)

Pixels outside of skeleton were assigned value zero. The skeleton function was used for weighting

of pixel pairs during matching process. The algorithm worked as follows

1. D  0

2. for each pixel (x; y) 2 S1 do

(a) �nd its nearest pixel (x0; y0) 2 S2

(b) compute d = W [(x; y); (x0; y0)]R[(x; y); (x0; y0)]

(c) D  D + d

(d) mark (x0; y0) as visited

3. for each unvisited pixel (x0; y0) 2 S2 do
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(a) �nd its nearest pixel (x; y) 2 S1

(b) compute d = W [(x; y); (x0; y0)]R[(x; y); (x0; y0)]

(c) D  D + d

where W [(x; y); (x0; y0)] is a weighting function de�ned by

W [(x; y); (x0; y0)] = j[SKF (X)](x; y)� [SKF (X)](x0; y0)j+ 1 (3.79)

and R[(x; y); (x0; y0)] is the Euclidean distance between points (x; y) and (x0; y0). The resulting

value D was the distance between two medial axes which was used for shape matching. The

experiments have shown the usability of the method for shape matching.
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Chapter 4

Morphological Signature Transform for

Shape Description

4.1 Introduction

Mathematical morphology has evolved as a useful tool for various image processing tasks [262,

109, 88]. It is suitable for shape-related processing since morphological operations are directly re-

lated to the object shape. Here, a novel approach for shape representation, based on the multires-

olution morphological processing, is presented. The proposed method uses multiple structuring

elements to obtain the successively eroded versions of input images as a result of multiresolution

multiple structuring element morphological operations. The areas of the successively eroded

images are then used for shape representation.

The proposed shape representation method is applied to the problem of shape matching which
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evolves in many object recognition applications. Here, an unknown object must be matched to

a set of known objects in order to classify it into one of �nite number of possible classes. In

practical applications, the unknown object may be corrupted by noise. Results of the proposed

shape matching method in the presence of noise are included in this work.

Shapiro et al. [267] used residual approach to shape matching, but the algorithm they used

was restricted to one resolution, with a single structuring element shape (disk). In their method

the residual image centroid, area, and ratio of minor to major axis of the best �tting ellipse,

were used to represent the shape. The method proposed in this work represents the image by its

area only, and uses several structuring elements and successive morphological erosions to achieve

better accuracy.

One of the basic underlying ideas of this work is the 'divide and conquer' principle applied to

shape properties. Shape description methods [99, 284, 312, 217, 73, 309, 200, 136, 137, 8, 296]

often attempt to directly extract shape properties from a complex shape. The drawback of such

approaches is that the extraction of complex shape properties may not be e�cient. The approach

taken in this work is to transform the initial (single) complex object to a set of (multiple) objects

having simple shape properties. These shape properties from multiple transformed images are

then extracted in order to obtain the shape descriptors. The advantage of such an approach

is that it extracts simple shape properties from complex objects. Transformed images enable

simpler shape descriptors to accurately describe the given initial shape. The proposed approach

is called the Morphological Signature Transform and is described below.

109



4.2 Morphological Signature Transform

In this section, the morphological signature transform (MST) is presented. The binary MST and

a generalization to the gray scale MST are treated in separate subsections.

4.2.1 Binary MST

The shape representation method described in this work is based on the decomposition of a

complex shape to multiple simple signature shapes. Here, the simple shape is described as a

shape which can be accurately represented by a shape property that can be computed through

simple morphological processing. The idea of this approach is to process decomposed, multiple

shapes instead of processing the original shape. The decomposed shapes are called the signa-

ture shapes because they contain the information about the original shape which is extracted

through a property decomposition process. In this section we introduce a general shape property

decomposition process called the Morphological Signature Transform (MST).

A de�nition of the Morphological Signature Transform [157, 159] is given bellow.

For generality, letW be a set which contains shapes to be described. Some common examples

for W are: W = R
2 (planar shapes) or W = R

3 (three-dimensional shapes), where R denotes

the set of real numbers. The multiplication of a set by a real number is de�ned as

De�nition 4.1 Multiplication of a set by a real number.

rX =
[
x2X

frxg (4.1)
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where r 2 R, and X � W . 2

Another notation that we use in this work is de�ned as follows.

De�nition 4.2 A short notation S
n
.

S
n =

n timesz }| {
S � S � � � � � S (4.2)

where there are n summands in the Minkowski addition on the right side of the equation. 2

Note that generally Sn 6= nS, but in the special case when S is a convex set it holds that Sn = nS.

The binary MST is de�ned as follows.

De�nition 4.3 The MST of shape X with respect to a (not necessarily convex) structuring

element S is de�ned as:

XS(r; n) =M(rX; Sn) (4.3)

where r 2 R, and n 2 N . M is a binary morphological operator, i.e. M : P �P ! P, where P

is the set of all subsets (i.e. the partitive set) of W . 2

In other words M takes two sets from P as arguments and produces a third set as result.

Some common examples for binary operator M are morphological erosion, dilation, opening,

and closing.

To compute the MST a morphological operator M must be selected. The morphological

erosion has been used in this work. For a given set X, and structuring element S a family

of sets XS(r; n) is generated by varying the parameters r and n. The parameter r is a scale
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parameter. The parameter n plays the role in changing the size and the shape of the structuring

element S. Note that in the case of convex structuring elements the parameter n determines the

structuring element size, while in the case of non-convex structuring elements it changes both

size and shape. For �xed scale r the sequence of images XS(r; 0); XS(r; 1); : : : represents the

image shape signature with respect to the structuring element S, at some particular image shape

scale r. Generated shapes XS(r; n) are called the signature shapes of X with respect to S.

Signature shapes XS(r; n) can be used to characterize the original shape X.

4.2.2 Gray Scale MST

In this section, a generalization of the binary MST de�ned in Section 4.2.1 to a gray scale MST

is presented. The generalization is straight forward by substitution of binary morphological

operators with their gray scale versions.

In the following text we de�ne several notions which are needed for development of the

grayscale MST.

The familiar notion of convexity for real functions is de�ned as follows.

De�nition 4.4 A real function f : Rn �! R is convex if the following condition holds.

1

2
[f(a) + f(b)] � f(

a+ b

2
) 8a; b 2 Rn (4.4)

2

The multiplication of a real function by a real number is de�ned as follows.
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De�nition 4.5 The multiplication of a real function f by a real number r.

(rf)(x) =

8>>><
>>>:
rf(1

r
x) r 6= 0

0 r = 0

(4.5)

where r 2 R, and f : Rn �! R. 2

Note that this de�nition of multiplication includes scaling of the region of support in addition

to the scaling of function values. The resulting function is an enlarged (or a reduced) version of

the original function. Another short notation that is used here is de�ned bellow.

De�nition 4.6 A short notation f
n
.

f
n =

n timesz }| {
f � f � � � � � f (4.6)

where there are n summands in the gray scale Minkowski addition (�) on the right side of the

equation. 2

Note that generally fn 6= nf , but in the special case when f is a convex function it holds that

f
n = nf .

The MST of a real function (the gray scale MST) is de�ned as follows.

De�nition 4.7 The MST of a real function f with respect to a (not necessarily convex) real

structuring function g is de�ned as:

MST (r; n) =M(rf; gn) (4.7)
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where f; g : Rn �! R, r 2 R, n 2 N , andM is a gray scale morphological operator. 2

In other words, M takes two real functions as arguments and produces a third real function

as result. Some common examples for gray scale morphological operator M are gray scale

morphological erosion, dilation, opening, and closing.

For a given function f and a structuring function g a family of functions MST (r; n) is

generated by varying the parameters r and n. The parameter r is a scale parameter. The

parameter n plays the role in changing the scale and the shape of the structuring function g.

Note that in the case of convex structuring functions the parameter n determines the structuring

function size, while in the case of non-convex structuring functions it changes both size and

shape. For �xed scale r the sequence of images MST (r; 0);MST (r; 1); : : : represents the image

signature with respect to the structuring function g, at some particular image scale r. Generated

images MST (r; n) are called the signature images of f with respect to g.

4.2.3 Example

An example of the morphological signature transform is presented in this section. A binary image

and a structuring element are shown in Figure 4.1. The MST of the given binary image with

respect to the given structuring element is shown in Figure 4.2. For simplicity, only the MST for

the original resolution (MST (1; n)) is computed in this example. The shrinking pattern of the

MST image sequence depends on the shape of the original image and on the structuring element.
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�g/mst/img

�g/mst/kern

Figure 4.1: A binary image (256� 256), a structuring element (8� 8).

.

�g/mst/img.1 �g/mst/img.2 �g/mst/img.3 �g/mst/img.4

�g/mst/img.5 �g/mst/img.6 �g/mst/img.7 �g/mst/img.8

�g/mst/img.9 �g/mst/img.10 �g/mst/img.11 �g/mst/img.12

�g/mst/img.13 �g/mst/img.14 �g/mst/img.15 �g/mst/img.16

Figure 4.2: Morphological signature transform sequence.
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4.3 MST Shape Description Method

A shape representation method must exhibit three properties:

� translation invariance

� size invariance

� invariance to object rotation

The MST representation method has all three of the above mentioned properties. The method

uses Equation 4.3 to obtain the signature shapes from the original shape. The family of image

shape signatures obtained in such a way are then used for further shape processing instead of

the original image. In the case of shape description the signature images are used for extraction

of shape properties.

Another important feature of the MST approach to shape description is that since multiple

signatures are available it is possible to use a simple shape property to describe the signatures.

In such a way, a problem of extracting complex shape properties from a single object is replaced

with a simpler problem of extracting a simple shape property (e.g. shape area) from derived

multiple signature shapes.

The input binary image is represented by means of multiresolution pyramid with reduction in

resolution by a factor of two across the pyramid levels. The multiresolution approach has been

proven to be an e�cient one for many image processing algorithms [251]. The image pyramid

of the quadtree form is used in this work. This means that the image resolution changes by a

factor of two across the pyramid levels. In this case, the input image scale factor r from the
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Equation 4.3 has the form r = 2�n, where n denotes the pyramid level. The original image

pyramid level has the index n = 0.

4.3.1 Erosion and Area Based MST Shape Description

A shape property that is used to describe signature shapes in this work is the area. It is both

simple and easy to compute - for binary images it is just a count of pixels with values equal to

one. The signature shapes are created by means of the MST based on the morphological erosion.

In that case, the signature shape Equation 4.3 becomes

Z(r; n) = E(rX; Sn) (4.8)

and the area A(Z(r; n)) of the signature image Z(r; n) is computed for some r 2 R and n 2 N .

In addition, multiple rotated versions of the structuring element S are used in Equation 4.8, as

explained below, to ensure additional shape information as well as the rotation invariance of the

method.

In other words, the image (at some scale r) is successively morphologically eroded by a struc-

turing element S. The areas of the successively eroded images are used to represent a shape. The

same procedure is performed using the input image at di�erent resolutions of the multiresolution

pyramid. It is also possible to use multiple structuring elements to generate a families of sig-

nature shapes, i.e. to extract di�erent shape properties according to used structuring elements.

Following such a procedure a set of numbers is obtained which is used to represent the image.
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Note that in the special case of a convex structuring element S we have Sn = nS and therefore

Z(r; n) = E(rX; Sn) = E(rX; nS) = rE(X; n
r

S) = rZ(1;
n

r

) (4.9)

If the shape area A(Z(r; n)) is used to describe signature shapes Z(r; n) we have from Equation 4.9

that

A(Z(r; n)) = A(rZ(1;
n

r

)) = r
2
A(Z(1;

n

r

)) (4.10)

and we see from Equation 4.10 that for convex structuring elements it is su�cient to look at

signature images of the form

Z(1; p) = E(X; pS) (4.11)

In other words, with convex structuring elements there is no need of input image scaling, only

structuring element scaling is necessary to produce the signature images. This is because the im-

age scaling can be translated into a scaling of the structuring element and as Equation 4.10 shows

it is su�cient to scale only a convex structuring element. However, in case of non-convex struc-

turing elements, the scaling of the structuring element only does not provide all the information.

The image scaling can, by no means, be translated into a non-convex structuring element scaling

and therefore it is necessary to change the image scale, in addition to a structuring element

scaling.

The method proposed in this work uses multiple (signature) images to obtain the shape

descriptor. The increased dimensionality (the increased amount of the data) allows the use of

a simple shape descriptor such as the area to represent an image, as opposed to the approach
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taken by Shapiro, et al. in [267] where more complex shape descriptor (a combination of centroid,

area, and ratio of minor to major axis length of the best �tting ellipse) has been computed. The

additional information, obtained in such a way was found to be su�cient to enable accurate and

robust shape representation.

No systematic way or criteria for the choice of a structuring element has been proposed in

literature yet. In this work we use non-convex structuring elements which were created to 'sense'

both detailed and coarse structure of the image. The rationale behind the use of unconven-

tional (non-convex and non-symmetrical) structuring elements and multiresolution approach is

described bellow.

According to Equation 4.10 multiple (successive) erosions computed at single image-resolution

are equivalent to single erosions computed at multiple resolutions if convex structuring elements

(e.g. disk) are used. In that case there is no need for the use of both multiresolution approach

and successive erosions because it is su�cient to look at single resolution only. In other words,

multiresolution and successive erosions are redundant in case of convex structuring elements.

In case of non-convex structuring elements multiple resolutions and successive erosions provide

additional information about the object shape. The method proposed here takes advantage of

multiple resolutions and successive erosions simultaneously and it is able to do so due to the

use of non-convex structuring elements. Another important feature is that this method uses

multiple structuring elements in order to achieve both rotational invariance and better accuracy.

Rotational invariance is achieved through rotation of one �xed structuring element. From the

morphological processing viewpoint these rotated structuring elements are di�erent and therefore
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provide additional shape information when used for successive erosions.

The structuring elements used in this work are created "empirically" to detect both detailed

and coarse structure of the object. This is achieved through the use of structuring elements

which have sharp (elongated) structure on one side and at (disk-like) structure on the other

side (see Figure 4.5). Through rotation of such a structuring element the complete structure of

the object can be analyzed to extract more shape information compared to that obtained using

a disk structuring element. Since the disk structuring element is rotationally symmetric, rotated

versions of it do not provide any additional information.

The inherent property of the basic morphological operations is that they are not invariant to

rotation, unless the structuring element is rotationally symmetric by itself. Therefore, a 'direct'

use of basic morphological operations together with non-symmetric structuring elements would

not satisfy the shape description method property of invariance to rotation listed above. The

method that we describe in this work solves this di�culty by using rotated versions of non-

symmetric structuring elements, as described below. Such an approach has a double advantage:

� It solves the problem of rotational invariance.

� It provides di�erent structuring elements which enable the extraction of di�erent shape

properties (i.e. generation of signature images).

The structuring element must have a 3600 period of rotational symmetry (i.e. it takes a

rotation by 3600 to put the structuring element in the same position again). Such a requirement

comes from the nature of the method that we further describe here. The proposed method

could also utilize structuring elements with some other period (e.g. 1800; 1200; : : :) of rotational
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symmetry, although the 3600 case provides the maximum amount of information, given some

�xed rotational resolution.

In the rest of the work a rotational symmetry of 3600 is assumed. From the initially chosen

structuring element we derive a set of N structuring elements by rotating the initial one by the

angle �

� = i

360

N

; i = 1; : : : ; N � 1

In such a way, we are able to achieve rotational invariance of the method. The basic steps of the

algorithm are as follows:

Algorithm 4.1 MST algorithm for shape description.

1. The input binary image is linearly scaled in both dimensions in such a way that the shape

area is equal to some constant value. This step assures size invariance of the method.

2. The multiresolution pyramid is created by subsampling by a factor of two from the normal-

ized version of the original image obtained in previous step.

3. The rotated versions of the structuring element are created from the original one.

4. For each multiresolution pyramid level do

(a) For each rotated version of the structuring element do

i. Compute successive erosions of the input image by a given structuring element

and at a given pyramid level and store the areas of the successively eroded images

in a vector.
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(b) Circularly shift the vectors (to achieve rotation invariance) so that the largest one

comes to zero-th position.

(c) Take one or more vectors from the shifted set as a representative for this particular

pyramid level.

5. Take the vector(s) resulting from each pyramid level and store them in one �nal shape

descriptor vector.

6. To achieve more realistic distance measure vectors from di�erent pyramid levels may be

weighted, yielding the �nal morphological shape descriptor vector.

The vector obtained in the �nal step of the algorithm is the �nal result of the algorithm and

is used as a morphological shape descriptor. As described above, such a shape descriptor has all

the desired invariance properties - invariance to rotation, size, and translation.

4.4 MST Shape Descriptor Algorithm Implementation

In this section a more detailed description of the practical implementation of the morphological

shape description algorithm is presented.

In practical implementation, the images, instead of structuring elements, are rotated for

better accuracy. Structuring elements are typically of small size (16 by 16 is used in this work).

Rotating an image of such a small size by a small angle typically gives an inaccurate result.

This restricts the maximum number of rotated versions of the structuring elements, limiting the

accuracy of the method. To overcome this practical di�culty, the images are rotated instead of
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the structuring elements. Input images typically have larger dimensions and the error that is

introduced by rotation operation and discrete nature of an image will be reduced.

The more detailed description of the algorithm is shown bellow. Multiple structuring elements

simply mean the repetition of this identical procedure for each of the structuring elements.

Algorithm 4.2 A more detailed MST shape description algorithm

1. Choose the initial structuring element, call it S.

2. Read the input binary image, call it X. The object of interest in the image has the pixel

value of one, while the background has the pixel value of zero.

3. Scale the input binary image X by a linear factor f, f =
q

F

KA(X)
where F is the total frame

area, K is the scaling security factor, and A(X) is the input binary image area. Call the

scaled image Y
0
0 , where the subscript denotes the rotated version of the scaled input image

while the superscript denotes the pyramid level.

4. For i=0 to N-1 do (The index i denotes rotated versions of the scaled input image.)

(a) Generate i-th rotated version of the scaled input image Y
0
i
by rotating Y

0
0 by the angle

of
3600

N
i.

(b) A
0
i
(n) A(E(Y 0

i
; S

n)), where n = 1; : : : ; L (Compute the areas of successive erosions

for 0-th pyramid level. The constant L is the number of successive erosions computed.)

(c) Find the index p of the last non-zero element of the successive area sequence A
0
i
(n).

(That is, �nd p such that A
0
i
(p) 6= 0 while A

0
i
(p+ 1) = 0.)
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(d) A
0
i
(n)  A

0
i
(n)wp(n), where n = 1; : : : ; L (Weight the areas sequence with respect to

a successive areas index n. Note that the weighting function wp(n) depends on the

parameter p.)

(e) a0  [A0
1A

0
2 : : : A

0
L
]T , where the superscript T

denotes the vector transposition. (Form

a vector a0 2 RL
from L successive areas computed for 0-th pyramid level.)

(f) For j=1 to R-1 do (The index j denotes pyramid levels.)

i. Produce j-th level of the multiresolution pyramid for the i-th rotated image Y
j

i by

shrinking (subsampling) the image in the previous pyramid level Y
j�1
i by a factor

of two.

ii. A
j

i (n) A(E(Y j

i ; S
n)), where n = 1; : : : ; L. (Compute L successive erosions.)

iii. Find the index p of the last non-zero element of the successive area sequence A
j

i (n).

iv. A
j

i (n) A

j

i (n)wp(n), where n = 1; : : : ; L (Weight the areas sequence with respect

to a successive areas index n.)

v. A
j

i (n)  4jAj

i (n), where n = 1; : : : ; L (Weight the image areas with respect to a

pyramid level index j.)

vi. aj  [Aj

1A
j

2 : : : A
j

L
]T , where the superscript

T
denotes the vector transposition.

(Form a vector aj 2 RL
from L successive areas computed for j-th pyramid level.)

(g) b
T

i
= [aT0 a

T

1 : : : a
T

R�1]
T
, where the superscript

T
denotes the vector transposition. (Form

a vector bi 2 RRL
from R vectors aj computed for pyramid levels of the i-th rotated

image.

124



5. Find the largest descriptor vector, call it bg, with respect to Euclidean vector norm. That

is, jbgj � jbij, where 0 � i < N .

6. ci  b(i+g)modN , where 0 � i < N . (Form a new vector sequence ci so that the largest

vector, bg, with respect to Euclidean norm, is in the 0-th position.)

7. dX  [cT0 c
T

1 : : : c
T

N�1]
T
. (Form the �nal morphological shape descriptor dX 2 RNRL

of the

shape X by concatenating N descriptor vectors for each rotated position of the image.)

The �nal result of the above algorithm is a vector dX , which we call the morphological shape

descriptor of shape X with respect to a structuring element S. In case of multiple di�erent

structuring elements the above algorithm is simply repeated once for each structuring element

and the corresponding partial shape descriptor vectors d are concatenated into a one large vector.

In such a way it is possible to utilize various structuring elements to extract various shape features

and to combine results into one unique morphological shape descriptor.

The scaling security factor K is introduced in Step 3 of the algorithm shown above in order

to prevent image scaling out of frame limits. Note that the area of the object contained in image

will after scaling be equal to F

K
, where F is the total frame area.

The multiresolution pyramid (quadtree) is constructed by subsampling as follows. Let Y n(i; j)

denote the image at the pyramid level n, where i and j are integer pixel coordinates. The binary

image at the next pyramid level is then constructed by subsampling the image from the previous

level as Y n+1(i; j) = Y
n(2i; 2j). It is known from literature [251] that the subsampling process

may introduce spectrum-aliasing related problems in subsampled images. Some approaches use

(possibly weighted) four pixel average to get the resulting pixel in the lower resolution pyramid
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level, what can be viewed as a kind of anti-aliasing low-pass �ltering. The low-pass nature of

binary images used in the experiment presented here did not require any more elaborate anti-

aliasing method. Instead, a simple subsampling by a factor of two was successfully used with no

aliasing problems.

A special attention is paid to the last non-zero entry in the decreasing sequence of successive

image areas. This entry varies randomly and is not used for shape description purposes. It is

replaced by zero in each sequence of successive areas.

Two kinds of sequence weighting are performed in the above algorithm. The successive area

sequence is weighted for some particular pyramid level and rotation position. This weighting

is done to put more emphasize to higher-index elements of the decreasing successive area se-

quence [55]. The sequence elements decrease to zero approximately as

a(n) = a(0)(1� n

p

)2; n = 1; : : : ; p (4.12)

where p is the index of the last non-zero element in the sequence, and a(0) is the area of the

original image. The previous formula is derived for the case of circular image and disk-shaped

structuring element but can be used as a rule-of-thumb approximation in the cases of other

shapes. The formula shows that the �rst few areas in the sequence will make the highest inuence

since higher-order elements decrease to zero. To avoid this e�ect an emphasizing is performed
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by weighting the sequence by the empirically derived formula

wp(n) =

8>>><
>>>:

1=(1� n

c(p�d)
) 1 � n < p

0 p � n � L

(4.13)

where c and d are real constants. The values of c = 1:5 and d = 1 were used in this experiment.

The linear nature of the Equation 4.13 cannot completely cancel the quadratic behavior of the

Equation 4.12 but does a good trade-o� between enlarging elements in the middle of the sequence

and keeping higher-order elements value low. Most shape information is contained in the middle

of the area sequence due to a nature of the method described here. This is because images are

pre-scaled to bring them to a constant area and therefore low-order index elements are relatively

similar. On the other side high-order index elements and especially the last non-zero element of

the decreasing area sequence contain less shape information and should not have strong inuence.

The use of weighting expression in Equation 4.13 enhances exactly the middle and most important

range of the sequence.

The pyramid level weighting is done with respect to pyramid level. Since area decreases

quadratically as resolution decreases by a factor of two this weighting is performed by multiplying

all areas in pyramid level j by 4j; j = 1; : : : ; R � 1, where R is the total number of pyramid

levels. In such a way, the contribution of each level of the multiresolution pyramid to the shape

descriptor vector is roughly equal.

Steps 5 and 6 of the algorithm are necessary to ensure the rotational invariance of the method.

The Euclidean vector norm is used to �nd the largest vector and then the sequence of signatures

127



is circularly shifted so that the largest vectors comes to zeroth position.

One possible optimization of required disk storage and execution time includes generation of

the rotated versions of image from zero to ninety degrees only instead of the full 3600 range. In

other words, a set of N

4
rotated versions of the scaled input image is generated by rotating Y 0

0

by the angle of 3600

N
i; i = 0; :::; N

4
� 1. Missing rotations are then obtained indirectly by rotating

structuring element S by the angles of 90, 180, and 270 degrees. A rotation by a multiple of 90

degrees is performed without any error in spite of small resolution of the structuring element.

Such an approach results in less disk space requirement and smaller execution time.

4.5 Shape Matching

In this section we present the shape matching procedure based on the minimum distance classi�er

(see 3.7). Using the MST shape descriptor algorithm we obtain the vector corresponding to

each input object. The vector is called the morphological descriptor. The dimension of the

morphological descriptor depends on the number of multiresolution pyramid levels, the number of

the rotated versions of the original scaled image, and the number of successive erosions computed.

Theoretically, the more rotated versions we have, the closer to rotation invariance we get. In

practise, however, there exist some maximum number of rotations (maximum resolution) after

which additional rotations do not improve accuracy, due to �nite precision and errors of the

rotation operation.

The study of similarities and di�erences between shapes now reduces to the study of similar-

ities and di�erences between morphological descriptor vectors. If we have two shape descriptors
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x, and y, of dimension k, then we can take a distance between them as a measure of the simi-

larity of the objects they represent. The smaller the distance, the more similar the objects. The

Euclidean distance has been used in this work.

d2(x; y) = (
kX
i=1

(xi � yi)2)
1

2 (4.14)

4.6 Experimental Results

A set of eighteen test images was created and used as original images. These images of size

256� 256 are shown in Figure 4.3. Another set of eighteen images was created from the original

images, by shape distortion. Shape distortion includes changes of size, orientation (rotation),

and addition of noise to the shape boundary. Distorted images are shown in Figure 4.4. Two

structuring elements of size 16� 16 are shown in Figure 4.5.

Four pyramid levels were used (R = 4) to represent the input image. The images were

rotated into 64 di�erent positions from 00 to 3600 (N = 64). The successive area sequence

length was 8 elements at the highest resolution pyramid level (L = 8) with lengths of 4, 2, and

1, for subsequent lower resolutions. This gave a total descriptor length of 15 elements for one

rotation position. The total shape descriptor size for all 64 rotations was then equal to 960

(64 � 15 = 960). Two structuring elements were used resulting in a 1920-dimensional shape

descriptor. The multiresolution pyramid resolutions have ranged from 256� 256 to 32� 32

therefore giving the total frame area F = 65536 at the highest resolution pyramid level. To

prevent image scaling out of frame bounds a factor K = 4 has been used in Step 3 of the
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algorithm.

The structuring elements used here were chosen empirically. In this work, non-convex struc-

turing elements were used as opposed to convex structuring elements used in [157]. Due to the

multiresolution nature of the MST shape description method the method is particularly suitable

for use with non-convex structuring element as discussed in section 4.3.1.

The experiment consisted in shape matching between distorted and original images. In real

world applications, it is often necessary to select unknown and noisy object into one of several

classes of known objects. The objective is to obtain a shape descriptor which is robust against

noise. Euclidean distances between morphological descriptor vectors (normalized to a value

of 50,000) are shown in Table 1. The original images are on the horizontal axis while the distorted

images are on the vertical axis of the table. The value on the diagonal of the table should be the

minimal value in the corresponding row. This means that for some particular distorted image,

the distance to its original is smallest compared to distances between that particular distorted

image and other images and therefore the image will be correctly classi�ed. The results have

shown the accurate shape matching.
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�g/pr/part01 �g/pr/part02 �g/pr/part03 �g/pr/part04 �g/pr/part05 �g/pr/part06

S01 S02 S03 S04 S05 S06

�g/pr/part07 �g/pr/part08 �g/pr/part09 �g/pr/part10 �g/pr/part11 �g/pr/part12

S07 S08 S09 S10 S11 S12

�g/pr/part13 �g/pr/part15 �g/pr/part16 �g/pr/part17 �g/pr/part18 �g/pr/part20

S13 S14 S15 S16 S17 S18

Figure 4.3: Original shapes (S01-S18).

131



�g/pr/part01n�g/pr/part02n�g/pr/part03n�g/pr/part04n�g/pr/part05n�g/pr/part06n

D01 D02 D03 D04 D05 D06

�g/pr/part07n�g/pr/part08n�g/pr/part09n�g/pr/part10n�g/pr/part11n�g/pr/part12n

D07 D08 D09 D10 D11 D12

�g/pr/part13n�g/pr/part15n�g/pr/part16n�g/pr/part17n�g/pr/part18n�g/pr/part20n

D13 D14 D15 D16 D17 D18

Figure 4.4: Distorted shapes (D01-D18).
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Figure 4.5: Structuring elements used for shape description (Y,V)
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S01 S02 S03 S04 S05 S06 S07 S08 S09

D01 0.16 1.68 3.25 3.43 0.35 1.19 4.93 4.68 0.55
D02 1.65 0.89 1.91 2.02 1.51 1.01 3.64 3.37 1.42

D03 3.16 1.80 0.76 0.92 3.00 2.38 2.25 1.96 2.87
D04 3.36 1.93 0.97 0.30 3.21 2.49 2.28 1.95 3.08

D05 0.52 1.55 3.10 3.27 0.45 1.14 4.79 4.53 0.54

D06 1.81 0.86 1.88 1.87 1.68 0.78 3.65 3.36 1.55
D07 4.94 3.60 2.17 2.16 4.79 4.25 0.10 0.81 4.66

D08 4.33 2.94 1.55 1.39 4.18 3.57 1.28 0.90 4.05
D09 0.74 1.49 2.99 3.14 0.69 1.08 4.67 4.41 0.41
D10 1.40 0.92 2.31 2.44 1.30 1.00 4.00 3.73 1.09

D11 4.46 3.03 1.43 1.45 4.31 3.71 1.27 1.02 4.17
D12 3.16 2.08 2.07 1.80 3.03 2.35 3.24 2.99 2.85

D13 5.40 4.06 2.48 2.65 5.25 4.76 1.21 1.39 5.12

D14 2.68 1.87 2.40 2.22 2.57 1.98 3.79 3.52 2.38
D15 1.82 0.97 1.99 2.04 1.68 1.05 3.72 3.44 1.50

D16 2.77 1.40 1.07 1.05 2.64 1.99 2.66 2.37 2.47
D17 3.42 1.98 0.77 0.58 3.26 2.55 2.21 1.88 3.13
D18 2.58 1.23 1.30 1.31 2.43 1.79 2.91 2.62 2.26

S10 S11 S12 S13 S14 S15 S16 S17 S18

D01 1.49 4.61 3.02 5.30 2.63 1.32 2.52 3.23 2.37

D02 0.98 3.26 2.08 4.01 1.87 1.20 1.18 1.84 1.19
D03 2.02 1.70 2.08 2.50 2.25 2.42 1.12 0.83 1.33

D04 2.22 1.79 1.82 2.67 2.07 2.56 1.18 0.61 1.39

D05 1.32 4.46 2.90 5.16 2.49 1.12 2.35 3.07 2.19
D06 1.00 3.27 1.78 4.08 1.58 1.12 1.22 1.66 1.07

D07 3.84 1.20 3.37 1.12 3.74 4.24 2.87 2.39 3.10
D08 3.20 1.08 2.73 1.72 3.07 3.59 2.18 1.62 2.43
D09 1.15 4.33 2.73 5.04 2.34 0.91 2.24 2.94 2.02

D10 0.34 3.63 2.20 4.36 1.80 0.70 1.50 2.25 1.34

D11 3.29 0.45 2.87 1.29 3.21 3.71 2.25 1.63 2.48

D12 2.18 2.95 0.56 3.68 1.48 2.38 1.76 1.81 1.66

D13 4.28 1.15 3.92 0.34 4.27 4.71 3.30 2.83 3.52
D14 1.81 3.47 1.28 4.23 0.47 1.90 1.88 2.14 1.60

D15 0.88 3.34 1.87 4.11 1.50 0.86 1.37 1.82 0.98

D16 1.62 2.20 1.77 2.98 1.89 2.04 0.71 0.97 1.11
D17 2.26 1.64 1.97 2.54 2.20 2.60 1.26 0.38 1.43

D18 1.36 2.45 1.66 3.24 1.60 1.69 0.98 1.14 0.53

Table 4.1: Shape matching distance matrix. (S are original and D are distorted shapes.)
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Chapter 5

Optimal Shape Matching

A new method for the selection of the optimal structuring element for shape description and

matching based on the morphological signature transform (MST) is presented in this paper. For

a given class of shapes the optimal structuring element for MST method is selected by means of

a genetic algorithm. The optimization criteria is formulated to enable a robust shape matching.

Experiments have been performed on a class of model shapes. The proposed optimal shape

description method is applied to the problem of shape matching which evolves in many object

recognition applications. Here, an unknown object is matched to a set of known objects in

order to classify it into one of �nite number of classes. Experimental results are presented and

discussed.
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5.1 Introduction

Mathematical morphology has been successfully used for various image processing tasks [262,

88, 109]. It is useful for processing of shape because morphological operations directly a�ect the

shape. A new approach for morphological shape representation was presented in [157, 159, 161].

It is based on the morphological signature transform (MST). The method uses a structuring

element to compute the MST of objects to be described but does not solve the problem of the

selection of the structuring element.

In this paper, we present a new method for selection of optimal structuring elements for use

in the MST-based method for shape representation and shape matching. The proposed method

uses the optimal structuring element for multiresolution morphological operations. The optimal

SE is selected by means of genetic algorithm. The optimality criteria is de�ned to enable best

discrimination of shapes in certain class. In other words, the structuring element provides the

best shape matching capability for shapes in given class.

Experiments were performed where the proposed method for optimal structuring elements

was applied to a certain class of test shapes. The optimal structuring element was determined by

means of genetic algorithm and used for shape description using the MST-based algorithm. The

proposed shape description method is applied to the problem of shape matching which evolves

in many object recognition applications. Here, an unknown object must be matched to a set of

known objects in order to classify it into one of �nite number of possible classes. In practical

applications, the unknown object may be corrupted by noise.
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5.1.1 MST-based shape description

A new approach for MST-based shape representation was presented by Loncaric and Dhawan

in [157, 159]. The method is based on multiresolution morphological processing. A brief descrip-

tion of the method is given bellow.

In the preprocessing step original images are resized so that all shapes have the same area.

This step insures size invariance of the method. The MST is used to generate signature shapes

of the original shape. The signature shapes contain various shape-features of the original shape.

Instead of describing the original shape, the signature shapes are described. The underlying

idea is that it is easier to describe several simple shapes than one complex shape. The signature

shapes are simple in the sense that they contain only features which are extracted by a structuring

element at a level of the multiresolution pyramid. Another advantage of the method is that due

to multiple signature shapes a better accuracy can be achieved then when describing a single

(original) shape. Even better description can be achieved if multiple structuring elements are

used. In that case, the MST of the object to be described is computed with respect to several

structuring elements yielding even more signature shapes. Multiple structuring elements are

created by means of rotation of the initial structuring element. This also enables the rotation

invariance of the method.

In the next step of the procedure the obtained signature shapes are described using any

conventional shape description method. The simple shape descriptor used in this work is the

area of the shape.

Simple shape descriptors are reordered (for rotational invariance) and merged into a large
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shape descriptor which is used as the descriptor of the original shape.

The MST-based shape description method has the following properties:

1. translation invariance

2. size invariance

3. rotation invariance

5.2 Introduction to Genetic Algorithms

Genetic algorithm [122, 94, 48, 145] is a powerful tool for solving problems which involve a search

through a complex solution space. It is is particularly useful for problems with a large solution

space. An exhaustive search of such a complex space is not acceptable in practice because it

would take too much time to complete. For such problems, a genetic algorithm can �nd a near-

optimal solution in a much shorter time. In practice, it is often not critical or necessary to �nd

the best solution.

Searching a complex space of problem solutions involves a trade-o� between two conicting

objectives: exploring the search space and exploiting the best solutions available [27]. The power

of genetic algorithms lies in the search strategy that they use. It is a strategy of creating new

solution candidates from the best known solutions using random process of recombination. It

is a approach that facilitates both exploration of the space and exploitation of existing best

solutions. This approach is opposed to hill-climbing strategies which use only the best currently

known solution to �nd an improved one. Hill-climbing strategies are therefore vulnerable to
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being trapped in the region of the search space which may not contain the best solution. The

reason for such performance is a weak exploration property of hill-climbing algorithms.

Genetic algorithms have been applied to a wide range of problems including function mini-

mization [51], dynamic system control [95], image registration and pattern recognition [74, 71,

302], and game playing [185, 278].

A genetic algorithm attempts to emulate the mechanism of natural evolution and selection. In

nature, species are attempting to adapt to a changing environment. The knowledge accumulated

in each generation is stored in chromosomes. By reproduction these chromosomes are modi�ed

so that chromosomes of both parents are combined together in order to achieve more competitive

child. If the result of reproduction is not e�ective in the natural environment it will be eliminated

by natural selection. Only best specimens will survive. A genetic algorithm utilizes the same idea.

In order to solve a problem using a genetic algorithm the following components are necessary

[49]:

1. Solutions to the problem must be represented by chromosomes

2. An initial population of solutions must be created

3. An evaluation function for rating solutions in terms of their �tness

4. Genetic operators that alter the composition of children during reproduction

Chromosomes are strings of genes (bits of information) which can have a value of 0 or 1.

Problem variables must be represented using chromosomes. This is called coding. A choice

of coding is not an easy one. It has been shown [94] that an inappropriate coding choice can
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make a search process more di�cult. The initial population is usually chosen randomly but it

can be also used to test a quality of the solution. The problem solution should not change if

initial population is changed. The evaluation function is used to measure a �tness of a solution.

There are many possible genetic operators that can be used to alter the composition of children's

chromosomes during reproduction. They are typically tailored to suit the particular problem

that is being solved. A wrong choice of genetic operators can lead to a failure to determine

the solution. Some conventional operators include crossover, inversion and mutation. Crossover

interchanges substrings of genes from two chromosomes at randomly selected position in the

chromosomes. Inversion inverts a substring of bits in a chromosome. Mutation ips the value of

a number of bits at randomly chosen positions in a chromosome.

5.3 A Genetic Algorithm for Optimal Structuring Ele-

ments

Genetic algorithm is a useful tool for optimization of functions with large search space which

are di�cult to search for the optimal solution using exhaustive search methods. In such cases

exhaustive search methods would take too much time to complete. Morphological signature

transform based algorithm for shape description uses structuring elements to compute the areas

of iteratively morphologically eroded images. The problem of selecting the optimal structuring

elements is di�cult to solve. Consider a binary structuring element of size 8 � 8. The number

of di�erent structuring elements of this size can be as high as 264 what eliminates the possibility
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of exhaustive search to determine the optimal structuring element. A genetic algorithm (GA) is

an ideal tool in this case.

A method proposed here uses genetic algorithm to search for the optimal (or nearly optimal)

solution. The initial generation of structuring elements is created randomly. Each structuring

element is represented by a chromosome. The chromosome consists of genes which can be viewed

as bits of information. Genes correspond to structuring element pixels. The iteration procedure

consists of two main steps:

1. mating of pairs of individuals

2. �tness computation for new individuals

The mating phase consists of three subphases:

1. reproduction

2. crossover

3. mutation

The reproduction phase examines each individual in the current generation and passes it to a next

generation with a probability that depends on the �tness (optimization criteria) of individual for

some particular purpose. The individual can be either passed (copied) to a next generation or

removed. The crossover phase takes pairs of individuals which are represented by their chromo-

somes and crosses them over in a certain way so that properties of both individuals are combined.

In other words certain genes will be exchanged between the two individuals. The mutation phase
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randomly changes the value of one or few genes in the chromosome of each individual. The result

of these steps is the next generation of individuals. A �tness of each of these new individuals is

computed and the next step of iterative procedure is started. In many optimization problems

GAs proved to be an e�ective tools for �nding the optimal or nearly-optimal solution. It is

especially appropriate in cases where exhaustive search cannot be applied.

However, a choice of representation of variable that is being optimized in a chromosome form

suitable for use of GA (also known as coding) is known to be a di�cult task [94]. Moreover, it

is critical for many optimization problems to choose the best coding in order to �nd an optimal

solution. In other words, failing to do so can cause divergence of the GA from the optimal

solution. The coding choice has shown to be a challenging task in this application, too.

5.4 Implementation of Genetic Algorithm

5.4.1 Chromosome representation of the problem

The classical representation of a chromosome as a string of genes has shown not to be appropriate

for coding of structuring elements. The most intuitive coding of a binary structuring element

is in the string form where rows of the two-dimensional SE are concatenated into a string and

each bit corresponds to a gene. The problem with this coding scheme is that the crossover phase

makes so signi�cant changes in structuring elements such that even sub-optimal individuals are

destroyed in each generation and no optimal solution can be ever reached. In other words, even

small changes in chromosome cause signi�cant changes in the shape of the structuring element.
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Because of the high sensitivity, this simple coding scheme is not suitable for this optimization

problem. In genetic algorithm terms the exploration is dominating over exploitation. Known

solutions are not exploited but are destroyed in each generation to facilitate exploration.

The coding scheme that is desirable here must have better exploitation quality but still be able

to explore the solution space. It must be such that small modi�cations in the chromosome caused

by crossover make a small change in the shape of structuring element. Another desirable property

is that topological properties of the shape do not change a lot in the process of reproduction. For

the above mentioned reasons, a special coding method and crossover operator have been used in

this work.

The coding scheme uses square chromosomes where genes correspond to pixels of a square

structuring element. A new patch-type crossover operation is used in this genetic algorithm.

Unlike conventional crossover where strings of genes are swapped, in this scheme rectangular

gene patches are swapped. Patch-type crossover operation uses two crossover points instead of

a conventional one crossover point operator. It is easier to see this in the case of a conventional

one-dimensional chromosome representation which uses a single point at which chromosomes are

swapped. A more advanced one-dimensional crossover selects both starting and ending point

of a chromosome segment to be swapped. Patch-type crossover used here is a two-dimensional

two-point crossover operator. The upper-left and the lower-right patch corners are selected ran-

domly. This assures that less distortion of the structuring element is done in crossover operation.

Consequently, the quality of the partial optimization solution will be preserved better across

generations.
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5.4.2 Variable crossover rate

The chromosomes representing two individuals are crossed-over with some prede�ned probability.

If crossover-probability is higher more pairs will be crossed-over then if probability is low. Basic

genetic algorithms use �xed probability of crossover. In order to achieve better exploration of

the search space, a variable crossover is used in this work. The crossover probability at each

generation is determined as

pcross = 1� h3 (5.1)

where 0 � h � 1 represents the normalized entropy of the population. Entropy measures the

diversity of the population. Entropy is larger for diverse populations and smaller for populations

consisting of more uniform individuals. Low entropy early in the evolution process indicates a

premature convergence problem. The value 3 for the exponent in Equation 5.1 is chosen to force

higher crossover probability (and avoid premature convergence) even if entropy is relatively high.

The premature convergence problem [27] causes a genetic algorithm not to reach the global

optimal solution. The algorithm converges to a local solution. To avoid the premature conver-

gence it is necessary to ensure a good exploration property of the reproduction process.

In this work the entropy of the �tness values is used to measure the diversity of the population.

If two population members are di�erent but yield the same �tness value they are considered to

be the same with respect to their performance in this application. The fact that they have the

same �tness means simply that they are both equally suited for the purpose of shape description.

On the other hand if two population members yield di�erent �tness values they certainly have

di�erent shapes, too. Therefore the entropy of the population �tness values is appropriate for
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measuring the diversity of population members with respect to their ability to perform a good

shape description.

Let N be the number of individuals in population. Assume that the �tness fi, i = 1; : : : ; N

of the population members has the value fi 2 I = [0; fmax] and divide the interval I into L

subintervals Ij = [jd; (j + 1)d], j = 0; : : : ; L � 1 of the length d = fmax

L
. The entropy is then

computed as

h =
1

lnN

L�1X
i=0

pilnpi (5.2)

where pi is the relative frequency of �tness value falling in interval Ii

pi =
ni

N

(5.3)

where ni is the number of individuals in population having �tness value f 2 Ii. The factor lnN in

the denominator of Equation 5.2 is added to normalize entropy values to interval [0; 1]. If there is

a lot of diversity in population relative frequencies will have approximately uniform distribution

and the resulting entropy will be high (close to 1) according to Equation 5.2. If �tness values in

population are grouped together around one value the corresponding relative frequency pi will

be large while other relative frequencies will be low yielding low entropy value (close to 0).

5.4.3 Fitness function

The �tness of each individual is computed for each generation in order to eliminate non-e�cient

(non-optimal) individuals in the next generation. In this particular application the �tness criteria
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is de�ned as how suitable a SE is for the purpose of shape matching. The �tness is computed for

a certain prede�ned class of input shapes. This means that the resulting structuring element will

be optimal for that particular class of shapes. In practical applications like shape matching there

is often a prede�ned set of model shapes that have to be recognized. In that case a procedure

described above can provide the optimal structuring element. The optimal structuring element

is the one that will provide best discrimination between the shapes in the class. In other words,

a SE is desired which will result in shape descriptors which are as di�erent as possible. The idea

behind this de�nition is that the optimal SE will provide the best noise robustness and shape

matching capabilities.

This can be described in a more formal way as follows. Assume that there are M shapes in the

class. Let xi 2 Rp, i = 1; : : : ;M be shape descriptors for M shapes in the class. Note that shape

descriptors are p-dimensional real vectors. There are many possible choices for a �tness function.

The properties of the �nal solution are determined by the nature of the GA �tness function.

Several possible choices for the �tness function are presented in the following paragraphs.

The rationale behind the �rst choice of �tness function is as follows. It is desirable that the

shape descriptors are arranged in p-dimensional space in such way that no two vectors are close

in order to assure maximal noise robustness and shape discrimination. Therefore the �tness

function for structuring element S can be de�ned as

f(S) =
1

M

MX
i=1

k xi � xm k22 (5.4)
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where k : k2 denotes the Euclidean vector norm, and xm denotes the median vector, i.e.

xm =
1

M

MX
i=1

xi (5.5)

It can be easily shown that this �tness function can also be expressed as

f(S) =
1

M

MX
i=1

k xi k22 � k xm k22 (5.6)

Another expression equivalent to the expressions in Equations 5.4 and 5.6 is

f(S) =
1

2M2

MX
i=1

MX
j=1

k xi � xj k22 (5.7)

These �tness functions will have larger value if shape descriptors are far one from another. If

shape descriptors (vectors) are grouped together (in real p-dimensional space) the �tness value

will be lower, because it is more di�cult to distinguish between shapes. Lower �tness value

will result in higher probability for elimination of this particular structuring element in the next

generation. The drawback of this type of �tness function is in the fact that it measures the

average distance. This means that although average distance is high there may be a pair of

shapes with a very small distance what will cause a di�culty in shape matching. To overcome

this disadvantage another �tness measure can be de�ned as

f(S) =
M

min
i=1

M

min
j=1;j 6=i

k xi � xj k22 (5.8)
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It is called the minimum distance �tness measure. It looks at the worst case and that is the

minimum distance between pairs of shapes. In other words, although the average distance may

be high the minimum distance is used as the �tness value. This type of �tness function does a

better job of selecting optimal shapes of structuring elements.

5.4.4 Iterative GA procedure

The steps of the procedure for searching for the optimal structuring element are the following.

Note that the minimum distance �tness function shown in Equation 5.8 is used here.

Algorithm 5.1 Optimal MST shape matching.

1. Create a class of M model shapes to be described

2. Create initial generation of N chromosomes representing structuring elements

3. repeat

(a) comment loop bellow is for all structuring elements

(b) for i = 1; : : : ; N do

i. comment loop bellow is for all model shapes

ii. for j = 1; : : : ;M do

A. comment all model shapes

B. Compute MST-based shape descriptor

C. Let x
i

j
be the shape descriptor for shape j using structuring element i
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iii. x
i

m
=
P

M

j=1 x
i

j
(median shape descriptor)

iv. fi = minM
i=1minM

j=1;j 6=i k xi � xj k22 (�tness of structuring element i)

(c) Compute population �tness h

(d) Compute crossover rate pcross

(e) Perform �tness scaling

(f) Perform reproduction of chromosomes on the basis of computed scaled �tness

(g) Perform crossover of chromosomes using crossover rate pcross

(h) Perform mutation of chromosomes

(i) Decode chromosomes to create a new generation of structuring elements

4. until satis�ed

Fitness scaling is performed to prevent domination of one outstanding individual in the

generation over the others [94]. It keeps the average �tness value of the generation unchanged

but scales maximum �tness value to the value equal to two times the average �tness value.

The block-diagram of the genetic algorithm optimization procedure is also represented in

Figure 5.1 for better understanding.
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�g/genalg.ps

Figure 5.1: Block-diagram representation of the GA optimization procedure.
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5.5 Experimental Results

5.5.1 Optimal Structuring Element

A set of model shapes was created for which the optimal structuring element had to be deter-

mined. Model shapes are shown in Figure 5.2. The following convention is used in all �gures:

black color represents pixel value "zero" and white color represents pixel value "one". A square

8� 8 chromosome was used to represent a structuring element of size 8� 8. The initial genera-

tion of structuring elements is shown in Figure 5.3. Thirty generations of genetic algorithm were

computed. For a given shape and structuring element the morphological signature transform

based method described in [157, 159, 161] was used to compute shape descriptors. The �tness

of each structuring element for shape description of given shapes was computed using the �tness

function. The genetic algorithm crossover phase was based on a square patches of genes which

are swapped to perform crossover operation. The position within the gene and the size of the

patch were determined randomly. The plot of the average �tness in each generation is shown

in Figure 5.4. The average �tness of structuring elements in early generations is lower then in

newer generations. The �tness value shows the quality of structuring element for shape match-

ing purpose. Therefore the structuring elements in last generations have much better properties

then those from early generations. The resulting shape matching performance is better with

structuring elements that have higher �tness values. The optimal structuring element for the

selected class of shapes is shown in Figure 5.5. The resulting structuring element obtained using

genetic algorithm has better shape description and discrimination capabilities then the randomly
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Figure 5.2: Original shapes (S00-S09).

chosen structuring element. It is the result of a search through the structuring element space

given criteria for the optimal shape matching capability.

5.5.2 Shape Matching

The shape matching experiment was performed as follows:

1. MST shape description (based on a structuring element S) of original and noisy shapes.

2. Shape matching of noisy to original shapes.

The experiment was performed using several di�erent structuring elements in order to compare

the performance. The optimal structuring element and several non-optimal structuring elements

were used in experiment.
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Figure 5.3: The initial generation of structuring elements.

�g/pr2/avg�tness.ps

Figure 5.4: Average �tness vs. generation.
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�g/pr2/optimal.ps

Figure 5.5: The optimal structuring element for the given class of model shapes.

To quantitatively measure the shape matching performance a measure called the noise mar-

gin ratio is de�ned as described bellow. The noise margin ratio shows the shape matching

performance with respect to a given structuring element and shapes. The shape matching table

(matrix) is formed as follows:

D = [dij] (5.9)

where i = 1; : : : ;M , and j = 1; : : : ;M . M denotes the number of shapes. dij is the distance

between the distorted shape i and the original shape j. The noise margin ratio is de�ned as

follows:

nm =
M

min
i=1;dii 6=0

(
1

dii

M

min
j=1;j 6=i

dij) (5.10)

where dij is the shape matching table entry in the row i and column j. In other words, for each

row in the shape distance table the minimum non-diagonal to diagonal entry ratio is computed.

The �nal ratio is equal to the minimal ratio of all rows. The ratio should be as high as possible

because it provides a better noise robustness.

The model shapes that were used in the genetic algorithm part of the experiment are now

used as original shapes. These images of size 128� 128 are shown in Figure 5.2. Another set

of shapes was created from the model shapes, by shape distortion. Shape distortion included
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Figure 5.6: Distorted shapes (D00-D09).

rotation, scale change, and addition of noise to the boundaries of the shapes. Distorted images

are shown in Figure 5.6.

Four pyramid levels were used in morphological signature transform algorithm to represent

the input image. The images were rotated into 16 di�erent positions from 00 to 3600. The

successive area sequence length was 16 elements at the highest resolution pyramid level. This

gave a total descriptor length of 30 elements for one rotation position. The total shape descriptor

size for all 16 rotations was equal to 480 (16�30 = 480). All distances between shape descriptors

are normalized to 10000.

The shape matching table obtained using the optimal structuring element is shown in Ta-

ble 5.1. The optimal structuring element is determined using the genetic algorithm based method

explained above. The original image indices are on the horizontal axis while the distorted image

indices are on the vertical axis of the table. The value on the diagonal of the table should be

the minimal value in the corresponding row. This means that for a particular distorted image,
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S00 S01 S02 S03 S04 S05 S06 S07 S08 S09

D00 0.30 0.49 0.59 0.60 0.86 0.57 1.17 0.60 0.56 0.49
D01 0.41 0.35 0.46 0.42 0.82 0.69 1.14 0.55 0.64 0.58

D02 0.60 0.44 0.30 0.51 0.52 1.03 1.34 0.54 1.01 0.61
D03 0.63 0.56 0.54 0.29 0.80 0.82 1.01 0.45 0.77 0.59

D04 0.61 0.46 0.48 0.69 0.30 1.12 1.49 0.60 1.12 0.58

D05 0.76 0.92 0.98 0.83 1.32 0.23 0.91 0.85 0.39 0.79
D06 1.74 1.82 1.85 1.51 2.20 1.24 0.70 1.59 1.21 1.64

D07 0.76 0.78 0.83 0.52 1.11 0.66 0.75 0.44 0.59 0.65
D08 0.95 1.06 1.10 0.91 1.50 0.49 0.92 1.02 0.41 1.03
D09 0.51 0.61 0.70 0.66 0.84 0.69 1.10 0.54 0.71 0.25

Table 5.1: Shape matching distance matrix using the optimal structuring element. (S are original

and D are distorted shapes.)

the distance to its original is smallest compared to distances between that particular distorted

image and other candidate images and therefore the image will be correctly classi�ed. The re-

sults using the optimal structuring element have shown the accurate shape matching. The noise

margin ratio for the optimal structuring element is equal to 1:15.

For robust shape matching it is important that the diagonal table entry is as small as possible

relative to non-diagonal entries in the same row. This provides a noise margin so that noisy

shapes are correctly classi�ed. To understand why is the optimal structuring element really

more e�ective then other elements the shape matching experiment is repeated using a non-

optimal structuring element K09, from the initial generation, which is shown in Figure 5.3. The

MST shape description is computed and the shape matching between original and noisy shapes is

performed. The normalized shape distance is shown in Table 5.2. The noise margin ratio de�ned

by Equation 5.10 is computed. The noise margin ratio for non-optimal element K09 is equal

to 1:07. This shows that the optimal structuring element provides better noise robustness then
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a non-optimal one. This is not surprising since the optimizing criteria (the genetic algorithm

�tness function) was designed to favor noise robustness quality. Another experiment is performed

using a non-optimal structuring element K00. The resulting noise margin ratio is 1:06.

It is also possible that a structuring element is not appropriate for shape matching using a

given MST shape descriptor size and a given noise level. To illustrate this point the experiment

is repeated with the structuring element K01. Shape matching yields the noise margin ratio of

0:77 for a given shape descriptor size and shape noise. This means that an erroneous match took

place because in some row of the shape matching table a non-diagonal entry was smaller then

the diagonal entry. In general, there are several steps that can be taken in order to overcome

the problem of an erroneous shape matching. The shape descriptor size can be increased to

obtain a better discrimination property. This can be done by increasing some parameters in

MST shape description method such as the number of rotated versions of original structuring

element, and/or the number of iterations, and/or the number of image pyramid levels. Another

possibility is the use of multiple structuring elements.
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S00 S01 S02 S03 S04 S05 S06 S07 S08 S09

D00 0.18 0.43 0.56 0.72 0.73 0.62 1.23 0.77 0.76 0.59

D01 0.52 0.42 0.48 0.45 0.77 0.65 0.99 0.49 0.53 0.68
D02 0.56 0.45 0.34 0.47 0.49 0.74 1.15 0.50 0.77 0.56
D03 0.67 0.56 0.43 0.25 0.71 0.68 0.83 0.35 0.56 0.63

D04 0.55 0.54 0.47 0.66 0.25 0.87 1.32 0.66 0.97 0.46
D05 0.71 0.81 0.71 0.68 1.01 0.38 0.90 0.74 0.47 0.73
D06 1.70 1.69 1.58 1.27 1.91 1.25 0.59 1.32 1.06 1.56

D07 0.91 0.84 0.71 0.39 1.02 0.62 0.56 0.36 0.42 0.77

D08 0.96 0.95 0.84 0.65 1.22 0.56 0.70 0.71 0.20 0.96

D09 0.56 0.66 0.64 0.63 0.65 0.61 1.09 0.62 0.77 0.18

Table 5.2: Shape matching distance matrix using a non-optimal structuring element. (S are
original and D are distorted shapes.)
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Chapter 6

Application of Morphological Shape

Description to Image Registration

In this chapter, a medical application based on the use of Morphological Signature Transform

for shape description is presented.

6.1 Introduction

The registration of MR and PET images has become an important method for study of internal

structures of the brain. In particular, MR imaging modality provides the anatomical structure of

the brain while PET imaging modality provides information about the metabolic activity of the

brain. In order to utilize both sources of information it is necessary to correlate independently

obtained MR and PET brain images. Several approaches for registration of MR and PET have

been investigated and presented in literature such as techniques based on the use of stereotactic
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frames or external markers [20], anatomic landmarks [72], and surface or volume matching [214,

150]. An accurate and practical volume-based registration method called Iterative Principal Axis

Registration (IPAR) has been developed by Arata et al. [4, 2, 3]. In this method a principal

axis transform of MR and PET binary volumes is used to align the volumes. Here, we present

an enhanced method for 3-D brain registration which uses morphological preprocessing and

segmentation of MR and PET brain images and an enhanced version of iterative principal axis

transformation. The method relies on the mathematical morphology and three-dimensional a�ne

transformations of the brain. A good reference text on geometric modeling of curves, surfaces,

and volumes can be found in [195].

6.2 An Overview of Iterative Principal Axis Registra-

tion

In this section we give a short overview of the IPAR method [4, 2, 3]. The features of IPAR

method are as follows

� Requires no external markers.

� Works even if only partial volumes are available.

� Based on 3-D principal axis transform.

One of the main advantages of this procedure is that it works for partial volumes. In PET

imaging modality a view is 10:8 cm high providing only a partial view of the brain. On the
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contrary in MR imaging modality there is not a limited view problem. For these reasons, it

is often necessary in practise to match a partial brain volume obtained by PET to a full brain

volume obtained by MR. This situation makes the registration problem di�cult. An outline of

IPAR procedure is given by

Algorithm 6.1 The iterative principal axis registration algorithm.

1. Do the segmentation of the total MR and PET brain volume.

2. Perform the shape-based interpolation of MR and PET volume.

3. Compute initial principal axis parameters for the total MR volume. Let TMR be the matrix

representing a�ne transform which aligns MR volume with the coordinate system origin.

4. Compute initial principal axis parameters for the total PET volume. Let TPET be the matrix

representing a�ne transform which aligns PET volume with the coordinate system origin.

5. Do

(a) Transform PET volume to the position of MR volume using transformation matrix

T
�1
MR

TPET .

(b) T
old

MR
 TMR

(c) Compute principal axis parameters for the partial MR volume corresponding to the

PET volume.

(d) Let TMR be the transformation matrix corresponding to the partial MR volume prin-

cipal axis parameters.
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6. While k TMR � T old

MR
k> epsilon

7. To obtain the �nal result transform PET volume to the position of MR volume using trans-

formation matrix T
�1
MR

TPET .

6.3 IPAR and MST Based Registration

A new approach [158, 162] for registration of medical images is described in this section. To

motivate the new approach let us consider the rationale behind the multi-modality imaging. A

revolutionary step was done when it was realized that it is possible to obtain more information

by using multiple imaging modalities at the same time. However, the IPAR and many other

registration methods are based on a single source of anatomical references to perform registration.

The anatomical reference is either the brain volume, or the brain surface. The approach proposed

here is the use of multiple anatomical references. We call such a scheme the multi-reference

registration for analogy to the multi-modality imaging.

The multiple anatomical references used in this work are the brain volume and the ventricle

volume. The IPAR method uses brain volume (shape) to perform the initial registration of the

MR and PET brain images. In the method proposed here a ventricular structure of the brain is

used as the source for additional information for the subsequent registration phase.

6.3.1 Basic Algorithm

The basic idea for improvement of the original IPAR procedure is as follows.
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Algorithm 6.2 The basic IPAR and MST based registration.

1. Perform segmentation of the total MR and PET brain.

2. Perform IPAR registration based on the total brain volumes.

3. Perform segmentation of the MR and PET brain ventricles.

4. Perform MST registration based on the ventricles.

The "conventional" registration using IPAR procedure is done to perform the initial registration.

In the second step, MST based procedure is used to improve the accuracy of registration.

A more detailed outline of the algorithm is presented in Algorithm 6.3.

Algorithm 6.3 A more detailed brain registration procedure is given as follows.

1. Read and unpack �les containing MR and PET images from tape.

2. Combine MR and PET images to obtain 3-D gray scale MR and PET volume data.

3. Perform segmentation of the total MR and PET brain.

4. Perform IPAR based registration to obtain the a�ne transform parameter vector xIPAR

which maps the PET volume to the position of the MR volume.

5. Create matrix TIPAR corresponding to xIPAR.

6. Perform segmentation of the MR brain ventricle.

7. Perform segmentation of the PET brain ventricle on the registered PET volume.
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8. Compute MST-based shape descriptor dmr of the MR ventricle.

9. Create variation set V = [2n
i=1vi where vi 2 Rn are the vertices of n-dimensional. cube of

size g and centered at point xIPAR.

10. v0  xIPAR

11. Create matrices T
i

MST
, i = 0; : : : ; 2n corresponding to parameter vectors vi.

12. Create �ne positional variations of the PET ventricle using matrices T
i

MST
, i = 0; : : : ; 2n.

13. Compute MST-based shape descriptors d
i

pet
, i = 0; : : : ; 2n of the PET ventricle variations.

14. Perform a matching of PET ventricle variation shapes to MR ventricle shape, i.e. choose

k 2 [0; 2n] such that k dk
pet
� dmr k�k dipet � dmr k, i = 0; : : : ; N .

15. T
k

MST
is the matrix which maps the PET volume to the position of the MR volume.

The outline of the procedure is also shown in Figure 6.1.

6.3.2 Multi-Grid Algorithm

Here, an extension of Algorithm 6.3 is made. The extension consists in iterative repetition of the

Algorithm 6.3 with di�erent neighborhood sizes. The improved algorithm works as follows. At

�rst a large neighborhood around initial approximation is examined to determine the best solu-

tion which is used as starting point of the next iteration. In the next iteration the neighborhood

size is cut in half and the whole process is repeated. The algorithm is called the Multi-Grid MST
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Figure 6.1: IPAR/MST registration procedure block diagram.
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Registration. The advantage of the multi-grid approach is that the search through the optimiza-

tion space is faster since the solution is searched for at the coarse resolution �rst followed by

the �ne search. To achieve the same resolution using the Algorithm 6.3 much more computation

time would have to be used.

Algorithm 6.4 A multi-grid MST-based registration.

1. Read �les containing MR and PET images.

2. Combine MR and PET images to obtain 3-D gray scale MR and PET volume data.

3. Perform segmentation of the total MR and PET brain.

4. Perform IPAR based registration to obtain the a�ne transform parameter vector xIPAR

which maps the PET volume to the position of the MR volume.

5. Create matrix TIPAR corresponding to xIPAR.

6. Perform segmentation of the MR brain ventricle.

7. Perform segmentation of the PET brain ventricle on the IPAR registered PET volume.

8. Compute MST-based shape descriptor dmr of the MR ventricle.

9. x xIPAR

10. g  initial grid size

11. for i = 1; : : : ; N do
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(a) Create parameter variation set V = [2n
i=1vi where vi 2 Rn are the vertices of n-

dimensional cube of size g and centered at point x.

(b) v0  x.

(c) Create matrices T
i

MST
, i = 0; : : : ; 2n corresponding to parameter vectors vi.

(d) Create �ne positional variations of the PET ventricle using matrices T
i

MST
, i =

0; : : : ; 2n.

(e) Compute MST-based shape descriptors d
i

pet
, i = 0; : : : ; 2n of the PET ventricle varia-

tions.

(f) Perform a matching of PET ventricle variation shapes to MR ventricle shape, i.e.

choose k 2 [0; 2n] such that k dk
pet
� dmr k�k dipet � dmr k, i = 0; : : : ; 2n.

(g) x vk

(h) g  g=2

12. T
k

MST
is the matrix which maps the PET volume to the position of the MR volume.

Let us now examine, for Algorithm 6.4 the number of points in the search space that have to

be parsed for a given accuracy. Let g be the initial grid size and N be the number of multi-grid

levels (see Algorithm 6.4). For simplicity, let the dimension n of the parameter space be equal

to one. The minimum grid size is equal to � = g2�N+1 and represents the maximum accuracy..

The size l of the parameter (search) space that can be examined by the multi-grid algorithm is

then equal to

l = g + g2�1 + � � �+ g2�N+1 = 2g(1� 2�N) (6.1)
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The number of points that have to be parsed is equal to two for each level of the multi-grid

algorithm. Therefore we see in this one-dimensional example that to search a subset of the

search space of size l with accuracy � the number of search points is equal to

Ns1 = 2N (6.2)

In order to demonstrate the computation e�ciency of the above multigrid algorithm we

compute the required number of points to be parsed with the Algorithm 6.3. We assume that

the same search space subset has to be searched and with the same accuracy. The number of

points to be parsed is simply given as

Ns2 = l=�+ 1 = 2N (6.3)

Note that the above numbers are obtained for the case of the one-dimensional parameter

search space. It can be easily veri�ed that in the case of n-dimensional parameter search space

the numbers of points become (2N)n and 2nN for multi-grid and basic algorithms, respectively.

Since a MST shape descriptor has to be computed for each point, this shows the proposed

multi-grid algorithm has a huge advantage in computational e�ciency. The number of shape

descriptors that has to be computed for a given accuracy is shown in Table 6.1. In this example,

n = 3 (three-dimensions). We can see that the number of search space points to be parsed

increases slower for the multi-grid algorithm then for the basic algorithm.
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N Ns1 Ns2

1 8 8
2 64 64

3 216 512
4 512 4096

5 1000 32768

Table 6.1: Numbers of operations for the multi-grid and the basic algorithm.

6.4 Methods and Procedures

Four steps of the brain registration procedure are described in the following subsections. The

preprocessing step is applied to original MR and PET images in order to eliminate varying

brightness. An automatic brain segmentation procedure is used to extract the position of the

brain. Additional slices are interpolated between the original brain slices. Finally, the iterative

principal axis procedure is performed to correlate MR and PET images.

6.4.1 Preprocessing

The original brain images vary in brightness. For example, peripheral slices (bottom or top)

have a lower brightness then slices located in the middle of the brain. To achieve uniform

brightness a histogram-based K-means clustering algorithm is applied to original input slices. It

determines the position of background pixel values, brain tissue pixel values, and brain skull pixel

values in the histogram. The determined characteristic values are used to perform a non-linear

histogram mapping. The resulting image has three characteristic gray scale ranges shifted to a

prede�ned positions. The preprocessed set has much smaller brightness variation enabling easier
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segmentation.

6.4.2 Brain Segmentation

The segmentation step has the role of extracting the brain i.e. creating a binary volume showing

the position of the brain. The di�culty of this step lies in the fact that other parts of the head

anatomy are contained in the scan, too. Therefore an intelligent procedure is necessary in order

to eliminate extraneous parts of the anatomy which must not be included in the brain volume.

The problem is that other anatomical structures are often of similar brightness and/or connected

to the main brain volume. A user interaction is necessary here to direct the decision process of

the program. The segmentation procedure is designed in such a way to minimize necessary user

interaction. The �rst step is image thresholding. The thresholding level is determined by the

parameters of the previous histogram-modi�cation preprocessing step. The value of the 90 % of

the standardized brain gray tissue pixel value was used here. The resulting thresholded image

typically has `holes' and `islands' which are eliminated by region growing processes. Most of

the bays are eliminated using morphological 2-D closing operation [88] with disk-like structuring

element of size 16 pixels in diameter. This size was found to be a good compromise for eliminating

bays but not connecting extraneous parts of the anatomy to the brain volume. After each slice

is processed a �nal step of 3-D morphological processing is applied to eliminate possible errors

in previous steps. A 3-D morphological closing is applied in order to �ll possible gaps in the

volume between two slices which may have occurred as a result of erroneous segmentation. A

subsequent step of 3-D morphological opening is performed for the same reason. The described
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procedure segments out brain volume correctly in 90 % of MR slices and 97 % of PET slices

while user correction is required for erroneously segmented slices. PET segmentation is more

accurate because the skull is not present in PET scans.

The �rst step extracts head mask:

Algorithm 6.5 Brain segmentation: Part I.

1. for each image in a scan set do

(a) threshold image at level 50.

(b) morphologically erode to break "rings" outside the skull which are sometimes present.

(c) grow a region from outside to �ll holes in the brain.

(d) morphologically erode to shrink the extent of the mask.

The head mask is then used as follows:

Algorithm 6.6 Brain segmentation: Part II.

1. for each image in a scan set do

(a) threshold image at level 130.

(b) invert image. (This gives all pixels with values less then 130.

(c) multiply by the mask.

(d) morphologically dilate to isolate ICH regions close to the skull.

(e) grow a region from outside to �ll holes in the brain.
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(f) morphologically erode to shrink the extent of the brain.

(g) multiply the binary result with the original gray scale image to extract the brain without

skull.

6.4.3 Ventricle Segmentation

In this section, procedures for extraction of the ventricle from MR and PET brain images are

presented. The extraction of the MR ventricle is an easier problem because the ventricle can be

extracted using T2-weighted and proton density images. The extraction is based on the fact that

the ventricle appears white in a T2-weighted image while it is dark in a proton density image.

The rest of the brain anatomy is approximately of the same brightness. This fact gives rise to a

segmentation based on subtraction of a proton density image from a corresponding T2-weighted

image.

The outline of the MR ventricle segmentation procedure is as follows.

Algorithm 6.7 The basic MR ventricle segmentation.

1. Subtract proton density image from T2-weighted image.

2. Threshold the result.

3. Perform morphological closing to �ll holes and connect ventricle structure.

4. Correct the result manually, if necessary.

On the other hand, a segmentation of PET ventricle is more di�cult because the ventricle is

not easily recognized in a PET image. For this reason, the segmentation of the PET ventricle is
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performed after the IPAR registration is �nished since at that time the approximate position of

PET relative to MR is known.

Algorithm 6.8 The basic PET ventricle segmentation.

1. Use MR ventricle to mask gray scale voxels within the PET ventricle.

2. Compute the histogram of the masked PET volume to determine the optimal threshold for

PET ventricle segmentation.

3. Threshold the PET volume.

4. Perform morphological closing to �ll holes and connect ventricle structure.

5. Correct the result manually, if necessary.

6.4.4 Interpolation

A shape-based interpolation [239] is used to create a full volume with slice thickness equal to the

slice pixel size. Typically, the pixel size is of the order of 0.5 mm while the original slice thickness

is of the order of 1 cm. Shape-distance maps are computed and cubic interpolation is used to

add new slices at required positions. Interpolated gray scale images are then thresholded to get

the full MR and PET binary volumes. The procedure steps are summarized as follows.

Algorithm 6.9 Shape-based interpolation.

1. Input a binary image.
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2. Compute the Euclidean distance transform of the input image.

3. Interpolate additional slices between the distance transform images of the original slices.

4. Threshold the result at zero.

The distance transform is computed so that each pixel in output image has the value equal to the

distance of that pixel to the closest border. In addition, pixels "inside" the shape are assigned

positive values while pixels "outside the shape are assigned negative values. This is followed by

a cubic interpolation which adds an additional slice at any position between middle two of any

four consecutive slices. Four slices are required to uniquely determine the third-order polynomial.

The result is thresholded at zero level to obtain the resulting binary images.

6.4.5 IPAR

The iterative principal axis algorithm is used to correlate MR brain volume and partial PET brain

volume. In this work, an improved IPAR algorithm was used. The improved version uses the

original idea [4, 2] but has an improved iteration algorithm. To eliminate of problem of possible

oscillating and not converging to a solution a weighting of partial solutions is introduced which

insures convergence towards the solution. Assume that vector Si denotes the PAR parameters

of the MR volume in the iteration i of the algorithm. The original algorithm used this vector

to perform translations and rotations in order to align the volume. The improved iteration

algorithm takes the previous value of the principal axis parameters in the account in order to

prevent possible divergence from the solution. The actual PAR parameters at iteration i are

173



computed as

S

0

i
= �Si + (1� �)Si�1 (6.4)

where � 2 (0; 1). The result is a more uniform and monotone convergence to the solution.

6.4.6 MST-based Registration

The MST-based multi-modality registration is based on the matching of a MR ventricle shape

with a PET ventricle shape. The accuracy of the method depends on the accuracy of the ventricle

segmentation. The ventricle segmentation is performed as explained in Section 6.4.3. The multi-

grid algorithm based on the recursive search of the shape descriptor space is used as described

in Section 6.3.

6.5 Physical Brain Phantom

To perform an objective evaluation of a registration algorithm it is necessary to use a brain

phantom. The evaluation using the real patient data is di�cult because of the lack of clear

landmarks that can be located in both MR and PET brain images. A brain phantom can be

designed to contain landmarks which can be clearly detected in both MR and PET scans. In this

section a brain phantom used for experimental evaluation of IPAR and IPAR/MST procedures

is described.

The phantom utilized here is actually a combination of two phantoms. The �rst phantom

is a phantom with anatomical details (gray, white matter and bone) shown in Figure 6.2. It
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�g/phan-graywhite.ps

Figure 6.2: Brain phantom with anatomical details.

is a much simpli�ed model of the human brain structure. The second phantom is a phantom

developed by Derenzo et al. [52]. It consists of tubes of variable diameters and spacings as shown

in Figure 6.3. The tubes are used as landmarks because their position can be easily determined

in both MR and PET images. The tube diameters (spacings) in millimeters are as follows: 6.25

(25), 5 (20), 4 (16), 3.5 (14), 3 (12), and 2.5 (10). A cross section detail of Derenzo phantom (as

seen by MR) is shown in Figure 6.4. The overall diameter of the phantom is 200 mm.

The anatomical phantom is required for IPAR and MST algorithms while Derenzo phantom is

needed for registration error estimation. These requirements are met in a combination of the two

phantoms mentioned above. The combined phantom is formed by rigidly joining two phantoms

as shown in Figure 6.5. The resulting phantom is scanned using MR and PET imaging modality

as a single phantom.
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Figure 6.3: Derenzo brain phantom.

�g/phan-derenzo-slice.ps

Figure 6.4: A MR slice of Derenzo brain phantom.

176



�g/phan-comb.ps

Figure 6.5: A combined brain phantom.

6.6 Experimental Results

A validation of the proposed registration method is conducted in two di�erent ways using both

a physical phantom and a real patient data. An objective evaluation of the method is performed

through the use of a combined physical brain phantom described in Section 6.5. It provides

a quantitative comparison between the IPAR and the IPAR/MST registration procedures. A

subjective evaluation of the registration is performed using the real patient brain images. The

evaluation is performed through a visual comparison of the IPAR and the IPAR/MST registration

results by a human observer.

The experiments are conducted as follows. Multi-modality brain images were �rst registered

using the IPAR technique based on the MR and PET brain volume. In the second step, the
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IPAR/MST registration method is used as described in Section 6.3.

The six parameters determining the position of the brain in the space are x, y, and z coordi-

nates and �, �, and  angles of principal axis. The multigrid algorithm described in Section 6.3.2

is used to make variations of the three angle parameters and search recursively for the best match.

Only three parameters are variated in order to reduce the number of shape variations to be exam-

ined. Using three parameters, there are 23 = 8 variations at each step of the multi-grid algorithm.

With six degrees of freedom the number of combinations grows to 26 = 64 at each step of the

algorithm causing much longer execution time. In support of this argument, there is a much

higher uncertainty associated with the principal axis angle estimation then with the centroid

estimation. The compact, ball-shaped brain is the main reason for this claim. Ball-shaped forms

are di�cult to characterize using the principal axes because of the symmetric nature of the form.

For this reason, the centroid parameters estimated by the IPAR method are kept constant and

only principal axis angles are variated.

The physical brain phantom and real data experiments are presented in the next two sections.

6.6.1 Brain Phantom Experiment

The brain phantom experiment is performed as follows. The combined physical phantom de-

scribed in Section 6.5 is scanned using MR and PET scanners and two sets of phantom images

are obtained. The anatomical section of the phantom is used to perform IPAR and MST reg-

istrations, while Derenzo part of the phantom is used for error measurement. In the �rst step

the IPAR algorithm is performed. The phantom brain is segmented in MR and PET images to

178



create the binary volume data for IPAR algorithm. The IPAR registration is performed and the

PET data transformed (rotated and translated) to align it with the MR data. In the second step

the MST-based registration is performed as follows. The internal anatomical phantom structure

is segmented in MR and PET images and used as the brain ventricle in the real brain. The MST

registration is then performed and another set of registered PET images is created by rotation

and translation. The I-shaped three-dimensional structuring element is used for MST shape

description.

The original phantom MR images are shown in Figure 6.6 and the original phantom PET

images are shown in Figure 6.7. The registered images are shown with MR brain contour super-

imposed on the PET image data. The IPAR registered images are shown in Figure 6.8 while the

IPAR/MST registered images are shown in Figure 6.9.

The MR pixel size is equal to 0:9375 mm and the MR slice thickness is equal to 5 mm. The

PET pixel size and slice thickness is equal to 1:56 mm and 6:75 mm, respectively. MR and PET

images are interpolated in all three dimensions so that the cubic voxels of size equal to 0:9375

mm are created.

The resulting images reect the accurate registration. However, a quantitative analysis pre-

sented bellow is required for an objective evaluation of results.

6.6.2 Brain Phantom Registration Error Analysis

The mismatch between Derenzo tube positions in registered MR and PET images is used to

measure the error. The tubes with the largest diameter are used since smaller diameter tubes
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Figure 6.6: Original phantom MR images.
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�g/phantom/orig.pet/slice.11�g/phantom/orig.pet/slice.12�g/phantom/orig.pet/slice.13�g/phantom/orig.pet/slice.14�g/phantom/orig.pet/slice.15

Figure 6.7: Original phantom PET images.
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Figure 6.8: IPAR registered phantom PET images. MR brain contours are superimposed on

PET brain image.
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Figure 6.9: IPAR/MST registered phantom PET images. MR brain contours are superimposed

on PET brain image.

182



�g/phanregerr/mrslice.13 �g/phanregerr/petslice.13

Figure 6.10: Registered Derenzo phantom MR and PET slices (IPAR algorithm).

are not registered by PET due to a limited PET resolution. To determine the position of the

tubes registered gray scale images are thresholded so that the resulting binary images have the

same area. The exclusive or operation is performed between binary images to reveal mismatched

areas. A larger registration error will generate a larger mismatched area. The area of the

mismatched regions is computed to obtain a quantitative measure of the registration accuracy.

The following example is used to better illustrate the steps of the error estimation procedure.

An example of registered MR and PET images is shown in Figure 6.10. The registered images are

thresholded and the largest diameter tubes are used for error estimation as shown in Figure 6.11.

To determine the amount of mismatch the exclusive or operation is performed between the

thresholded images and the result is shown in Figure 6.12. It is obvious that the mismatched

region area is smaller for the IPAR/MST algorithm then for the IPAR algorithm. This means

that the IPAR/MST algorithms improves the accuracy of the IPAR algorithm.
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�g/phanregerr/mrslice.13.thr �g/phanregerr/petslice.13.thr

Figure 6.11: Thresholded registered Derenzo phantom MR and PET slices (IPAR algorithm).

�g/phanregerr/xor13.ipar �g/phanregerr/xor13.mst

Figure 6.12: Mismatch between MR and PET registered Derenzo phantom slices for IPAR and

IPAR/MST algorithms.
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The Derenzo slices with odd indices are used to perform error analysis. The odd slices are

selected to reduce the number of slices required for computation.

Let tMR

i
and tPET

i
be the binary images obtained by thresholding the i-th registered MR and

PET images, respectively. Note that A(tMR

i
) = A(tPET

i
) where A(:) denotes the area operator.

The relative error is obtained by dividing the mismatched area by the double tube area as follows.

�i =
A(tPET

i
_tMR

i
)

2A(tMR
i )

(6.5)

where i denotes the image index and _ operator denotes the exclusive or operation. Note that

0 � �i � 1. �i is also called the relative mismatched area. The average relative error for a set of

N slices is determined as follows.

� =
1

N

X
i

�i (6.6)

Relative errors for odd Derenzo slices for IPAR and IPAR/MST registration are shown in

Table 6.2. It is evident that the IPAR/MST algorithm reduces registration error, i.e. improves

registration accuracy. The di�erence in accuracy is also evident in Figure 6.12 where it is obvious

that the mismatched region area is larger for IPAR then for IPAR/MST algorithm.

A di�erent measure of registration error is the distance between the centroids of the corre-

sponding Derenzo disks [3]. It can be shown that the relative mismatched area and the centroid

distance measures are not independent. Moreover, the two measures are related by an expression

shown in Equation 6.7. The expression is easily derived by computing the area of intersection

of two disks and subtracting it from the total area. Consider two overlapping disks of radius r
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Slice IPAR IPAR/MST

11 0.68 0.46
13 0.90 0.64

15 0.78 0.56
17 0.78 0.60

19 0.76 0.60

avg 0.78 0.57

Table 6.2: The relative errors for Derenzo slices (11,13,15,17,19) and the average error for IPAR

and IPAR/MST algorithms.

�g/phanregerr/twocirc.ps

Figure 6.13: The relative mismatched area.

as shown in Figure 6.13. The distance between their centroids (centers) is equal to 2h, where

h � r. The relative mismatched area is equal to the ratio of the mismatched area to the double

disk area as shown in Equation 6.5.

� = 1� 2

�

(arccos x� x
p
1� x2) (6.7)
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�g/phanregerr/errplot.ps

Figure 6.14: The relative mismatched area vs. relative centroid distance.

where

x =
h

r

(6.8)

is the relative centroid distance. If h = 0 no error is present and � = 0. On the other side, if

h = r the relative error � = 1 results. Note that the relative mismatched area is only de�ned for

the centroid distance range 0 � 2h � 2r. In other words, it can only be used when the centroid

distance is within the range [0; 2r]. This is not a problem since the radius r can be selected large

enough to satisfy the above requirement. The plot of � as a function of x is shown in Figure 6.14.

It is evident from the plot that the relative mismatched area changes "almost" linearly with the

relative centroid distance. Due to a nonlinear nature of Equation 6.7 it is impossible to explicitly
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express the relative centroid distance in terms of the relative mismatched area.

Having developed the relation between the two error measures it is possible to estimate

indirectly the centroid distance from the mismatched area. For example, the average relative

mismatched area for IPAR method shown in Table 6.2 is equal to 0:78. Reading the graph in

Figure 6.14 we estimate the corresponding relative centroid distance to approximately 0:66. It

follows that the centroid distance is equal to 2h = 0:662r. The average disk radius in the phantom

data experiment is r = 3:95 pixels what leads to the centroid distance of 2h = 5:21 pixels. Since

the pixel size is equal to 0:9375 mm, the centroid distance is equal to 5:21� 0:9375 = 4:88 mm.

The centroid distance error measure for IPAR/MST method is computed similarly. The average

mismatched area is equal to 0:57 and the graph in Figure 6.14 gives the corresponding relative

centroid distance of 0:47. The resulting centroid distance is equal to 2h = 3:71 pixels. The pixel

size of 0:9375 mm means that the centroid distance is equal to 3:47 mm.

6.6.3 Real Patient Data Experiment

The experimental results obtained using real patient data are presented in this section. Here,

a subjective evaluation by a human viewer is performed. The original MR brain data is shown

in Figure 6.15 and the original PET data is shown in Figure 6.16. The registration result

is represented by superimposing the MR brain contour on the PET image data. Figure 6.17

shows the IPAR registered images. The IPAR/MST registered images are shown in Figure 6.18.

Table 6.3 shows the distances between MST shape descriptor for MR ventricle and MST shape

descriptors for rotationally variated PET ventricles. The PET variation corresponding to the
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Figure 6.15: Original MR images.

P0 P1 P2 P3 P4 P5 P6 P7 P8

7.67 7.45 7.47 7.49 7.47 7.56 7.51 7.47 7.47

Table 6.3: PET ventricles to MR ventricle shape distance using MST shape description.

smallest distance is selected as the most accurate one.

Visual inspection of the resulting registered images shows an improvement in registration

quality of IPAR/MST algorithm over IPAR algorithm. However, this evaluation is subjective

while an objective method is presented in the previous section.
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Figure 6.16: Original PET images.
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Figure 6.17: IPAR registered PET images. MR brain contours are superimposed on PET brain

image.
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Figure 6.18: IPAR/MST registered PET images. MR brain contours are superimposed on PET
brain image.
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Chapter 7

Optimal Morphological Shape

Description for Brain Image

Registration

A new method for selection of the optimal 2-D structuring element for MST shape description

and matching is presented in Chapter 5. A novel approach to brain image registration is proposed

in Chapter 6. In this chapter, we describe an improved version of the algorithm for MST brain

image registration. The algorithm is improved in the sense that it uses the optimal structuring

element. The method is called IPAR/OMST registration, where the letter O stands for optimal.

In this section, a genetic algorithm procedure for the selection of a near-optimal 3-D struc-

turing element is described. The principle is similar to one described in Chapter 5.
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7.1 Introduction

A new genetic algorithm procedure has been used to determine a near-optimal three-dimensional

structuring element for OMST-based shape description method. The OMST-based method is

used to improve the accuracy of the IPAR registration as described in Section 6.3. The most

signi�cant di�erence between the genetic algorithm presented here and the one presented in

Chapter 5 is the number of dimensions.

In the brain registration application, a three-dimensional structuring element is required for

OMST-based shape description of a three-dimensional (3-D) brain ventricular structure. The

3-D structuring element is used to describe �ne 3-D positional variations of the PET ventricle

as explained in Section 6.3. Fine positional variations represent just minor changes in the shape

of the object (ventricle). For this reason it is necessary to select a structuring element which

is able to distinguish between several positions of the object. (The objects produced by �ne

positional variations are very similar with respect to morphological erosion.) The optimal struc-

turing element is de�ned as the one which provides the best discrimination between the �ne 3-D

positional variations of the ventricle. It is important to emphasize that the MST shape descrip-

tion algorithm used here is designed not to use rotated structuring elements (see Section 4.3.1).

This is necessary because in this (registration) application a sensitivity to rotational changes is

desired as opposed to a shape description application (Chapter 4) where invariance to rotation

is desired.

A genetic algorithm is the method of choice for the problem of selecting the 3-D optimal

structuring element. In the 3-D case there are even more arguments for the use of genetic
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algorithm then in the 2-D case. The following example shows why is this so. With 2-D structuring

elements of size 8�8 there are 28�8 = 264 possible combinations (di�erent structuring elements).

In case of 3-D structuring elements this number grows to 28�8�8 = 2512. This also means that

the 3-D search space is much larger the the 2-D search space. However, a genetic algorithm is

especially suited for optimization problems in large search spaces where an exhaustive search is

not feasible. In that case, the genetic algorithm provides a near-optimal solution which is often

satisfactory in practical applications.

7.2 Implementation of Genetic Algorithm

The basic structure of the 3-D genetic algorithm is similar to that of the 2-D genetic algorithm

described in Chapter 5. However, there are several changes due to a di�erence in dimensions (two

vs. three). The cubic chromosome is used in 3-D which is analogous to the square chromosome

in the 2-D application. Reproduction, crossover, and mutation algorithms from Chapter 5 are

extended to three dimensions. The same kind of a variable crossover rate controlled by the

population entropy is used in 3-D algorithm. A block-diagram of the 3-D genetic algorithm

optimization procedure is represented in Figure 7.1. The principal di�erence between 2-D and

3-D algorithms as compared to Figure 5.1 is that the input shapes in 3-D case are obtained from

a single shape by means of �ne positional variations of the original 3-D shape. This is because

we are looking for the 3-D structuring element which best discriminates between �ne positional

variations of the single (original) 3-D shape.

A primary positional variation used here is 3-D rotation. To understand why is this so it
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�g/genalg3d.ps

Figure 7.1: Block-diagram representation of the 3-D GA optimization procedure.

is important to look at the principal axis registration algorithm and its sensitivity to noise.

Six parameters of the volume obtained by principal axis transform are three center of mass

coordinates and three angles of principal axes with respect to coordinate axes. The center of

mass coordinates are robust to noise. The principal axes angles are more sensitive to noise since

brain volume is approximately ball-shaped. For round shapes principal axes angles are more

sensitive to changes in shape due to non-ideal segmentation and/or noise. For this reason only

the three principal axes angles are variated to achieve better registration.

The resulting structuring element is called the optimal structuring element. The second

principal di�erence compared to the shape description application described in Chapter 5, as

explained in the previous section, is that in this application the MST shape description algorithm
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is made sensitive to rotational change. This is achieved by the use of the single structuring

element for shape description (no rotated versions).

7.3 Experimental Results

A validation of the proposed registration method is conducted in the same way as in Chapter 6.

Both a physical phantom and a real patient data are used. The combined physical brain phantom

is described in Section 6.5. It provides a quantitative comparison between the IPAR and the

IPAR/OMST registration procedures. A subjective evaluation of the registration is performed

using the real patient brain images. The experiments are conducted using the same data and in

the same way as in Chapter 6.

7.3.1 Brain Phantom Experiment

The brain phantom experiment is performed as explained in Section 6.6.1 and the same phantom

MR and PET data is used. The only di�erence is that the optimal structuring element is used

which is determined by means of a genetic algorithm as described in Section 7.2. The change

of the average �tness vs. generation is shown in Figure 7.2. The slices of the optimal 3-D

SE obtained by means of GA are shown in Figure 7.3. The 3-D structuring element size is

4� 4� 4. The original phantom MR images are shown in Figure 6.6 and the original phantom

PET images are shown in Figure 6.7. The registered images are shown with MR brain contour

superimposed on the PET image data. The IPAR registered images are shown in Figure 6.8 while

the IPAR/OMST registered images are shown in Figure 7.4. The resulting images demonstrate
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�g/phantom.opt/avg�tness.ps

Figure 7.2: Average �tness vs. generation.

�g/phantom.opt/se/sl.00�g/phantom.opt/se/sl.01�g/phantom.opt/se/sl.02�g/phantom.opt/se/sl.03

Figure 7.3: The slices of the optimal 3-D structuring element.
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Figure 7.4: IPAR/OMST registered phantom PET images. MR brain contours are superimposed
on PET brain image.

the accurate registration.

7.3.2 Brain Phantom Registration Error Analysis

The error analysis is performed as explained in Section 6.6.1. The mismatch between Derenzo

tube positions in registered MR and PET images is used to measure the error. Relative errors

for odd Derenzo slices for IPAR and IPAR/OMST registration are shown in Table 7.1. The

results are slightly better then in the experiment described in Chapter 6. This is due to a fact

that a better structuring element is used for MST registration. The genetic algorithm procedure

enabled the selection of the better, optimal structuring element. Using the relation between
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Slice IPAR IPAR/OMST

11 0.68 0.45
13 0.90 0.57

15 0.78 0.56
17 0.78 0.60

19 0.76 0.60

avg 0.78 0.56

Table 7.1: The relative errors for Derenzo slices (11,13,15,17,19) and the average error for IPAR

and IPAR/OMST algorithms.

the two error measures (the centroid distance and the average relative mismatched area) which

is developed in Chapter 6 it is possible to estimate the centroid distance from the mismatched

area. The centroid distance error measure for IPAR/OMST method is computed similarly. The

average mismatched area is equal to 0:56 and the graph in Figure 6.14 gives the corresponding

relative centroid distance of 0:46. The resulting centroid distance is equal to 2h = 3:63 pixels.

The pixel size of 0:9375 mm means that the centroid distance is equal to 3:40 mm.

7.3.3 Real Patient Data Experiment

The experimental results obtained using real patient data are presented in this section. The

same patient data is used as in real patient data experiment in Chapter 6.

In the �rst step, the optimal structuring element is determined using the genetic algorithm

procedure as presented in Section 7.2. The brain ventricle is extracted from MR images and

used to generate �ne positional variations as shown in Figure 7.1. The change of the average

�tness vs. generation is shown in Figure 7.5. The slices of the optimal 3-D SE obtained by

means of GA are shown in Figure 7.6. The 3-D structuring element size is 4� 4� 4. Due to a
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Figure 7.5: Average �tness vs. generation.

�g/real.opt/se/sl.00�g/real.opt/se/sl.01�g/real.opt/se/sl.02�g/real.opt/se/sl.03

Figure 7.6: The slices of the optimal 3-D structuring element.
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Figure 7.7: IPAR/OMST registered PET images. MR brain contours are superimposed on PET
brain image.

lack of objective evaluation method for real patient images, a subjective evaluation by a human

viewer is performed here. The original MR brain data is shown in Figure 6.15 and the original

PET data is shown in Figure 6.16. The registration result is represented by superimposing the

MR brain contour on the PET image data. Figure 6.17 shows the IPAR registered images.

The IPAR/OMST registered images are shown in Figure 7.7. Visual inspection of the resulting

registered images shows an improvement in registration quality of IPAR/OMST algorithm over

IPAR algorithm.
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Chapter 8

Conclusions and Further Work

In this chapter, the presented material is summarized and possible directions for the future work

are discussed.

8.1 Overview

An introduction to the foundations of mathematical morphology is given in Chapter 2. Basic

morphological operations have been de�ned and their properties examined.

An overview of shape description methods is presented in Chapter 3. Most inuential theories

of visual perception are briey mentioned. Shape description methods have been divided into

classes and most important and characteristic approaches addressed. Typical shape matching

procedures are reviewed.

The main topic of this dissertation is the morphological shape description. The following new

methods and applications are proposed.
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1. Morphological Signature Transform (MST) based method for shape description (Chap-

ter 4).

2. Genetic algorithm based method for the optimal shape matching (Chapter 5).

3. Application of MST-based shape description to medical image registration problem (Chap-

ter 6)

4. Genetic algorithm based method for the optimal medical image registration (Chapter 7).

8.2 Proposed Methods and Applications

8.2.1 Morphological Shape Description

A novel shape description method has been proposed in Chapter 4. The proposed shape descrip-

tion algorithm is based on the Morphological Signature Transform (MST) for decomposition

of a shape to a number of signature shapes. The method uses the areas of successively mor-

phologically eroded images and the multiresolution representation of the input image to obtain

morphological descriptors. The morphological descriptor is computed using rotated and scaled

versions of the images, and one (or more) structuring elements. The resulting morphological

descriptor is invariant to rotation, scaling, and translation. The shape description method has

been applied to the shape matching problem. The proposed MST can be classi�ed into the global

space domain methods but the MST-shape description is a global scalar transform technique.

Experiments have shown that the method exhibits invariance to rotation, scaling and translation

203



and is robust to the noise.

Maragos [173] used the derivative of the expression similar to Equation 4.11 with respect

to scale p to characterize shape properties (the morphological opening instead of erosion and

the convex disk-shaped structuring element are used). However, in general case of non-convex

structuring elements, the approach presented here provides additional shape information. That is

because the approach described here uses double multiscaling to vary both the scale of the object

and the scale of the structuring element, as opposed to a scaling of the structuring element only

in [173]. In addition, the MST shape description method uses multiple structuring elements to

provide an increased sensitivity to the various shape properties.

The proposed shape description algorithm is based on decomposition of the initial shape to

a number of signature shapes. The question that might be posed here is whether the areas of

signature shapes or the areas of the residues (that is di�erences between the successive signature

shape areas) should be used as a shape descriptors. The real number sequence of the successive

areas can be viewed as a discrete signal. The sequence of the residues (�rst order di�erences of

the successive areas sequence) can then be viewed as a derivative of the areas sequence. It is well

known from the linear �ltering theory that derivation procedure enhances high frequency noise

in the signal. Therefore, the residual approach would yield the shape descriptor which would

contain more noise then the area approach. Therefore the algorithm proposed here uses area as

the basic shape descriptor instead of residue which is more prone to noise.

The proposed MST-based method can be applied to any n-dimensional object representation

and recognition problem.
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8.2.2 Optimal Shape Matching

A new method for the selection of the optimal structuring element for use with the morphological

signature transform (MST) based shape representation method is proposed in Chapter 5. The

method uses genetic algorithm to search for the optimal structuring element for description

of a prede�ned class of model shapes. A novel two-dimensional crossover operator with two

crossover points is used in genetic algorithm. The entropy of �tness values is used to estimate the

population diversity. The crossover rate is variable and is determined by the population diversity

in order to avoid the problem of premature convergence. The obtained optimal structuring

element has been evaluated on the shape matching problem. Experiments have shown that the

optimal structuring element enables accurate shape matching and is robust to the noise. The

matching is optimal in the sense of best shape discrimination. The best shape discrimination is

achieved when the minimal distance between the shape descriptors of a given class of shapes is

maximized.

8.2.3 Application of Morphological Shape Description to Medical

Image Registration

The IPAR and MST-based shape description method has been applied to the problem of multi-

modality medical image registration. The method consists of two major steps. In the �rst step,

the IPAR algorithm is used for initial registration of MR and PET volumes. In the second step,

the MST-based brain ventricle shape matching is performed for more accurate registration. A

multi-grid method for the search of the ventricle principal axis angle space has been developed.
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The multi-grid algorithm has a higher computational e�ciency then a simple search algorithm.

The validation of the new IPAR/MST method is conducted in two di�erent ways. The

experiments were performed using a physical brain phantom and a real patient MR and PET

brain data. The physical phantom was used for an objective validation and error estimation

of the registration procedures. It has been demonstrated quantitatively that the IPAR/MST

algorithm improves the accuracy of the original IPAR algorithm. The real patient data was used

for a subjective visual evaluation of the registration performance.

8.2.4 Optimal Medical Image Registration

A genetic algorithm procedure for selection of the optimal 3-D structuring element for IPAR/MST

registration is presented. The procedure provides the structuring element which is optimal in

the sense of the best ventricle position discrimination. This allows the optimal selection of one

of the �ne ventricle positional variations.

Experimental results show that the optimal IPAR/MST method performs better then with-

out the optimization of the structuring element. In the worst case, without optimization, a

registration may be inaccurate if unsuitable structuring element is selected. However, the use of

optimization procedure guarantees that the optimal structuring element is used and that accurate

registration results are achieved.

206



8.3 Future Work

The future work on MST-based shape description will include investigation of other morpholog-

ical operations for generation of signature shapes. A shape descriptor other then area could be

used for description of signature shapes.

Possible genetic algorithm improvements include di�erent chromosome representations of the

problem, other crossover operators, and di�erent �tness functions (optimization criteria).

Application of MST-based description to medical image registration requires measurements

on a larger data set for a better veri�cation of the technique.
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