
Pathwidth and
Layered Drawings of Trees

Matthew Suderman

Technical Report SOCS-02.8
October 2002

School of Computer Science
McGill University

http://www.cs.mcgill.ca/resrchpages/tech2002.html
http://www.cs.mcgill.ca
http://www.mcgill.ca

Pathwidth and Layered Drawings of Trees

Matthew Suderman∗

msuder@cs.mcgill.ca

School of Computer Science, McGill University
Montréal, Québec, Canada

December 10, 2002

Abstract

An h-layer drawing of a graph G is a planar drawing of G in which each vertex is
placed on one of h parallel lines and each edge is drawn as a straight line between its
end-vertices. In such a drawing, we say that an edge is proper if its endpoints lie on
adjacent layers, flat if they lie on the same layer and long otherwise. Thus, a proper
h-layer drawing contains only proper edges, a short h-layer drawing contains no long
edges, an upright h-layer drawing contains no flat edges, and an unconstrained h-layer
drawing contains any type of edge.

We prove optimal upper and lower bounds for each type of layered drawing (proper,
short, upright, unconstrained) and give linear-time algorithms for obtaining drawings
matching each upper bound. We note that the optimality of the upper bound for
unconstrained layered drawings contradicts Proposition 1 of [8], and the optimality of
the upper bound for short layered drawings contradicts Theorem 2 also of [8].

1 Introduction

An h-layer drawing of a graph G is a planar drawing of G in which each vertex is placed on
one of h parallel lines and each edge is drawn as a straight line between its end-vertices. In
such a drawing, we say that an edge is proper if its endpoints lie on adjacent layers, flat if
they lie on the same layer and long otherwise. Thus, a proper h-layer drawing contains only
proper edges, a short h-layer drawing contains no long edges, an upright h-layer drawing
contains no flat edges, and an unconstrained h-layer drawing contains any type of edge.
Layered graph drawings [18, 2, 17] have applications in visualization [1, 12], DNA mapping
[19], and VLSI layout [13]. See [14] for a recent survey.

In this paper we show that every short layered drawing of a tree T with pathwidth h ≥ 2
occupies between h and 2h−1 layers. Furthermore, we prove that these bounds are optimal.

∗This research supported by NSERC and FQRNT (formerly FCAR).

1

http://cgm.cs.mcgill.ca/~msuder
mailto:msuder@cs.mcgill.ca
http://www.cs.mcgill.ca
http://www.mcgill.ca

We similarly prove optimal upper and lower bounds for proper layered drawings (between h
and 3h−2 layers for h ≥ 2), upright layered drawings (between h and d3h/2e layers for h ≥ 1)
and unconstrained layered drawings (between h−1 and d3h/2e layers for h ≥ 1). Finally, we
give linear-time algorithms for obtaining short, proper, upright and unconstrained drawings
matching the upper bounds.

These results contradict Proposition 1 and Theorem 2 of [8]. In particular, Proposition 1
states that a tree with pathwidth h can be drawn on an n×h grid. However, in this paper we
describe trees that cannot be drawn on less than 3h/2 layers. Similarly, Theorem 2 implies
that such a tree has a short (h + 1)-layer drawing. However, we describe trees whose short
layered drawings occupy at least 2h− 1 layers.

2 Preliminaries

In an h-layer drawing of a graph G, we number the layers consecutively from 1 to h, with
layer 1 as the top layer and layer h as the bottom layer. We use, for each vertex v ∈ V (G),
X(v) to denote the x-coordinate and Y(v) to denote the y-coordinate of v. The following
simple lemma states one of the key observations that we use to establish lower bounds on
the number of layers used in layered tree drawings.

Lemma 1 In any unconstrained h-layer drawing of a tree T with a vertex v, the drawings
of at most two components of T \ v occupy h layers.

Proof. Assume the contradiction, that T \v contains at least three components T1, T2 and
T3 whose drawings each occupy h layers. Each Ti occupies all h layers so each has a vertex vi

on the top layer. Assume without loss of generality that X(v1) ≤ X(v2) ≤ X(v3). However,
T2 has another vertex v′2 on the bottom layer so the drawing is not planar: an edge in the
path from v1 to v3 in T \ T2 crosses an edge in the path from v2 to v′2 in T2. 2

From Lemma 1, we obtain the following result about layered drawings of complete ternary
trees, which was already proven in [8]:

Corollary 2 Every unconstrained layered drawing of a complete ternary tree of depth d ≥ 0
occupies at least d + 1 layers.

Proof. The proof is by induction on the depth d of the tree beginning at depth d = 0
where the tree consists of a single vertex. 2

We also obtain the following bounds for upright layered drawings of nearly complete ternary
trees. A nearly complete ternary tree of depth d is obtained from a complete ternary tree of
depth d by removing exactly two children from each vertex at depth d− 1.

Corollary 3 Every upright layered drawing of a nearly complete ternary tree of depth d ≥ 0
occupies at least d + 1 layers.

Proof. The proof is identical to the proof of Corollary 2 above. 2

2

Nearly all of the remaining results depend on the pathwidth of the given tree. A path
decomposition B of a graph G is a sequence B1, B2, . . . , Bp of subsets of V (G) that satisfies
the following three properties:

1.
⋃

1≤i≤p Bi = V (G);

2. for every edge (u, v) ∈ E(G), there is a subset Bi such that both u, v ∈ Bi; and

3. for all 1 ≤ i < j < k ≤ p, Bi ∩Bk ⊆ Bj.

The width of B is max{|Bi| | 1 ≤ i ≤ p} − 1. The pathwidth of a graph G, denoted pw(G),
is the minimum width of a path decomposition of G. Linear algorithms for computing the
pathwidth of trees are described in [15, 7, 16].

The next two results about trees and pathwidth are given in [15, 7]:

Lemma 4 [15, 7] A tree T has pathwidth at most h if and only if for all vertices v in T at
most two components of T \ v have pathwidth h and the remainder have pathwidth at most
h− 1.

As defined in [7], we say that a vertex v is h-critical in a rooted tree T if exactly two subtrees
rooted at children of v have pathwidth h and the remainder have pathwidth at most h− 1.

Lemma 5 [7] Let T be a tree rooted at r. If at most two subtrees rooted at children of r
have pathwidth h, neither has an h-critical vertex, and every other subtree rooted at a child
of r has pathwidth at most h− 1, then pw(T) ≤ h.

Finally, the following lemma is given in [7, 16]:

Lemma 6 [7, 16] A tree T has at most one pw(T)-critical vertex.

In the next section we prove optimal upper and lower bounds on the number of layers
required by short layered drawings of trees. We follow that with optimal upper and lower
bounds for proper, upright and unconstrained layered drawings in Sections 4 and 5, and
finally, in Section 6, we give linear-time algorithms for obtaining short, proper, upright and
unconstrained drawings matching the upper bounds.

We prove our upper bounds by constructing drawings of trees. Similar to Felsner et
al. [8], the drawings are constructed in two steps: we draw one or more paths in the tree and
then recursively draw the remaining components next to the previously drawn paths. The
most important of these paths is the main path. A main path P of a tree T is a path such
that the pathwidth of T \ P is at most pw(T)− 1.

Lemma 7 Every tree has at least one main path.

Proof. Consider a path decomposition B = B1, B2, . . . , Bp of T of minimum width. Let
v1 be a vertex in B1, vp a vertex in Bp, and P the path between v1 and vp. By definition,
each Bi contains at least one vertex in P so, if we remove the vertices of P from each Bi,
then the result is a path decomposition of T \ P with width at most pw(T)− 1. 2

3

The remaining components must be drawn so that we can insert the edges connecting the
components to the previously drawn paths without creating crossings. As a result, if Γ is a
drawing of a component and vertex v in the component is adjacent to a previously drawn
path vertex, then v lies on the top or bottom layer of Γ. We say that v is exposed in Γ. In
general, a vertex v ∈ T is exposed in a layered drawing of a tree T if v lies on the top or
bottom layer of the drawing.

The next result illustrates how to obtain proper 2-layer drawings of certain trees given
one of their main paths.

Lemma 8 For every tree T with pw(T) ≤ 1, there exists a proper 2-layer drawing.

Proof. By Lemma 7, T has a main path P , and T \ P consists of vertices with degree
zero. We draw T by first drawing P on both layers and then inserting each vertex v in T \P
adjacent to a vertex w ∈ P on the layer opposite w. 2

3 Short Layered Drawings

Using a similar though slightly more complicated drawing algorithm than in Lemma 8, we
obtain an upper bound for short layered drawings, first proved in [5]:

Lemma 9 Every tree T with pw(T) ≥ 2 has a short (2pw(T)− 1)-layer drawing.

Proof. We obtain a short (2pw(T) − 1)-layer drawing by first drawing a main path P of
T on the top layer. Each component T ′ in T \ P has pathwidth at most pw(T) − 1. Let v
be the vertex in T ′ adjacent to a vertex w in P . We insert a drawing of each T ′ onto the
(2pw(T)−2) layers below w and then draw the missing edge (v, w) as a straight line between
v and w. To avoid edge-crossings, we draw T ′ so that v lies on the layer immediately below
w; that is, we draw T ′ so that v is exposed. It remains to prove, then, that such drawings
of T ′ exist. In other words, we must prove that for any tree T with pw(T) ≥ 1 and vertex
v ∈ T , there exists a short 2pw(T)-layer drawing of T in which v is exposed.

The proof is by induction on the pathwidth of T . When pw(T) = 1, there is a short
2-layer drawing of T by Lemma 8. Since there are only two layers, every vertex including v
is exposed. Suppose that pw(T) ≥ 2 and let P = v1v2 . . . vn be a main path in T and R the
path between v and a vertex vi in P . We begin drawing T on 2pw(T) layers by first drawing
the path Rvivi−1 . . . v1 on the top layer and then the path vi+1vi+2 . . . vn on the second layer
below edge (vi, vi−1). Each connected component T ′ of (T \ P) \ R has pathwidth at most
pw(T) − 1 so, by induction, there exists a short (2pw(T) − 2)-layer drawing of T ′ in which
vertex v′ ∈ T ′ adjacent to vertex w in P ∪R is exposed. We recursively construct and then
insert this drawing of T ′ onto the layers below w. The final drawing is illustrated in Figure
1. 2

This upper bound is optimal for a set of rooted trees that, when drawn on a minimum
number of layers, the root is not exposed. To achieve this property, we require the following
result:

4

v vi

vi+1 vi+2 vn

vi−1 v1

Figure 1: A short (2pw(T)− 1)-layer drawing T in which vertex v in T is exposed.

Lemma 10 Let h ≥ 1 and T be a tree rooted at a vertex r with n ≥ 0 children. Suppose
that each subtree rooted at a child c of r has the property that every short layered drawing
occupies at least h − 1 layers and at least h layers if c is exposed. If n ≥ (i + 3)(i + 2) + 1
for some 0 ≤ i < h then, in any short (h + i)-layer drawing of T , r is on one of the top or
bottom i layers.

Proof. Assume by way of contradiction that r does not lie on the top or bottom i layers;
that is, r lies on layer j, i < j < h + 1. If the drawing of a subtree rooted at a child
c of r occupies exactly l = h − 1 layers then c is not exposed in that drawing so r lies
on one of those l layers. If instead the subtree occupies l ≥ h layers then these l layers
include layers i + 1, i + 2, . . . , h, one which is occupied by r. By Lemma 1, then, the
drawings of at most two subtrees occupy the same set of layers. There are h + i − l + 1
ways to choose l ≥ h − 1 consecutive layers from h + i total layers so r can have at most
2Σh+i

l=h−1h + i− l + 1 = 2[(i + 2) + (i + 1) + . . . + 1] = (i + 2)(i + 3) children. 2

We describe the set of trees recursively. For k = 1, we define Sk = S1 to be the complete
ternary tree of height one. For k ≥ 2, Sk consists of a root v with one child x that has two
children u and w. In addition, we make use of Lemma 10 when i = 1 by giving u, w and x
each n = 13 children. Each child is a root of a subtree isomorphic to Sk−1. See Figure 2.

v

x

u

u1 u2 u13 x1 x2 x13

w

w1 w2 w13

Figure 2: Tree Sk for k ≥ 2. Each ui, wi and xi is the root of a subtree isomorphic to Sk−1.

Lemma 11 For k ≥ 1, every short layered drawing of Sk occupies at least 2k−1 layers and
at least 2k layers if its root v is exposed.

5

Proof. The proof is by induction on k. For k = 1, Sk = S1 is a complete ternary tree of
depth 1 so by Corollary 2 every drawing occupies at least 2k = 2 layers.

Assume that k ≥ 2. By induction, every short layered drawing of Sk−1 occupies at least
2k − 3 layers and 2k − 2 layers if its root is exposed. By Lemma 10, then, a drawing of
subtree Sk

u, Sk
w or (Sk

x \ Sk
u) \ Sk

w occupies at least 2k− 1 layers and, if exactly 2k− 1 layers,
then the root (u, w or x) is exposed. If v is exposed in a (2k − 1)-layer drawing of Sk then
either u, w or x is not exposed in the drawing of its corresponding subtree. However, in that
case, the corresponding subtree occupies 2k layers; therefore, the drawing of Sk occupies at
least 2k layers. 2

We obtain an upper bound on the pathwidth of each Sk.

Lemma 12 For k ≥ 1, pw(Sk) ≤ k.

Proof. The proof is by induction on k. For k = 1, the pathwidth of Sk = S1 is 1. For
k ≥ 2, there are, by induction, path decompositions for each Sk

ui
, Sk

wi
and Sk

xi
of width k− 1.

From these, we construct a path decomposition of width k for Sk as follows:

• The first bags are those from the decompositions of each Sk
ui

but with u added to each.

• The next bag consists of x and u.

• The next bags are those from the decompositions of each Sk
xi

but with x added to each.

• The next bag consists of x and v.

• The next bag consists x and w.

• The final bags are those from the decompositions of each Sk
wi

but with w added to
each. 2

Thus, by Lemmas 11 and 12, the upper bound given in Lemma 9 is optimal for each Sk.

Corollary 13 For each h ≥ 2, there exists a tree T with pw(T) ≤ h for which every short
layered drawing occupies at least 2h− 1 layers.

The lower bound for short layered drawings has already been proved by Felsner et al. in
[8], but we reproduce our own proof here to motivate a similar lower bound proof for un-
constrained layered drawings later. We prove that if a graph G has a short layered drawing
then that drawing occupies at least pw(G) layers. Our proof involves constructing a path
decomposition of G with width h from a short h-layer planar drawing of G. The first bag in
the decomposition contains the left-most vertices on each layer in the drawing, and we show
that we can construct each successive bag by removing one vertex v from the current bag
and adding a new vertex immediately to the right of v in the drawing.

To do this, we require a few definitions and preliminary results. Given a vertex v in a
short h-layer drawing of G, we use R(v) to denote the set of vertices on the same layer but
to the right of x:

R(v) = {u | u ∈ V (G), Y(v) = Y(u), X(v) < X(u)}.

6

We use (v) to denote the vertex in R(v) closest to v; that is, (v) is the vertex in R(v) with
the minimum x-coordinate. If R(v) is empty then (v) is undefined. Given a set of vertices
S ⊆ V (G) with exactly one vertex on each layer, we use R(S) to denote the set of vertices⋃

v∈S R(v). Finally, we use F(S) to denote the set of frontier vertices in S; that is, the
vertices v ∈ S such that R(v) 6= ∅ and v has no neighbors in R(S) on a different layer:

F(S) = {v | v ∈ S, R(v) 6= ∅, (u, v) ∈ E(G) and u ∈ R(S) ⇒ u ∈ R(v)}.

When we construct our path decomposition, we use F(S) to determine which vertex to
remove from the current bag in the decomposition and which vertex to add in order to
construct the next bag in the sequence.

Lemma 14 In a short h-layer drawing of a graph G, if S ⊆ V (G) has exactly one vertex
on each layer and R(S) 6= ∅ then F(S) 6= ∅.

Proof. Assume that R(S) 6= ∅ and let S ′ ⊆ S be the set of vertices v ∈ S for which
R(v) 6= ∅; that is, S ′ = {v | v ∈ S, R(v) 6= ∅}. In addition, let S ′′ ⊆ S ′ be the set of vertices
v ∈ S ′ having a neighbor in R(S) on layer Y(v) − 1; that is, S ′′ = {v | v ∈ S ′, ∃(v, v′) ∈
E(G), v′ ∈ R(S), Y(v′) = Y(v)− 1}. We observe that S ′ is not empty because R(S) is not
empty and consider two cases:

1. S ′′ = ∅. In this case, the vertex v in S ′ with the largest y-coordinate has no neighbors
in R(S) on layers Y(v)− 1 or Y(v) + 1; therefore, v belongs to F(S).

2. S ′′ 6= ∅. Let v be the vertex in S ′′ with the smallest y-coordinate. Thus, v has a
neighbor v′ in R(w) for some w ∈ S ′ with Y(v′) = Y(w) = Y(v)−1. Vertex w does not
belong to S ′′ because v has the smallest y-coordinate of any vertex in S ′′; consequently,
w has no neighbors in R(S) on layer Y(w)− 1. Vertex w also has no neighbor in R(S)
on layer Y(w) + 1 = Y(v) because such an edge would cross edge (v, v′). Therefore, w
belongs to F(S). 2

Finally, we obtain our lower bound:

Lemma 15 If a graph G has a short layered drawing then that drawing occupies at least
pw(G) layers.

Proof. We show that, given a short h-layer drawing of G, we can construct a path decom-
position of G with width h. When |V | ≤ h, a path decomposition consisting of a single bag
containing all vertices in G is sufficient. We assume, then, that |V | > h.

We construct the path decomposition B1, B2, . . . , B|V |−h from a sequence of sets
S0, S1, . . . , S|V |−h. More specifically, we let each Bi = Si ∪ Si−1. We define each Si

inductively as follows:

• S0 is the set of h vertices with minimum x-coordinates on each layer.

• We define Si in terms of Si−1. By Lemma 14, there exists at least one vertex in F(Si−1)
for 1 ≤ i ≤ |V | − h− 1 so we let v be the vertex with the smallest y-coordinate; thus,
Si = (Si−1 \ {v}) ∪ {(v)}.

7

If we let each Bi = Si ∪ Si−1 then we claim that B1, B2, . . . , B|V |−h is a path decompo-
sition of G with width h. The first bag B1 contains h + 1 vertices, and each successive bag
contains exactly one vertex not found in the bags before it so B1∪B2∪ . . .∪B|V |−h = V (G).
Now consider an edge (u, v) ∈ E(G) such that Bi is the first bag containing u and Bk is the
first bag containing v, for i ≤ k. Thus, we have u ∈ Si, v ∈ Sk, and v ∈ R(Sj) for each Sj,
i ≤ j ≤ k−1. Consequently, u belongs to each Sj and most importantly to Sk−1; thus, u and
v both belong to Bk. Finally consider a vertex v ∈ Bi ∩ Bk, for i < k. In other words, v is
in Si and Sk−1 so in fact v ∈ Sj for each i ≤ j ≤ k−1; thus, v also belongs to each bag Bj. 2

We cannot improve on this lower bound because the nearly complete ternary tree of
depth d ≥ 1 has pathwidth d by Lemma 4 and a short d-layer drawing. To obtain such a
drawing, we simply place vertices at depth i on layer i except for each leaf which we place
next to its parent and on the same layer.

Lemma 16 For each h ≥ 1, there exists a graph G with pw(G) ≤ h and a short h-layer
drawing.

By Lemma 9 and Corollary 13, and Lemmas 15 and 16, then, our bounds on the number
of layers in short layered drawings of trees are optimal:

Theorem 1 For each h ≥ 2, the lower bound h and the upper bound 2h − 1 are optimal
bounds on the number of layers in short layered drawings of trees with pathwidth h.

4 Proper Layered Drawings

As with short layered drawings, we obtain our upper bound by constructing drawings. This
bound was first proved in [5]:

Lemma 17 Every tree T with pw(T) ≥ 2 has a proper (3pw(T)− 2)-layer drawing.

Proof. We obtain a proper (3pw(T)− 2)-layer drawing of any tree T with pw(T) ≥ 2 by
first drawing a main path P of T on the top two layers. Each component T ′ in T \ P has
pathwidth at most pw(T) − 1. Let v be the vertex in T ′ adjacent to a vertex w in P . We
insert a drawing of each T ′ onto the (3pw(T) − 4) layers below w ∈ P and then draw the
missing edge (v, w) as a straight line between v and w. To avoid crossings, we draw T ′ so
that v lies on the layer immediately below w; that is, v is exposed in the drawing of T ′. It
remains to prove, then, that such drawings of T ′ exist; that is, we must prove that for any
tree T with pw(T) ≥ 1 and vertex v ∈ T , there exists a proper (3pw(T) − 1)-layer drawing
of T in which v is exposed.

Let P = v1v2 . . . vn be a main path of T . The proof is by induction on pw(T). For
pw(T) = 1, there exists a proper 2-layer drawing of T by Lemma 8. Clearly v is exposed in
this drawing since there are only two layers. Now suppose that pw(T) ≥ 2, and let R be the
path between v and a vertex vi on P . We begin drawing T on (3pw(T) − 1) layers by first
drawing the path Rvivi−1 . . . v1 on layers one and two and then the path vi+1vi+2 . . . vn on

8

layers two and three below edge (vi, vi−1). Each connected component T ′ of (T \ P) \R has
pathwidth at most pw(T) − 1. Let v′ be the vertex in T ′ adjacent to a vertex w ∈ P ∪ R.
By induction, there exists a proper (3pw(T)− 4)-layer drawing of T ′ in which v′ is exposed.
We insert this drawing onto the layers below w. The final drawing is illustrated in Figure 3.
2

v vi

vi+1

vi+2 vn

vi−1

vi−2

v1

Figure 3: A proper (3pw(T)− 1)-layer drawing T in which vertex v in T is exposed.

Once again, we prove that this upper bound is optimal for set of recursively-defined
rooted trees. We define P 1 to be the tree consisting of a single edge and, for k ≥ 2, we define
P k to be just like Sk except that:

• we attach another child y to the root v that has two children and each of those children
has exactly one child leaf;

• we make use of Lemma 10 when i = 2 by giving u, w and x each n = 21 children.
Each child is the root of a subtree isomorphic to P k−1.

See Figure 4.

v

x

u

u1 u2 u21 x1 x2 x21

w

w1 w2 w21

y

Figure 4: Tree P k for k ≥ 2. Each ui, wi and xi is the root of a subtree isomorphic to P k−1.

Lemma 18 For k ≥ 1, every proper drawing of P k occupies at least 3k − 2 layers and at
least 3k − 1 layers if v is exposed.

Proof. The proof is by induction on k. For k = 1, tree P k = P 1 consists of a single edge
so every proper layered drawing of P k occupies at least 3k − 1 = 2 layers.

9

Assume that k ≥ 2. By induction, every proper layered drawing of P k−1 occupies at least
3(k − 1) − 2 = 3k − 5 layers and 3k − 4 layers if the root is exposed. By Lemma 10, then,
any proper layered drawing of subtree P k

u , P k
w or (P k

x \ P k
u) \ P k

w occupies at least 3k − 3
layers and if exactly 3k − 3 layers then the root (u, w or x) lies on the top or bottom layer.
In addition, if the drawing uses exactly 3k − 2 layers then the root lies on one of the two
topmost or bottommost layers. If we have a proper (3k− 3)-layer drawing of P k then vertex
u, w or x is not on the top or bottom layer and therefore is not exposed in the drawing of its
corresponding subtree. However, in that case, the corresponding subtree occupies at least
3k − 2 layers so the drawing of P k occupies at least 3k − 2 layers.

If v is exposed on the top layer in a proper layered drawing of P k then either u or w is
on layer three. Assume without loss of generality that w is on layer three. See Figure 5. For
k = 2, P k

w = P 2
w contains no vertices on the top layer. This is because subtrees P k

u and P k
y

have vertices on layers 1, 2 and 3; thus, P k
w would need a path of length 4 starting at w to

reach the top layer. The longest such path has length 2. If P k
w occupies exactly 3k − 3 = 3

layers then it occupies layers 3, 4 and 5; otherwise, it occupies at least 3k − 2 = 4 layers,
layers 2 to 5. Therefore, the drawing of P k occupies at least 3k − 1 = 5 layers. For k ≥ 3,
every drawing of P k

w occupies at least 3k − 3 ≥ 6 so if it occupies exactly 3k − 3 layers then
it occupies layers 3 to 3k− 1. If it occupies exactly 3k− 2 layers then it occupies layers 2 to
3k − 1 and if more than 3k − 2 then layers 1 to 3k − 1. 2

u

x

w

v

y

Figure 5: Vertex v is exposed on the top layer in a proper layered drawing of P k.

The pathwidth of each P k is identical to that of Sk.

Lemma 19 For k ≥ 1, pw(P k) ≤ k.

Thus, by Lemmas 18 and 19, the upper bound given in Lemma 17 is optimal for each
P k.

Corollary 20 For each h ≥ 2, there exists a tree T with pw(T) ≤ h for which every proper
layered drawing occupies at least 3h− 2 layers.

For proper layered drawings, our lower bound is one layer larger than for short layered
drawings because we do not permit flat edges. Our proof proceeds as in Lemma 15 except
that we let each bag Bi = Si. This is possible because we do not permit flat edges. Thus,
we have the following lower bound for proper drawings of graphs.

Lemma 21 If a graph G has a proper layered drawing then that drawing occupies at least
pw(G) + 1 layers.

10

We cannot improve this lower bound because the complete ternary tree of depth d has
pathwidth d by Lemma 4 and a proper d + 1-layer drawing. We simply place each vertex at
depth i on layer i + 1.

Lemma 22 For each h ≥ 0, there exists a graph G with pw(G) ≤ h and a proper (h + 1)-
layer drawing.

By Lemma 17 and Corollary 20, and Lemmas 21 and 22, then, our bounds on the number
of layers in proper layered drawings of trees are optimal:

Theorem 2 For each h ≥ 2, the lower bound h and the upper bound 3h − 2 are optimal
bounds on the number of layers used in proper layered drawings of trees with pathwidth h.

5 Upright and Unconstrained Layered Drawings

In this section we first state and prove an upper bound for upright layered drawings and
then prove that this bound is the optimal upper bound for unconstrained layered drawings.
Because every upright layered drawing is by definition an unconstrained layered drawing, we
will have thus proven that our upper bound is optimal for both upright and unconstrained
layered drawings.

First we prove the upper bound:

Lemma 23 Every tree T with pw(T) ≥ 1 has an upright d3pw(T)/2e-layer drawing.

Proof. We actually prove that if v is a vertex in a tree T then there is an upright
d3pw(T)/2e-layer drawing of T in which v is exposed. The proof is by induction on the
pathwidth of T . If pw(T) = 1 then, by Lemma 8, T has an upright 2-layer drawing.

Assume that pw(T) ≥ 2. We begin by drawing P = v1v2 . . . vm, a main path of T , on
d3pw(T)/2e layers so that its vertices alternate between the top and bottom layers. If v lies
on P then v will be exposed in the final drawing. Otherwise, v belongs to a component T ′

of T \ P . Let P ′ be a main path of T ′, v′ the vertex in T ′ adjacent to a vertex vi in P and
let Q = w1w2 . . . wn be a path from v′ to an end-vertex of P ′ such that Q intersects the path
from v to v′. For example, see Figure 6.

We continue by drawing Q on d3pw(T)/2e−1 layers next to vi so that its vertices alternate
between the top and bottom of these layers. If v belongs to Q then we draw Q so that v
is exposed in the final drawing. Otherwise, v belongs to a component T ′′ of T ′ \ P ′. Let
v′′ be the vertex in T ′′ adjacent to a vertex wj of Q and R the path from v′′ to v. In this
case we draw Q so that wj is not exposed so that we can expose v. We then draw path
R on d3pw(T)/2e − 2 layers next to wj so that its vertices alternate between the top and
bottom of these layers and v is exposed. If Q does not contain all of P ′ and vertex wk in
Q is adjacent to a vertex in P ′ \Q then we draw P ′ \Q on the d3pw(T)/2e − 2 layers next
to wk so that its vertices alternate between the top and bottom of these layers. Figure 6
illustrates the relationships between paths P , P ′, Q and R in T .

Each component C of (T \ T ′) \ P has pathwidth at most pw(T) − 1 so, by induction,
each has a (d3pw(T)/2e − 1)-layer drawing in which the vertex in C adjacent to a vertex

11

Path P

Path Q

Path P ′

Path R
v

v′′

wj wn

wk

v′
= w1

viv1 vn

Figure 6: Paths P , P ′, Q and R in a tree T .

in P is exposed. We recursively obtain such a drawing and insert it into the drawing next
to the appropriate vertex in P . Similarly, each component of T ′ \ P ′ and therefore each
component C of T ′ \P ′ \Q \R has pathwidth at most pw(T)− 2 so by induction each has a
(d3pw(T)/2e − 3)-layer drawing in which the vertex in C adjacent to a vertex in P ′ ∪Q∪R
is exposed. We recursively obtain such a drawing and insert into the drawing next to the
appropriate vertex in P ′ ∪Q ∪R. The final result is illustrated in Figure 7. The rectangles
represent drawings of components of T \ P \ P ′ \Q \R. 2

We now prove that the upper bound just proven is optimal for unconstrained layered
drawings. As for short and proper layered drawings, we prove optimality by describing a set
of rooted trees whose unconstrained layered drawings use the number of layers given in the
upper bound. These trees have the property that, when drawn on a minimum number of
layers, the root is not accessible. A vertex v is accessible in a layered drawing Γ if we can
insert a layered drawing of some path P into Γ without creating crossings so that one end
vertex is adjacent to v and the other is exposed. Notice that if a vertex is exposed then it
is accessible but the reverse is not always true. The next two lemmas show how we prevent
the root from being accessible in a minimum layer drawing.

Lemma 24 Let T be a tree rooted at v, and let u and w be children of v. Let Γ be an
unconstrained h-layer drawing of T for h ≥ 1 in which subtrees Tu and Tw each occupy at
least h− 1 layers. Then, Γ contains a drawing of Tu in which u is accessible.

Proof. There is a path in the drawing of T outside Tu that begins at v and ends at an
exposed vertex in Tw; therefore, u is accessible in the drawing of Tu. 2

Lemma 25 Let u and w be vertices in a tree T rooted at vertex v such that v is the only
common ancestor of u and w. Assume that u1 and u2 are children of u such that any
unconstrained layered drawing of subtree Tui

occupies at least h ≥ 0 layers but ui is not
accessible in any h-layer drawing. Similarly, assume that w1 and w2 are children of w such
that any drawing of subtree Twi

occupies at least h + 1 layers but wi is not accessible in any
(h+1)-layer drawing. Then there are no unconstrained (h+2)-layer drawings of T in which
v is accessible.

12

v1

vi−1

vi

vi+1

vm

w1

wj−1

wj

wj+1

wn

v
′′ v

Figure 7: An upright (d3pw(T)/2e)-layer drawing of T (top), an upright (d3pw(T)/2e − 1)-
layer drawing of T ′ (middle) and an upright (d3pw(T)/2e−2)-layer drawing of T ′′ (bottom).

Proof. Assume by way of contradiction that we have an unconstrained (h+2)-layer drawing
Γ of T in which v is accessible. We thus insert the drawing of a path P = v1v2 . . . vn into Γ
so that v1 is adjacent to v and vn is on the top layer. We let T ′ = T ∪ P .

We claim that, in this drawing, T ′ \ T ′
w occupies the top h + 1 layers and (T ′ \ T ′

w) \ T ′
u

occupies the top h layers. Each subtree T ′
wi

occupies at least h + 1 layers so, by Lemma 24,
wi is accessible in the drawing of T ′

wi
. Therefore, each T ′

wi
occupies at least h + 2 layers. By

Lemma 1, then, T ′ \ T ′
w occupies at most h + 1 layers. Similarly, each subtree T ′

ui
occupies

13

at least h of these layers so, by Lemma 24, ui is accessible in the drawing of T ′
ui

. Therefore,
each T ′

ui
occupies at least h + 1 layers so, by Lemma 1, (T ′ \ T ′

w) \ T ′
u occupies at most h

layers. Since vn ∈ P lies on the top layer and vn ∈ T ′ \ T ′
w, subtree T ′ \ T ′

w occupies the
top h + 1 layers, that is layers 1, 2, . . . , h + 1. Similarly, we have vn ∈ (T ′ \ T ′

w) \ T ′
u so

(T ′ \ T ′
w) \ T ′

u occupies the top h layers.
Let T ′′ be a subdivision of T ′ created by subdividing each long edge that crosses layer

h + 1 in Γ. We obtain an (h + 2)-layer drawing Γ′ of T ′′ from Γ by placing the new vertices
in T ′′ on layer h + 1 where the edges they subdivide intersect layer h + 1. Let S be the
non-empty set of vertices in T ′′ on layer h + 2 and T ′′′ the connected component in T ′′ \ S
containing u. Thus, Γ′ contains an (h+1)-layer drawing Γ′′ of T ′′′. However, this contradicts
Lemma 1 because T ′′′ \ u contains three components that occupy h + 1 layers in Γ′′. The
component containing u1 occupies h + 1 layers because we showed above that T ′

u1
occupies

the top h + 1 layers. The same applies to the component containing u2. The component
containing v also contains vn ∈ P on the top layer because we showed above that P lies on
the top h layers. This component also contains a vertex on layer h + 1 adjacent to a vertex
in S; therefore, the component containing v occupies all h + 1 layers. 2

Using Lemma 25, we recursively define a tree T k for each k ≥ 0. Tree T 0 is the empty
tree, and tree T 1 is the single vertex. For k ≥ 2, tree T k consists of a root v with two children
u and w. Child u has two children u1 and u2, each roots of subtrees isomorphic to T k−2.
Similarly, child w has two children w1 and w2, each roots of subtrees isomorphic to T k−1.
These trees are illustrated in Figure 8. As expected, we obtain the following result:

v

u

u1 u2

w

w1 w2

Figure 8: Tree T k, for k ≥ 2. Each ui is the root of a subtree isomorphic to T k−2 and each
wi the root of a subtree isomorphic to T k−1.

Lemma 26 Every unconstrained layered drawing of T k occupies at least k− 1 layers and at
least k layers if v is accessible.

Proof. Every layered drawing of tree T 1 occupies at least 1 layer. Tree T 2 contains a
complete ternary tree of height 1 so by Corollary 2 every drawing of T 2 occupies at least 2
layers. For k ≥ 3, then, the result follows by induction and Lemmas 24 and 25. 2

Next we obtain an upper bound on the pathwidth of each tree T k.

Lemma 27 For k ≥ 0, pw(T k) ≤ b2k/3c

14

Proof. The proof is by induction on k. We first prove that for k′ ≥ 0 and k ≥ 2, if T k−2

contains no k′-critical vertices and we have pw(T k−1) ≤ k′ then T k contains no (k′+1)-critical
vertices, T k+1 contains no (k′ + 2)-critical vertices and pw(T k+2) ≤ k′ + 2.

Subtrees T k
w1

and T k
w2

are isomorphic to T k−1 so they each have pathwidth at most k′.
Therefore, subtree T k

w contains no (k′ + 1)-critical vertices and neither does subtree T k
u since

it is isomorphic to a subtree of T k
w. Subtrees T k+1

u1
and T k+1

u2
are isomorphic to T k−2 so, by

Lemma 5, subtree T k
u has pathwidth at most k′ and therefore v is not (k′ +1)-critical. Thus,

T k contains no (k′ + 1)-critical vertices.
Subtree T k+1

u is isomorphic to T k
w so it contains no (k′ + 1)-critical vertices. By Lemma

5, T k+1
u has pathwidth at most k′ + 1 so v is not (k′ + 2)-critical. Subtrees T k+1

w1
and T k+1

w2

are isomorphic to T k so they contain no (k′+1)-critical vertices. By Lemma 5, then, subtree
T k+1

w has pathwidth at most k′ + 1 and therefore contains no (k′ + 2)-critical vertices. Thus,
T k+1 contains no (k′ + 2)-critical vertices.

Subtree T k+2
u is isomorphic to T k+1

w so it has pathwidth at most k′+1. Subtrees T k+2
w1

and
T k+2

w2
contain no (k′ + 2)-critical vertices because they are isomorphic to T k+1. By Lemma

5, then, T k+2 has pathwidth at most k′ + 2.
The lemma then follows by induction on k because for k = 0 trees T k = T 0 and T k+1 = T 1

both have pathwidth 0. 2

Finally, we show that the upper bound of Lemma 23 is optimal:

Lemma 28 For each h ≥ 0, there exists a tree T with pw(T) ≤ h for which every uncon-
strained layered drawing occupies at least d3h/2e layers.

Proof. Consider the tree T rooted at r having three children each the roots of subtrees
isomorphic to T d3h/2e−1. By Lemma 27, tree T d3h/2e−1 has pathwidth at most h−1. Therefore,
by Lemma 5, T has pathwidth at most h.

By Lemma 26, in any drawing of T , the three subtrees occupy at least d3h/2e− 2 layers.
By Lemma 1, then, T occupies at least d3h/2e − 1 layers. However, if T occupies exactly
d3h/2e − 1 layers then each subtree has a vertex on either the top or bottom layer implying
that the root of each subtree is accessible. Therefore, by Lemma 26, each subtree occupies
d3h/2e − 1 layers. Consequently, by Lemma 1, every layered drawing of T occupies at least
d3h/2e layers. 2

The optimal lower bounds for upright and unconstrained layered drawings differ. How-
ever, both use the following result similar to Lemma 14 for short layered drawings:

Lemma 29 In an unconstrained h-layer drawing of a graph G, if S ⊆ V (G) has exactly one
vertex on each layer and R(S) 6= ∅ then F(S) 6= ∅.

Proof. Suppose that R(S) 6= ∅ and let S ′ ⊆ S be the set {v | v ∈ S, R(v) 6= ∅}. We prove
that F(S) 6= ∅ by showing that at least one vertex v ∈ S ′ belongs to F(S). By definition,
if v ∈ F(S) then v has no neighbor in R(S) = R(S ′) on a different layer. To find v, we
construct a sequence of vertices v1, v2, . . . , vp on a subset of S ′ in which v = vp is the last
vertex. The sequence satisfies the following constraints:

15

1. For each pair of edges e = (vj, u) and e′ = (vi, w) where i < j and u, w ∈ R(S), if e
and e′ cross the same layer l, then e crosses l to the left of e′; and,

2. vp has no neighors in R(S ′) \ R({v1, v2, . . . , vp})

If such a sequence exists then the last vertex vp does not have any neighbors in R(S ′) on a
different layer; therefore, vp belongs to F(S).

We construct such a sequence inductively. We let v1 be any vertex in S ′ and, then, given
vi, we let vi+1 be a vertex in S ′ \ {v1, v2, . . . , vi} such that vi has a neighbor in R(vi+1). If
no such vi+1 exists then we can take vi = vp = v.

We prove that the constructed sequence satisfies the first constraint given above by way
of contradiction. Suppose that vj is the first vertex to violate the first constraint; that is,
suppose that there is some edge e = (vj, u) with u ∈ R(S) that crosses a layer l to the right
of some edge e′ = (vi, w), where i < j and w ∈ R(S). We split the drawing into two regions
with the horizontal ray anchored at vj pointing in the negative x-direction, the segment from
vj to the point p where e intersects layer l, and the horizontal ray anchored at p pointing in
the positive direction. These two regions are illustrated in Figure 9. The boundary between
them is highlighted by the thick gray polygonal line. By definition, vj−1 has a neighbor

layer l

layer Y(vj) = Y(x)

u

vj

e

p

x

vj−1

e′′

w

vi

e′

Figure 9: Edges e and e′ define two regions.

x ∈ R(vj). We call that edge e′′ and claim that e′ and e′′ lie in opposite regions. Firstly, e′

does not cross layer Y(vj), for otherwise, it crosses to the left of vj while e′′ crosses to the
right. In this case, vj−1 violates the first constraint given above contradicting the minimality
of j. Secondly, edge e′′ does not cross layer l for otherwise it crosses to the right of p while
e′ crosses to the left. Once again, vj−1 violates the first constraint given above. Thus, e′

and e′′ lie entirely in opposite regions. Now let vk be the first vertex after vi that does not
lie in the same region as vi. Thus, vk−1 lies in the same region as vi and has a neighbor y
in R(vk). Consequently, edge e′′′ = (vk−1, y) crosses the boundary between the two regions.
However, it cannot cross layer Y(vj) left of vj because e′′ crosses to the right. In this case,
vj−1 violates the first constraint, contradicting the minimality of j. Similarly, it cannot cross
layer l to the right of p because e′ crosses to the left. In this case, vk−1 violates the first
constraint, contradicting the minimality of j. Thus, we have shown that the constructed
sequence satisfies the first constraint.

16

The second constraint is also satsified because S ′ is finite. Consequently, vertex vp belongs
to F(S). 2

For unconstrained layered drawings, the optimal lower bound is the same as for short layered
drawings. The proof is similar to the proof of Lemma 15 for short layered drawings. We
simply change all references to short layered drawings to unconstrained layered drawings
and all references to Lemma 14 to Lemma 29. This bound is also proved independently by
Felsner et al. in [9].

Lemma 30 For every graph G, any unconstrained layered drawing of G occupies at least
pw(G) layers.

Short layered drawings are unconstrained layered drawings so, by Lemma 16, our lower
bound is optimal.

Corollary 31 For each h ≥ 1, there exists a graph G with pw(G) ≤ h and an unconstrained
h-layer drawing.

Thus, by Lemmas 23, 28 and 30, and Corollary 31, then, our bounds on the number of layers
in unconstrained layered drawings of trees are optimal:

Theorem 3 For each h ≥ 1, the lower bound h and the upper bound d3h/2e are optimal
bounds on the number of layers in unconstrained layered drawings of trees with pathwidth h.

For upright layered drawings, we observe that in the proof of Lemma 30 we can simply
let each Bi = Si because flat edges are not permitted in the drawing.

Lemma 32 If a graph G has an upright layered drawing then that drawing occupies at least
pw(G) + 1 layers.

The optimality of this bound follows from Lemma 22 because every proper layered drawing
is by definition an upright layered drawing.

Corollary 33 For each h ≥ 0, there exists a graph G with pw(G) ≤ h and an upright
(h + 1)-layer drawing.

Thus, by Lemmas 23, 28 and 32, and Corollary 33, then, our bounds on the number of layers
in upright layered drawings of trees are optimal:

Theorem 4 For each h ≥ 1, the lower bound h+1 and the upper bound d3h/2e are optimal
bounds on the number of layers in upright layered drawings of trees with pathwidth h.

6 Linear-Time Drawing Algorithms

We can obtain the layered drawings described in the proofs of Lemmas 9, 17 and 23 in linear
time. Each drawing depends on there being an algorithm that can efficiently decompose a
tree into one or more paths and subtrees. More specifically, given a vertex v in a tree T , the
drawings depend on three different decompositions:

17

1. a main path P of T and the components of T \ P ;

2. a main path P of T , the path R from v to P , and the components of (T \P) \R; and,

3. a main path P of T , a main path P ′ of the subtree in T \ P containing v, the path Q
from P to an end vertex of P ′ such that Q intersects the path from v to P , the path
R from v to Q, and the components of (((T \ P) \ P ′) \Q) \R.

Recall that the first decomposition is applied initially to the whole tree and then the last two
decompositions are recursively applied to the subtrees until the entire tree is decomposed
into paths. We describe an algorithm that can accomplish this in linear time.

As a preprocessing step, we root the tree at an arbitrary vertex and then apply the
linear-time algorithm of [7] for finding the pathwidth of a tree. More specifically, given a
tree T the algorithm computes a label for each a vertex v in the tree. The label consists of
a sequence of non-negative integers (a1, a2, . . . ap) in descending order and a corresponding
sequence of vertices (v1, v2, . . . vp) in the subtree Tv rooted at v such that:

1. pw(Tv) = a1;

2. for 1 ≤ i ≤ p− 1, pw(Tv \ Tv1 \ Tv2 \ . . . \ Tvi−1
) = ai+1; and

3. for 1 ≤ i ≤ p− 1, vi is an ai-critical vertex in Tv \ Tv1 \ Tv2 \ . . . \ Tvi−1
.

For our algorithm we do not need to save the whole label for each vertex v. Instead, we need
only retain the values a1 and a2 and corresponding vertices v1 and v2. We refer to v1 with
cr1(v), v2 with cr2(v), a1 with pw1(v) and a2 with pw2(v). In the case that a2 and v2 do not
exist, we simply say that cr2(v) and pw2(v) are undefined.

The first step of each decomposition is to find a main path in the tree. The next two
results show how we find a main path.

Lemma 34 Let v be a vertex in a rooted tree T . Then, there exist at most two vertices u
and w that are descendants of v with pw1(u) = pw1(w) = pw1(v), and each child c of u or w
has pw1(c) < pw1(v). Furthermore, the path between u and w contains cr1(v) and is a main
path for Tv.

Proof. Suppose that there are two such descendants, u and w. Since pw1(u) = pw1(w) =
pw1(v), vertex u is not a descendant of w, and w is not a descendant of u. In addition,
vertex cr1(v) is the lowest common ancestor of u and w because, by Lemma 6, cr1(v) is the
unique pw1(v)-critical vertex in Tv.

If there is a third such descendent x of v then cr1(v) is the lowest common ancestor of u,
w and x, so Tv \ cr1(v) contains three components with pw1(v). By Lemma 4, however, this
means that Tv has pathwidth greater than pw1(v), a contradiction. Thus, there are at most
two such descendents u and w.

Let P be the path from u to w, and consider a component T ′ of T \ P . Let x be the
vertex on P that is adjacent to a vertex in T ′. If pw(T ′) ≥ pw1(v) then x is not a descendant
of u or w. Consequently, there are at least three components in Tv \ x with pathwidth at
least pw1(v): one containing Tu, another containing Tw, and the third containing T ′. By

18

Lemma 4, however, this means that Tv has pathwidth greater than pw1(v), a contradiction.
Thus, P is a main path. 2

Corollary 35 To find a main path P in a tree rooted at v, we initialize P to be the single-
vertex path consisting of cr1(v). We then walk down the tree following edges to vertices u
with pw1(u) = pw1(v). As we walk, we add each such u to the appropriate end of P .

It is convenient if the main path removed in the first decomposition contains the root.
This is because each remaining component is a rooted subtree of the original tree; conse-
quently, we can reuse the labels calculated in the preprocessing step to recursively decompose
each remaining component. If the main path does not contain r then we reroot the tree at
cr1(r) and relabel the tree. Then, the new root r is equal to cr1(r) so the main path found
using the algorithm described in Corollary 35 contains r = cr1(r). This decomposition is
illustrated in Figure 10(a).

We then apply either decomposition two or three to the remaining subtrees. The root of
each subtree is the vertex v in the subtree that is adjacent to the main path just removed.

We apply decomposition two to subtree Tv by again using the algorithm described in
Corollary 35 to find a main path P of Tv. The path R from the subtree root v to P is simply
the path from v to cr1(v) ∈ P . We traverse this path by walking up the tree from cr1(v) to
v. This decomposition is illustrated in Figure 10(b).

We apply decomposition three to subtree Tv by again using the algorithm described in
Corollary 35 to find a main path P of Tv. If v = cr1(v), then the decomposition is complete
since paths P ′, Q and R have zero length. On the other hand, if v 6= cr1(v) then v belongs
to subtree T ′ = Tv \ Tcr1(v). We find a main path P ′ of T ′ by again applying the algorithm
described in Corollary 35 except that, for each ancestor w of cr1(v), we refer to cr2(w) and
pw2(w) instead of to cr1(w) and pw1(w), respectively. Let X be the path from cr2(v) to v.
Path Q is then composed of the path from cr1(v) to the nearest vertex w in X and the path
from an end vertex of P ′ to w. We traverse Q by walking up the tree from cr1(v) to w and
then from an end vertex of P ′ again up to w. Path R is the path from w to v. We traverse
R by walking up the tree from w to v. Two cases for this decomposition are illustrated in
Figure 10(c-d).

After applying decompositions two or three to Tv, we recursively apply either of these
decompositions to any remaining components of Tv. Because the set of paths removed from
Tv are connected and contain the root v, each of the remaining components is actually
a rooted subtree of the original tree. In addition, the component vertex adjacent to the
removed paths is precisely the root of the component. Consequently, we can reuse the vertex
labels calculated earlier to recursively apply either of these decompositions exactly as we
just described them for Tv.

We claim that the recursion finishes in linear time. The preprocessing step applies a
linear-time labelling algorithm to the tree. The first decomposition may require rerooting
and relabelling the tree, but both of these are accomplished in linear time. The remainder of
the algorithm involves traversing various paths and collecting adjacent subtrees for further
decomposition. These traversals involve visiting each vertex in the tree a small constant
number of times. Thus, we have linear-time algorithms to construct the drawings described
in the proofs of Lemmas 9, 17 and 23:

19

r

v

cr1(v)

(a) (b)

v

cr2(v) = w

cr1(v)

v

w

cr2(v)
cr1(v)

Path P

Path P ′

Path Q

Path R

(c) (d)

Figure 10: Decomposing a tree.

Theorem 5 The following drawings of a tree T with pw(T) = h can be obtained in linear
time:

• an unconstrained (d3h/2e)-layer drawing (if h ≥ 1);

• an upright (d3h/2e)-layer drawing (if h ≥ 1);

• a short (2h− 1)-layer drawing (if h ≥ 2); and

• a proper (3h− 3)-layer drawing (if h ≥ 2).

7 Conclusions

In this paper we have proven optimal upper and lower bounds on the number of layers
required by layered drawings of trees and given linear-time algorithms for obtaining drawings
that match the optimal upper bounds.

These linear-time algorithms are significant because, even though there is an algorithm
for determining whether or not an arbitrary graph has an h-layer drawing that runs in
f(h) · n time [4], the value of f(h) is too large for the algorithm to be practical for even
small values of h. The results in this paper demonstrate one approach to solving this general

20

problem, by considering increasingly more general classes of graphs. Another approach is to
characterize the graphs whose drawings occupy a specific number of layers and then design
efficient algorithms for determining whether or not a given graph satisfies the corresponding
characterization. So far this approach has been used for only 2-layer [11, 6, 3] and 3-layer
[10, 3] drawings.

8 Acknowledgements

I thank my supervisor Sue Whitesides for proof-reading and helping to improve the read-
ability of this document. This work began as an attempt to reconstruct a proof. I thank
David R. Wood for suggesting that reconstruction, and I thank him and Vida Dujmović for
several helpful discussions.

References

[1] Guiseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph
Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, 1999. 1

[2] M. J. Carpano. Automatic display of hierarchized graphs for computer aided decision
analysis. IEEE Transactions on Systems, Man, and Cybernetics, 10(11):705–715, 1980.
1

[3] Sabine Cornelsen, Thomas Schank, and Dorothea Wagner. Drawing graphs on two and
three lines. In Michael Goodrich and Stephen Kobourov, editors, Graph Drawing, 10th
International Symposium (GD 2002), volume to appear of Lecture Notes in Computer
Science. Springer-Verlag, 2002. 21

[4] Vida Dujmović, Michael R. Fellows, Michael T. Hallett, M. Kitching, Giuseppe Li-
otta, Catherine McCartin, Naomi Nishimura, Prabhakar Ragde, Frances A. Rosamond,
Matthew Suderman, Sue Whitesides, and David R. Wood. On the parameterized com-
plexity of layered graph drawing. In Friedhelm Meyer auf der Heide, editor, Algorithms,
9th European Symposium (ESA 2001), volume 2161 of Lecture Notes in Computer Sci-
ence, pages 488–499. Springer-Verlag, 2001. 20

[5] Vida Dujmović, Matthew Suderman, and David R. Wood. Personal communication,
2002. 4, 8

[6] Peter Eades, Brendan McKay, and Nick Wormald. On an edge crossing problem. In Pro-
ceedings of the 9th Australian Computer Science Conference, pages 327–334. Australian
National University, 1986. 21

[7] John A. Ellis, Ivan Hal Sudborough, and Jonathan Turner. The vertex separation and
search number of a graph. Information and Computation, 113(1):50–79, 1994. 3, 18

21

[8] Stefan Felsner, Giuseppe Liotta, and Stephen K. Wismath. Straight-line drawings on re-
stricted integer grids in two and three dimensions (extended abstract). In Petra Mutzel,
Michael Jünger, and Sebastian Leipert, editors, Graph Drawing, 9th International Sym-
posium (GD 2001), volume 2265 of Lecture Notes in Computer Science, pages 328–342.
Springer-Verlag, 2001. 1, 2, 3, 6

[9] Stefan Felsner, Giuseppe Liotta, and Stephen K. Wismath. Straight-line drawings on
restricted integer grids in two and three dimensions, manuscript. http://page.inf.

fu-berlin.de/~felsner/Paper/rest-grid.ps.gz, 2002. 17

[10] Ulrich Fößmeier and Michael Kaufmann. Algorithms and area bounds for nonplanar
orthogonal drawings. In Giuseppe Di Battista, editor, Graph Drawing, 5th International
Symposium (GD ’97), volume 1353 of Lecture Notes in Computer Science, pages 134–
145. Springer-Verlag, 1997. 21

[11] Frank Harary and Allen Schwenk. A new crossing number for bipartite graphs. Utilitas
Mathematica, 1:203–209, 1972. 21

[12] Michael Kaufmann and Dorothea Wagner. Drawing Graphs: Methods and Models, vol-
ume 2025 of Lecture Notes in Computer Science. Springer-Verlag, 2001. 1

[13] Thomas Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. Wiley,
1990. 1

[14] Petra Mutzel. Optimization in leveled graphs. In Panos M. Pardalos and Christodou-
los A. Floudas, editors, Encyclopedia of Optimization, pages 189–196. Kluwer Academic
Publishers, 2001. 1

[15] Petra Scheffler. A linear algorithm for the pathwidth of trees. In Rainer Bodendiek
and Rudolf Henn, editors, Topics in Combinatorics and Graph Theory, pages 613–620.
Physica-Verlag, Heidelberg, 1990. 3

[16] Konstantin Skodinis. Computing optimal linear layouts of trees in linear time. In Mike
Paterson, editor, Algorithms, 8th European Symposium (ESA 2000), volume 1879 of
Lecture Notes in Computer Science, pages 403–414. Springer-Verlag, 2000. 3

[17] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual understand-
ing of hierarchical system structures. IEEE Transactions on Systems, Man, and Cyber-
netics, 11(2):109–125, 1981. 1

[18] John N. Warfield. Crossing theory and hierarchy mapping. IEEE Transactions on
Systems, Man, and Cybernetics, 7(7):502–523, 1977. 1

[19] Michael S. Waterman and Jerrold R. Griggs. Interval graphs and maps of DNA. Bulletin
of Mathematical Biology, 48(2):189–195, 1986. 1

22

http://page.inf.fu-berlin.de/~felsner/Paper/rest-grid.ps.gz
http://page.inf.fu-berlin.de/~felsner/Paper/rest-grid.ps.gz

	Introduction
	Preliminaries
	Short Layered Drawings
	Proper Layered Drawings
	Upright and Unconstrained Layered Drawings
	Linear-Time Drawing Algorithms
	Conclusions
	Acknowledgements

