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1. Introduction

Researchers have shown that the parallel random access machine (PRAM)
models such as the exclusive read exclusive write (EREW) model, the CREW
(concurrent read exclusive write) model and the CRCW (concurrent read concurrent
write) model are too idealistic to be implementable currently. Even if parallel al-
gorithms developed in these models are very efficient, they are only for theoretical
interest. For example, consider the implementation of a CRCW PRAM model with p
processors and a global memory of m words [16]. By definition, the processors are
connected to the memory through a set of switching elements such that these p
processors will be able to random access any distinct memory-cell of m words si-
multaneously. To ensure such connectivity, the total number of switching elements
must be ©(mp). For a reasonable memory size, it is very expensive to construct such
a network. Thus, PRAM models of computation are impossible to realize in practice
[16]. With the advance of VLSI technology, more practical and implementable
parallel processing systems such as the array of processors, the mesh-connected
computers, the hypercube multiprocessors and so on have been constructed by in-
terconnection networks, even though the computation power of them is less that that
of PRAM models [10,13]. A higher time complexity could be required for algorithms
to be developed in such an architecture due to global communications but sometimes
it can be developed as good as or even better than that developed in PRAM models.
To overcome the long distance communications, embedding the existing parallel
processing systems with global buses (usually called as broadcast-based networks)
have been done by many researchers recently [1,4,7,9,12,14,19,20,22,23,30,33].

There are various features of the broadcast-based networks such as the broadcast
communication model, the multi-channel broadcast network, the mesh-connected
computers with multiple broadcasting, the generalized mesh-connected computers
with multiple buses, the mesh-connected computers with hyperbus broadcasting and
the reconfigurable network [1,4,7,9,12,14,19-24,30,32,33]. The broadcast communi-
cation model (BCM) [9,19,33] is the simplest architecture of the broadcast-based
networks in which all processors are connected only by a global bus. Each processor
in this model can communicate with others only through this broadcasting bus. For
the sake of reducing the time complexity, the multi-channel broadcast network
(MCBN) [21] is constructed as an enhanced model of the BCM by extending the
number of broadcasting buses to k. For the sake of reducing the system diameter, the
mesh-connected computers with multiple broadcasting (MCCMB) [4,17,31] are
constructed by embedding the global buses to the mesh-connected computers. In
order to increase the parallelization of the executing algorithm, the generalized mesh-
connected computers with multiple buses (GMCCMB) [7] are proposed by parti-
tioning MCCMB into several individual modules and all modules are connected
through global buses only. Recently, Horng [12] extended the mesh-connected
computers with hyperbus broadcasting (MCCHB). Such an extension led to this
machine more powerful than other enhanced mesh-connected computers. Owing to
the reconfigurability of the bus system, many researchers paid their attentions to the
reconfigurable networks (RN) and had developed many constant time algorithms
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based on this architecture. An RN can be defined to be a set of processors connected
to reconfigurable bus system whose configuration can be dynamically changed by
properly setting local switches within each processor. Many RNs have been pro-
posed including the reconfigurable meshes [23], the polymorphic torus architecture
[20,22], the processor arrays with a reconfigurable bus system [32] and the re-
configurable array of processors [14].

A hyper-bus broadcast network (HBBN) is one of the broadcast-based networks.
It consists of processors only sharing by some global buses and there are no local
links between processors. Compared to the other broadcast-based networks, this
architecture has the following two properties. First, by connecting processors with
the global buses along each dimension constructed in the system, it can reduce the
bus-contention problem caused by the BCM and the MCBN. Second, since it has no
local buses between processors, it can save silicon area when it is directly imple-
mented by a VLSI chip. In other words, it can be recognized as a reduced compu-
tation model of the MCCMB, GMCCMB, MCCHB and RN; obviously, the
algorithms derived on the HBBN under the O(log N)-bit natural bus width can be
adapted to run on these models with the same time and processor complexities.

A well-known problem-solving paradigm that occurs in many computations is
to reduce a large problem to one or several fundamental data movement prob-
lems and then solve these fundamental data movement problems efficiently. Thus,
the more efficient fundamental data movement algorithms are exploited, the
better performance of the executing algorithms based on them can be achieved.
For example, the leftmost one problem, the prefix maxima/minima problem, the
m-contour problem, the all nearest neighbor problem and the all nearest smaller
values problem all are the well-known fundamental data movement problems,
and they had been extensively studied by researchers and widely applied to the
field of image processing, digitized geometry and computer graphics [2,3,6—
8,11,15,17,25,26,29,31].

In this paper, we will develop several efficient parallel algorithms on the HBBN
for solving the fundamental data movement problems. Note that the proposed al-
gorithms not only can be implemented on the HBBN but also can be easily modified
to run on the other broadcast-based networks such as the MCCMB, GMCCMB,
MCCHB and RN with the same time and processor complexities.

The rest of this paper is organized as follows. We first describe the architecture
upon out algorithms are based in Section 2. Section 3 discusses two fundamental
data movement operations including the logical operation and the maximum/mini-
mum computation. Section 4 develops several well-known fundamental data
movement algorithms. Finally, some concluding remarks are included in the last
section.

2. The hyper-bus broadcast network

In this section, we shall discuss the architecture of the HBBN which is the com-
putation model adopted in this paper.
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A 1-D HBBN (it can be recognized as a single-channel broadcast communication
model) contains N processors. Each processor is identified by a 1-tuple unique index
i,0<i < N. The processor with index 7 is denoted by P.. Within each processor, there
is one port S; connected to the global bus.

A 2-D HBBN contains N; x N, processors as logically arranged in a 2-D grid.
Each processor is identified by a 2-tuple unique index (i,7),0<i < N;,0<j < N,.
The processor with index (7, /) is denoted by P;;. Within each processor, there are
two ports, namely, S| and S,, connected to the i-dimension and j-dimension
global buses, respectively. We show an example for a 1-D HBBN of size 4 in
Fig. 1(a) and also show another example for a 2-D HBBN of size 4 x 4 in
Fig. 1(b).

Assume an HBBN is worked on a word model. For a unit of time, each
processor can either perform arithmetic and logic operations or communicate
with others by broadcasting data on a bus. It allows multiple processors to
broadcast data on the different buses simultancously at a time unit, if there is
no collision. We allow multiple processors to broadcast data on the different
buses or to broadcast the same data on the same bus simultaneously at a time
unit. If more than one processor attempts to broadcast different data on the
same bus simultaneously, then a collision occurs and the final data received are
unexpected. That is, each processor can operate on an arbitrarily individual bit
of the global bus simultaneously. This assumption has been used to solve var-
ious problems by many researchers [14,30]. Practically, the concurrent write
ability is implemented in the content-addressable array parallel processor as
proposed by Shu et al. [30].

One may criticize that the bus driving capacity is limited and there is a
propagation delay for the bus. Technically, the number of fan-out of a CMOS
driver is limited. This problem can be improved by either increasing the driving
power or through the bus buffer. The propagation delay is dependent on the
interconnect material. Metal interconnects will result larger delay than that of
using optical fibers. For example, if the length of the optical fiber is one meter
then the propagation delay along this optical fiber is about 2/3 ns. See Ref. [2§],
for details. Currently, it seems quite impossible to design a chip of size 1 m by 1
m. Hence, for a practical size of the HBBN, both problems caused by the bus are
negligible.

An HBBN is operated in an single instruction stream, multiple data streams
(SIMD) model. An enablel/disable mask can be used to select a subset of the pro-
cessing elements that are to perform an instruction. Only the enabled processors will
perform the same instruction. The remaining processors will be idle. As for easily
presenting out algorithms on a 1-D HBBN or a 2-D HBBN, let var(i) (or var(i, j))
denote the local variable var (memory or register) in a processor with index (i) (or
(i,)). For example, sum(0, 1) is a local variable sum of processor P;. The
complexity of an algorithm is assumed to be the sum of the maximal computation
time among all processors and the communication time among all processors and this
assumption was also used by many researchers [1,3,4,6,9,11,14,17,19-23,26,25,30-
33].
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Fig. 1. (a) A 1-D HBBN of size 4. (b) A 2-D HBBN of size 4 x 4.
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3. Fundamental data movement operations

Two data operations will be described in this section. These two data operations
are used for developing several efficient fundamental data movement algorithms in
the following sections.

3.1. The logical operation

Given a linear HBBN of size &, in which each processor P, 0 <i < N, stores a
Boolean data, the problem is to determine the logical or (logical AND) of these
N Boolean data. By the concurrent-written ability of the global bus, the logical
or (logical AND) of N Boolean data can be determined by the following two
major steps. First, processor P,,0<i < N, writes a signal 1 to the global bus, if it
holds a true (false) data. Then, processor P, reads the data from the global bus.
If processor Py reads a signal 1 from the global bus, then the logical or (logical
AND) of N Boolean data is true (false); otherwise, it is false (true). Obviously, the
time complexity of two major steps is O(1). Hence, this leads to the following
lemma.

Lemma 1. Given a Boolean data sequence of size N, each processor holds a Boolean
data, the logical oR/AND of these N Boolean data can be determined in O(1) time on a
1-D HBBN using N processors.

3.2. The maximum/minimum computation

Given N unsigned integers 4g, 4y, . .., Ay each of size log N-bit, where 0 < 4, < N
and 0 </ < N, the maximum (minimum) computation of these N integers is to find
an integer which is greater (less) than the others. On the CRCW PRAM model, two
algorithms, one runs in O(1) time using N? processors and the other runs in
O(loglog N) time using N processors, for this problem have been well stated by
Chaudhuri [5]. On the broadcast-based network, Dechter and Kleinrock [9] gave an
O(log N) time algorithm for this problem on the BCM using N processors by the
binary tree technique. Miller et al. [23] also gave two parallel algorithms for this
problem on the reconfigurable mesh: one runs in O(log N) time on a 1-D re-
configurable mesh using N processors and the other runs in O(loglog N) time on a
2-D reconfigurable mesh using N'/? x N'/? processors. For improving the 1-D result
proposed by Miller et al. [23], Kao and Horng [14] also gave an O(7T') time algorithm
for this problem on a 1-D reconfigurable array of processors using N processors,
where the bus width is w-bit for log N<w < N and T = |log, N| + 1. This algo-
rithm is quite efficient and easily to be implemented on the other broadcast-based
network. For the sake of completeness, their main idea is summarized in the fol-
lowing.

Without loss of generality, assume that all numbers are distinct and each 4; is
represented by the base-2 number system as follows:
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B—1
A=Y by, (1)
k=0

where B = [log N| + 1, by € {0,1},0<4; < N,and 0<i < N.
Instead of using the base-2 number system, 4, can be also represented by the base-
w number system as follows

7—1
A,' = Za,»,kwk, (2)
k=0

where 7 = |log,, N| +1,0<i < N and 0 < a; < w.

Based on Eq. (2), the maximum (minimum) number of these N unsigned integers
can be found by the following two major steps. In the first major step, apply the
division operation on A4; to obtain a,;; for 0 <k < T — 1. By this way, each 4, is
represented by 7T digits and each digit is bounded within the interval [0, w — 1]. In the
second step, apply the prune-and-search technique to find the maximum (minimum)
number of these N unsigned integers. If a; of 4; is greater (less) than a;; of 4; then 4;
could be pruned by 4;. Continuing this process from the most significant digit to the
least significant digit, the maximum (minimum) number can be found at most T
iterations. Let the global bus width be w-bit. Initially, the state of each processor is
set in “active” and the global bus is cleared to 0. Each 4; is stored in processor F;,
0<j < N. Finally, the maximum (minimum) number and its associated index are
stored in the local variables max(0) and mid(0) of processor Py, respectively. We
show the detailed maximum algorithm (MAA) in the following. The minimum al-
gorithm can be derived similarly. Assume N = 8 and w = 3. Fig. 2 shows an example
for the data 3, 7, 2, 0, 6, 5, 4 and 1 to be executed by algorithm MAA.

Algorithm MAA (A, max, mid);

/* A 'is an input variable. max and mid are output variables. */

Step 0. begin.

Step 1. Processor P, 0 <i < N, computes a;; from 4, by Eq. (2) for 0<k < T.

Step 2. repeat Steps 2.1 and 2.2 from k=T —1 to 0.
Step 2.1. Processor P, 0 <i < N, writes a signal 1 to the bit » of the global bus,
if it is in state ““active’” and a;; = r, for 0 <r < w.
Step 2.2. Processor P, with a;;, = rfor 0 <<i < N and 0 <7 < w, sets its state “ac-
tive”, if the state of P, is “active’” and the bits » + 1,7+ 2,...,w — 1 read from
the global bus all are 0; otherwise, sets its state “inactive”.

Step 3. Processor P, 0 <i < N, whose state is in “active”, copies 4; and index i to

max(0) and mid(0) of processor Py using the global bus, respectively.

Step 4. end.

The time complexity of algorithm MAA is analyzed as follows. Steps 1 and 2 require
O(T) time and Step 3 requires O([log N/w]) time as the bus width is w-bit. Hence,
the time complexity is O(7 + [log N/w]).
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(c). At iteration k = 1, after Step 2.1.
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(e). At iteration k = 0, after Step 2.1.

1 2 3 4 5 6 7

(f). At iteration k = 0, after Step 2.2.

1 2 3 4 5 6 7
(g). maz(0) = 7 and mid(0) = 1, after Step 3.

AS : Active State
IS : Inactive State

Fig. 2. An illustration of algorithm MAA for N =8 and w = 3.
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Lemma 2. Algorithm MAA can be computed in O(T + [log N/w]) time on a 1-D
HBBN using N processors, where the bus width of the global bus is w-bit and
T=|log,N|+1.

For the nondistinct data, the signed integer data and the real number data, the
maximum (minimum) of each can be easily obtained by modifying the algorithm
MAA, respectively. Hence, the following lemmas as stated in Ref. [14] is also true in
the HBBN.

Lemma 3. Given N real numbers each of size O(log N)-bit the mantissa and exponent
parts each takes log N-bit, the maximum/minimum of these N numbers can be found in
O(T + [log N/w]) time on a 1-D HBBN using N processors, where the bus width of
the global bus is w-bit for 2<w < N and T = |log, N| + 1.

Based on Lemma 3, algorithm MAA can be run in O(log N/loglog N) time
under the O(log N)-bit natural bus width. It is quite efficient even if w is less than
log N. Assume there are 2% processors and each has a data of size 32-bit. Also
assume the bus width of each processor is 16-bit. Then, it requires only O(11) unit
time to find the maximum (minimum) of these 2°? data. In particular, if the bus width
is extended to N'/¢-bit (for N'/¢ > log N), where ¢ is a constant and ¢ > 1. Then,
T+ [log N/w] = [logyieN] + 1+ [22X] = |c| 4 2, is also a constant.

To justify the hardware cost of a 2-D N x N HBBN, a practical measuring result
of the VLSI chip of the reconfigurable mesh, called the Yorktown Ultra Parallel
Polymorphic Image Engine (YUPPIE) implemented by Maresca and Li [20,22],
could be used. The YUPPIE VLSI chip was fabricated with 2u CMOS technolgy. It
contained 16 processors arranged in a 4 x 4 mesh each with the switch function.
Each processor was equipped with a one-bit ALU, 5 registers and 256 bit memory.
The final chip size was 5.0 x 6.5 mm (excluding I/O pads) and the chip had 68 pins.
The chip area was divided into three main blocks: 24% for the memory block, 38%
for the processor block and 12% for the switch function and mesh wires. According
to the design, the switch function and mesh wires took roughly one fifth of the
processor and the 256-bit memory silicon area (i.e., 12:62). The ratio indicated that
the hardware cost of the switch function and mesh wires were fairly low. For ex-
ample, assume that there are 23? processors and each has a data of size 32-bit. Also
assume the bus width of each processor is 32-bit. Let ¢ =6 then
NYe =232/6 = 2533 — 40.32. That is, when the bus width w is extended to 41-bit, it
requires only O(8) unit time to find the maximum (minimum) of these 23? data items.
The wiring ratio between N'/¢-bit and log N-bit for the above example would be

N2+2/C 2/C 264/6
N2log’ N log*N 20
Since the processor and memory sizes are increased with the extended bus width, the
chip area by the wiring is increased far less than from 20% to 31.6% relatively to the

extended processor and memory. The wider bus of the system installed, the more
powerful parallel processing system created. As stated before, the area occupied by

= 2% = 1.58.
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the extended bus relatively to the newly created chip is limited. Therefore, adding
some extra buses to each processor on a 2-D HBBN could not increase the hardware
cost of the system enormously.

Corollary 1. Given N real numbers each of size O(log N)-bit (the mantissa and
exponent parts each takes log N-bit), the maximum (minimum) of these N data can be
computed in O(1) time on a 1-D HBBN using N processors, where the bus width of the
global bus is N'V<-bit (N'¢ > log N) for a constant ¢ and ¢ > 1.

Note that some researchers criticized there was a local switch delay for the re-
configurable bus of any RNs. Hence, the time complexity of the algorithms derived
in this paper is more efficient than that derived in Ref. [14] if the local switch is
included.

4. Applications

In this section, we will develop several parallel algorithms for solving the well-
known fundamental data movement problems. These include the leftmost one
problem, the prefix maxima/minima problem, the m contour problem, the all nearest
neighbor problem and the all nearest smaller values problem, respectively.

4.1. The leftmost one problem

Given a Boolean of size N x N with every element of it being either 0 or 1, the
leftmost one problem is to determine the position of the leftmost 1 of each row of the
matrix. The leftmost one problem is a useful operation and has some applications in
image processing, digitized geometry and computer graphics [11]. Finding the left-
most one on meshes with row broadcasting, Stout [31] first proposed an O(N'!/¢) time
algorithm for this problem using a 2-D N x N processors. Their algorithm [31] ran
under the assumption that all processors had an unbounded local memory. Recently,
instead of using unbounded local memory of each processor, Gurla [11] achieved the
same time complexity as that derived in Ref. [31] but the memory used in each
processor was reduced to a constant.

This problem can be solved in O(1) time on a 2-D N x N HBBN. Initially, these
N x N Boolean data are stored in processor P;;, 0 <i, j < N. Finally, the position of
the leftmost 1 of each row of this matrix is stored in the local variable /(i,0) of
processor Py, 0<i < N. Our algorithm consists of the following two major steps.
First, apply Lemma 1 to identify whether there is an element 1 or not in each row of
2-D HBBN. Then, for each row i, 0 <i < N, if it does not exist any element 1 then
processor Py sets (7, 0) to nil. Otherwise, it sets /(7, 0) to the position of the leftmost
one (the minimum index of all element 1’s) found in row i by Corollary 1. These two
steps take O(1) time by Lemma 1 and Corollary 1, respectively. This leads to the
following theorem.
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Theorem 1. Given a Boolean matrix of size N X N, the position of the leftmost one of
each row of this matrix can be found in O(1) time on a 2-D HBBN using N x N
processors, where the bus width of the global bus is N'/<-bit (N > log N) for a
constant ¢ and ¢ = 1.

4.2. The prefix maximalminima problem

Given a data sequence of N numbers 4,4, ...,4y_; each of size O(log N)-bit,
the prefix maxima problem is to compute P4; = max{4o, 4, ...,4;} for all j, where
0<j < N. The prefix maxima/minima operation is a fundamental tool in designing
efficient parallel algorithms for many problems.

This problem can be solved in O(1) time on a 2-D N x N HBBN. Initially, assume
that the data 4; are stored in processor P ;, 0 <j < N. Finally, the prefix maxima of
Ao, Ay, ..., A; is stored in the local variable PA(0, j) of processor Fy;, 0<j < N. Our
algorithm consists of the following three major steps. Step 1, processor P,
0<j <N, copies 4; to P,; through the i-dimension global bus for 0 <i < N. Step 2,
processor P;; sets its state in active if 0 <j </, otherwise, sets its state in inactive.
Then, for each row i, 0<i < N, processor P;, 0<j < N, applies Corollary 1 to
compute the maximum on Ay, 4y, ..., A4; through the j-dimension global bus, and let
the computed result be stored in the local variable PA(;,0) (e,
PA(i,0) = max{Ao,4;...4,;}). Step 3, processor P, 0<i< N, copies PA(i,0),
0<i <N, to PA(i,i) through the j-dimension global bus; and then processor P;;,
0<j < N, copies PA(j,j) back to PA(0, ) through the i-dimension global bus. Since
Steps 1 and 3 take O(1) time and Step 2 takes O(1) time by Corollary 1, the total time
complexity is O(1). Hence, this leads to the following theroem.

Theorem 2. Given a data sequence of N real numbers each of size O(log N)-bit, the
prefix maxima of these N numbers can be computed in O(1) time on a 2-D HBBN using
N x N processors, where the bus width of the global bus is N'/*-bit (N'/¢ > log N) for
a constant ¢ and ¢ = 1.

Similarly, the prefix minima and postfix maxima/minima of N real numbers each
of size O(log N)-bit can be also computed in O(1) time on a 2-D HBBN using N?
processors, respectively.

4.3. The m-contour problem

The m-contour problem is defined as follows. Given a set of N arbitrary points
vo,U1,-..,Uy_1 In the Euclidean plane, and each v; is specified by its cartesian
coordinates (x;,);), the m-contour problem is to determine these maximal points
under the Euclidean plane. That is, for each point v;, it is not a contour point under
Euclidean plane if there exists a point v; such that x; < x; and y; < y;; otherwise, v; is
a contour point. The m-contour problem is a basic problem is computational
geometry [27].
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The main idea of our algorithm for solving the m-contour problem is described as
follows. For each point v;,0<i < N, we can use N processors to compare the car-
tesian coordinates of it and those of other N — 1 points. Then, the contour point of
each point v; can be determined by checking whether there does not exist any point
whose cartesian coordinates are greater than those of v;. This problem can be solved
in O(1) time on a 2-D N x N HBBN. Initially, assume these N points are stored in
processor Py, 0<j < N. Finally, a flag ¢(0, ) is stored in processor P,;, 0 <j < N.
¢(0,7) = 1 if point v; is a contour point; ¢(0, /) = 0, otherwise. Our algorithm con-
sists of the following four major steps. Assume vy = (2,0), v; = (1,3), v, = (3,1) and
v; = (0,2). A snapshot for solving the m-contour problem is also shown in Fig. 3.
Step 1, processor Py, 0 <j < N, copies the cartesian coordinates (x;,y;) of v; to P,
0<i < N, through the i-dimension global bus; and then processor P;, 0<i < N,
copies the cartesian coordinates (x;,y;) for v; to P, 0<j < N, through the j-di-
mension global bus. Thus, processor P;; holds the cartesian coordinates (x;,;) and
(x;,;) of points v; and v;, respectively. Step 2, processor P, 0<i,j <N, sets
c(i,j) =0, if x; <x; and y; < y;; sets ¢(i,j) = 1, otherwise. Step 3, for each row
i,0<i <N, processor P;;,0<j <N, applies Lemma 1 on c¢(i,j) to determine the
contour condition through the j-dimension global bus, and the result is store in
¢(i,0). Step 4, processor P, 0<i < N, copies ¢(7,0) to ¢(i,i) through the j-dimen-
sion global bus; and then processor P;;,0<j <N, copies c(j,j) back to ¢(0,/)
through the i-dimension global bus. Steps 1, 2 and 4 take O(1) time, respectively.
Step 3 takes O(1) time by Lemma 1. Hence, the total time complexity is O(1). This
leads to the following theorem.

Theorem 3. Given a set of N arbitrary points vy, vy, . .., vy_y in the Euclidean plane, the
m-contour problem can be solved in O(1) time on a 2-D HBBN using N x N processors,
where the bus width of the global bus is N'/-bit (N'/¢ > log N) for a constant ¢ and
c=1.

4.4. The all nearest neighbor problem

The all nearest neighbor (ANN) problem is defined as follows. Given a set of N
arbitray points vy, vy, ...,vy_; in the Euclidean plane, this problem is to determine
the nearest neighbor for each point. In other words, for each point v;,0 <i < N, find
the nearest neighbor point v;, j # i,0 <j < N. For measuring the distance, the Eu-
clidean distance (L, metric) is considered. It can be also extended to operate on any
L, metric. The distance between any two points (x;,);) and (x;,y;) is defined by

nb(i,j) = {0 —x,)" + i — 3)" 2 (3)

where 0<i,j < N and i # j.

The ANN problem is a basic problem in computational geometry, and it has a
number of applications. See Ref. [27], for details. It also can be referred to
as “‘proximity” or ‘“‘closeness” being fundamental in image processing, pattern
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Fig. 3. An example for solving the m-contour problem. (a) Initalization; (b) After Step 1; (c) After Step 2;
(d) After Step 3; (e) After Step 4.
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recognition and computer graphics [26]. The ANN problem has been extensively
studied in both sequential and parallel algorithms [8,18,26,27,29]. Lee and Preparata
[18] proposed an O(Nlog N) time sequential algorithm for this problem. Cole and
Goodrich [8] proposed an O(log N) time parallel algorithm for this problem on the
CREW PRAM model using O(N) processors. Under the assumption that all points
were given in counter-clockwise order, Schieber and Vishkin [29] proposed two
parallel algorithms for this problem on the CRCW PRAM model; one ran in
O(loglog N) time using N/loglog N processors, the other ran in O(1) time using
N** processors for a constant e, respectively. Recently, Olariu and Stojmenovic [26]
proposed an O(log N) time algorithm for this problem on a 2-D MCCMB using
N X N processors.

The main idea of our algorithm for solving the ANN problem can be described as
follows. For each point v;, 0 <i < N, we can use N processors to compute the Eu-
clidean distance between v; and each of other N — 1 points. Then, the nearest
neighbor of each point v; can be found by computing the minimum distance of these
N — 1 Euclidean distances.

This problem can be solved in O(1) time on a 2-D N x N HBBN. Initially,
assume that these N points are stored in processor Fy;, 0<j < N. Finally, the
distance and the index of the nearest neighbor point of each point v; are stored
in the local variables nb(0,;) and nbi(0,/) of processor Pp;, respectively. Our
algorithm consists of the following four major steps. Assume vy, = (2,0),
vy =(1,3), v =(3,1) and v; = (0,2). A snapshot for solving the ANN problem
is shown in Fig. 4. Step 1, processor Fy;, 0<j < N, copies the cartesian coor-
dinates (x;,);) of v; to P, 0<i <N, through the i-dimension global bus; and
then processor P;;, 0<<i < N, copies the cartesian coordinates (x;,y;) of v; to P,
0<j <N, through the j-dimension global bus. Thus, each processor P; holds
the cartesian coordinates (x;,);) and (x;,;) of points v; and v;, respectively. Step
2, processor P;, 0<i, j <N and i# j, computes the Euclidean distance of v
and v; by Eq. (3), and stores the result in nb(i,j). Then, processor P; sets
nb(i,i) to oo for 0<i < N. Step 3, for each row i, 0<i <N, processor P,
0<j <N, applies Corollary 1 on nb(i,j) to find the minimum Euclidean dis-
tance through the j-dimension global bus; and let nb(i,0) and nbi(i,0) be used
to store the minimum distance and the index of the nearest neighbor point,
respectively. Step 4, processor Py, 0<i <N, copies nb(i,0) and nbi(i,0) to
nb(i,i) and nbi(i,i) through the j-dimension global bus, respectively; and then
processor P;;,0<j <N, copies nb(j,j) and nbi(j,j)to nb(0,;) through the
i-dimension global bus, respectively. The time complexity is analyzed as follows.
Step 1, 2 and 4 take O(1) time, respectively. Step 3 takes O(1) time by Corollary
1. Hence, the total time complexity is O(1) time. This leads to the following
theorem.

Theorem 4. Given a set of N arbitrary points vy, v, ..., Ux_; in the Euclidean plane, the
ANN problem can be solved in O(1) time on a 2-D HBBN using N X N processors,
where the bus width of the global bus is N'/*-bit (N'/* > log N) for a constant ¢ and
c=1.
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Fig. 4. An example for solving the ANN problem. (a) Initalization; (b) After Step 1; (c) The nb(i, 0), after
Step 2; (d) The nb(i, 0) and nbi(7, 0) and nbi(i, 0) after Step 4; (e) The nb(0, j) and nbi(0, j), after Step 4.
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4.5. The all nearest smaller values problem

The all nearest smaller values (ANSV) problem is defined by Berkman et al. [2].
The authors also argue that this is a fundamental problem on parallel processing,
and many other problems can be reduced to it. The ANSV problem can be for-
mulated as follows. Given a data sequence ag,day,...,ay_; of N elements from a
totally ordered domain, the problem is to determine each element a; whose nearest
element to its left and nearest element to its right are both smaller than ;. In other
words, for each i, 0 <i < N, find the maximal j, 0 </ < i such that a; < g;, and find
the minimal &, i < k& < N such that a; < a;. We say that a; and gy, if exist, are the /eft
match (denote by Im(i)) and right match (denoted by rm(i)) of a;, respectively; oth-
erwise, let Im(i) = nil or rm(i) = nil.

For solving the ANSV problem, Berkman et al. [2] proposed an O(N) time se-
quential algorithm. Kim [15] proposed an O(log N) time algorithm for this problem
on the EREW PRAM model using N/log N processors. On the CRCW PRAM
model, Berkman et al. [2] also proposed two algorithms; one ran in O(loglog N)
time using N/loglog N processors, the other ran in O(1) time using O(N?) proces-
sors, respectively. For the broadcast-based network, Olariu et al. [25] proposed an
O(1) time algorithm for this problem on a 2-D N x N reconfigurable mesh. Recently,
Bhagavathi et al. [3] derived on O(log N) time algorithm for this problem on a 2-D
MCCMB using N x N processors.

As the same as solving ANN problem presented in previous subsection. For
each element a;, 0 <i < N, we can use N processors to find the Im and rm of it,
respectively. Then the ANSV problem can be also solved in O(1) time on a 2-D
HBBN using N x N processors. Initially, assume that these N elements are stored
in processor Py;, 0<j < N. Finally, the Im and rm of each a; are stored in the
local variables Im(0, /) and rm(0, ) of processor Fy;, respectively. Our algorithm
consists of the following six major steps. Assume ao =1, ay =3, a, =2 and
as; = 0. A snapshot for solving the ANSV problem is shown in Fig. 5. Step 1,
processor Fy;, 0<j <N, copies a; to P,;, 0<i <N, through the i-dimension
global bus; then processor P;,0<i < N, copies a; to P,;,0<j < N, through the j-
dimensional global bus. Thus, each processor P; holds two values «; and aj,
respectively. Step 2, processor P,;, 0<j <i and 0<i <N, sets f(i,j) = and its
state in active, if a; < a; sets f(i,j) = —oo and its state in inactive, otherwise.
Step 3, for each row i, 0<i < N, processor P,;, 0<j < i, applies Corollary 1 on
f(i,j) to find the maximal index for all a; < a;; and let Im(i,0) store the final
result if it exists; let Im(7, 0) =nil, otherwise. Step 4, processor P;;, i < j < N and
0<i <N, sets f(i,j) =j and its state in active, if a; < a;; sets f(i,j) = oo and its
state in inactive, otherwise. Step 5, for each row i, 0<i <N, processor P,
i < j <N, applies Corollary 1 on f(i, /) to find the minimal index for all a; < a;,
and let rm(i,0) store the final result if it exists; let rm(i,0) = nil, otherwise. Step
6, processor Py, 0<i <N, copies Im(i,0) and rm(i,0) to Im(i,i) and rm(i,i)
through the j-dimension global bus, respectively; and then processor P,
0<j <N, copies Im(j,j) and rm(j,j) to Im(0,j) and rm(0,;) through the
i-dimension global bus, respectively. The time complexity is analyzed as follows.
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Fig. 5. An example for solving the ANSV problem. (a) Initalization; (b) After Step 1; (c) The f{i, j) and
processor’s state, after Step 2; (d) The Im(i, 0), after Step 3.
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Step 1, 2, 4 and 6 take O(1) time. Steps 3 and 5 each takes O(1) time by Cor-
ollary 1. Therefore, the total time complexity is O(1). The following theorem is
derived.

Theorem 5. Given a data sequence ay, ay, . ..,ay_; of N elements from a totally ordered
domain, the ANSV problem can be solved in O(1) time on a 2-D HBBN using N x N
processors, where the bus width of the global bus is N'/°-bit (N > log N) for a
constant ¢ and ¢ = 1.

5. Concluding remarks

As we can see, the broadcast-based network is quite suitable for reducing the long
distance communications in the existing interconnected parallel processing systems.
The HBBN is one of the broadcast-based networks. It is quite practically imple-
mentable as all processors are only linked by broadcast buses. To demonstrate the
computation power of the HBBN, several interesting fundamental data movement
problems have been derived in this paper. These include the leftmost one problem,
the prefix maxima/minima problem, the m-contour problem, the all nearest neighbor
problem and the all nearest smaller values problem which are the most popular and
important problems in image processing, digitized geometry and computer graphics.
Most of the results derived in this paper are far better than those derived in the other
broadcast-based networks. The detailed comparisons are listed in Table 1. Fur-
thermore, all proposed algorithms designed on the HBBN under the O(log N)-bit
natural bus width can be also executed with the same efficiency on the other
broadcast-based networks undoubtedly.
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