


QUALCOMM Incorporated

5775 Morehouse Drive

San Diego, CA. 92121-1714

U.S.A.

This manual was written for use with the BREW SDKTM) for Windows, software version 1.0.1. This 

manual and the BREW SDK software described in it are copyrighted, with all rights reserved. This 

manual and the BREW SDK software may not be copied, except as otherwise provided in your software 

license or as expressly permitted in writing by QUALCOMM Incorporated.

Copyright © 2001 QUALCOMM Incorporated

All Rights Reserved

All data and information contained in or disclosed by this document are confidential and proprietary 

information of QUALCOMM Incorporated, and all rights therein are expressly reserved. By accepting 

this material, the recipient agrees that this material and the information contained therein are held in 

confidence and in trust and will not be used, copied, reproduced in whole or in part, nor its contents 

revealed in any manner to others without the express written permission of QUALCOMM Incorporated.

Export of this technology may be controlled by the United States Government. Diversion contrary to U.S. 

law prohibited.

BINARY RUNTIME ENVIRONMENT FOR WIRELESS, BREW, BREW SDK, and TRUE BREW are 

trademarks of QUALCOMM Incorporated.

QUALCOMM is a registered trademark and registered service mark of QUALCOMM Incorporated.

Microsoft, Windows, and Visual Studio are either registered trademarks or trademarks of Microsoft 

Corporation in the United States and/or other countries.

Macintosh is a registered trademark of Apple Computer, Inc. 

UNIX and X-Windows are trademarks of The Open Group.

All trademarks and registered trademarks referenced herein are the property of their respective owners.

BREW API Reference

80-D4995-1 Rev. J

July 30, 2001



Contents

Introducing the BREW API Reference 1

IApplet Interface 3

List of functions 4
IAPPLET_AddRef() 5

IAPPLET_HandleEvent() 6

IAPPLET_Release() 7

IAStream Interface 8

List of functions 10

IASTREAM_AddRef() 11

IASTREAM_Cancel() 12
IASTREAM_Read() 13

IASTREAM_Readable() 14

IASTREAM_Release() 15

IBase Interface 16

List of functions 17

IBASE_AddRef() 18

IBASE_Release() 19

IControl Interface 20

List of functions 22

ICONTROL_AddRef() 23

ICONTROL_GetProperties() 24
ICONTROL_GetRect() 25

ICONTROL_HandleEvent() 26

ICONTROL_IsActive() 27
ICONTROL_Redraw() 28

ICONTROL_Release() 29

ICONTROL_Reset() 30
ICONTROL_SetActive() 31

ICONTROL_SetProperties() 32

ICONTROL_SetRect() 33

IDatabase Interface 34
iii



 

List of functions 36

IDATABASE_AddRef() 37
IDATABASE_CreateRecord() 38

IDATABASE_GetNextRecord() 39

IDATABASE_GetRecordByID() 40
IDATABASE_GetRecordCount() 41

IDATABASE_Release() 42

IDATABASE_Reset() 43

IDateCtl Interface 44

List of functions 46

IDATECTL_AddRef() 47

IDATECTL_EnableCommand() 48
IDATECTL_GetDate() 49

IDATECTL_GetDateString() 50

IDATECTL_GetDayOfWeek() 52
IDATECTL_GetDayString() 53

IDATECTL_GetJulianDay() 54

IDATECTL_GetMonthString() 55
IDATECTL_GetProperties() 56

IDATECTL_GetRect() 57

IDATECTL_HandleEvent() 58
IDATECTL_IsActive() 59

IDATECTL_Redraw() 60

IDATECTL_Release() 61
IDATECTL_Reset() 62

IDATECTL_SetActive() 63

IDATECTL_SetActiveDayMask() 64
IDATECTL_SetDate() 65

IDATECTL_SetJulianDay() 66

IDATECTL_SetProperties() 67
IDATECTL_SetRect() 68

IDATECTL_SetTitle() 69

IDBMgr Interface 70

List of functions 71
IDBMGR_AddRef() 72

IDBMGR_OpenDatabase() 73

IDBMGR_OpenDatabaseEx() 74
IDBMGR_Remove() 75

IDBMGR_Release() 76

IDBRecord Interface 77

List of functions 79
IDBRECORD_AddRef() 80

IDBRECORD_GetField() 81
iv



 

IDBRECORD_GetFieldDWord() 83

IDBRECORD_GetFieldString() 84
IDBRECORD_GetFieldWord() 85

IDBRECORD_GetID() 86

IDBRECORD_NextField() 87
IDBRECORD_Release() 88

IDBRECORD_Remove() 89

IDBRECORD_Reset() 90
IDBRECORD_Update() 91

IDialog Interface 92

List of functions 93

IDIALOG_AddRef() 94
IDIALOG_GetControl() 95

IDIALOG_Release() 96

IDIALOG_SetEventHandler() 97
IDIALOG_SetFocus() 98

IDisplay Interface 99

List of functions 102

IDISPLAY_AddRef() 103
IDISPLAY_Backlight() 104

IDISPLAY_BitBlt() 105

IDISPLAY_ClearScreen() 107
IDISPLAY_DrawFrame() 108

IDISPLAY_DrawHLine() 109

IDISPLAY_DrawRect() 110
IDISPLAY_DrawText() 112

IDISPLAY_DrawVLine() 115

IDISPLAY_EraseRect() 116
IDISPLAY_EraseRgn() 117

IDISPLAY_FillRect() 118

IDISPLAY_FrameButton() 119
IDISPLAY_FrameRect() 120

IDISPLAY_FrameSolidRect() 121

IDISPLAY_GetFontMetrics() 122
IDISPLAY_GetSymbol() 124

IDISPLAY_InvertRect() 125

IDISPLAY_MeasureText() 126
IDISPLAY_MeasureTextEx() 127

IDISPLAY_Release() 129

IDISPLAY_SetAnnunciators() 130
IDISPLAY_SetColor() 132

IDISPLAY_Update() 134

IDISPLAY_UpdateEx() 135

IFile Interface 136
v



 

List of functions 138

IFILE_AddRef() 139
IFILE_Cancel() 140

IFILE_GetInfo() 141

IFILE_Read() 142
IFILE_Readable() 143

IFILE_Release() 144

IFILE_Seek() 145
IFILE_Truncate() 147

IFILE_Write() 148

IFileMgr Interface 149

List of functions 151
IFILEMGR_AddRef() 152

IFILEMGR_EnumInit() 153

IFILEMGR_EnumNext() 154
IFILEMGR_GetFreeSpace() 155

IFILEMGR_GetInfo() 156

IFILEMGR_GetLastError() 157
IFILEMGR_MkDir() 159

IFILEMGR_OpenFile() 160

IFILEMGR_Release() 162
IFILEMGR_Remove() 163

IFILEMGR_Rename() 164

IFILEMGR_RmDir() 165
IFILEMGR_Test() 166

IGraphics Interface 167

List of functions 172

IGRAPHICS_AddRef() 174
IGRAPHICS_ClearRect() 175

IGRAPHICS_ClearViewport() 176

IGRAPHICS_DrawArc() 177
IGRAPHICS_DrawCircle() 178

IGRAPHICS_DrawEllipse() 179

IGRAPHICS_DrawLine() 180
IGRAPHICS_DrawPie() 181

IGRAPHICS_DrawPoint() 182

IGRAPHICS_DrawPolygon() 183
IGRAPHICS_DrawPolyline() 184

IGRAPHICS_DrawRect() 185

IGRAPHICS_DrawTriangle() 186
IGRAPHICS_EnableDoubleBuffer() 187

IGRAPHICS_GetBackground() 188

IGRAPHICS_GetClip() 189
IGRAPHICS_GetColor() 190

IGRAPHICS_GetColorDepth() 191

IGRAPHICS_GetFillColor() 192
IGRAPHICS_GetFillMode() 193
vi



 

IGRAPHICS_GetPaintMode() 194

IGRAPHICS_GetPointSize() 195
IGRAPHICS_GetViewport() 196

IGRAPHICS_Pan() 197

IGRAPHICS_Release() 198
IGRAPHICS_SetBackground() 199

IGRAPHICS_SetClip() 200

IGRAPHICS_SetColor() 202
IGRAPHICS_SetFillColor() 203

IGRAPHICS_SetFillMode() 204

IGRAPHICS_SetPaintMode() 205
IGRAPHICS_SetPointSize() 206

IGRAPHICS_SetViewport() 207

IGRAPHICS_Translate() 209
IGRAPHICS_Update() 210

IHeap Interface 211

List of functions 212

IHEAP_AddRef() 213
IHEAP_CheckAvail() 214

IHEAP_Free() 215

IHEAP_GetMemStats() 216
IHEAP_Malloc() 217

IHEAP_MallocRec() 218

IHEAP_Realloc() 219
IHEAP_Release() 220

IHEAP_StrDup() 221

IImage Interface 222

List of functions 225
IIMAGE_AddRef() 226

IIMAGE_Draw() 227

IIMAGE_DrawFrame() 228
IIMAGE_GetInfo() 229

IIMAGE_HandleEvent() 230

IIMAGE_Notify() 231
IIMAGE_Release() 232

IIMAGE_SetParm() 233

IIMAGE_SetStream() 236
IIMAGE_Start() 237

IIMAGE_Stop() 238

 IMemAStream Interface 239

List of functions 240
IMEMASTREAM_AddRef() 241

IMEMASTREAM_Cancel() 242
vii



 

IMEMASTREAM_Read() 243

IMEMASTREAM_Readable() 244
IMEMASTREAM_Release() 245

IMEMASTREAM_Set() 246

IMenuCtl Interface 248

List of functions 252
IMENUCTL_AddRef() 253

IMENUCTL_AddItem() 254

IMENUCTL_AddItemEx() 256
IMENUCTL_DeleteAll() 258

IMENUCTL_DeleteItem() 259

IMENUCTL_EnableCommand() 260
IMENUCTL_GetItemData() 261

IMENUCTL_GetItemTime() 262

IMENUCTL_GetProperties() 263
IMENUCTL_GetRect() 265

IMENUCTL_GetSel() 266

IMENUCTL_HandleEvent() 267
IMENUCTL_IsActive() 269

IMENUCTL_Redraw() 270

IMENUCTL_Release() 271
IMENUCTL_Reset() 272

IMENUCTL_SetActive() 273

IMENUCTL_SetColors() 274
IMENUCTL_SetItemText() 276

IMENUCTL_SetItemTime() 277

IMENUCTL_SetProperties() 278
IMENUCTL_SetRect() 280

IMENUCTL_SetSel() 282

IMENUCTL_SetStyle 283
IMENUCTL_SetTitle() 284

IModule Interface 286

List of functions 287

IMODULE_AddRef() 288
IMODULE_CreateInstance() 289

IMODULE_FreeResources() 290

IMODULE_Release() 291

INetMgr Interface 292

List of functions 294

INETMGR_AddRef() 295

INETMGR_GetHostByName() 296
INETMGR_GetLastError() 299

INETMGR_GetMyIPAddr() 300
viii



 

INETMGR_NetStatus() 301

INETMGR_OnEvent() 302
INETMGR_OpenSocket() 303

INETMGR_Release() 305

INETMGR_SetLinger() 306

INotifier Interface 307

List of functions 309

INOTIFIER_AddRef() 310

INOTIFIER_Release() 311
INOTIFIER_SetMask() 312

IShell Interface 313

List of functions 321

ISHELL_ActiveApplet() 323
ISHELL_AddRef() 324

ISHELL_AlarmsActive() 325

ISHELL_Beep() 326
ISHELL_BrowseFile() 327

ISHELL_BrowseURL() 328

ISHELL_Busy() 329
ISHELL_CancelAlarm() 330

ISHELL_CancelTimer() 331

ISHELL_CanStartApplet() 332
ISHELL_CheckPrivLevel() 333

ISHELL_CloseApplet() 334

ISHELL_CreateDialog() 335
ISHELL_CreateInstance() 337

ISHELL_EndDialog() 338

ISHELL_EnumAppletInit() 339
ISHELL_EnumNextApplet() 340

ISHELL_ForceExit() 341

ISHELL_FreeResData() 342
ISHELL_GetActiveDialog() 343

ISHELL_GetDeviceInfo() 344

ISHELL_GetHandler() 346
ISHELL_GetItemStyle() 347

ISHELL_GetPosition() 348

ISHELL_GetPrefs() 349
ISHELL_GetTimerExpiration() 350

ISHELL_HandleEvent() 351

ISHELL_IsValidResource() 352
ISHELL_LoadImage() 353

ISHELL_LoadResData() 355

ISHELL_LoadResImage() 357
ISHELL_LoadResObject() 358

ISHELL_LoadResSound() 360

ISHELL_LoadResString() 361
ISHELL_LoadSound() 362
ix



 

ISHELL_MessageBox() 363

ISHELL_MessageBoxText() 364
ISHELL_Notify() 365

ISHELL_PostEvent() 367

ISHELL_Prompt() 369
ISHELL_QueryClass() 370

ISHELL_RegisterHandler() 371

ISHELL_RegisterNotify() 373
ISHELL_Release() 375

ISHELL_Resume() 376

ISHELL_SendEvent() 378
ISHELL_SetAlarm() 380

ISHELL_SetPrefs() 381

ISHELL_SetTimer() 382
ISHELL_ShowCopyright() 384

ISHELL_StartApplet() 386

ISocket Interface 387

List of functions 390
ISOCKET_AddRef() 391

ISOCKET_Bind() 392

ISOCKET_Cancel() 394
ISOCKET_Connect() 395

ISOCKET_GetLastError() 397

ISOCKET_GetPeerName() 398
ISOCKET_IOCtl() 399

ISOCKET_Read() 400

ISOCKET_Readable() 402
ISOCKET_ReadV() 404

ISOCKET_RecvFrom() 406

ISOCKET_Release() 408
ISOCKET_SendTo() 409

ISOCKET_Writeable() 411

ISOCKET_Write() 413
ISOCKET_WriteV() 415

ISound Interface 417

List of functions 419

ISOUND_AddRef() 420
ISOUND_Get() 421

ISOUND_GetVolume() 422

ISOUND_PlayFreqTone() 423
ISOUND_PlayTone() 425

ISOUND_PlayToneList() 427

ISOUND_RegisterNotify() 429
ISOUND_Release() 431

ISOUND_Set() 432

ISOUND_SetDevice() 433
ISOUND_SetVolume() 434
x



 

ISOUND_StopTone() 435

ISOUND_StopVibrate() 436
ISOUND_Vibrate() 437

ISoundPlayer Interface 438

List of functions 440

ISOUNDPLAYER_AddRef() 441
ISOUNDPLAYER_FastForward() 442

ISOUNDPLAYER_GetTotalTime() 443

ISOUNDPLAYER_GetVolume 444
ISOUNDPLAYER_Pause() 445

ISOUNDPLAYER_Play() 446

ISOUNDPLAYER_RegisterNotify() 448
ISOUNDPLAYER_Release() 450

ISOUNDPLAYER_Resume() 451

ISOUNDPLAYER_Rewind() 452
ISOUNDPLAYER_Set() 453

ISOUNDPLAYER_SetSoundDevice() 454

ISOUNDPLAYER_SetStream() 455
ISOUNDPLAYER_SetTempo() 456

ISOUNDPLAYER_SetTune() 458

ISOUNDPLAYER_SetVolume() 460
ISOUNDPLAYER_Stop() 461

IStatic Interface 462

List of functions 464

ISTATIC_AddRef() 465
ISTATIC_GetProperties() 466

ISTATIC_GetRect() 467

ISTATIC_HandleEvent() 468
ISTATIC_Redraw() 469

ISTATIC_Release() 470

ISTATIC_Reset() 471
ISTATIC_SetProperties() 472

ISTATIC_SetRect() 473

ISTATIC_SetText() 474

ITAPI Interface 475

List of functions 476

ITAPI_AddRef() 477

ITAPI_ExtractSMSText() 478
ITAPI_GetCallerID() 479

ITAPI_GetStatus() 480

ITAPI_MakeVoiceCall() 481
ITAPI_Release() 483
xi



 

ITextCtl Interface 484

List of functions 486
ITEXTCTL_AddRef() 487

ITEXTCTL_EnableCommand() 488

ITEXTCTL_GetProperties() 489
ITEXTCTL_GetRect() 490

ITEXTCTL_GetText() 491

ITEXTCTL_GetTextPtr() 492
ITEXTCTL_HandleEvent() 493

ITEXTCTL_IsActive() 494

ITEXTCTL_Redraw() 495
ITEXTCTL_Release() 496

ITEXTCTL_Reset() 497

ITEXTCTL_SetActive() 498
ITEXTCTL_SetInputMode() 499

ITEXTCTL_SetMaxSize() 500

ITEXTCTL_SetProperties() 501
ITEXTCTL_SetRect() 502

ITEXTCTL_SetSoftKeyMenu() 503

ITEXTCTL_SetText() 504
ITEXTCTL_SetTitle() 505

ITimeCtl Interface 506

List of functions 509
ITIMECTL_AddRef() 510

ITIMECTL_EnableCommand() 511

ITIMECTL_GetProperties() 512
ITIMECTL_GetRect() 513

ITIMECTL_GetTime() 514

ITIMECTL_GetTimeString() 515
ITIMECTL_HandleEvent() 516

ITIMECTL_IsActive() 517

ITIMECTL_Redraw() 518

ITIMECTL_Release() 519
ITIMECTL_Reset() 520

ITIMECTL_SetActive() 521

ITIMECTL_SetEditField() 522
ITIMECTL_SetIncrement() 523

ITIMECTL_SetProperties() 524

ITIMECTL_SetRect() 525
ITIMECTL_SetTime() 526

ITIMECTL_SetTimeEx() 527

IViewer Interface 528

List of functions 529
xii



 

Helper Functions 530

List of functions 531
ATOI() 534

CALLBACK_Cancel() 535

CALLBACK_Init() 536
CALLBACK_IsQueued() 537

CONVERTBMP() 538

CREATEOBJ() 540
DBGPRINTF() 541

FADD() 542

FCMP_E() 543
FCMP_G() 544

FCMP_GE() 545

FCMP_L() 546
FCMP_LE() 547

FDIV() 548

FLOAT_TO_WSTR() 549
FMUL() 550

FREE() 551

FREEOBJ() 552
FSUB() 553

GETAEEVERSION() 554

GET_APP_INSTANCE() 556
GETCHTYPE() 557

GET_JULIANDATE() 558

GET_NOTIFIER_MASK() 559
GET_NOTIFIER_VAL() 560

GET_RAND() 561

GET_SECONDS() 562
GET_TIMEMS() 563

GET_UPTIMEMS() 564

LOCALTIMEOFFSET() 565
MALLOC() 566

MEMCPY() 567

MEMSET() 568
OEMSTRLEN() 569

OEMSTRSIZE() 570

REALLOC() 571
SETAEERECT() 572

SPRINTF() 573

STR_TO_WSTR() 574
STRCAT() 575

STRCHR() 576

STRCMP() 577
STRCPY() 578

STRLEN() 579

STRNCPY() 580
STRRCHR() 581

STRTOUL() 582

SYSFREE() 583
UTF8_TO_WSTR() 584

WSPRINTF() 585
xiii



 

WSTR_TO_FLOAT() 586

WSTR_TO_STR() 587
WSTR_TO_UTF8() 588

WSTRCAT() 589

WSTRCHR() 590
WSTRCMP() 591

WSTRCOMPRESS() 592

WSTRCPY() 593
WSTRDUP() 594

WSTRLEN() 595

WSTRLOWER() 596
WSTRNCOPYN() 597

WSTRRCHR() 598

WSTRSIZE() 599
WSTRUPPER() 600

WWRITELONGEX() 601

Data Structures 603

List of data structures 604
AEE Applet Flags 608

AEE Events 609

AEE IImage Parameters 611
AEE IMenuCtl Properties 612

AEE ITextCtl Properties 614

AEE ITimeCtl Properties 615
AEE Privilege Levels 616

AEE Standard Control Properties 617

AEEAppInfo 618
AEEAppStart 620

AEEArc 621

AEECallback 622
AEECircle 624

AEEClip 625

AEEClipShape 626
AEEClrItem 628

AEEDBField 630

AEEDBFieldName 631
AEEDBFieldType 633

AEEDeviceInfo 634

AEEDNSResult 637
AEEEllipse 638

AEEFrameType 639

AEEFont 641
AEEHandlerType 642

AEEImageInfo 643

AEEItemStyle 644
AEEItemType 645

AEELine 646

AEEMenuColors 647
AEEMenuColorsMask 649

AEENetStats 650
xiv



 

AEENotify 651

AEENotifyStatus 652
AEEPaintMode 653

AEEPie 654

AEEPoint 655
AEEPolygon 656

AEEPolyline 657

AEEPosAccuracy 658
AEEPositionInfo 659

AEEPromptInfo 660

AEERasterOp 662
AEERect 664

AEESoundAPath 665

AEESoundCmd 666
AEESoundCmdData 667

AEESoundDevice 668

AEESoundInfo 670
AEESoundMethod 671

AEESoundMuteCtl 673

AEESoundPlayerAudioSpec 674
AEESoundPlayerCmd 675

AEESoundPlayerCmdData 676

AEESoundPlayerFile 677
AEESoundPlayerInput 678

AEESoundPlayerMIDISpec 679

AEESoundPlayerMP3BitRate 680
AEESoundPlayerMP3Channel 683

AEESoundPlayerMP3Emphasis 684

AEESoundPlayerMP3Extension 685
AEESoundPlayerMP3Layer 687

AEESoundPlayerMP3SampleRate 688

AEESoundPlayerMP3Spec 690
AEESoundPlayerMP3Version 692

AEESoundPlayerSource 693

AEESoundPlayerStatus 694

AEESoundStatus 696
AEESoundTone 697

AEESoundToneData 704

AEESymbol 705
AEETextInputMode 707

AEETriangle 708

AEEVoicePrompt 709
BeepType 710

CtlAddItem 711

DialogInfo 713
DialogInfoHead 714

DialogItem 715

DialogItemHead 716
DListItem 717

FileAttrib 718

FileInfo 719
FileSeekType 720

IDISPLAY Flags 721
xv



 

IGRAPHICS Flags 723

ITField 724
JulianType 725

NetSocket 726

NetState 727
OpenFileMode 728

PFNAEEEVENT 729

PFNCONNECTCB 730
PFNIMAGEINFO 731

PFNPOSITIONCB 732

PFNSOUNDPLAYERSTATUS 733
PFNSOUNDSTATUS 734

ResType 735

RGBVAL 736
SockIOBlock 737

TChType 738
xvi



Introducing the BREW API Reference

This document provides developers with the information about Binary Runtime Environment for 

WirelessTM (BREWTM) functions, and data structures needed to develop applications for BREW-enabled 

mobile platforms.

In this reference

This remainder of the BREW API Reverence contains the following sections:

Each Function is listed with the following Information:

BREW API Interfaces 

(See Contents)

Lists the BREW interfaces and functions contained in them in 

alphabetical order

Helper Functions Lists the helper functions in alphabetical order

Data Structures Lists the data structures used by the BREW interfaces in 

alphabetical order

Description An explanation of the function’s use

Prototype A sample of the structure of a call

Parameters The items needing to be input and items returning

NOTE: Parameter lists will show [in], [in/out] and [out] only when the tables of 
parameters have a mixture of types. If the tables are all input parameters, the “[in]” 

is omitted. 

Return Values The items returning from the function call which include a wide 

variety of types, messages, values, structures, and descriptions

Comments Any special considerations and extra information to assist in 

understanding the function’s use, limitations, and boundaries.

Side Effects Any behavior that the function exhibits which may not be 

normally considered when using a function call.

See Also A cross reference to any related function or data structure.
1



Introducing the BREW API Reference  
BREW documentation set

The BREW documentation set contains the following documents:

For more information

Online information and support is available for BREW application developers. Please visit the BREW 

web site for details: www.qualcomm.com/brew. 

Document Description

BREW SDK User’s Guide Introduces the components of the BREW Software Development 

Kit (BREW SDKTM) and their relationships to one another. The 

document also contains general instructions for developing your 

own BREW applications.

BREW API Reference Provides developers with information about BREW functions and 

data structures needed to develop applications for BREW-

enabled mobile platforms.

BREW Device Configurator Guide Describes the purpose and features of the BREW Device 

Configurator and its relationship with the BREW Emulator. The 

document also provides instructions for creating effective 

wireless devices for use in the BREW Emulator to facilitate 

application development.

BREW Resource Editor Guide Describes how to use the BREW Resource Editor to create three 

types of resources that are utilized in BREW applications. The 

types of resources you can create are UI text strings, images, and 

dialogs. 

BREW MIF Editor Guide Describes how to use the BREW Module Information File (MIF) 

Editor to create and modify MIFs — a special type of BREW 

resource file that contains information about the classes and 

applets supported by particular BREW modules.
2



IApplet Interface

IApplet is the interface that represents an Application Execution Environment (AEE) Applet. The 

interface is derived from IBase and is generated by the associated IModule Interface. The IApplet 

Interface implements a simple HandleEvent routine. This routine is called by the AEE Shell in response 
to events generated by the system, other components, or applets. All applets in BREW must implement 

this interface. Stated in other words, “A BREW applet is a class that implements the IApplet Interface.” 

The IAPPLET_HandleEvent() function is used by the AEE Shell for sending events to the applet.

NOTE: IAPPLET_HandleEvent() can only be called by the AEE Shell. Events sent by other 

applets or components can be sent via the ISHELL_SendEvent() function.
3



IApplet Interface  
List of functions

Functions in this interface include:

IAPPLET_AddRef()

IAPPLET_HandleEvent()

IAPPLET_Release()

Return to the Contents.
4



IApplet Interface  
IAPPLET_AddRef() 

Description: 

This function increments the reference count of IApplet Interface object. This allows the object to be 

shared by multiple callers. The object is freed when the reference count reaches 0 (zero). See 
IAPPLET_Release().

Prototype:
uint32 IAPPLET_AddRef(IApplet * pIApplet) 

Parameters:

Return Value:

Incremented reference count for the object

Comments: 

A valid object returns a positive reference count

Side Effects: 

None

See Also:
IAPPLET_Release()

Return to the List of functions.

 pIApplet Pointer to the IApplet Interface object
5



IApplet Interface  
IAPPLET_HandleEvent() 

Description: 

This function provides the main event processing for a BREW applet. It is called when any event is 

passed to the applet. Events can include system-level notifications, keypress events, and so forth 

System alarms or system notifications call this function to respond. In those cases, if the applet is not 
currently running, the applet is loaded and the event is sent to the applet. In such cases, the 

EVT_APP_START event is not sent to the applet and unless the applet starts itself, the applet 

terminates after the completion of the event. The IAPPLET_HandleEvent() function must be 
implemented by all applets.

The IAPPLET_HandleEvent() function is also used to support applet startup, shutdown, suspend, and 

resume.

Prototype:
boolean IAPPLET_HandleEvent(IApplet * pIApplet, AEEEvent evt, uint16 wp, 

uint32 dwp) 

Parameters:

Return Value:

Comments: 

This function can only be called by the AEE Shell

Side Effects: 

None

See Also:
ISHELL_SendEvent(),

AEE Events,

Return to the List of functions.

pIApplet Pointer to the IApplet Interface object

evt Event code

wp 16-bit event-specific parameter

dwp 32-bit event-specific parameter

TRUE If the event was handled by the applet

FALSE If otherwise
6



IApplet Interface  
IAPPLET_Release() 

Description: 

This function decrements the reference count of IApplet Interface object. The object is freed from 

memory and is no longer valid once the reference count reaches 0 (zero). 

Prototype:
uint32 IAPPLET_Release(IApplet * pIApplet) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
IAPPLET_AddRef()

Return to the List of functions.

pIApplet Pointer to the IApplet Interface object

reference count Decremented reference count for the object

0 (zero) If the object has been freed and is no longer valid 
7



IAStream Interface

The IAStream Interface reads data from an asynchronous stream. It is an abstract interface that is 

implemented by classes that provide access to data that may not all be available at once and must be 

retrieved asynchronously. At present, the IFile and ISocket classes implement the IAStream Interface. 

The IImage Interface and ISoundPlayer Interface implement SetStream functions that allow an 

IAStream Interface to be supplied as the source of image or sound input.

The function IASTREAM_Read() reads data from the stream and returns the number of bytes read. If 

no data is available for reading, this function returns the value AEE_STREAM_WOULDBLOCK. In the 

latter case, you can call the function IASTREAM_Readable() to schedule a callback function that is 

invoked when there is more data available. The function IASTREAM_Cancel() cancels a callback that 

was scheduled with IASTREAM_Readable().

To use an IAStream instance to retrieve data asynchronously, perform the following steps:

1 Call ISHELL_CreateInstance() to create an instance of a class that implements the 

IAStream interface.

2 Call IASTREAM_Read() to read the required number of bytes of data from the stream. 

Since IAStream Interface is an abstract interface, you can also call IFILE_Read() for files, 

or ISOCKET_Read() for sockets.

3 If IASTREAM_Read() returns AEE_STREAM_WOULDBLOCK, call 

IASTREAM_Readable() to schedule a callback to try again later.

4 If IASTREAM_Read() reads fewer than the required number of bytes, call the function again 

to read the remaining data.

5 Repeat steps 2-4 until all the data has been received on the stream.

To use an asynchronous stream as the source of image or sound data, perform the following steps:

1 Call ISHELL_CreateInstance() to create an instance of a class that implements the 

IAStream Interface.

2 Call IAStream Interface to create an instance of IImage Interface or ISoundPlayer Interface.
8



IAStream Interface  
3 Call IIMAGE_Notify() or ISOUNDPLAYER_RegisterNotify() to schedule a callback that is 

invoked when the image or sound data has been completely retrieved.

4 Call IIMAGE_SetStream() or ISOUNDPLAYER_SetStream() to associate the stream 

created in step 1 with the IImage or ISoundPlayer instance created in step 2. This initiates 

the retrieval of image or sound data on the stream.

5 When retrieval is complete, the callback registered in step 3 is invoked. You can then use 

functions in the IImage Interface or the ISoundPlayer Interface to access the retrieved 

image or sound data.
9



IAStream Interface  
List of functions

Functions in this interface include:

IASTREAM_AddRef()

IASTREAM_Cancel()

IASTREAM_Read()

IASTREAM_Readable()

IASTREAM_Release()

Return to the Contents.
10



IAStream Interface  
IASTREAM_AddRef() 

Description: 

This function increments the reference count of IAStream Interface object. This allows the object to be 

shared by multiple callers. The object is freed when the reference count reaches 0 (zero). See 

IASTREAM_Release().

Prototype:
uint32 IASTREAM_AddRef(IAstream * pIAstream) 

Parameters:

Return Value:

Incremented reference count for the object

Comments: 

A valid object returns a positive reference count

Side Effects: 

None

See Also:
IASTREAM_Release()

Return to the List of functions

pIAstream Pointer to the IAStream Interface object
11



IAStream Interface  
IASTREAM_Cancel()

Description: 

This function cancels a callback that was scheduled with IASTREAM_Readable.

Prototype:
void IASTREAM_Cancel(IAStream * pIAStream, PFNNOTIFY pfn, void * pUser)

Parameters:

Return Value: 

None.

Comments: 

None

Side Effects: 

None

See Also: 
IASTREAM_Read()
IASTREAM_Readable()

Return to the List of functions

pIAStream Pointer to an IAStream Interface object

pfn Pointer to the callback function of the callback to be cancelled

pUser Pointer to user-specified data that is passed as a parameter to the callback 

function and is used to identify which callback must be cancelled.
12



IAStream Interface  
IASTREAM_Read()

Description: 

This function attempts to read data from a stream, and returns the number of bytes read. If no data is 

available for reading, it returns the value AEE_STREAM_WOULDBLOCK.

Prototype:
int32 IASTREAM_Read (IAStream * pIAStream, void * pBuffer, uint32 dwCount)

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also: 
IASTREAM_Readable()

IASTREAM_Cancel()
Return to the List of functions

pIAStream Pointer to an IAStream Interface object

pBuffer Pointer to the buffer into which the data will be read 

dwCount Number of bytes to read

Number of bytes 

read

If data is available for reading

0 (zero) If all available data has been read AEE_STREAM_WOULDBLOCK if no data is 

currently available
13



IAStream Interface  
IASTREAM_Readable()

Description: 

This function registers a callback that checks whether data is available to be read. The 

IASTREAM_Readable() is called when the IASTREAM_Read() returns 

AEE_STREAM_WOULDBLOCK.

Prototype:
void IASTREAM_Readable(IAStream * pIAStream, PFNNOTIFY pfn, void * pUser)

Parameters:

Return Value: 

None.

Comments: 

None

Side Effects: 

None

See Also: 
IASTREAM_Read()

IASTREAM_Cancel()

Return to the List of functions

pIAStream Pointer to an IAStream Interface object

pfn Pointer to the callback function

pUser Pointer to user-specified data that is passed as a parameter to the callback 

function
14



IAStream Interface  
IASTREAM_Release() 

Description: 

This function decrements the reference count of IAStream Interface object. The object is freed from 

memory and is no longer valid once the reference count reaches 0 (zero). 

Prototype:
uint32 IASTREAM_Release(IAstream * pIAstream) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
IASTREAM_AddRef()
Return to the List of functions

pIAstream Pointer to the IAStream Interface object

Reference count Decremented reference count for the object

0 (zero) If the object has been freed and is no longer valid 
15



IBase Interface

IBase is the base level interface from which all other BREW interfaces are derived. It supplies the object 

reference counting mechanisms that allow objects to manage their own memory instances.
16



IBase Interface  
List of functions

Functions in this interface include:

IBASE_AddRef()

IBASE_Release()

Return to the Contents
17



IBase Interface  
IBASE_AddRef() 

Description: 

This function increments the reference count of IBase Interface object. This allows the object to be 

shared by multiple callers. The object is freed when the reference count reaches 0 (zero). See 

IBASE_Release().

Prototype:
uint32 IBASE_AddRef(IBase * pIBase) 

Parameters:

Return Value:

Incremented reference count for the object

Comments: 

Side Effects: 

None

See Also:
IBASE_Release()

Return to the List of functions

pIBase Pointer to the IBase Interface object

A valid object returns a positive reference count
18



IBase Interface  
IBASE_Release() 

Description: 

This function decrements the reference count of IBase Interface object. The object is freed from 

memory and is no longer valid once the reference count reaches 0 (zero). 

Prototype:
uint32 IBASE_Release(IBase * pIBase) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
IBASE_AddRef()
Return to the List of functions

pIBase Pointer to the IBase Interface object

Reference count Decremented reference count for the object

0 (zero) If the object has been freed and is no longer valid 
19



IControl Interface

The IControl Interface is an abstract interface that is implemented by each of the BREW control 

interfaces (IDateCtl Interface, IMenuCtl Interface, IStatic Interface, ITextCtl Interface and ITimeCtl 

Interface). Because the interface is abstract, it is not possible to create an instance of the IControl 

Interface directly. Given a pointer to an instance of a control interface, you can invoke an IControl 

Interface function using either an IControl function or a function in that control's interface. For example, 

a menu control can be redrawn by calling either ICONTROL_Redraw() or IMENUCTL_Redraw(). The 

IControl functions are useful if you want to perform the same operation on many different types of 

control. For example, suppose that the array pControls[numControls] contains pointers to controls of 

different types that must be displayed together on the screen. The following loop can be used to redraw 

all the controls:

for (i = 0; i < numControls; i++)

ICONTROL_Redraw(pControls[i])

Each BREW control implements all of the functions in the IControl Interface. However, the behavior of 

each function may be different in each interface; refer to the function descriptions of each control 

interface for details. Each BREW control also implements control-specific functions that are not part of 

the IControl Interface.

The IControl Interface functions include:

•  ICONTROL_HandleEvent() is called to pass events to a control. The BREW controls process 

various key events to allow a user to enter a text, time or date value or choose an item from 

a menu. Refer to the descriptions of each control for the events it handles. A control can 
20



IControl Interface  
receive events only when it is active. Your applet must pass a control any events it handles 

when it is active, unless the control is part of a dialog.

•  ICONTROL_Redraw() draws the control on the screen. This function can be used to re-

display a control after it has been overwritten.

•  ICONTROL_SetActive() sets the activity state (active or inactive) of the control. Only an active 

control can receive and process events. In the case of a multicontrol dialog, only the control 

that currently has the focus is active.

•  ICONTROL_IsActive() retrieves the activity state of a control.

•  ICONTROL_SetRect() sets the pixel dimensions of the screen rectangle in which the control 

will be displayed. The pixel dimensions are specified in an AEERect structure that is passed 

as a parameter to the function. Some controls provide a scrolling mechanism that is used 

when the contents of the control will not fit in the rectangle. You can display multiple controls 

on the screen at the same time by setting their rectangle sizes appropriately.

•  ICONTROL_GetRect() retrieves the current rectangle of a control.

•  ICONTROL_SetProperties() allows you to change a control's property values, which are used 

to customize the control's behavior and appearance by enabling some optional features. 

Each control can have up to 32 properties, with each represented by a bit in a 32-bit variable. 

ICONTROL_SetProperties() allows you to set the value of this variable. These properties are 

all unset initially, and a property is set by turning its bit on. Each BREW control has a different 

set of properties; refer to the descriptions of each control for a list of the properties it supports. 

The header file for each BREW control has a set of bit-mask constants that can be used to 

test and set the values of the bits corresponding to each property.

•  ICONTROL_GetProperties() retrieves the current value of the control's property value. To set 

a property without changing the values of the other properties, you can do the following:

dwProps = ICONTROL_GetProperties(pIControl);

ICONTROL_SetProperties(pIControl,(dwProps | PROP_BITMASK));

where pIControl is a pointer to the control and PROP_BITMASK is a bit-mask for the 
property to be set.

•  ICONTROL_Reset() frees all the resources associated with the control, but does not release 

its interface pointer. This function can be used to re-initialize a control.
21



IControl Interface  
List of functions

Functions in this interface include:

ICONTROL_AddRef()

ICONTROL_GetProperties()

ICONTROL_GetRect()

ICONTROL_HandleEvent()

ICONTROL_IsActive()

ICONTROL_Redraw()

ICONTROL_Release()

ICONTROL_Reset()

ICONTROL_SetActive()

ICONTROL_SetProperties()

ICONTROL_SetRect()

Return to the Contents
22



IControl Interface  
ICONTROL_AddRef() 

Description: 

This function increments the reference count of the IControl Interface object. This allows the object to 

be shared by multiple callers. The object is freed when the reference count reaches 0 (zero). See 

ICONTROL_Release().

Prototype:
uint32 ICONTROL_AddRef(IControl * pIControl) 

Parameters:

Return Value:

Incremented reference count for the object

Comments: 

A valid object returns a positive reference count.

Side Effects: 

None

See Also:
ICONTROL_Release()

Return to the List of functions

pIControl Pointer to the IControl Interface object
23



IControl Interface  
ICONTROL_GetProperties() 

Description: 

This function returns the control-specific properties or flags.

Prototype:
uint32 ICONTROL_GetProperties(IControl * pIControl) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
ICONTROL_SetProperties()
Return to the List of functions

pIControl Pointer to the IControl Interface object

32-bit properties For the control
24



IControl Interface  
ICONTROL_GetRect() 

Description: 

This function fills a pointer to an input AEERect structure with the active screen coordinates for the 

control. This is particularly useful after a control is created to determine its optimal/default size and 

position.

Prototype:
void ICONTROL_GetRect(IControl * pIControl, AEERect * prc) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
ICONTROL_SetRect()

AEERect
Return to the List of functions

pIControl Pointer to the IControl Interface object

prc Rectangle to be filled with the coordinates of the control
25



IControl Interface  
ICONTROL_HandleEvent() 

Description: 

This function provides the main event processing for a control. It is called when any event is passed to 

the control. Events mainly include keypress events. This function must be implemented by all controls. 

Prototype:
boolean ICONTROL_HandleEvent(IControl * pIControl, AEEEvent evt, uint16 wp, 

uint32 dwp) 

Parameters:

Return Value:

Comments:

None

Side Effects: 

None

See Also:
None
Return to the List of functions

pIControl Pointer to the IControl Interface object

evt Event code

wp 16-bit event data

dwp 32-bit event data

TRUE If the event was processed by the control

FALSE If otherwise
26



IControl Interface  
ICONTROL_IsActive()

Description: 

This function returns the active or focus state of the control.

Prototype:
boolean ICONTROL_IsActive()(IControl * pIControl) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pIControl Pointer to the IControl Interface object

TRUE If the control is active

FALSE If otherwise
27



IControl Interface  
ICONTROL_Redraw() 

Description: 

This function instructs the control to redraw its contents. Under normal conditions, user interface 

controls do not redraw their contents when the underlying data behind the control changes. This allows 

several data updates to occur while minimizing screen flashes. For example, several items can be 

added to a menu with no visible effect until the Redraw function is called.

Prototype:
boolean ICONTROL_Redraw(IControl * pIControl) 

Parameters:

Return Value:

Comments:

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pIControl Pointer to the IControl Interface object

TRUE If the event was processed by the control

FALSE If otherwise
28



IControl Interface  
ICONTROL_Release() 

Description: 

This function decrements the reference count of IControl Interface object. The object is freed from 

memory and is no longer valid once the reference count reaches 0 (zero).

Prototype:
uint32 ICONTROL_Release(IControl * pIControl) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
ICONTROL_AddRef()
Return to the List of functions

pIControl Pointer to the IControl Interface object

Reference count Decremented reference count for the object

0 (zero) If the object has been freed and is no longer valid
29



IControl Interface  
ICONTROL_Reset() 

Description: 

This function instructs the control to reset (free/delete) its contents as well as to immediately leave 

active/focus mode. This is useful in freeing all underlying memory in text or menu controls or removing 

all menu items in a single call.

Prototype:
void ICONTROL_Reset(IControl * pIControl) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
ICONTROL_SetActive()

Return to the List of functions

pIControl Pointer to the IControl Interface object
30



IControl Interface  
ICONTROL_SetActive() 

Description: 

This function instructs the control to enter/leave focus or selected mode. The concept of focus is left 

somewhat to the control. In the case of menus, focus indicates that the menu is active. In terms of text 

controls it means the control is active and in edit mode. This call usually results in the underlying control 

redrawing its contents. It is important to know that controls still have their HandleEvent function called 

even when they are inactive. This allows them to process special events such as scrolling multiline text 

controls.

Prototype:
void ICONTROL_SetActive(IControl * pIControl,boolean bActive)

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pIControl Pointer to the IControl Interface object

bActive Specifies whether to activate (TRUE) or deactivate (FALSE) the control
31



IControl Interface  
ICONTROL_SetProperties() 

Description: 

This function sets control-specific properties or flags. Although some properties are defined across 

controls (CP_FRAME, and so forth) , most controls expose a range of properties to allow more specific 

control over the object.

Prototype:
void ICONTROL_SetProperties(IControl * pIControl, uint32 dwProps) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

May redraw the control

See Also:
ICONTROL_GetProperties()

Return to the List of functions

pIControl Pointer to the IControl Interface object

dwProps 32-bit set of flags/properties
32



IControl Interface  
ICONTROL_SetRect() 

Description: 

This function sets the active screen coordinates of the control. This may result in the control redrawing 

its contents.

Prototype:
void ICONTROL_SetRect(IControl * pIControl, const AEERect * prc) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

May redraw the control

See Also:
ICONTROL_GetRect()
Return to the List of functions

pIControl Pointer to the IControl Interface object

prc The bounding rectangle for the control
33



IDatabase Interface

The IDatabase Interface functions allow you to create and access records in databases created and 

opened with the IDBMgr Interface. To obtain an instance of the IDatabase Interface, you call 

IDBMGR_OpenDatabase() to open the desired database. You then use the IDatabase Interface pointer 

returned by this function to access the database with the operations described later in this section. You 

can also use functions in the IDBRecord Interface to access the fields of individual database records. 

When you have completed access to the database, you call IDATABASE_Release() to close it. 

CAUTION: Your application must have a privilege level of File or All to be able to invoke the 
functions in this interface that modify the contents of the database.

The IDATABASE_CreateRecord() function creates a new record and adds it to your database (the 

function IDBRECORD_Remove() is used to remove a record from the database). Each record contains 

one or more fields. Each field is defined by the AEEDBField structure, which includes the following 

elements:

The field name is a descriptor of the field’s contents, (name, phone number, email address, and 

so forth) The AEEDBFieldName enumerated type contains constants for commonly used 
field names.

The field type gives the data type of the field (byte, word, double-word, character string, binary, 
phone number or bitmap).

The field buffer pointer is a pointer to the actual contents of the field.

The field length is the length in bytes of the field contents.

When creating a record, you populate an array of AEEDBField structures to specify the name, type, 

contents and length of each field in the record. You then call IDATABASE_CreateRecord(), supplying a 

pointer to this array and the number of AEEDBField structures it contains as input. 

IDATABASE_CreateRecord() returns a pointer to an instance of the IDBRecord Interface that can be 

used to access and update fields of the record. The number and type of fields are specified on a per-

record basis when the record is created or updated; there is no requirement that all records in a given 

database have the same structure. 

Once you have created a database and added records to it, you can use other IDatabase functions to 

retrieve records from the database. 
34



IDatabase Interface  
To retrieve every record in the database

1 call IDATABASE_Reset() to set the record index to 0 (zero).

2 Repeatedly call IDATABASE_GetNextRecord() to obtain an IDBRecord Interface pointer 

for each record in the database. IDATABASE_GetNextRecord() returns NULL when all the 

records have been enumerated.

Each database record is assigned a unique ID when it is created (the ID of a record can be obtained 

with the IDBRECORD_GetID() function). The function IDATABASE_GetRecordByID() lets you retrieve 

a database record with a given ID, returning an IDBRecord pointer that can be used to access the 

record. The function IDATABASE_GetRecordCount() returns the number of records in the database.

To use functions in the IDatabase Interface 

1 Call ISHELL_CreateInstance() if necessary to obtain an instance of the IDBMgr Interface.

2 Call IDBMGR_OpenDatabase() or IDBMGR_OpenDatabaseEx() to obtain an IDatabase 

Interface pointer to a new or existing database.

3 Call IDATABASE_CreateRecord() to create new records and add them to the database 

opened in step 2.

4 Call IDATABASE_Reset() and IDATABASE_GetNextRecord() if you need to enumerate all 

the records in the database, for example, to find all records that match certain criteria. Call 

IDATABASE_GetRecordByID() to retrieve a particular record given its ID.

5 Call IDATABASE_Release() to close the database when you have completed accessing it.
35



IDatabase Interface  
List of functions

Functions in this interface include:

IDATABASE_AddRef()

IDATABASE_CreateRecord()

IDATABASE_GetNextRecord()

IDATABASE_GetRecordByID()

IDATABASE_GetRecordCount()

IDATABASE_Release()

IDATABASE_Reset()

Return to the Contents
36



IDatabase Interface  
IDATABASE_AddRef()

Description: 

This function increments the reference count of IDatabase Interface object. 

Prototype:
uint32 IDATABASE_AddRef(IDatabase * pIDatabase)

Parameters:

Return Value:

Incremented reference count for the object

Comments: 

A valid object returns a positive reference count.

Side Effects: 

None

See Also:
IDATABASE_Release()
Return to the List of functions

pIDatabase Pointer to IDatabase Interface object
37



IDatabase Interface  
IDATABASE_CreateRecord() 

Description:

This function creates a new database record with the fields specified by pDBFields in the database 

specified by pIDatabase.

Prototype:
IDBRecord * IDATABASE_CreateRecord( IDatabase * pIDatabase, AEEDBField * 

pDBFields, int iNumfields) 

Parameters:

Return Value: 

Comments: 

A new record is added to the database. The IDBRecord must be released using the 

IDBRECORD_Release() before the database is released. If records are not released, 

IDATABASE_Release() cannot close the database.

Side Effects: 

None

See Also:
None

Return to the List of functions

pIDatabase Pointer to the IDatabase Interface object in which the record is being created

pDBFields Pointer to the database fields that need to be placed in a new record created by 

this function

iNumFields Number of fields in the record

Pointer Pointer to the database record created, if successful

NULL If unsuccessful
38



IDatabase Interface  
IDATABASE_GetNextRecord() 

Description:

This function returns the next IDBRecord from the database. 

Prototype:
IDBRecord * IDATABASE_GetNextRecord(IDatabase * pIDatabase) 

Parameters:

Return Value:

Comments: 

The IDBRecord must be released using the IDBRECORD_Release() before releasing the database. If 

records are not released, IDATABASE_Release() cannot close the database. 

Side Effects: 

None

See Also:
None
Return to the List of functions

pIDatabase Pointer to the IDatabase Interface object whose next record is requested

Pointer Pointer to the database record, if successful

NULL If otherwise
39



IDatabase Interface  
IDATABASE_GetRecordByID() 

Description:

This function returns a pointer to the record whose record ID is specified.

Prototype:
IDBRecord * IDATABASE_GetRecordByID( IDatabase * pIDatabase, uint16 

u16RecID) 

Parameters:

Return Value: 

Comments: 

The IDBRecord must be released using the IDBRECORD_Release() before releasing the database. If 

records are not released, IDATABASE_Release() cannot close the database.

Side Effects: 

None

See Also:
None

Return to the List of functions

pIDatabase Pointer to the IDatabase Interface object whose record is requested

u16RecID Index of record to get

Pointer Pointer to the database record whose index is specified, if successful

NULL If unsuccessful
40



IDatabase Interface  
IDATABASE_GetRecordCount() 

Description:

This function returns the number of records in the database specified by pIDatabase.

Prototype:
uint32 IDATABASE_GetRecordCount(IDatabase * pIDatabase) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pIDatabase Pointer to the IDatabase Interface object whose record count is requested

Number Number of records in the database, if successful

0 (zero) If pIDatabase is pointing to IDatabase Interface object with invalid database handle
41



IDatabase Interface  
IDATABASE_Release() 

Description:

This function decrements the reference count of the IDatabase Interface object. If the reference count 

reaches 0 (zero), this function closes the database.

Prototype:
uint32 IDATABASE_Release(IDatabase * pIDatabase) 

Parameters:

Return Value:

Comments: 

Before closing a database all the records of the database must be released using the 

IDBRECORD_Release(). If records are not released, IDBRECORD_Release() cannot close the 

database.

Side Effects: 

None

See Also:
IDATABASE_AddRef()
IDBRECORD_Release()

IDBMGR_OpenDatabase()

IDBMGR_OpenDatabaseEx()
Return to the List of functions

pIDatabase Pointer to the IDatabase Interface object whose reference count needs to be 

decremented

The updated 

reference count for 

the object

 

42



IDatabase Interface  
IDATABASE_Reset() 

Description:

This function resets the record index of the database specified by pIDatabase.

Prototype:
void IDATABASE_Reset(IDatabase * pIDatabase) 

Parameters:

Return Value: 

None

Comments: 

Calling IDATABASE_GetNextRecord() after IDATABASE_Reset() gets the first record in the database.

Side Effects: 

None

See Also:
None
Return to the List of functions

pIDatabase Pointer to the IDatabase Interface object whose record index needs to be reset
43



IDateCtl Interface

Date controls are used in interfaces that require the device user to choose a date. There are two types 

of date controls (you choose the type you want by specifying its ClassID when you create an instance 

of the date control): 

A standard date control (ClassID AEECLSID_DATECTL) allows the user to use the UP, DOWN, LEFT 

and RIGHT keys to choose the desired month, day and year. 

A date pick control (ClassID AEECLSID_DATEPICKCTL) displays a monthly calendar; the arrow keys 

can be used to choose the day of the month, or to scroll to the next or previous month.

IDATECTL_HandleEvent() function handles the AVK_SELECT, AVK_UP, AVK_DOWN, AVK_LEFT and 

AVK_RIGHT keys. When it receives AVK_SELECT, the date control sends an EVT_COMMAND to 

signal your application that the user has selected a date, provided you have enabled command sending 

(see later in this section); you can then use one of the IDateCtl functions to retrieve the selected date 

value. For standard date controls, control tabbing events (EVT_CTL_TAB) are sent when the user 

presses AVK_LEFT while selecting the month or AVK_RIGHT while selecting the year. You can use 

these events to allow the user to navigate between controls in a multicontrol screen (dialogs handle 

EVT_CTL_TAB events and change control focus as needed).

At present, there are no properties specific to date controls, so the functions IDATECTL_SetProperties 

and IDATECTL_GetProperties() are not used.

IDateCtl Interface implements several functions in addition to those in the IControl Interface. 

IDATECTL_SetTitle() is used to specify a title that appears above the date control.

IDATECTL_SetDate() sets the date stored in the control to the value specified in the function's integer 

month, day, and date parameters. IDATECTL_GetDate() retrieves the control's current date in the same 

format. IDATECTL_SetJulianDay() and IDATECTL_GetJulianDay() are similar, except that the control's 

date is set and retrieved in JulianType date format (number of seconds since January 1, 1980 GMT). 

The function IDATECTL_GetDayOfWeek() returns the day of the week corresponding to the control's 

current date.
44



IDateCtl Interface  
The date control's current date, day, or month can also be stored into a character string with the 

functions IDATECTL_GetDateString(), IDATECTL_GetDayString(), and IDATECTL_GetMonthString(). 

The date string can be in any of several different formats (for example, you can specify the order of the 

date, month and year, and whether the full month name or a three-letter abbreviation is used).

For date pick controls, IDATECTL_SetActiveDayMask() causes specified days of the month to be 

displayed in reverse video on the date pick calendar display; this can be used to designate holidays, 

For example, the function is called with a 32-bit parameter that specifies which of the days of the month 

is displayed in this way.

IDATECTL_EnableCommand() allows the disabling or enabling of command sending when the user 

presses the AVK_SELECT key while the date control is active (command sending is disabled by 

default). This function also lets you specify the command ID (for example, the wParam value that is 

sent along with the EVT_COMMAND when your application's IAPPLET_HandleEvent() function is 

called). 

To use a date control

1 Call ISHELL_CreateInstance() to create an instance of a date control, specifying the 

ClassID of either a standard or date-pick date control.

2 Call IDATECTL_SetRect() to specify the screen rectangle that contains the control.

3 Call IDATECTL_SetDate() or IDATECTL_SetJulianDay() to specify an initial date value for 

the control if necessary (if you do not specify one, the control's date fields appears blank 

initially).

4 Call IDATECTL_SetActive() to make the control active so that it can receive key events 

generated as the user chooses a date value. Your application must send the control these 

events using the IDATECTL_HandleEvent() while the control is active.

5 When the user has chosen a date, you can call one of the date-retrieval functions 

mentioned above to access its value in the desired format. The user's selection of a date 

may be signaled via an EVT_COMMAND event if command sending is enabled, or by the 

user exiting the screen that contains the date control.

6 When you no longer need the date control, you can call IDATECTL_Release() to release it.
45



IDateCtl Interface  
List of functions

Functions in this interface include:

IDATECTL_AddRef()

IDATECTL_EnableCommand()

IDATECTL_GetDate()

IDATECTL_GetDateString()

IDATECTL_GetDayOfWeek()

IDATECTL_GetDayString()

IDATECTL_GetJulianDay()

IDATECTL_GetMonthString()

IDATECTL_GetProperties()

IDATECTL_GetRect()

IDATECTL_HandleEvent()

IDATECTL_IsActive()

IDATECTL_Redraw()

IDATECTL_Release()

IDATECTL_Reset()

IDATECTL_SetActive()

IDATECTL_SetActiveDayMask()

IDATECTL_SetDate()

IDATECTL_SetJulianDay()

IDATECTL_SetProperties()

IDATECTL_SetRect()

IDATECTL_SetTitle()

Return to the Contents
46



IDateCtl Interface  
IDATECTL_AddRef()

Description:

This function increments the reference count for the IDateCtl Interface object

Prototype:
uint32 IDATECTL_AddRef(IDateCtl * pIDateCtl)

Parameters:

Return Value:

Updated reference count

Comments: 

None

Side Effects: 

None

See Also: 
IDATECTL_Release()
Return to the List of functions

 pIDateCtl Pointer to IDateCtl Interface object
47



IDateCtl Interface  
IDATECTL_EnableCommand() 

Description: 

This function is used to enable the date control object to send a user defined command to the active 

applet. If bEnable is TRUE, upon receiving the event generated by press of select key, the date control 

object sends nCmdId as EVT_COMMAND to the active applet. Handling of this event is applet-specific 

and is user-defined.

Prototype:
void IDATECTL_EnableCommand(IDateCtl * pIDateCtl, boolean bEnable, uint16 

nCmdId) 

Parameters:

Return Value: 

None

Comments:

This function can be used to send a user defined command from the date control object to the active 

applet.

Side Effects: 

None

See Also:
None
Return to the List of functions

pIDateCtl Pointer to the IDateCtl Interface object

bEnable Boolean value for enable flag

nCmdId Command ID
48



IDateCtl Interface  
IDATECTL_GetDate() 

Description: 

This function gets the date from the date control object.

Prototype:
boolean IDATECTL_GetDate (IDateCtl * pIDateCtl, unsigned int * pnYear, 

unsigned int * pnMonth, unsigned int * pnDay )

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
IDATECTL_SetDate()

Return to the List of functions

pIDateCtl Pointer to IDateCtl Interface object

pnYear Placeholder for year [YYYY] for example, 2000

pnMonth Placeholder for month [MM] for example, 12 

pnDay Placeholder for day [DD] for example, 31

TRUE If successful

FALSE If unsuccessful
49



IDateCtl Interface  
IDATECTL_GetDateString() 

Description: 

This function gets the date string in specified format.

Prototype:
boolean IDATECTL_GetDateString(IDateCtl * pIDateCtl, AECHAR * pBuffer, 

unsigned int nMaxSize, unsigned int * pnChars, uint32 dwDateFormat) 

Parameters:

Return Value: 

Comments: 

The date string formats specified for parameter dwDateFormat are mutually exclusive.

Side Effects: 

None

pIDateCtl Pointer to the IDateCtl Interface object

pBuffer Placeholder for date string

nMaxSize Maximum number of characters to be read in the buffer 

pnChars Placeholder for number of characters written in pBuffer

dwDateFormat Format of the date string. Use one of the date string formats given:

DFMT_DD_MONTH_YYYY  “18 July 2000”

DFMT_DD_MON_YYYY  “18 Jul 2000”

DFMT_DD_MON_YY  “18 Jul ‘00”

DFMT_MONTH_DD_YYYY  “July 18, 2000”

DFMT_MON_DD_YYYY  “Jul 18, 2000”

DFMT_MON_DD_YY  “Jul 18, ‘00”

TRUE If successful

FALSE If unsuccessful
50



IDateCtl Interface  
See Also:
IDATECTL_GetDayString()

IDATECTL_GetMonthString()

Return to the List of functions
51



IDateCtl Interface  
IDATECTL_GetDayOfWeek() 

Description: 

This function gets the day of week from the date control object.

Prototype:
uint16 IDATECTL_GetDayOfWeek(IDateCtl * pIDateCtl) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
None
Return to the List of functions

pIDateCtl Pointer to the IDateCtl Interface object

One of the following

DOW_SUNDAY

DOW_MONDAY

DOW_TUESDAY

DOW_WEDNESDAY

DOW_THURSDAY

DOW_FRIDAY

DOW_SATURDAY
52



IDateCtl Interface  
IDATECTL_GetDayString() 

Description: 

This function gets the name of the day corresponding to the date control object’s current date.

Prototype:
AECHAR * IDATECTL_GetDayString(IDateCtl * pIDateCtl, AECHAR * pBuffer, 

unsigned int nMaxSize, unsigned int * pnChars) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
IDATECTL_GetMonthString()

IDATECTL_GetDateString()

Return to the List of functions

pIDateCtl Pointer to the IDateCtl Interface object

pBuffer Placeholder for day name

nMaxSize Buffer size

pnChars Placeholder for number of characters written in pBuffer

pointer Pointer to the end of day string in pBuffer, if successful

NULL If unsuccessful
53



IDateCtl Interface  
IDATECTL_GetJulianDay() 

Description: 

This function gets the Julian day value of the specified date control object.

Prototype:
int32 IDATECTL_GetJulianDay(IDateCtl * pIDateCtl) 

Parameters:

Return Value: 

Julian day value of date control object

Comments: 

None

Side Effects: 

None

See Also:
IDATECTL_GetJulianDay()
Return to the List of functions

pIDateCtl Pointer to the IDateCtl Interface object
54



IDateCtl Interface  
IDATECTL_GetMonthString() 

Description: 

This function gets the name of the month of the date control object’s current date.

Prototype:
AECHAR * IDATECTL_GetMonthString(IDateCtl * pIDateCtl, AECHAR * pBuffer, 

unsigned int nMaxSize, unsigned int * pnChars) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
IDATECTL_GetDayString()

IDATECTL_GetDateString()

Return to the List of functions

pIDateCtl Pointer to the IDateCtl Interface object

pBuffer Placeholder for month name

nMaxSize Buffer size

pnChars Placeholder for number of characters written in pBuffer

Pointer Pointer to the end of month name string in pBuffer, if successful

NULL If unsuccessful
55



IDateCtl Interface  
IDATECTL_GetProperties() 

Description: 

This function returns the date control-specific properties or flags. Presently there are no date control-

specific properties and this function always returns 0 (zero).

Prototype:
uint32 IDATECTL_GetProperties(IDateCtl * pIDateCtl) 

Parameters:

Return Value: 

0 (zero)

Comments: 

None

Side Effects: 

None

See Also:
IDATECTL_SetProperties()

Return to the List of functions

pIDateCtl Pointer to the IDateCtl Interface object 
56



IDateCtl Interface  
IDATECTL_GetRect() 

Description: 

This function fills the given pointer to an AEERect structure with the coordinates of the current bounding 

rectangle of the date control object. This is particularly useful after a control is created to determine its 

optimal/default size and position.

Prototype:
void IDATECTL_GetRect(IDateCtl * pIDateCtl, AEERect * prc) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
IDATECTL_SetRect()

Return to the List of functions

pIDateCtl Pointer to the IDateCtl Interface object

prc Rectangle to be filled with the coordinates of the date control object
57



IDateCtl Interface  
IDATECTL_HandleEvent() 

Description: 

This function is used to handle the events received by date control object. A date control object handles 

events received by it only if it is active. The events processed by the date control object are the press 

of UP, DOWN, LEFT and RIGHT keys. If command sending is enabled for the date control object, upon 

receiving event generated by the press of the SELECT key, it sends the command specified by 

IDATECTL_EnableCommand function as command event to the active applet. 

Prototype:
boolean IDATECTL_HandleEvent(IDateCtl * pIDateCtl, AEEEvent evt, uint16 wp, 

uint32 dwp) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
IDATECTL_EnableCommand()
Return to the List of functions

pIDateCtl Pointer to the IDateCtl Interface object

evt Event code

wp [AVK_UP|AVK_DOWN|AVK_LEFT|AVK_RIGHT|AVK_SELECT] 

dwp Key symbol string corresponding to the key type specified by wp

TRUE If the event was processed by the date control

FALSE If otherwise
58



IDateCtl Interface  
IDATECTL_IsActive() 

Description: 

This function returns whether the date control object is active or not. The active state is indicated by a 

return value of TRUE whereas the inactive state is indicated by a return value of FALSE.

Prototype:
boolean IDATECTL_IsActive(IDateCtl * pIDateCtl) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
IDATECTL_SetActive()
Return to the List of functions

pIDateCtl Pointer to the IDateCtl Interface object

TRUE If the date control is active

FALSE If otherwise
59



IDateCtl Interface  
IDATECTL_Redraw() 

Description: 

This function instructs the date control object to redraw its contents. The Date control object does not 

redraw its contents every time the underlying data of the date control changes. This allows several data 

updates to occur while minimizing screen flashes. 

Prototype:
boolean IDATECTL_Redraw(IDateCtl * pIDateCtl) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pIDateCtl Pointer to the IDateCtl Interface object

TRUE If the date control was redrawn

FALSE If otherwise
60



IDateCtl Interface  
IDATECTL_Release() 

Description:

This function decrements the reference count for the date control object and does appropriate cleanup 

if the reference count reaches 0 (zero).

Prototype:
uint32 IDATECTL_Release(IDateCtl * pIDateCtl) 

Parameters:

Return Value:

Updated reference count of the object

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pIDateCtl Pointer to the IDateCtl Interface object
61



IDateCtl Interface  
IDATECTL_Reset() 

Description: 

This function instructs the date control to reset (free/delete) its contents as well as to immediately leave 

active/focus mode.

Prototype:
void IDATECTL_Reset(IDateCtl * pIDateCtl) 

Parameters:

Return Value: 

None

Comments: 

This function makes the control inactive. An inactive control doesn’t handle the events sent to it.

Side Effects: 

None

See Also:
IDATECTL_SetActive()

Return to the List of functions

pIDateCtl Pointer to the IDateCtl Interface object
62



IDateCtl Interface  
IDATECTL_SetActive() 

Description: 

This function is used to make a date control object active. Only an active date control object handles 

the events sent to it. An inactive date control object just ignores the events.

Prototype:
void IDATECTL_SetActive(IDateCtl * pIDateCtl,boolean bActive)

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
IDATECTL_IsActive()

Return to the List of functions

pIDateCtl Pointer to the IDateCtl Interface object

bActive Boolean flag that specifies whether to activate (TRUE) or deactivate 

(FALSE) the date control
63



IDateCtl Interface  
IDATECTL_SetActiveDayMask() 

Description: 

This function sets a new active day mask. The active day mask is a 32-bit integer in which each of 0 

(zero) to 30 bits specifies active status of a day. An active day, having bit corresponding to it set, is 

drawn with a dot (.) at the upper left hand corner.

Prototype:
void IDATECTL_SetActiveDayMask(IDateCtl * pIDateCtl, uint32 dwMask) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects:

None

See Also:
None

Return to the List of functions

pIDateCtl Pointer to the IDateCtl Interface object

dwMask New active day mask
64



IDateCtl Interface  
IDATECTL_SetDate() 

Description: 

This function assigns the specified date to the date control object.

Prototype:
boolean IDATECTL_SetDate(IDateCtl * pIDateCtl, unsigned int nYear, unsigned 

int nMonth, unsigned int nDay) 

Parameters:

Return Value: 

Comments: 

Minimal error checking: any day that is between 1 and 31 is valid and any month that is between 1 and 

12 is valid. An input of 4/31/98 becomes 5/1/98. 

Side Effects: 

None

See Also:
IDATECTL_GetDate()
Return to the List of functions

pIDateCtl Pointer to the IDateCtl Interface object

nYear Year[YYYY] for example, 2000

nMonth Month[MM] for example, 12

nDay Day[DD] for example, 31

TRUE If successful

FALSE If unsuccessful
65



IDateCtl Interface  
IDATECTL_SetJulianDay() 

Description: 

This function assigns the specified Julian day to the date control object.

Prototype:
boolean IDATECTL_SetJulianDay(IDateCtl * pIDateCtl, int32 lJulDate) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
IDATECTL_GetJulianDay()
Return to the List of functions

pIDateCtl Pointer to the IDateCtl Interface object

lJulDate Julian day to be assigned

TRUE If successful

FALSE If unsuccessful
66



IDateCtl Interface  
IDATECTL_SetProperties() 

Description: 

This function sets date control-specific properties or flags. Presently there are no date control-specific 

properties or flags to be set.

Prototype:
void IDATECTL_SetProperties(IDateCtl * pIDateCtl, uint32 dwProps) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
IDATECTL_GetProperties()
Return to the List of functions

pIDateCtl Pointer to the IDateCtl Interface object

dwProps 32-bit set of flags/properties
67



IDateCtl Interface  
IDATECTL_SetRect() 

Description: 

This function can be used to set the specified rectangle as the bounding rectangle of the date control 

object. If the date control object is in month view, the specified rectangle is also used to determine the 

grid used for drawing days.

Prototype:
void IDATECTL_SetRect(IDateCtl * pIDateCtl, const AEERect * prc) 

Parameters:

Return Value: 

None

Comments:

By default, entire device screen is set as the bounding rectangle of the date control object.

Side Effects: 

None

See Also:
IDATECTL_GetRect()

Return to the List of functions

pIDateCtl Pointer to the IDateCtl Interface object

prc Bounding rectangle for the date control object
68



IDateCtl Interface  
IDATECTL_SetTitle() 

Description: 

This function is used to set title of a date control object. If pText is not NULL, it sets the string specified 

by pText as the title of the date control object. If pText is NULL, it reads the title string corresponding to 

the given resource identifier from the resource file and sets it as the title of the date control object.

Prototype:
boolean IDATECTL_SetTitle(IDateCtl * pIDateCtl, const char * pszResFile, 

uint16 wResID, AECHAR * pText) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

If pText is NULL and pszResFile, wResID are valid, this function assigns the date control object title 

string to pText.

See Also:
None

Return to the List of functions

pIDateCtl Pointer to the IDateCtl Interface object

pszResFile Null terminated string containing resource file name

wResID String resource identifier

pText Null terminated title string

TRUE If success

FALSE If unsuccessful
69



IDBMgr Interface

The IDBMgr Interface functions are used to create, open and remove databases, which are collections 

of multifield records. Once a database has been opened, you use functions in the IDatabase Interface 

to create and retrieve database records and close the database, and you use functions in the 

IDBRecord Interface to access and update the fields of individual records. 

CAUTION: Your application must have a privilege level of File or All to be able to invoke the 

functions in this interface that create or delete the database.

The function IDBMGR_OpenDatabase() opens an existing database given its name, which corresponds 

to the name of a BREW file that holds the database’s contents. When calling this function, you can 

request that the database be created if it does not already exist. IDBMGR_OpenDatabaseEx() is similar, 

but it also allows you to specify a minimum record size and minimum number of records when creating 

a new database; the function reserves an amount of memory sufficient to hold the specified number of 

records. Both of these functions return a pointer to an instance of the IDatabase Interface, which can 

be used to access the opened database.

The function IDBMGR_Remove() removes a database by deleting the file that holds its contents. If the 

database is open, you must first call IDBMGR_Release() to close it prior to removal.

To use the functions in the IDBMgr Interface

1 Call ISHELL_CreateInstance() to create an instance of the IDBMgr Interface.

2 Call IDBMGR_OpenDatabase() to open an existing database or to create a new one. If you 

need to specify a minimum size for a newly created database, use 

IDBMGR_OpenDatabaseEx().

3 Using the IDatabase Interface pointer obtained in step 2, call functions in the IDatabase 

Interface to create and retrieve records in the database. You can also use IDBRecord 

Interface functions to access and modify the fields of database records.

4 Call IDATABASE_Release() to close the database when you have completed accessing it.

5 Call IDBMGR_Remove() to remove the database when necessary.

6 Call IDBMGR_Release() when you no longer need the IDBMgr Interface instance.
70



IDBMgr Interface  
List of functions

Functions in this interface include:

IDBMGR_AddRef()

IDBMGR_OpenDatabase()

IDBMGR_OpenDatabaseEx()

IDBMGR_Remove()

IDBMGR_Release()

Return to the Contents
71



IDBMgr Interface  
IDBMGR_AddRef() 

Description: 

This function increments the reference count of the IDBMgr Interface object. This allows the object to 

be shared by multiple callers. The object is freed when the reference count reaches 0 (zero). See 

IDBMGR_Release().

Prototype:
uint32 IDBMGR_AddRef(IDBMgr * pIDBMgr) 

Parameters:

Return Value:

Incremented reference count for the object. 

Comments: 

A valid object returns a positive reference count.

Side Effects: 

None

See Also:
IDBMGR_Release()

Return to the List of functions

pIDBMgr Pointer to the IDBMgr Interface object
72



IDBMgr Interface  
IDBMGR_OpenDatabase() 

Description:

This function opens the specified database. If database is already open, it returns NULL. Boolean flag 

bCreate specifies action to be taken if database does not exist. If the specified database does not exist, 

and bCreate is TRUE, this function creates a new database with minimum records and minimum record 

size parameters both set to 0 (zero). 

Prototype:
IDatabase * IDBMgr_OpenDatabase(IDBMgr * pif, const char * pszFile, boolean 

bCreate) 

Parameters:

Return Value:

Comments

Use IDATABASE_Release() for closing a database.

Side Effects: 

None

See Also:
None

Return to the List of functions

pif Pointer to the IDBMgr Interface object

pszFile Null terminated string denoting the Database file name

bCreate Specifies if the database must be created if the database is not found. 

The database is created only if this flag is set to true.

pointer To the IDatabase object, if successful

NULL If unsuccessful
73



IDBMgr Interface  
IDBMGR_OpenDatabaseEx() 

Description:

This function opens the specified database. If database is already open, it returns NULL. Boolean flag 

bCreate specifies action to be taken if database does not exist. If the specified database does not exist, 

and bCreate is TRUE, this function creates a new database. While creating the database, the minimum 

record size can be specified by dwMinSize, and the minimum number of records can be specified by 

wMinRecs.

Prototype:
IDatabase * IDBMgr_OpenDatabaseEx(IDBMgr * pif, const char * pszFile, boolean 

bCreate, uint32 dwMinSize, uint16 wMinRecs) 

Parameters:

Return Value:

Comments: 

Use IDATABASE_Release() for closing a database.

Side Effects: 

None

See Also:
None
Return to the List of functions

pif Pointer to the IDBMgr Interface

pszFile Null terminated string denoting the Database file name

bCreate Specifies if the database must be created if the database is not found. 

The database is created only if this flag is set to true.

dwMinSize Minimum size of the records in the database

wMinRecs Minimum number of records that the database can hold

pointer To the IDatabase object, if successful

NULL If unsuccessful
74



IDBMgr Interface  
IDBMGR_Remove() 

Description: 

This function removes the specified database.

Prototype:
int IDBMgr_Remove(IDBMgr * pif, const char * pszFile) 

Parameters:

Return Value: 

Comments: 

Once the database is removed, the corresponding database file is deleted. Subsequent opens or 

accesses to a removed database fail.

Side Effects: 

None

See Also:
None
Return to the List of functions

pif IDBMgr * pointer to IDBMgr object

pszFile Null terminated string specifying the name of the database to be 

removed

SUCCESS If database was successfully removed

EBADFILENAME If database file can not be found
75



IDBMgr Interface  
IDBMGR_Release() 

Description: 

This function decrements the reference count of the IDBMgr Interface object. The object is freed from 

memory and is no longer valid once the reference count reaches 0 (zero). 

Prototype:
uint32 IDBMGR_Release(IDBMgr * pIDBMgr) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
IDBMGR_AddRef()
Return to the List of functions

pIDBMgr Pointer to the IDBMgr Interface object

Reference count Decremented reference count for the object

0 (zero) If the object has been freed and is no longer valid 
76



IDBRecord Interface

The IDBRecord Interface contains a set of functions that are used to access and update the fields of 

database records. You use functions in the IDatabase Interface to obtain an instance of the IDBRecord 

Interface for a particular record. An IDBRecord Interface pointer is returned by 

IDATABASE_CreateRecord() when a new record is created, and by IDATABASE_GetNextRecord() and 

IDATABASE_GetRecordByID() when existing records are retrieved from a database. Once you have 

obtained an IDBRecord Interface pointer for a record, you can use it to access its fields with the 

operations described later in this section. When you have completed access to the database record, 

you call IDBRECORD_Release() to close it. 

CAUTION: Your application must have a privilege level of File or All to be able to invoke the 

functions in this interface that modify the contents of the database.

Each field of a record contains its name, data type, a pointer to its contents, and the length of the 

contents. The record access functions in the IDBRecord Interface operate on the current field of the 

record. The function IDBRECORD_Reset() makes the first field of the record the current one, and 

IDBRECORD_NextField() advances the current field to next field in the record. 

IDBRECORD_NextField() also returns the name, data type and length (but not the contents) of the new 

current field, or an end-of-record indication when all the fields of the record have been enumerated. The 

function IDBRECORD_GetField() returns a pointer to the contents of the current field, and also returns 

the field’s name, data type and length. The IDBRecord Interface provides some simpler functions that 

can be used to access a field’s contents when the data type of the contents is already known: 

IDBRECORD_GetFieldWord(), IDBRECORD_GetFieldWord(), and IDBRECORD_GetFieldString() 

retrieve the contents of the current field when its type is word, double-word and character-string, 

respectively. Each of these functions returns a failure indication if the current field’s contents are not of 

the appropriate type.

To modify the fields of a record, you use the function IDBRECORD_Update(). This function accepts the 

same input as IDATABASE_CreateRecord(): you supply a pointer to an array of AEEDBField structures 

that contains new values for the name, type, contents and length of each field in the record, along with 

the number of fields in the array. To update a single field in a record, you must specify values for all the 

fields of the record.

The function IDBRECORD_GetID() returns the unique identifier of a record. The record ID can be used 

when calling IDATABASE_GetRecordByID() to retrieve the record. IDBRECORD_Remove() removes 

the record from the database.
77



IDBRecord Interface  
To use functions in the IDBRecord Interface 

1 Call ISHELL_CreateInstance() if necessary to obtain an instance of the IDBMgr Interface.

2 Call IDBMGR_OpenDatabase() or IDBMGR_OpenDatabaseEx() to obtain an IDatabase 

Interface pointer to a new or existing database.

3 Call IDATABASE_CreateRecord(), IDATABASE_GetRecordByID() or 

IDATABASE_GetNextRecord() to obtain an IDBRecord Interface pointer for the record you 

wish to access.

To access the record as needed:

1 Call IDBRECORD_Reset() and IDBRECORD_NextField() to iterate through the fields of 

the record and obtain the name, data type and length of each field. To access the contents 

of the current field, use one of the IDBRECORD_GetField() functions described above.

2 Call IDBRECORD_GetID() to obtain the record’s unique ID.

3 Call IDBRECORD_Update() to supply new values for all the fields of the record.

4 Call IDBRECORD_Remove() to remove the record from the database.

5 Call IDBRECORD_Release() to close the record when you have completed accessing it (if 

you removed the record in step 4, it is not necessary to release it here). 
78



IDBRecord Interface  
List of functions

Functions in this interface include:

IDBRECORD_AddRef()

IDBRECORD_GetField()

IDBRECORD_GetFieldDWord()

IDBRECORD_GetFieldString()

IDBRECORD_GetFieldWord()

IDBRECORD_GetID()

IDBRECORD_NextField()

IDBRECORD_Release()

IDBRECORD_Remove()

IDBRECORD_Reset()

IDBRECORD_Update()

Return to the Contents
79



IDBRecord Interface  
IDBRECORD_AddRef()

Description: 

This function increments the reference count of the IDBRecord Interface object. This allows the object 

to be shared by multiple callers. The object is freed when the reference count reaches 0 (zero). See 

IDBRECORD_Release().

Prototype:
uint32 IDBRECORD_AddRef(IDBRecord * pIDBRecord)

Parameters:

Return Value:

Incremented reference count for the object.

Comments: 

A valid object returns a positive reference count.

Side Effects: 

None

See Also:
IDBRECORD_Release()

Return to the List of functions

pIDBRecord Pointer to the IDBRecord Interface object
80



IDBRecord Interface  
IDBRECORD_GetField() 

Description:

This function returns the raw data, type, name and length of the current field. The data returned does 

NOT include the header, and the length returned is the data length.

Prototype:
byte * IDBRECORD_GetField( IDBRecord * pIDBRecord,AEEDBFieldName * pName, 

AEEDBFieldType * pDBFieldType, uint16 * pnLen) 

Parameters:

Return Value:

Comments: 

To illustrate the usage of this function, consider the following example:

If the field in the database record corresponds to AEEDBFIELD_LASTNAME, and contains an 

AECHAR string wStr of last name "Smith", then this function would return a pointer to a byte buffer 

containing the AECHAR string "Smith", and the parameters would be populated as follows:

 * pDBFieldName = AEEDBFIELD_LASTNAME

 * pDBFieldType = AEEDB_FT_STRING

 * pDBFieldLen = WStrlen(wStr) * sizeof(AECHAR) = 6 * 2 = 12 (0 terminated).

Side Effects: 

None

pIDBRecord [in] Pointer to the IDBRecord Interface object whose field is requested

pName [out] Pointer to the field name

pDBFieldType [out] Pointer to the field type

pnLen [out] Pointer to length of the field (in bytes)

Pointer To the buffer containing the requested field, if successful

NULL If unsuccessful
81



IDBRecord Interface  
See Also:
None

Return to the List of functions
82



IDBRecord Interface  
IDBRECORD_GetFieldDWord() 

Description:

This function does an IDBRECORD_GetField() operation on the specified database record, and checks 

the returned field type. If the field type is AEE_FT_DWORD, this function sets pdwRet to point to the 

buffer containing the dword.

Prototype:
boolean IDBRECORD_GetFieldDWord( IDBRecord * pIDBRecord, dword * pdwRet) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pIDBRecord Pointer to the IDBRecord Interface object whose field is requested

pdwRet Pointer to dword returned by this function

TRUE If the field is of type AEE_FT_DWORD

FALSE If otherwise
83



IDBRecord Interface  
IDBRECORD_GetFieldString() 

Description:

This function returns a AECHAR * string for a field of that type.

Prototype:
AECHAR * IDBRECORD_GetFieldString( IDBRecord * pIDBRecord) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pIDBRecord Pointer to the IDBRecord Interface object whose field is requested

 pointer To a string containing the requested field, If successful

NULL If unsuccessful 
84



IDBRecord Interface  
IDBRECORD_GetFieldWord() 

Description:

This function does an IDBRECORD_GetField() operation on the specified database record, and checks 

the returned field type. If the field type is AEE_FT_WORD, this function sets pwRet to point to the buffer 

containing the word.

Prototype:
boolean IDBRECORD_GetFieldWord( IDBRecord * pIDBRecord, word * pwRet) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pIDBRecord Pointer to the IDBRecord Interface object whose field is requested

pwRet Pointer to word returned by this function

TRUE If the field is of type AEE_FT_WORD

FALSE If otherwise
85



IDBRecord Interface  
IDBRECORD_GetID() 

Description:

This function gets the ID of the specified record.

Prototype:
uint16 IDBRECORD_GetID( IDBRecord * pIDBRecord) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pIDBRecord Pointer to the IDBRecord Interface object whose ID is requested

ID Of the record specified, if successful

AEE_DB_ENULLREC If unsuccessful
86



IDBRecord Interface  
IDBRECORD_NextField() 

Description:

This function sets the field pointer to the next (or first if current position is -1) field in the record. Returns 

the type, name and the data length of the field.

Prototype:
AEEDBFieldType IDBRECORD_NextField( IDBRecord * pIDBRecord, AEEDBFieldName 

* pName int16 * pnLen) 

Parameters:

Return Value:

Comments: 

If the (specified or default) field pointer points to the last field, an invalid field type is returned.

Side Effects: 

None

See Also:
None

Return to the List of functions

pIDBRecord Pointer to the IDBRecord Interface object whose next field is requested

pName Pointer to the next field

pnLen Pointer to length of the next field

AEEDBFieldType 

structure containing 

field type 

If successful

AEEDB_FT_NONE If unsuccessful
87



IDBRecord Interface  
IDBRECORD_Release() 

Description:

This function decrements the reference count for the database record object. If the reference count 

reaches 0 (zero), the database record is freed from the memory.

Prototype:
uint32 IDBRECORD_Release(IDBRecord * pIDBRecord) 

Parameters:

Return Value:

Updated reference count of the object

Comments: 

The object is freed and is no longer valid if 0 (zero) is returned.

Side Effects: 

None

See Also:
IDBRECORD_AddRef()
Return to the List of functions

pIDBRecord Pointer to the IDBRecord Interface object object whose reference count needs to 

be decremented
88



IDBRecord Interface  
IDBRECORD_Remove() 

Description:

This function removes a record from the database and frees the IDBRecord object.

Prototype:
int IDBRECORD_Remove( IDBRecord * pIDBRecord) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
None
Return to the List of functions

pIDBRecord Pointer to the IDBRecord which needs to be removed

SUCCESS If database record was successfully removed

AEE_DB_EBADREC If the record to be removed was in a bad state

AEE_DB_EBADSTATE If the database is in a bad state
89



IDBRecord Interface  
IDBRECORD_Reset() 

Description:

This function makes the first field of pIDBRecord the current field.

Prototype:
void IDBRECORD_Reset(IDBRecord * pIDBRecord) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
None
Return to the List of functions

pIDBRecord Pointer to the IDBRecord Interface object which needs to be reset
90



IDBRecord Interface  
IDBRECORD_Update() 

Description:

This function updates a record given a new set of field values.

Prototype:
int IDBRECORD_Update( IDBRecord * pIDBRecord, AEEDBField * pDBFields, int 

iNumFields) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
None
Return to the List of functions

pIDBRecord Pointer to the IDBRecord Interface object which needs to be updated

pDBFields Pointer to the new set of field values

iNumFields Number of fields in the new set

SUCCESS If database record was successfully updated

ENOMEMORY If there was not enough memory for this operation

AEE_DB_ENULLFIELD If pDBFields is NULL

AEE_DB_EBADFIELDNUM If iNumFields < 0
91



IDialog Interface

The IDialog Interface consists of two functions that operate on dialogs created using the functions in the 

IShell Interface (refer to the description of the IShell interface for more details about its dialog-related 

functions). IDIALOG_GetControl() is used to obtain interface pointers to the date, menu, text and time 

controls that make up the dialog. You can use these pointers to modify the properties and rectangles of 

the controls, or to retrieve the data the user has entered or selected in each control. 

IDIALOG_SetFocus() specifies which control in a multicontrol currently has the focus (this control 

receives keypad input from the user). Many controls generate control tabbing events when the user 

presses the LEFT and RIGHT arrow keys. Dialogs use these control tabbing events to enable the user 

to navigate between controls. IDIALOG_SetFocus() can be used with controls that do not support 

control tabbing (for example, SoftKey menus), or to designate the control that has focus initially.

To use IDIALOG_GetControl() and IDIALOG_SetFocus()

1 Create the controls in your dialog using the BREW Resource Editor or by populating the 

required dialog data structures in your code.

2 Call ISHELL_CreateDialog() to create the dialog and display it on the screen.

3 Call ISHELL_GetActiveDialog() to obtain an IDialog Interface pointer to the dialog created 

in step 2 (The ISHELL_CreateDialog() does not return such a pointer).

4 Call IDIALOG_GetControl() to access the controls in the dialog, supplying as input the 

interface pointer obtained in step 3 and the control IDs you specified when you created the 

controls in step 1. You can use this function immediately after the dialog has been created 

to customize the appearance and properties of its controls.

5 Call IDIALOG_SetFocus() as needed while the dialog is active to allow the user to select 

the control in which data is to be selected or entered. For example, if your dialog uses a 

SoftKey menu, you can provide a menu item that allows the user to return to a previous 

control to change the data entered.

6 Call IDIALOG_GetControl() when data entry is complete to obtain the values the user has 

entered or selected in each control.

7 Call ISHELL_EndDialog() to terminate the dialog.
92



IDialog Interface  
List of functions

Functions in this interface include:

IDIALOG_AddRef()

IDIALOG_GetControl()

IDIALOG_Release()

IDIALOG_SetEventHandler()

IDIALOG_SetFocus()

Return to the Contents
93



IDialog Interface  
IDIALOG_AddRef()

Description: 

This function increments the reference count of the IDialog Interface object. This allows the object to be 

shared by multiple callers. The object is freed when the reference count reaches 0 (zero). See 

IDIALOG_Release().

Prototype:
uint32 IDIALOG_AddRef(IDialog * pIDialog)

Parameters:

Return Value:

Incremented reference count for the object. 

Comments: 

A valid object returns a positive reference count.

Side Effects: 

None

See Also:
IDIALOG_Release()

Return to the List of functions

pIDialog Pointer to the IDialog Interface object
94



IDialog Interface  
IDIALOG_GetControl() 

Description: 

This function retrieves the IControl pointer for the control associated with the specified identifier.

Prototype:
IControl * IDIALOG_GetControl(IDialog * pIDialog, int16 wID) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
ISHELL_CreateDialog()
IDIALOG_SetFocus()

Return to the List of functions

pIDialog Pointer to the IDialog Interface object

wID ID of the control

IControl * If successful

NULL If unsuccessful
95



IDialog Interface  
IDIALOG_Release()

Description: 

This function decrements the reference count of the IDialog Interface object. The object is freed from 

memory and is no longer valid once it's reference count reaches 0 (zero). 

Prototype:
uint32 IDIALOG_Release(IDialog * pIDialog)

Parameters:

Return Value: 

Decremented reference count for the object 

Comments: 

The object is freed and is no longer valid if 0 (zero) is returned.

Side Effects: 

None

See Also: 
IDIALOG_AddRef()

Return to the List of functions

pIDialog Pointer to the IDialog Interface object
96



IDialog Interface  
IDIALOG_SetEventHandler()

Description: 

Sets or resets the event handler for a dialog. This function can be used to select an alternate event 

callback for application events sent by a dialog to an application. 

Prototype:
void IDIALOG_SetEventHandler (IDialog * pIDialog, PFNAEEEVENT pfn, void * 

pUser);

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also: 
ISHELL_CreateDialog()

IDIALOG_SetFocus()
Return to the List of functions

pIDialog Pointer to the IDialog Interface object

pfn Pointer to the event callback function

pUser User data pointer sent as first argument to event handler (the other 

three parameters are the event code and the single-word and 

double-word data associated with the event).
97



IDialog Interface  
IDIALOG_SetFocus() 

Description:

This function sets the active control focus to the control associated with the identifier specified.

Prototype:
int16 IDIALOG_SetFocus(IDialog * pIDialog, int16 wID) 

Parameters:

Return Value: 

Identifier of the control that had focus

Comments: 

None

Side Effects: 

None

See Also:
ISHELL_CreateDialog()

Return to the List of functions

pIDialog Pointer to the IDialog Interface object

wID ID of the control
98



IDisplay Interface

The IDisplay Interface functions draw text, bitmaps, and simple geometric shapes such as straight lines 

and rectangles on the device display (you use the IGraphics Interface functions to draw more complex 

lines and shapes). Because the IDisplay Interface is used by all applications, an instance of IDisplay is 

created automatically when your application is created. 

Several IDisplay functions are concerned with drawing text on the screen and obtaining information 

about its size so that it can be optimally positioned. IDISPLAY_DrawText() draws a text string at 

specified x and y coordinates on the screen; you also can specify the text’s font and its vertical and 

horizontal alignment, as well as a clipping rectangle that limits the portion of the screen in which the text 

is to be drawn. IDISPLAY_MeasureText() measures the width of a text string in a particular font. This 

function can be used to determine if a string will fit in a given region of the screen. 

IDISPLAY_MeasureTextEx() is an extended version of this function that allows you to specify the 

horizontal space available to display the text string (this function returns the number of characters of 

your string that will fit in this space). IDISPLAY_GetFontMetrics() is used to return the height in pixels 

of text in a given font, which can be used to calculate the number of lines of text that will fit in a vertical 

region of the screen. IDISPLAY_GetSymbol() returns the character value (AECHAR) associated with 

the given symbol (many devices have special characters that are used to denote the keys on the device 

or an AM/PM indicator). 

The geometric operations in the IDisplay Interface operate on rectangular regions of the screen. 

IDISPLAY_EraseRect() draws a rectangle whose coordinates are specified in an AEERect structure; 

you can also specify the colors of the rectangle’s frame and interior. 
99



IDisplay Interface  
The following functions are special cases of IDISPLAY_DrawRect() that capture some of its most 

common uses:

IDISPLAY_EraseRect() erases the specified rectangle (for example, fills it with the default 

screen background color).

IDISPLAY_EraseRgn() erases a region of the screen given by its height and width and the x 

and y coordinates of its top left corner (instead of the AEERect structure that is the input to 

IDISPLAY_EraseRect()).

IDISPLAY_FillRect() fills the given rectangle with a specified color.

IDISPLAY_FrameRect() draws a frame in the default frame color around the given rectangle, 

but does not modify the rectangle’s interior.

IDISPLAY_FrameSolidRect() draws a frame in the default frame color around the given 
rectangle, and fills its interior with the default background color.

IDISPLAY_InvertRect() inverts the colors of the rectangle (this can be used to display the 
rectangle’s current contents in reverse video).

IDISPLAY_DrawHLine() and IDISPLAY_DrawVLine() are used to draw horizontal and vertical 
lines on the screen. Both functions take the line’s length in pixels and its starting x and y 

coordinates as input; the line is drawn one pixel wide and in black. 

IDISPLAY_SetColor() specifies the color that is used to display a given item on the screen. 
Items whose colors can be specified include text, lines and backgrounds. Colors are 

specified as RGB values.

IDISPLAY_BitBlt() is used to draw a bitmap image to a region of the screen. As input to this 

function, you specify the size and location of the rectangle in which the bitmap is displayed, 
a pointer to the source bitmap, the x and y coordinates of the portion of the source bitmap 

that is to be drawn, and the raster operation that is used to combine the pixels of the source 

bitmap and the destination region. 

IDISPLAY_Backlight() turns the device’s backlight (if any) on and off. 

IDISPLAY_SetAnnunciators() turns the device’s annunciators on and off. Annunciators are 
small images that appear on the device screen to signal certain conditions such as the 

presence of voice mail or a newly arrived SMS message (the set of supported annunciators 

is different for each device). 

The screen-drawing operations mentioned above do not take effect until the screen has been 

updated. IDISPLAY_Update() causes the updating of the screen to take place. To minimize 
unnecessary screen re-drawing, you typically call IDISPLAY_Update() once after multiple 

drawing operations. This function places the update in a queue of tasks that is to be 

performed at a later time; the function IDISPLAY_UpdateEx() lets you force the screen 
update to occur immediately.

The use of the functions in the IDisplay Interface typically consists of the following steps:

1 Call ISHELL_CreateInstance() to obtain an instance of the IDisplay Interface (you can also 

use the instance pointed to by the m_pIDisplay variable in your applet data structure).
100



IDisplay Interface  
2 Call IDISPLAY_EraseRect(), IDISPLAY_EraseRgn(), or one of the of the other rectangle-

filling functions if necessary to clear the region of the screen in which your drawing 

operations occurs.

3 Use the IDisplay drawing operations to draw the text, lines, and rectangles and bitmaps you 

need on the screen.

4 Call IDISPLAY_Update() or IDISPLAY_UpdateEx() to cause the drawing operations to take 

effect.

5 Call IDISPLAY_Release() to free the IDisplay Interface when you no longer need it (the 

instance pointed to in your applet data structure is freed automatically when your applet 

terminates).
101



IDisplay Interface  
List of functions

Functions in this interface include:

IDISPLAY_AddRef()

IDISPLAY_Backlight()

IDISPLAY_BitBlt()

IDISPLAY_ClearScreen()

IDISPLAY_DrawFrame()

IDISPLAY_DrawHLine()

IDISPLAY_DrawRect()

IDISPLAY_DrawText()

IDISPLAY_DrawVLine()

IDISPLAY_EraseRect()

IDISPLAY_EraseRgn()

IDISPLAY_FillRect()

IDISPLAY_FrameButton()

IDISPLAY_FrameRect()

IDISPLAY_FrameSolidRect()

IDISPLAY_GetFontMetrics()

IDISPLAY_GetSymbol()

IDISPLAY_InvertRect()

IDISPLAY_MeasureText()

IDISPLAY_MeasureTextEx()

IDISPLAY_Release()

IDISPLAY_SetAnnunciators()

IDISPLAY_SetColor()

IDISPLAY_Update()

IDISPLAY_UpdateEx()

Return to the Contents
102



IDisplay Interface  
IDISPLAY_AddRef()

Description: 

This function increments the reference count of the IDisplay Interface object. This allows the object to 

be shared by multiple callers. The object is freed when the reference count reaches 0 (zero). 

Prototype:
uint32 IDISPLAY_AddRef(IDisplay * pIDisplay)

Parameters:

Return Value:

Incremented reference count for the object

Comments: 

A valid object returns a positive reference count.

Side Effects: 

None

See Also:
IDISPLAY_Release()

Return to the List of functions

pIDisplay Pointer to the IDisplay Interface object
103



IDisplay Interface  
IDISPLAY_Backlight() 

Description: 

This function turns the backlight of the device on or off depending on the parameter bOn. The behavior 

of the backlight is completely dependent on the specific device. When this function is used to turn the 

backlight on, the device manufacturer decides how long it remains on before it is turned off again. 

Similarly, when this function is used to turn off the backlight, the device manufacturer of the device 

decides how long it remains off before it is turned on again.

Prototype:
void IDISPLAY_Backlight(IDisplay * pIDisplay,boolean bOn) 

Parameters:

Return Value:

None

Comments: 

None

Side Effects: 

None

See Also:
None
Return to the List of functions

pIDisplay Pointer to the IDisplay Interface object to be used for controlling the 

backlight of the device

bOn If TRUE, the backlight is turned on 

If FALSE, the back light is turned off
104



IDisplay Interface  
IDISPLAY_BitBlt() 

Description:

This function performs a bit-block transfer of the data corresponding to a rectangle of pixels from the 

specified source bitmap into the given Display area. After calling this function, IDISPLAY_Update() must 

be called to update the screen. If there is a sequence of drawing operations being performed, it is 

sufficient to call IDISPLAY_Update() once after all the drawing is done.

Prototype:
void IDISPLAY_BitBlt(IDisplay * pIDisplay, int xDest, int yDest, int cxDest, 

int cyDest, const void * pbmSource, int xSrc, int ySrc, AEE_RasterOp 

dwRopCode) 

Parameters:

Return Value:

None

pIDisplay Pointer to the IDisplay Interface object into which the bit-block transfer 

needs to be done

xDest Specifies the x-coordinates of the upper left corner of the destination 

rectangular area

yDest Specifies the y-coordinates of the upper left corner of the destination 

rectangular area

cxDest Specifies the width of the destination rectangle. If this is less than zero(0) or 

is greater than the width of the source bitmap (pmSource) , this parameter 

is taken to be equal to the width of the source bitmap.

cyDest Specifies the height of the destination rectangle. If this is less than zero(0) 

or is greater than the height of the source bitmap (pmSource) , this 

parameter is taken to be equal to the height of the source bitmap.

pbmSource Pointer to a structure containing the source bitmap. The data being pointed 

is without the AEE header. In the case of .BMP format, the data can start 

from BITMAPFILEHEADER.

xSrc Specifies the x-coordinate of the upper left corner of the source bitmap from 

where the bit-block transfer must begin

ySrc Specifies the y-coordinate of the upper left corner of the source bitmap from 

where the bit-block transfer must begin

dwRopCode Specifies the Raster operation that must be used while doing the bit-block 

transfer
105



IDisplay Interface  
Comments: 

None

Side Effects: 

None

See Also:
IDISPLAY_Update()
AEERasterOp

Return to the List of functions
106



IDisplay Interface  
IDISPLAY_ClearScreen()

Description: 

This function clears the whole device screen.

Prototype:
void IDISPLAY_ClearScreen(IDisplay * pIDisplay)

Parameters:

Return Value:

None

Comments: 

None

Side Effects: 

None

See Also
None
Return to the List of functions

pIDisplay  Pointer to the IDisplay Interface object 
107



IDisplay Interface  
IDISPLAY_DrawFrame()

Description: 

This function draws complex frames based upon the color resolution of the system. It allows single and 

3D frames to be drawn. Passing a valid clrFill to the routine fills the inside of the specified rectangle with 

the specified color. The specified rectangle is adjusted by the size of the resulting operation. This allows 

the routine to be called and have it automatically adjust the rectangle so that subsequent operations 

(such as text drawing) are offset by the proper amount. 

Prototype:
int IDISPLAY_DrawFrame(IDisplay * pIDisplay, AEERect * prc, AEEFrameType ft, 

RGBVAL clrFill)

Parameters:

Return Value:

None

Comments: 

None

Side Effects: 

None

See Also:

AEEFrameType
Return to the List of functions

pIDisplay [in] Pointer to the IDisplay Interface object 

prc [in/out] Pointer to the source rectangle. If this is NULL, no frame is drawn

ft [in] Frame type

clrFill [in] Fill type for the inside of the frame
108



IDisplay Interface  
IDISPLAY_DrawHLine() 

Description: 

This function draws a horizontal line of the given length, starting from the given point. 

Prototype:
void IDISPLAY_DrawHLine(IDisplay * pIDisplay,int16 x,int16 y,int16 len) 

Parameters:

Return Value:

None

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pIDisplay Pointer to the IDisplay Interface object to be used to draw the 

horizontal line

x X coordinate of the starting point of the line

y Y coordinate of the starting point of the line

len Length of the line
109



IDisplay Interface  
IDISPLAY_DrawRect() 

Description:

This function draws the given rectangle using the specified color and flags. After calling this function, 

IDISPLAY_Update() must be called to update the screen. If there is a sequence of drawing operations 

being performed, it is sufficient to call IDISPLAY_Update() once after all the drawing is done.

Prototype:
void IDISPLAY_DrawRect(IDisplay * pIDisplay,const AEERect * pRect, RGBVAL 

clrFrame, RGBVAL clrFill, uint32 dwFlags) 

Parameters:

Return Value:

None

Comments: 

If pRect is NULL and dwFlags contains IDF_RECT_FILL, this function clears the entire screen using 

clrFill. If pRect is NULL without IDF_RECT_FILL flag, this function treats pRect as an empty rectangle.

pIDisplay Pointer to the IDisplay Interface object to be used for drawing the rectangle

pRect Pointer to a AEERect structure that defines the coordinates of the rectangle to be 

drawn. These coordinates are in terms of screen coordinates with the left, top of 

the screen being 0,0.

clrFrame This specifies the color to be used for drawing the frame (outer borders) of the 

rectangle. This parameter is used only if dwFlags contains the flag 

IDF_RECT_FRAME.

clrFill This specifies the color to be used for filling the rectangle. This parameter is used 

only if dwFlags contains the flag IDF_RECT_FILL.

dwFlags Specifies the flags to be used for drawing the rectangle. This can be a logical OR 

of one or more of the following flags:

IDF_RECT_FRAME : Draw the outer borders of the rectangle only

IDF_RECT_FILL : Fill the rectangle with clrFill color 

IDF_RECT_INVERT: Invert the contents of the specified 
rectangle. When this flag is set, clrFrame and clrFill 

parameters won't matter.
110



IDisplay Interface  
Side Effects: 

None

See Also:
IDISPLAY_Update()

AEERect
Return to the List of functions
111



IDisplay Interface  
IDISPLAY_DrawText() 

Description:

This function draws the given text at the given location, using the given font and bounds the text to the 

clipping rectangle. After calling this function, IDISPLAY_Update() must be called to update the screen. 

If there is a sequence of drawing operations being performed, it is sufficient to call IDISPLAY_Update() 

once after all the drawing is done.

Prototype:
int IDISPLAY_DrawText(IDisplay * pIDisplay,AEEFont Font, const AECHAR * 

pcText, int nChars, int x, int y, const AEERect * prcBackground, uint32 

dwFlags) 

Parameters:

pIDisplay Pointer to the IDisplay Interface object to be used for drawing the text

Font Specifies the font that needs to be used for drawing the text

pcText Contains the String that needs to be drawn

nChars Specifies the number of characters in pcText. If this is -1, the length is automatically 

computed by this function.

x Specifies the x coordinate of the location on the screen where the text needs to be 

drawn. The upper, left corner of the screen is treated as [0,0]. This parameter 

doesn't matter if horizontal alignment flag is set.

y Specifies the x coordinate of the location on the screen where the text needs to be 

drawn. The upper, left corner of the screen is treated as [0,0]. This parameter 

doesn't matter if vertical alignment flag is set.
112



IDisplay Interface  
If no alignment flags are specified, the position of the text is determined by parameter x and y. The text 

blocks everything behind it by default. To avoid this effect, use IDF_TEXT_TRANSPARENT flag. 

Currently in BREW Emulator IDF_ALIGN_SPREAD and IDF_ALIGN_FILL are not supported.

Example: 

The combination IDF_ALIGN_CENTER | IDF_ALIGN_TOP | IDF_TEXT_UNDERLINE draws 

underlined text at the top (vertical) center (horizontal) of the clipping rectangle.

Return Value:

Comments: 

None

Side Effects: 

None

prcBackground Specifies the coordinates of the clipping rectangle. If this is NULL, the whole screen 

is taken as the clipping rectangle. No text is drawn outside this clipping rectangle. 

Clipping of characters (if necessary) is done starting from the right of the string. If 

any of the Flags for the Rectangle is specified, then this rect is also used as filling.

dwFlags Specifies the flags that can be used for drawing the screen. This can be a logical 

OR of one of the items selected from each of the following entries:

a. One of the horizontal alignment flags (IDF_ALIGN_LEFT, IDF_ALIGN_CENTER,

IDF_ALIGN_RIGHT) 

b. One of the vertical alignment flags (IDF_ALIGN_TOP,IDF_ALIGN_MIDDLE,

IDF_ALIGN_BOTTOM) 

c. One of the text format flags (IDF_TEXT_UNDERLINE, IDF_TEXT_INVERTED) 

d. One of the rect format flags (IDF_RECT_FRAME, IDF_RECT_FILL, 

IDF_RECT_INVERT) --- these flags works on the prcBackground rectangle, using 

the CLR_USER_BACKGROUND as the fill color and CLR_USER_FRAME as the 

frame color. If any of the Flags for the Rectangle is specified, then this rect is also 

used as filling.

SUCCESS If successful

EFAILED If unsuccessful
113



IDisplay Interface  
See Also:
IDISPLAY_Update()

AEEFont

AEERect
Return to the List of functions
114



IDisplay Interface  
IDISPLAY_DrawVLine() 

Description: 

This function draws a vertical line of the given length, starting from the given point. 

Prototype:
void IDISPLAY_DrawVLine(IDisplay * pIDisplay,int16 x,int16 y,int16 len) 

Parameters:

Return Value:

None

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pIDisplay Pointer to the IDisplay Interface object to be used to draw the vertical line

x X coordinate of the starting point of the line

y Y coordinate of the starting point of the line

len Length of the line
115



IDisplay Interface  
IDISPLAY_EraseRect() 

Description: 

This function fills the given rectangle with the default background color (for example, the color 

associated with the item CLR_USER_BACKGROUND).

Prototype:
void IDISPLAY_EraseRect(IDisplay * pIDisplay, AEERect * pRect) 

Parameters:

Return Value:

None

Comments: 

None

Side Effects: 

None

See Also:
AEERect
Return to the List of functions

pIDisplay Pointer to IDisplay Interface object to be used to erase the rectangle

pRect Valid pointer to a rectangle whose color needs to be inverted
116



IDisplay Interface  
IDISPLAY_EraseRgn() 

Description: 

This function fills the region enclosed by the given coordinates with the default background color (for 

example, the color associated for the item CLR_USER_BACKGROUND).

Prototype:
void IDISPLAY_EraseRgn(IDisplay * pIDisplay, int16 x, int16 y, uint16 cx, 

uint16 cy) 

Parameters:

Return Value:

None

Comments: 

None

Side Effects: 

None

See Also:
None
Return to the List of functions

pIDisplay Pointer to IDisplay Interface object to be used to fill the region

x X coordinate of the top, left corner of the region

y Y coordinate of the top, left corner of the region

cx Width of the region

cy Height of the region
117



IDisplay Interface  
IDISPLAY_FillRect() 

Description: 

This function draws a rectangle and fills it with a specified color.

Prototype:
void IDISPLAY_FillRect(IDisplay * pIDisplay,AEERect * pRect,RGBVAL clrFill) 

Parameters:

Return Value:

None

Comments: 

None

Side Effects: 

None

See Also:
None
Return to the List of functions

pIDisplay Pointer to IDisplay Interface object to be used to fill the rectangle

pRect Valid pointer to a rectangle that needs to be filled with the specified 

color

clrFill Specifies the color to be used to fill the rectangle
118



IDisplay Interface  
IDISPLAY_FrameButton()

Description: 

This function draws a 3D framed button based upon the color resolution of the system. The function 

draws a lowered button when bPressed is TRUE, and a raised button when the bPressed is FALSE. 

This function draws complex frames based upon the color resolution of the system. It allows single and 

3D frames to be drawn. Passing a valid clrFill to the routine fills the inside of the specified rectangle 

with the specified color. The specified rectangle is adjusted by the size of the resulting operation. This 

allows the routine to be called and have it automatically adjust the rectangle so that subsequent 

operations (such as text drawing) are offset by the proper amount. 

Prototype:
void IDISPLAY_FrameButton(IDisplay * pIDisplay, AEERect * prc, boolean 

bPressed, RGBVAL clrFill)

Parameters:

Return Value:

The input rectangle (prc) is adjusted by this call.

Comments: 

None

Side Effects: 

None

See Also:
AEERect
Return to the List of functions

pIDisplay [in]  Pointer to the IDisplay Interface object

prc [in/out]  Pointer to the source rectangle

bPressed [in]  Button pressed/raised indicator

clrFill [in]  Fill type for the inside of the frame
119



IDisplay Interface  
IDISPLAY_FrameRect() 

Description: 

This function draws the borders of a rectangle. The color used for drawing the borders is the current 

color assigned to the item CLR_USER_FRAME.

Prototype:
void IDISPLAY_FrameRect(IDisplay * pIDisplay, AEERect * pRect) 

Parameters:

Return Value:

None

Comments: 

None

Side Effects: 

None

See Also:
AEERect
Return to the List of functions

pIDisplay Pointer to IDisplay Interface object to be used to draw the rectangle

pRect Valid pointer to a rectangle whose borders need to be drawn
120



IDisplay Interface  
IDISPLAY_FrameSolidRect() 

Description: 

This function draws the borders of a rectangle and fills it with a color. The color used for drawing the 

borders is the current color assigned to the item CLR_USER_FRAME. The color used for filling the 

rectangle is the current color assigned to the item CLR_USER_BACKGROUND.

Prototype:
void IDISPLAY_FrameSolidRect(IDisplay * pIDisplay, AEERect * pRect) 

Parameters:

Return Value:

None

Comments: 

None

Side Effects: 

None

See Also:
AEERect

Return to the List of functions

pIDisplay Pointer to IDisplay Interface object to be used to draw the rectangle

pRect Valid pointer to a rectangle that needs to be drawn and filled
121



IDisplay Interface  
IDISPLAY_GetFontMetrics() 

Description:

This function retrieves information about the specified font. It retrieves information about the ascent and 

descent values for the specified font. 

NOTE: ascent + descent = total character height, but does not include any leading 

spaces.

Prototype:
int IDISPLAY_GetFontMetrics(IDisplay * pIDisplay, AEEFont Font,

int * pnAscent, int * pnDescent) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

pIDisplay [in] Pointer to the IDisplay Interface object whose font metrics is to be 

retrieved

Font [in] Specifies the font type for which the Ascent and Descent information is to 

be retrieved

pnAscent [in/out] On input, this must be a valid pointer to int. On function return, it points to 

an integer denoting the Ascent value for the specified font. NULL pointer 

is OK and in this case it remains NULL on return.

pnDescent [in/out] On input, this must be a valid pointer to int. On function return, it points to 

an integer denoting the Descent value for the specified font. NULL pointer 

is OK and in this case it remains NULL on return.

the character height for 

the specified font 

If successful. This is the sum of the Ascent and Descent values for the 

specified font. 

EFAILED If unsuccessful
122



IDisplay Interface  
See Also:
AEEFont

Return to the List of functions
123



IDisplay Interface  
IDISPLAY_GetSymbol()

Description: 

This function returns the AECHAR value corresponding to the specified symbol value.

Prototype:
AECHAR IDISPLAY_GetSymbol(IDisplay * pIDisplay, AEESymbol sym, AEEFont fnt)

Parameters:

Return Value:

The AECHAR associated with the specified symbol.

Comments: 

None

Side Effects: 

None

See Also:
AEEFont
AEESymbol

Return to the List of functions

pIDisplay Pointer to the IDisplay Interface object to be used for changing the color 

of an user item

sym Requested symbol

fnt Requested font
124



IDisplay Interface  
IDISPLAY_InvertRect() 

Description: 

This function inverts the color in the given Rectangle. It inverts the color and re-fills the rectangle with 

that inverted color pattern.

Prototype:
void IDISPLAY_InvertRect(IDisplay * pIDisplay, AEERect * pRect) 

Parameters:

Return Value:

None

Comments: 

None

Side Effects: 

None

See Also:
AEERect
Return to the List of functions

pIDisplay Pointer to IDisplay Interface object to be used to invert the rectangle

pRect Valid pointer to a rectangle whose color needs to be inverted
125



IDisplay Interface  
IDISPLAY_MeasureText() 

Description:

This function measures the width of a given text string if drawn using the specified font.

Prototype:

int IDISPLAY_MeasureText(IDisplay * pIDisplay, AEEFont Font, const AECHAR * 

pcText) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
AEEFont

Return to the List of functions

pIDisplay Pointer to the IDisplay Interface object to be used for measuring the 

width of the given text

Font Specifies the font that needs to be used for measuring the width of the 

given text. This function measures the width of a given text string if drawn 

using this font.

pcText Pointer to a string for which the measurement needs to be done

Number of pixels 

required to draw the 

characters in the 

string pcText

If successful, 

0 (zero) If otherwise
126



IDisplay Interface  
IDISPLAY_MeasureTextEx()

Description:

This function measures the width of a given text string if drawn using the specified font. The return is 

the actual pixel width of the string.

Prototype:
int IDISPLAY_MeasureText(IDisplay * pIDisplay, AEEFont Font, const AECHAR * 

pcText, int nChars, int nMaxWidth, int * pnFits)

Parameters:

Return Value:

pIDisplay [in] Pointer to the IDisplay Interface object to be used for measuring the 

width of the given text 

Font  [in] Specifies the font that needs to be used for measuring the width of the 

given text. This function measures the width of a given text string if drawn 

using this font.

pcText  [in] Pointer to a string for which the measurement needs to be done.

nChars  [in] Specifies the number of characters in pcText. If this is -1, the length is 

automatically computed by this function.

nMaxWidth  [in] Specifies the maximum available pixel width that can be used for drawing 

the text. If nMaxWidth is set to -1, then the nChars part of text string is 

measured, and * pnFits returned always is the entire text length. If 

nMaxWidth > 0, then it represents the maximum available pixel width for 

the text to be rendered within; this function computes the maximum 

number of characters which actually fit within this constraint and return this 

number of characters in * pnFits and the actual pixel width of these 

characters in * pnWidth. 

pnFits [in/out] On input, this must be a valid pointer to an integer. On return, this pointer 

points to an integer that denotes the number of characters that fit the given 

pixel width specified by nMaxWidth. If nMaxWidth is 0 (zero), then this 

parameter points to an integer denoting the entire length of the given string 

pcText.

Pixels If successful, returns the number of pixels required to draw the characters in the string 

pcText. The number of characters that can be drawn in this width is contained in * pnFits. 

0 (zero) If unsuccessful
127



IDisplay Interface  
Comments: 

None

Side Effects: 

None 

See Also:
AEEFont
Return to the List of functions
128



IDisplay Interface  
IDISPLAY_Release() 

Description:

This function decrements the reference count for the IDisplay object and does appropriate cleanup if 

the reference count reaches 0 (zero).

Prototype:
uint32 IDisplay_Release(IDisplay * pIDisplay) 

Parameters:

Return Value:

The updated reference count.

Comments: 

None

Side Effects: 

None

See Also:
IDISPLAY_AddRef()
Return to the List of functions

pIDisplay Pointer to the IDisplay Interface object whose reference count 

needs to be decremented
129



IDisplay Interface  
IDISPLAY_SetAnnunciators() 

Description: 

This function turns the specified annunciators on (or off). The support and behavior of this function is 

totally dependent on the specific device. 

The complete list of annunciators is: 

ANNUN_MSG //Voice mail 

ANNUN_NET_MSG //Net Message

ANNUN_ALARMCLOCK //Alarm Clock

ANNUN_NET_LOCK //Device Locked

ANNUN_STOPWATCH //Stop Watch

ANNUN_COUNTDOWN //Count Down clock

ANNUN_SILENCEALL //Ringer Off

A device may support few or all of the above listed Annunciators.

Prototype:
void IDISPLAY_SetAnnunciators(IDisplay * pIDisplay, uint16 wVal, uint16 

wMask) 

Parameters:

Return Value:

None

pIDisplay Pointer to the IDisplay Interface object to be used for 

enabling/disabling annunciators

wVal Specifies that set of annunciators that this function is trying to 

enable or disable. This is a logical OR of one or more of the 

annunciator flags defined above.

wMask For each annunciator flag contained in wVal, the corresponding bit 

here specifies if that annunciator needs to be turned on or off.
130



IDisplay Interface  
Comments: 

To turn the ANNUN_MSG and ANUN_NET_MSG annunciators ON and to turn the 

ANNUN_COUNTDOWN annunciator off, use:

uint16 wVal = 0;

uint16 wMask = 0;

wVal |= ANNUN_MSG | ANNUN_NET_MSG | ANNUN_COUNTDOWN;

wMask |= ANNUN_MSG | ANNUN_NET_MSG;

IDISPLAY_SetAnnunciators(pIDisplay,wVal,wMask) ;

Side Effects: 

None

See Also:
None
Return to the List of functions
131



IDisplay Interface  
IDISPLAY_SetColor() 

Description: 

This function sets the color of the specified user Item. User items are those listed in the top of the 

AEEClrItem enumeration. These items have a prefix CLR_USER. The color of the system-items (for 

example, the items in the bottom of the AEEClrItem enumeration which have a prefix CLR_SYS) cannot 

be changed. The color of an item can either be set to a specific RGB value or it can be set to the color 

of another item in the AEEClrItem enumeration. For example: 

To set the color of the item CLR_USER_TEXT to be the same as the color of the item 

CLR_SYS_TITLE_TEXT, use:

IDISPLAY_SetColor(pIDisplay,CLR_USER_TEXT,CLR_SYS_TITLE_TEXT)

To set it to white, use

IDISPLAY_SetColor(pIDisplay,CLR_USER_TEXT, RGB_WHITE) 

To set it to any specific RGB value use

IDISPLAY_SetColor(pIDisplay,CLR_USER_TEXT, 

MAKE_RGB(0x40,0x30,0x50) ) 

Prototype:
RGBVAL IDISPLAY_SetColor(IDisplay * pIDisplay, AEEClrItem item, RGBVAL rgb) 

Parameters:

pIDisplay Pointer to the IDisplay Interface object to be used for changing 

the color of an user item

item Specifies the user item whose color needs to be changed. This has 

to be one of the items in the AEEClrItem enumeration which have 

a prefix CLR_USER.

rgb Specifies the new color to be associated with the item mentioned 

in “item” parameter. This can be either be an index of an item in the 

AEEClrItem enumeration or it can be a RGB value.
132



IDisplay Interface  
Return Value:

Comments: 

None

Side Effects: 

None

See Also:
AEEClrItem

Return to the List of functions

the previous 

color associated 

with “item” 

If successful

RGB_NONE If unsuccessful
133



IDisplay Interface  
IDISPLAY_Update() 

Description:

This function updates the screen. The update message is posted in the queue of the user interface task, 

thereby allowing all the drawings to be done before updating the screen.

Prototype:
void IDISPLAY_Update(IDisplay * pIDisplay) 

Parameters:

Return Value:

None

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pIDisplay Pointer to the IDisplay Interface object that needs to be updated
134



IDisplay Interface  
IDISPLAY_UpdateEx() 

Description:

This function updates the screen. If the bDefer flag is set to TRUE, the screen is refreshed (updated) 

immediately. If the bDefer flag is set to FALSE, the update message is posted in the queue of the user 

interface task, thereby allowing all the drawings to be done before updating the screen. 

Prototype:
void IDISPLAY_UpdateEx(IDisplay * pIDisplay, boolean bDefer) 

Parameters:

Return Value:

None

Comments: 

On BREW Emulator the bDefer parameter makes no difference. The screen is always updated 

immediately.

Side Effects: 

None

See Also:
None

Return to the List of functions

pIDisplay Pointer to the IDisplay Interface object that needs to be updated

bDefer Boolean flag to indicate whether the screen needs to be updated 

immediately or deferred 
135



IFile Interface

The IFile Interface functions allow you to read and modify the contents of files created with the IFileMgr 

Interface. To obtain an instance of the IFile Interface for a file, you call IFILEMGR_OpenFile() for that 

file. You then use the IFile Interface pointer returned by IFILEMGR_OpenFile() to access that file with 

the operations described later in this section. When you have completed access to the file, you call 

IFILE_Release() to close it. 

CAUTION: Your application must have a privilege level of File or All to be able to modify files 

with IFILE_Write() or IFILE_Truncate(). Your application must have a privilege level of 

Shared or All to invoke these functions on files in the shared application directory.

The function IFILE_GetInfo() returns information about an open file, including its name, size and 

creation timestamp (if the file is not open, you can obtain the same information by calling 

IFILEMGR_GetInfo() with the name of the file as input). 

IFILE_Read() reads a specified number of bytes from the file and copies them into a character buffer in 

your application. IFILE_Write() writes a number of bytes to the file from a character buffer that contains 

the data to be written. All read and write operations are with respect to the current file cursor, which 

determines which byte of the file is to be read or written next. Initially, the cursor points to the first byte 

of the file (unless it was opened for appending, in which case the cursor points to a position just past 

the last byte of the file). Each file read and write sets the cursor to the position just past the last byte 

read or written. You can use IFILE_Seek() to set the cursor to a particular position in the file and to obtain 

the current value of the cursor, which allows you to read from and write to any position in the file.

The function IFILE_Truncate() allows you to reduce the size of a file, which discards the contents of the 

truncated portion at the end of the file.

To use functions in the IFile Interface, 

1 Call ISHELL_CreateInstance() if necessary to obtain an instance of the IFileMgr Interface.

2 If the file you wish to access does not exist yet,

• Call IFILEMGR_OpenFile() to create the file, supplying the file’s name as input. Upon 

creation, the file is open for reading and writing.

• Otherwise, call IFILEMGR_OpenFile() to open the file for reading, reading and writing, 

or appending, based on the type of access you need.
136



IFile Interface  
3 Using the IFile pointer obtained in step 2, call IFILE_Seek() if necessary to position the file 

cursor, and then call IFILE_Read() and IFILE_Write() to read from and write to the file as 

needed.

4 Call IFILE_GetInfo() if you need to obtain information about the file, and call 

IFILE_Truncate() to truncate it.

5 Call IFILE_Release() to close the file when you have completed accessing it. 
137



IFile Interface  
List of functions

Functions in this interface include:

IFILE_AddRef()

IFILE_Cancel()

IFILE_GetInfo()

IFILE_Read()

IFILE_Readable()

IFILE_Release()

IFILE_Seek()

IFILE_Truncate()

IFILE_Write()

Return to the Contents
138



IFile Interface  
IFILE_AddRef()

Description: 

This function increments the reference count of the IFile Interface object. This allows the object to be 

shared by multiple callers. The object is freed when the reference count reaches 0 (zero). See 

IFILE_Release().

Prototype:
uint32 IFILE_AddRef(IFile * pIFile)

Parameters:

Return Value:

Incremented reference count for the object. 

Comments: 

A valid object returns a positive reference count.

Side Effects: 

None

See Also:
IFILE_Release()

Return to the List of functions

pIFile Pointer to the IFile Interface object
139



IFile Interface  
IFILE_Cancel()

Description: 

This function cancels the callback registered with this IFile interface object with IFILE_Readable(). 

Prototype:
void IFILE_Cancel(IFile * pIFile, PFNNOTIFY pfn, void * pUser)

Parameters:

Return Value:
None

Comments: 

This function doesn’t care for the values of pfn and pUser parameters.

Side Effects: 

None

See Also: 
IFILE_Readable()

Return to the List of functions

pIFile Pointer to IFile interface object for which the registered callback function 

needs to be cancelled.

pfn Address of the callback function. 

pUser User defiend data that will be passed to the callback function when it is 

invoked.
140



IFile Interface  
IFILE_GetInfo() 

Description: 

This function gets the file creation date, file size, file name and file attributes of the file pointed to by the 

IFile Interface object. 

Prototype:
int IFILE_GetInfo(IFile * pIFile, FileInfo * pInfo)

Parameters:

Return Value: 

Comments: 

The file information is returned in FileInfo structure provided by pInfo.

Side Effects: 

None

See Also:
IFILEMGR_GetInfo()

FileInfo
Return to the List of functions

pIFile [in] Pointer to IFile Interface object

pInfo [out] placeholder for file information

SUCCESS If successful

EFAILED If unsuccessful
141



IFile Interface  
IFILE_Read() 

Description: 

This function reads a specified number of bytes from an open file. The read operation is non-blocking.

Prototype:
uint32 IFILE_Read(IFile * pIFile, void * pBuffer, uint32 dwCount)

Parameters:

Return Value: 

Comments: 

To read data from a file, the file needs to be open. See IFILEMGR_OpenFile() function of the IFileMgr 

Interface for more details on opening a file. The bytes are read, starting from the location of the file 

pointer in the IFile Interface object. The file pointer within a file can be relocated using the IFILE_Seek() 

function.

Side Effects: 

When the read operation is over, the file pointer of the IFile Interface object points to the end of the block 

of bytes that were read. 

See Also:
IFILEMGR_OpenFile(),

IFILE_Write(), 

IFILE_Seek()
Return to the List of functions

pIFile [in] Pointer to IFile Interface object

pBuffer [out] Buffer from which the file data is read

dwCount [in] Number of bytes to be read

Number of bytes 

read 

If successful

0 (zero) If unsuccessful
142



IFile Interface  
IFILE_Readable()

Description: 

This function is used for registering a callback function which tries to read from the file at a later time.

Prototype:
void IFILE_Readable(IFile * pIFile, PFNNOTIFY pfn, void * pUser)

Parameters:

Return Value:

None

Comments: 

None

Side Effects: 

None

See Also: 
IFILE_Cancel()

Return to the List of functions

pIFile Pointer to IFile interface object for which the callback function needs to 

be registered.

pfn Address of the callback function. 

pUser User defiend data that will be passed to the callback function when it is 

invoked.
143



IFile Interface  
IFILE_Release()

Description:

This function decrements the reference count of the IFile Interface object. If the reference count reaches 

0 (zero), the file associated with the IFile Interface object closes.

Prototype:
uint32 IFILE_Release(IFile * pIFile)

Parameters:

Return Value:

The updated reference count.

Comments: 

None

Side Effects: 

None

See Also:
IFILE_AddRef()

IFILEMGR_OpenFile()
Return to the List of functions

pIFile Pointer to the IFile Interface object 
144



IFile Interface  
IFILE_Seek() 

Description:

This function moves the file pointer of the IFile Interface object a given distance from a specified origin.

Prototype:
uint32 IFILE_Seek(IFile * pIFile, FileSeekType seekType, int32 moveDistance) 

Parameters:

Return Value:

In the special case when the seek type is _SEEK_CURRENT and the move distance is 0 (zero), the 

position of the current file pointer is returned.

Comments: 

The specified origin (FileSeekType) can take three values:

_SEEK_CURRENT 

_SEEK_START

_SEEK_END

The move distance can be specified in positive or negative directions (values). For example, negative 

direction is used when seeking from the end of the file (_SEEK_END). If the seek type is 

_SEEK_CURRENT and move distance is 0 (zero), this acts as tell operation and returns the current 

position of the file pointer. Otherwise file pointer is moved by given distance from specified origin. If the 

file was opened in the _OFM_READ mode, this operation succeeds if the move distance from the 

specified origin is within the boundaries of the file. See IFILEMGR_OpenFile() function description to 

find out more on the file open modes. If the file was opened in the _OFM_READWRITE mode and the 

pIFile Pointer to IFile Interface object

seekType [_SEEK_CURRENT|_SEEK_START|_SEEK_END] 

moveDistance Distance to move

SUCCESS If successful

EFAILED If unsuccessful
145



IFile Interface  
move distance points to location before the beginning of the file, this operation fails. If the move distance 

from the specified origin is past the end of the file, the file size is extended to the point of the move 

distance (from the seek origin). 

For example:

A file is created in READWRITE mode, and the file size if 40 bytes. The IFILE_Seek() function is used 

with seek type of _SEEK_START, and a move distance of 120. This causes the file size to increase to 

120 bytes, and the file pointer points to the end of the file. 

Side Effects: 

None

See Also:
IFILEMGR_OpenFile()

Return to the List of functions
146



IFile Interface  
IFILE_Truncate() 

Description: 

This function truncates the file specified by the IFile Interface object to position specified by the 

truncate_pos parameter. 

Prototype:
int IFILE_Truncate(IFile * pIFile, uint32 truncate_pos) 

Parameters:

Return Value:

Comments: 

To truncate a file, the file needs to be open in the read/write mode.

Side Effects: 

After the file is truncated the file pointer is moved to the start position of the file.

See Also:
None

Return to the List of functions

pIFile Pointer to IFile Interface object

truncate_pos Truncate position

SUCCESS If successful 

EFAILED If unsuccessful
147



IFile Interface  
IFILE_Write() 

Description: 

This function writes the specified number of bytes to an open file. The file must have been open by the 

IFileMgr when creating the file object. The operation is non-blocking.

Prototype:
uint32 IFILE_Write(IFile * pIFile, PACKED const void * pBuffer, uint32 

dwCount)

Parameters:

Return Value: 

Comments: 

To write data to a file, the file needs to be open in the read/write mode. See IFILEMGR_OpenFile() 

function of the IFileMgr Interface for more details on opening a file. The bytes are written, starting from 

the location of the file pointer in the IFile Interface object. The file pointer within a file can be relocated 

using the IFILE_Seek() function.

Side Effects: 

When the write operation is over, the file pointer of the IFile Interface object points to the end of the block 

of bytes that were written. 

See Also:
IFILEMGR_OpenFile(), 

IFILE_Read()
Return to the List of functions

pIFile [in] Pointer to IFile Interface object

pBuffer [out] Buffer into which the data is written

dwCount [in] Number of bytes to be written

Number of bytes 

written 

If successful

0 (zero) If unsuccessful
148



IFileMgr Interface

The IFileMgr Interface functions are used to create, remove and rename files/directories. It also 

provides the tools to obtain information about them. To create an instance of the IFileMgr Interface, you 

call ISHELL_CreateInstance() with AEECLSID_FILEMGR ClassID. IFileMgr operations can be used to 

access files in your application's directory. BREW also provides a shared application directory that 

allows files to be shared among applications. This is done by starting the target path with the name of 

the shared directory, which is defined by the constant AEE_SHARED_DIR in the header file AEE.h (the 

actual name of the shared directory is selected by the device manufacturer).

File and directory names in BREW are case-insensitive. This means that if you specify a file or directory 

name to IFileMgr or any other BREW file-related API, it applies the filename as lower-case. For 

example, if you invoke IFILEMGR_OpenFile with a file name of "Foo.bar", the file is opened as "foo.bar".

CAUTION: Your application must have a privilege level of File or All to be able to create files 

and directories. Your application must have a privilege level of Shared or All to create files 

and directories in the shared application directory.

The functions IFILEMGR_EnumInit() and IFILEMGR_EnumNext() are used to enumerate all the 

directories or files in a given directory (you can also enumerate all the files with a given file extension). 

You first call IFILEMGR_EnumInit() to specify the directory in which you want to enumerate files and 

directories. Each subsequent call to IFILEMGR_EnumNext() provides information about one of the 

requested directories or files, such as its name, size, creation date and attributes. 

IFILEMGR_EnumNext() returns FALSE when all the specified files or directories have been 

enumerated. IFILEMGR_GetInfo() returns the same information for a particular file or directory specified 

by name (you can obtain this information for an open file by calling IFILE_GetInfo() and providing its 

IFile instance pointer as input). IFILEMGR_GetFreeSpace() returns the number of free bytes available 

in the device’s file system. IFILEMGR_GetLastError() returns the error code of the error (if any) that was 

most recently detected by an IFileMgr function. This error code can be used to obtain more specific 

information about why a function failed to perform a requested task. IFILEMGR_Test() checks whether 

a specified file or directory exists.

IFILEMGR_MkDir() creates a new directory, specified by its name and path relative to the directory of 

the applet that is making the call. IFILEMGR_RmDir() removes a directory (you must first remove all the 

files and directories in the directory to be removed).

IFILEMGR_OpenFile() is used to create a new file, or to open an existing file for reading and/or writing. 

The file is specified by its name and its path relative to the applet’s directory. IFILEMGR_OpenFile() 

returns an IFile instance pointer for the opened file. This pointer is provided as input to functions in the 
149



IFileMgr Interface  
IFile Interface that are used to read and write the file’s contents. You close an open file by calling 

IFILEMGR_Release() with this pointer as its parameter. IFILEMGR_Rename() is used to rename a file. 

and IFILEMGR_Remove() removes a file. A file must be closed before it can be renamed or removed; 

If the file has been opened more than once, each open must be matched by a close before the rename 

or remove can succeed.

To use the functions in the IFileMgr Interface

1 Call ISHELL_CreateInstance() to create an instance of the IFileMgr Interface.

2 Call the functions listed above to obtain information about the files and directories that are 

present in your application’s directory, or to determine the amount of free space available 

in the file system.

3 Call IFILEMGR_MkDir() and IFILEMGR_RmDir() to create and remove directories, and call 

IFILEMGR_OpenFile(), IFILEMGR_Rename(), and IFILEMGR_Remove() to create, 

rename and remove individual files.

To read and/or modify the contents of a file

1 Call IFILEMGR_OpenFile() to open the file for reading or writing. 

2 Call functions in the IFile Interface to access the file’s contents.

3 Call IFILE_Release() to close the file when you have completed accessing it. 

4 Call IFILEMGR_Release() when you no longer need the IFileMgr Interface instance.
150



IFileMgr Interface  
List of functions

Functions in this interface include:

IFILEMGR_AddRef()

IFILEMGR_EnumInit()

IFILEMGR_EnumNext()

IFILEMGR_GetFreeSpace()

IFILEMGR_GetInfo()

IFILEMGR_GetLastError()

IFILEMGR_MkDir()

IFILEMGR_OpenFile()

IFILEMGR_Release()

IFILEMGR_Remove()

IFILEMGR_Rename()

IFILEMGR_RmDir()

IFILEMGR_Test()

Return to the Contents
151



IFileMgr Interface  
IFILEMGR_AddRef()

Description:

This function increments the reference count of the IFileMgr Interface object

Prototype:
uint32 IFILEMGR_AddRef(IFileMgr * pIFileMgr)

Parameters:

Return Value:

Returns the updated reference count.

Comments: 

None

Side Effects: 

None

See Also:
IFILEMGR_Release()
Return to the List of functions

 pIFileMgr Pointer to the IFileMgr Interface object
152



IFileMgr Interface  
IFILEMGR_EnumInit() 

Description: 

This function initializes the IFileMgr Interface object for interactively using the IFILEMGR_EnumNext() 

operation on the files or directories in the specified directory.

Prototype:
int IFILEMGR_EnumInit(IFileMgr * pIFileMgr, const char * pszDir, boolean 

bDirs)

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None 

See Also:
IFILEMGR_EnumNext()

Return to the List of functions

pIFileMgr Pointer to the IFileMgr Interface object

pszDir NULL terminated string containing the root directory name. "" is a valid file 

name and refers to the application’s ROOT directory.

bDirs Enumeration type that takes the following values:

TRUE: enumerate directories only

FALSE: enumerate files only 

SUCCESS If successful

EFAILED If unsuccessful
153



IFileMgr Interface  
IFILEMGR_EnumNext() 

Description: 

This function returns file information for the next file/directory within the specified root directory of the 

IFileMgr Interface object.

Prototype:
boolean IFILEMGR_EnumNext(IFileMgr * pIFileMgr, FileInfo * pInfo)

Parameters:

Return Value:

Comments: 

The file information this function retrieves contains the file attributes, file creation date and file size.

Side Effects: 

None 

See Also:
IFILEMGR_EnumInit()

FileInfo
Return to the List of functions

pIFileMgr [in] Pointer to the IFileMgr Interface object

pInfo [out] placeholder for file information

TRUE If successful

FALSE If unsuccessful
154



IFileMgr Interface  
IFILEMGR_GetFreeSpace() 

Description: 

This function gets the number of free bytes currently available on file system. If the passed parameter 

pdwTotal is non-NULL, this function initializes pdwTotal with the total room in the file system.

Prototype:
uint32 IFileMgr_GetFreeSpace(IFileMgr * pIFileMgr, uint32 * pdwTotal)

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pIFileMgr [in] Pointer to the IFileMgr Interface object

pdwTotal [in/out] Placeholder for the total room in the file system.

Number of bytes of file 

system space currently 

available 

If successful

0 (zero) If fails
155



IFileMgr Interface  
IFILEMGR_GetInfo() 

Description: 

This function gets the information on a file identified by a file name. The file information this function 

retrieves contains the file attributes, file creation date, and file size.

Prototype:
int IFILEMGR_GetInfo(IFileMgr * pIFileMgr, const char * pszName, FileInfo * 

pInfo)

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
IFILEMGR_GetInfo(), FileInfo
Return to the List of functions

pIFileMgr [in] Pointer to the IFileMgr Interface object

pszName [in] Null terminated string containing the file name. "" is a valid file 

name and refers to the application’s ROOT directory. 

pInfo [out] placeholder for file information

SUCCESS If successful

EFAILED If unsuccessful
156



IFileMgr Interface  
IFILEMGR_GetLastError() 

Description: 

This function would typically be called when a file operation performed by the applet has failed and the 

applet needs to know about the reason for the failure. 

Prototype:
int IFILEMGR_GetLastError(IFileMgr * pIFileMgr)

Parameters:

Return Value: 

If unsuccessful one of the following errors return:

i

Comments: 

None

Side Effects: 

None

pIFileMgr  Pointer to the IFileMgr Interface object

SUCCESS If last file operation was successful

EFILEEXISTS File exists

EFILENOEXISTS File does not exist

EDIRNOTEMPTY Directory not empty

EBADFILENAME Bad file name

EBADSEEKPOS Bad seek position

EFILEEOF End of file

EFSFULL File system full

EFILEOPEN File already open

EBADPARM Invalid parameter
157



IFileMgr Interface  
See Also:
None

Return to the List of functions
158



IFileMgr Interface  
IFILEMGR_MkDir() 

Description: 

This function is used to create a directory, specified by a directory name.

Prototype:
int IFILEMGR_MkDir(IFileMgr * pIFileMgr, const char * pszDir)

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
IFILEMGR_RmDir()
Return to the List of functions

pIFileMgr Pointer to the IFileMgr Interface object

pszDir NULL terminated string containing a directory name

SUCCESS If file is successfully created or if file already exists

EFAILED If unsuccessful
159



IFileMgr Interface  
IFILEMGR_OpenFile() 

Description: 

This function is used to open a file in specified mode.

Prototype:
IFile * IFILEMGR_OpenFile(IFileMgr * pIFileMgr, const char * pszFile, 

OpenFile mode)

Parameters:

The file open mode takes the following values:

Return Value: 

Comments:

If NULL pointer is returned, use IFILEMGR_GetLastError() to get error details. To close a file that has 

been opened using the IFILEMGR_OpenFile(), release the IFile Interface pointer using the 

IFILEMGR_Release(). If pszFile contains the path where the file exists (or needs to be created), the file 

is opened (or created) if the caller has the privileges to open/create files in that directory, and the 

directory exists. Directories can be created using the IFILEMGR_MkDir(). Files are created with 

read/write access.

pIFileMgr Pointer to the IFileMgr Interface object

pszFile Null terminated string containing the file name

mode File open mode 

_OFM_READ Open in read-only mode

_OFM_READWRITE Open in read/write mode

_OFM_CREATE Create

_OFM_APPEND Open for appending

Pointer To the IFile Interface object of the file opened If successful, 

NULL If the function call fails
160



IFileMgr Interface  
Side Effects: 

If the file is opened in the _OFM_APPEND mode the file pointer is

moved to the end of the file.

See Also:
IFILEMGR_MkDir() 
Return to the List of functions
161



IFileMgr Interface  
IFILEMGR_Release()

Description:

This function decrements the reference count for the IFileMgr Interface object and does appropriate 

cleanup if the reference count reaches 0 (zero).

Prototype:
uint32 IFILEMGR_Release(IFileMgr * pIFileMgr)

Parameters:

Return Value:

Returns the updated reference count.

Comments: 

None

Side Effects: 

None

See Also:
IFILEMGR_AddRef()

Return to the List of functions

 pIFileMgr Pointer to the IFileMgr Interface object
162



IFileMgr Interface  
IFILEMGR_Remove() 

Description: 

This function is used to remove a file identified by a given file name. 

Prototype:
int IFILEMGR_Remove(IFileMgr * pIFileMgr, const char * pszName)

Parameters:

Return Value: 

Comments: 

A file needs to be closed prior to it being removed. Use IFILE_Release() to close a file.

Side Effects: 

None

See Also:
None

Return to the List of functions

pIFileMgr Pointer to the IFileMgr Interface object

pszName Null terminated string containing the name of the file to to be 

removed

SUCCESS If successful

EFAILED If unsuccessful
163



IFileMgr Interface  
IFILEMGR_Rename()

Description: 

This function renames the file from the source name to the destination name.

Prototype:
int IFILEMGR_Rename(IFileMgr * pIFileMgr, const char * pszSrc, const char * 

pszDest)

Parameters:

Return Value:

Comments: 

If EFAILED is returned, use IFILEMGR_GetLastError() to get the error details.

Side Effects: 

None

See Also: 
IFILEMGR_EnumNext()
Return to the List of functions

pIFileMgr Pointer to the IFileMgr Interface object

pszSrc Source file to be renamed

pszDest Destination file 

SUCCESS If successful

EFAILED If unsuccessful
164



IFileMgr Interface  
IFILEMGR_RmDir() 

Description: 

This function is used to remove a directory identified by a given directory name.

Prototype:
int IFILEMGR_RmDir(IFileMgr * pIFileMgr, const char * pszDir)

Parameters:

Return Value: 

Comments:

If there are files or directories elements beneath the directory to be removed, they must be removed 

prior to calling this function, or this function call fails and the directory is not removed.

Side Effects: 

None

See Also:
IFILEMGR_MkDir()

Return to the List of functions

pIFileMgr Pointer to the IFileMgr Interface object

pszDir NULL terminated string containing a directory name

SUCCESS If successful

EFAILED If unsuccessful
165



IFileMgr Interface  
IFILEMGR_Test() 

Description: 

This function tests if the specified file/directory exists.

Prototype:
int IFILEMGR_Test(IFileMgr * pIFileMgr, const char * pszName)

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pIFileMgr Pointer to the IFileMgr Interface object

pszName NULL terminated string containing file/directory name. "" is a 

valid file name and refers to the application’s ROOT directory.

SUCCESS If specified file/directory exists 

EFAILED If otherwise
166



IGraphics Interface

The IGraphics Interface functions extend the drawing capability of the IDisplay Interface to more 

complex 2D geometric primitives, such as circles and arbitrary polygons. The IGraphics Interface also 

supports clipping and viewing transformation. IGraphics drawing operations get updated on the screen 

only after calling either IGRAPHICS_Update() function or IDISPLAY_Update() function. BREW 

recommends IGRAPHICS_Update() over IDISPLAY_Update(). Future releases of this interface will 

support double buffering, which will allow the program to direct drawing operations to an off-screen 

buffer that can be swapped with the current screen contents. 

IGraphics coordinate systems and viewing transformation management

In BREW, all the coordinate systems are expressed in terms of pixels. In IGraphics interfaces, BREW 

makes a distinction between the world-coordinate system and the screen-coordinate system. In both 

systems, the positive x-axis extends from left to right, and the positive y-axis extends downward. 

The world-coordinate system is the logical coordinate system that a programmer uses to describe the 

scene. The origin of this system can be anywhere for the programmer's convenience. The screen 

coordinate system always has its origin at the upper left corner of the device screen. A world-coordinate 

system area selected for display is called a window (notice the difference from what a window means 

for Microsoft Windows). An area on the screen to which a window is mapped is called a viewport. The 

window defines what is to be viewed; the viewport defines where it is to be displayed. Since IGraphics 

does not support scaling in this version, the window and viewport have‘ identical size. IGraphics 

Interface supports the viewing transformation (also referred to as the window-to-viewport 

transformation) with the following three functions: IGRAPHICS_SetViewport(), 

IGRAPHICS_Translate(), and IGRAPHICS_Pan().
167



IGraphics Interface  
IGRAPHICS_SetViewport() provides the ability to set a rectangular area (viewport) within the screen 

coordinate system. This viewport is the displayable area for all IGraphics operations. 

IGRAPHICS_GetViewport() returns the current viewport in screen coordinates. By default, the entire 

screen is the IGraphics viewport .

IGRAPHICS_Translate() provides the ability to move the window in the world-coordinate system. By 

default the upper left corner of the window is at the origin (0, 0) of the world-coordinate system.

Developers who are not familiar with coordinate systems and other graphics-related terminology, 

BREW recommends additional reading of Computer Graphics: C Version by Donald Hearn and M. 

Pauline Baker. 

X

Y

World

Screen

ViewportWindow-to-Viewport Transformation

Window

(0, 0)
X

Y

168



IGraphics Interface  
IGraphics Set and Get functions

The IGraphics functions use a number of parameters to determine how objects are to be drawn on the 

screen. Once a parameter's value is set, that value is used in all subsequent drawing operations until 

the parameter is changed. The IGraphics Interface includes several Set functions that let you set the 

values of these parameters and corresponding Get functions that let you retrieve the parameter values. 

The following Set functions are provided by IGraphics Interface:

•  IGRAPHICS_SetBackground() sets the background color to be used when 

IGRAPHICS_ClearRect() and IGRAPHICS_ClearViewport() are called. This background 

color is also used when setting a clipping region with the AEE_GRAPHICS_CLEAR flag set.

•  IGRAPHICS_SetClip() specifies the clipping region to be used for drawing. Drawing 

operations is to take place only inside the clipping region, which is defined by an AEEClip 

structure.

•  IGRAPHICS_SetColor() sets the value of the foreground color. All lines and shape borders 

are to be drawn in this color.

•  IGRAPHICS_SetFillColor() sets the color to be used to draw the interiors of closed geometric 

shapes.

•  IGRAPHICS_SetFillMode() sets the fill mode. If the fill mode is TRUE, the interiors of closed 

geometric primitives are filled with the current fill color. If the fill mode is FALSE, only the 

border of the geometric primitive is drawn.

•  IGRAPHICS_SetPaintMode() sets the paint mode, which determines how the color of a pixel 

to be drawn is combined with the color already on the screen. If the paint mode is 

AEE_PAINT_COPY, the new pixel color overwrites the old color. If the paint mode is 

AEE_PAINT_XOR, the color displayed to the screen is the exclusive-OR of the new and old 

pixel color .

•  IGRAPHICS_SetPointSize() sets the width in pixels of points drawn to the screen. 
169



IGraphics Interface  
IGraphics drawing functions

The IGraphics functions used to draw various 2D geometric primitives are as follows:

•  IGRAPHICS_DrawPoint() draws a point at a specified x and y coordinate. The point's height 

and width in pixels are equal to the current point size.

•  IGRAPHICS_DrawLine() draws a line, given its starting and ending points.

•  IGRAPHICS_DrawRect() draws a rectangle. The rectangle is defined by its upper left corner 

and the pixel counts in positive x and y directions. 

•  IGRAPHICS_DrawCircle() draws a circle, which is defined by its center point and radius.

•  IGRAPHICS_DrawArc() draws an arc, which is a portion of the border of a circle. The function 

takes as input the center point and radius of the circle and the starting and ending angles 

defining the portion of the circle to be displayed.

•  IGRAPHICS_DrawPie() draws a pie, which is a wedge-shaped portion of a circle. It is defined 

as the region included between two lines drawn from the center of the circle to its 

circumference. This function takes as input the center point and radius of the circle and the 

angles of the two lines.

•  IGRAPHICS_DrawEllipse() draws an ellipse, which is defined by its center point and the half-

length of its major and minor axis. The major axis has to be aligned with either x-axis or y-

axis. 

•  IGRAPHICS_DrawPolygon() draws a polygon, which is defined by a set of points specifying 

its vertices. 

•  IGRAPHICS_DrawPolyline() draws a polyline, which is defined by a list of points. This 

function draws line segments that connect each adjacent pair of points in the list. 

•  IGRAPHICS_DrawTriangle() draws a triangle, which is defined by the coordinates of its three 

vertices.

All input to the IGraphics drawing functions are in the world-coordinate system.
170



IGraphics Interface  
IGraphics miscellaneous functions

•  IGRAPHICS_ClearRect() clears a rectangular region in the world-coordinate system by filling 

the region with the current background color.

•  IGRAPHICS_ClearViewport() clears the viewport on the screen. The input rectangle is in the 

screen coordinate system.

•  IGRAPHICS_Update() updates the screen with the latest drawing operations.

IGraphics interface usage

To use the IGraphics Interface functions

1 Call ISHELL_CreateInstance() to create an instance of the IGraphics Interface.

2 Call IGRAPHICS_SetViewport() to specify a rectangular area of the screen for display.

3 Call IGRAPHICS_SetBackground() to set the background color.

4 Call IGRAPHICS_ClearViewport() to clear the viewport by filling it with the background 

color.

5 Call IGRAPHICS_Translate() or IGRAPHICS_Pan() to specify the viewing window in the 

world-coordinate system.

6 Call the parameter setting functions to set the foreground color, clipping region, fill color and 

mode, paint mode, and point size that is to be used to draw the geometric primitives.

7 Call one of the drawing functions to draw an IGraphics object on the screen. All objects are 

in the world-coordinate system.

8 Repeat step 6 and 7 for as many geometric primitives as needed. 

9 Call IGRAPHICS_Update() to display the drawing on the screen.

10 Release the IGraphics Interface object by calling IGRAPHICS_Release().
171



IGraphics Interface  
List of functions

Functions in this interface include:

IGRAPHICS_AddRef()

IGRAPHICS_ClearRect()

IGRAPHICS_ClearViewport()

IGRAPHICS_DrawArc()

IGRAPHICS_DrawCircle()

IGRAPHICS_DrawEllipse()

IGRAPHICS_DrawLine()

IGRAPHICS_DrawPie()

IGRAPHICS_DrawPoint()

IGRAPHICS_DrawPolygon()

IGRAPHICS_DrawPolyline()

IGRAPHICS_DrawRect()

IGRAPHICS_DrawTriangle()

IGRAPHICS_EnableDoubleBuffer()

IGRAPHICS_GetBackground()

IGRAPHICS_GetClip()

IGRAPHICS_GetColor()

IGRAPHICS_GetColorDepth()

IGRAPHICS_GetFillColor()

IGRAPHICS_GetFillMode()

IGRAPHICS_GetPaintMode()

IGRAPHICS_GetPointSize()

IGRAPHICS_GetViewport()

IGRAPHICS_Pan()

IGRAPHICS_Release()

IGRAPHICS_SetBackground()

IGRAPHICS_SetClip()

IGRAPHICS_SetColor()

IGRAPHICS_SetFillColor()
172



IGraphics Interface  
IGRAPHICS_SetFillMode()

IGRAPHICS_SetPaintMode()

IGRAPHICS_SetPointSize()

IGRAPHICS_SetViewport()

IGRAPHICS_Translate()

IGRAPHICS_Update()

Return to the Contents
173



IGraphics Interface  
IGRAPHICS_AddRef()

Description:

This function increments the reference count for the IGraphics Interface object.

Prototype:
uint32 IGRAPHICS_AddRef(IGraphics * pIGraphics) 

Parameters:

Return Value:

Comments:

A valid object returns a positive reference count.

Side Effects:

None

See Also:
IGRAPHICS_Release()

Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object

Incremented reference count for the object
174



IGraphics Interface  
IGRAPHICS_ClearRect() 

Description:

This function clears a rectangular area of the screen by filling it with the background color. The input 

rectangle is in the world-coordinate system. 

Prototype:
int IGRAPHICS_ClearRect(IGraphics * pIGraphics, AEERect * pRect) 

Parameters:

Return Value:

Comments: 

IGRAPHICS_SetBackground() has no effect until IGRAPHICS_ClearRect() or 

IGRAPHICS_ClearViewport() is called.

Side Effects:

None

See Also:
AEERect

Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object

pRect Pointer to the rectangle that specifies the area to clear

SUCCESS If unsuccessful

EBADPARM If the pRect parameter is invalid 
175



IGraphics Interface  
IGRAPHICS_ClearViewport()

Description:

This function clears the current viewport to the background color.

Prototype:
void IGRAPHICS_ClearViewport(IGraphics * pIGraphics)

Parameters:

Return Value:

None

Comments:

None

Side Effects:

None

See Also
None
Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object
176



IGraphics Interface  
IGRAPHICS_DrawArc() 

Description:

This function draws a circular arc. The center, radius, starting angle, and ending angle are specified by 

pArc. The color of the arc is the current foreground color.

Prototype:
int IGRAPHICS_DrawArc(IGraphics * pIGraphics, AEEArc * pArc) 

Parameters:

Return Value:

The error code that indicates the status of this transaction: 

Comments: 

The input is in the world-coordinate system.

Side Effects:

None

See Also:
AEEArc

Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object

pArc Pointer to the arc to be drawn

SUCCESS If unsuccessful

EBADPARM If the pArc parameter is invalid 
177



IGraphics Interface  
IGRAPHICS_DrawCircle() 

Description:

This function draws a circle. The center, and radius of the circle are specified by pCircle. The color of 

the outline is the current foreground color. If the fill-mode is turned on, the interior of the circle is filled 

with the current fill color.

Prototype:
int IGRAPHICS_DrawCircle(IGraphics * pIGraphics, AEECircle * pCircle) 

Parameters:

Return Value:

The error code that indicates the status of this transaction: 

Comments:

The input circle is in the world-coordinate system.

Side Effects:

None

See Also:
AEECircle
Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object

pCircle Pointer to the circle to be drawn

SUCCESS If successful

EBADPARM If the pCircle parameter is invalid 
178



IGraphics Interface  
IGRAPHICS_DrawEllipse() 

Description:

This function draws an ellipse specified by pEllipse. The color of the outline is the current foreground 

color. If the fill-mode is turned on, its interior is filled with the current fill-color.

Prototype:
int IGRAPHICS_DrawEllipse(IGraphics * pIGraphics, AEEEllipse * pEllipse) 

Parameters:

Return Value:

The error code that indicates the status of this transaction: 

Comments: 

The input is in the world-coordinate system .

Side Effects:

None

See Also:
AEEEllipse

Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object

pEllipse Pointer to the ellipse to be drawn

SUCCESS If successful

EBADPARM If the pEllipse parameter is invalid 
179



IGraphics Interface  
IGRAPHICS_DrawLine() 

Description:

This function draws a line segment, given the starting point and ending point. The color of the line is the 

current foreground color.

Prototype:
int IGRAPHICS_DrawLine(IGraphics * pGraphics, AEELine * pLine) 

Parameters:

Return Value:

An error code that indicates the status of this transaction: 

Comments: 

The input is in the world-coordinate system 

Side Effects:

None

See Also:
AEELine

Return to the List of functions

pGraphics Pointer to the IGraphics Interface object

pLine Pointer to the line to be drawn

SUCCESS If successful

EBADPARM If the pLine parameter is invalid 
180



IGraphics Interface  
IGRAPHICS_DrawPie() 

Description:

This function draws a circular pie specified by pPie. The color of the outline is the current foreground 

color. If fill-mode is turned on, the interior of the pie is filled with the current fill color.

Prototype:
int IGRAPHICS_DrawPie(IGraphics * pIGraphics, AEEPie * pPie) 

Parameters:

Return Value:

The error code that indicates the status of this transaction: 

Comments: 

The input is in the world-coordinate system. 

Side Effects:

None

See Also:
AEEPie

Return to the List of functions

pIGraphics Pointer tothe IGraphics Interface object

pPie Pointer to the pie to be drawn

SUCCESS If successful

EBADPARM If the pPie parameter is invalid
181



IGraphics Interface  
IGRAPHICS_DrawPoint() 

Description:

This function draws a point with the current point size and foreground color.

Prototype:
int IGRAPHICS_DrawPoint(IGraphics * pGraphics, AEEPoint * pPoint) 

Parameters:

Return Value:

An error code is returned to indicate the status of this transaction:

Comments: 

The input is in the world-coordinate system. 

Side Effects:

None

See Also:
AEEPoint

Return to the List of functions

pGraphics Pointer to the IGraphics Interface object

pPoint Pointer to the point to be drawn

SUCCESS If the pointer is successfully drawn 

EBADPARM If the pPoint parameter is invalid
182



IGraphics Interface  
IGRAPHICS_DrawPolygon() 

Description:

This function draws a polygon specified by pPolygon. The color of the outline is the current foreground 

color. If the fill-mode is turned on, its interior is filled with the current fill-color.

Prototype:
int IGRAPHICS_DrawPolygon(IGraphics * pIGraphics, AEEPolygon * pPolygon) 

Parameters:

Return Value:

The error code that indicates the status of this transaction: 

Comments: 

The input is in the world-coordinate system. 

Side Effects:

None

See Also:
AEEPolygon

Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object

pPolygon Pointer to the polygon to be drawn

SUCCESS If successful

EBADPARM If the pPolygon parameter is invalid 
183



IGraphics Interface  
IGRAPHICS_DrawPolyline()

Description:

This function draws a polyline specified by pPolyline. The color of the outline is the current foreground 

color. 

Prototype:
int IGRAPHICS_DrawPolyline(IGraphics * pIGraphics, AEEPolyline * pPolyline) 

Parameters

:

Return Value:

Comments: 

The input is in the world-coordinate system. 

Side Effects:

None

See Also:
AEEPolyline

Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object

pPolyline Pointer to the polyline to be drawn

SUCCESS If function successfully draws a polyline

EBADPARM If the pPolyline parameter is invalid
184



IGraphics Interface  
IGRAPHICS_DrawRect()

Description:

This function draws an axis-aligned rectangle specified by pRect. The color of the outline is the current 

foreground color. If the fill-mode is turned on, the interior is filled with the current fill color.

Prototype:
int IGRAPHICS_DrawRect(IGraphics * pIGraphics, AEERect * pRect) 

Parameters:

Return Value:

The error code indicating the status of this transaction: 

Comments: 

The input is in the world-coordinate system. 

Side Effects:

None

See Also:
None

Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object

pRect Pointer to the rectangle to be drawn

SUCCESS If successful

EBADPARM If the pRect parameter is invalid 
185



IGraphics Interface  
IGRAPHICS_DrawTriangle() 

Description:

This function draws a triangle specified by pTriangle. The color of the outline is the current foreground 

color. If the fill-mode is turned on, its interior is filled with the current fill-color.

Prototype:
int IGRAPHICS_DrawTriangle(IGraphics * pIGraphics, AEETriangle * pTriangle) 

Parameters:

Return Value:

The error code that indicates the status of this transaction: 

Comments: 

The input is in the world-coordinate system. 

Side Effects:

None

See Also:
AEETriangle

Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object

pTriangle Pointer to the triangle to be drawn

SUCCESS If successful

EBADPARM If the pTriangle parameter is invalid 
186



IGraphics Interface  
IGRAPHICS_EnableDoubleBuffer() 

Description:

This function turns on double buffering by passing in TRUE and turns it off by passing in FALSE.

Prototype:
boolean IGRAPHICS_EnableDoubleBuffer(IGraphics * pIGraphics, boolean flag) 

Parameters:

Return Value:

If double buffering is not supported by the system, it returns FALSE when the client tries to turn on the 

double buffering.

Comments: 

Double buffering allows you to maintain two separate buffers. One is displayed while the other is being 

drawn. A call to IGRAPHICS_Update() swaps the buffers. 

Double buffering is not supported in this version. 

Side Effects:
None

See Also:
None

Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object

flag A Boolean value: 

Set flag to TRUE to enable double buffering. 

Set flag to FALSE to disable double buffering.

TRUE If the transaction is successful

FALSE If otherwise
187



IGraphics Interface  
IGRAPHICS_GetBackground() 

Description:

This function queries the RGB values of the current background color.

Prototype:
void IGRAPHICS_GetBackground(IGraphics * pIGraphics, uint8 * r, uint8 * g, 

uint8 * b) 

Parameters:

Return Value:

None

Comments: 

The default background color is white.

Side Effects:

None

See Also:
None
Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object

r Pointer to the red component of the RGB color

g Pointer to the green component of the RGB color

b Pointer to the blue component of the RGB color
188



IGraphics Interface  
IGRAPHICS_GetClip() 

Description:

This function gets the current clipping area, specified by a closed geometric primitive.

Prototype:
boolean IGRAPHICS_GetClip(IGraphics * pIGraphics, AEEClip * pShape) 

Parameters:

Return Value:

Comments: 

None

Side Effects:

None

See Also:
AEEClip
Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object

pShape Pointer the current clipping shape

TRUE If the query is successful, 

FALSE If otherwise
189



IGraphics Interface  
IGRAPHICS_GetColor() 

Description:

This function gets the RGBA value for the current foreground color.

Prototype:
void IGRAPHICS_GetColor(IGraphics * pIGraphics, uint8 * r, uint8 * g, uint8 

* b, uint8 * alpha) 

Parameters:

Return Value:

None

Comments: 

The alpha parameter is just a placeholder in the current version. It has no effect on the foreground color.

Side Effects:

None

See Also:
None

Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object

r Pointer to the red component of the RGBA value

g Pointer to the green component of the RGBA value

b Pointer to the blue component of the RGBA value

alpha Alpha value
190



IGraphics Interface  
IGRAPHICS_GetColorDepth() 

Description:

This function gets the color depth of the device.

Prototype:
uint8 IGRAPHICS_GetColorDepth(IGraphics * pIGraphics) 

Parameters:

Return Value:

The color depth.

Comments: 

None

Side Effects:

None

See Also:
ISHELL_GetDeviceInfo()
Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object
191



IGraphics Interface  
IGRAPHICS_GetFillColor() 

Description:

This function gets the RGBA value for the current fill color.

Prototype:
void IGRAPHICS_GetFillColor(IGraphics * pIGraphics, uint8 * pRed, uint8 * 

pGreen, uint8 * pBlue, uint8 * pAlpha) 

Parameters:

Return Value:

None

Comments:

pAlpha is just a placeholder in the current version. The value referred to by * pAlpha has no effect on 

the fill color.

Side Effects:

None

See Also:
None
Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object

pRed Red component of the RGBA value

pGreen Green component of the RGBA value

pBlue Blue component of the RGBA value

pAlpha Alpha value
192



IGraphics Interface  
IGRAPHICS_GetFillMode() 

Description:

This function queries the current fill-mode. TRUE for fill and FALSE for not-fill.

Prototype:
boolean IGRAPHICS_GetFillMode(IGraphics * pIGraphics) 

Parameters:

Return Value:

Comments:

None

Side Effects:

None

See Also:
None

Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object

TRUE For fill

FALSE For not-fill
193



IGraphics Interface  
IGRAPHICS_GetPaintMode() 

Description:

This function gets the current paint mode.

Prototype:
AEEPaintMode IGRAPHICS_GetPaintMode(IGraphics * pIGraphics) 

Parameters:

Return Value:

Comments: 

None

Side Effects:

None

See Also:
AEEPaintMode

Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object

The enum value of the 

current paint mode
194



IGraphics Interface  
IGRAPHICS_GetPointSize() 

Description:

This function gets the current point size in terms of number of pixels. 

Prototype:
uint8 IGRAPHICS_GetPointSize(IGraphics * pIGraphics) 

Parameters:

Return Value:

Comments:

None

Side Effects:

None

See Also:
None
Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object

The current point size
195



IGraphics Interface  
IGRAPHICS_GetViewport()

Description

This function gets the current viewport (a rectangular area in the screen coordinate frame) for drawing.

Prototype:
boolean IGRAPHICS_GetViewport(IGraphics * pIGraphics, AEERect * pRect, 

boolean * framed)

Parameters:

Return Value:

Comments:

The output is in screen coordinate system.

Side Effects:

None.

See Also:
IGRAPHICS_SetViewport()
AEERect

Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object

pRect Pointer to the rectangular shape that specifies the current viewport area for drawing

framed TRUE if the viewport is framed, FALSE otherwise

TRUE If successful

FALSE If otherwise
196



IGraphics Interface  
IGRAPHICS_Pan() 

Description:

This function re-centers the window in the world-coordinate system. In some sense, (cx, cy) is the world 

coordinates at which the camera is pointing.

Prototype:
void IGRAPHICS_Pan(IGraphics * pIGraphics, int16 cx, int16 cy)

Parameters:

Return Value:

None.

Comments:

None.

Side Effects

None

See Also:
IGRAPHICS_Translate()

Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object

cx X coordinate of the new center in world-coordinate frame

cy Y coordinate of the new center in world-coordinate frame
197



IGraphics Interface  
IGRAPHICS_Release() 

Description:

This function decrements the reference count for the graphics object and does appropriate cleanup if 

the reference count reaches 0 (zero).

Prototype:
uint32 IGRAPHICS_Release(IGraphics * pIGraphics) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
IGRAPHICS_AddRef() 

Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object whose reference count needs to be 

decremented

Updated reference 

count for the object
198



IGraphics Interface  
IGRAPHICS_SetBackground() 

Description: 

This function sets the RGB values of the current background color. This color remains in effect until it 

is set to different values.

Prototype:
RGBVAL IGRAPHICS_SetBackground(IGraphics * pIGraphics, uint8 r, uint8 g, 

uint8 b) 

Parameters:

Return Value:

Comments:

The program does not show the new background color until IGRAPHICS_ClearRect() or 

IGRAPHICS_ClearViewport() is called.

The value of each color component (red, green and blue) must be a positive value between 0 (zero) 

and 255. Any integer values beyond this range are converted to a value within the range from 0 (zero) 

to 255. However the conversion itself is machine dependent. The user is encouraged to use values 

within the range to have predictable color effect.

Side Effects:
None

See Also:
IGRAPHICS_GetBackground()

Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object

r Red component of the RGB value

g Green component of the RGB value

b Blue component of the RGB value

The updated RGB 

value for the current 

background color
199



IGraphics Interface  
IGRAPHICS_SetClip() 

Description:

This function sets the clipping area. Graphics content is displayed on the screen only if it is within the 

clipping area. If the pointer pShape is NULL, it resets the clipping region to the display window. The 

clipping is in the world-coordinate system. 

Prototype:
boolean IGRAPHICS_SetClip(IGraphics * pIGraphics, AEEClip * pShape), uint8 

nFlag)

Parameters:

Return Value:

Comments:

If AEE_GRAPHICS_FRAME is set for nFlag, it draws the frame using the current foreground color and 

the paint mode, while setting the clipping region. 

If AEE_GRAPHICS_CLEAR is set for nFlag, it clears the interior of of the clipping region while setting 

it.

If AEE_GRAPHICS_FILL is set for nFlag, it fills the interior using the current fill color and the current 

paint mode, while setting the clipping region..

Side Effects:
None

pIGraphics Pointer to the IGraphics Interface object

pShape Pointer to the clipping shape

pFlag Bitmap flags

TRUE If the clipping area is set successfully, 

FALSE If otherwise
200



IGraphics Interface  
See Also:
None

Return to the List of functions
201



IGraphics Interface  
IGRAPHICS_SetColor() 

Description:

This function sets the current RGBA value. All subsequent graphics objects is drawn in this color until 

this function is called again for different RGBA values.

Prototype:
RGBVAL IGRAPHICS_SetColor(IGraphics * pIGraphics, uint8 r, uint8 g, uint8 b, 

uint8 alpha) 

Parameters:

Return Value:

Comments:

In the current version, alpha value is just a placeholder, which has no effect to the foreground color. 

Eventually this value will be used to support transparent color and color blending. The default 

foreground color is black.

Side Effects:

None

See Also:
IGRAPHICS_GetColor()

Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object

r Red component of the RGBA value

g Green component of the RGBA value

b Blue component of the RGBA value

alpha Alpha value

Updated RGBA value 

for foreground
202



IGraphics Interface  
IGRAPHICS_SetFillColor() 

Description:

This function sets the fill color for all subsequent drawings of closed geometric primitives.

Prototype:
RGBVAL IGRAPHICS_SetFillColor(IGraphics * pIGraphics, uint8 r, uint8 g, 

uint8 b, uint8 alpha) 

Parameters:

Return Value:

Comments: 

None

Side Effects:

None

See Also:
None
Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object

r Red component of the RGBA value

g Green component of the RGBA value

b Blue component of the RGBA value

alpha Alpha value

The updated RGBA 

value of the current fill 

color
203



IGraphics Interface  
IGRAPHICS_SetFillMode() 

Description:

This function turns on the fill-mode for all subsequent closed geometric primitives by passing in TRUE. 

It turns off the fill-mode by passing in FALSE.

Prototype:
boolean IGRAPHICS_SetFillMode(IGraphics * pIGraphics, boolean fFill) 

Parameters:

Return Value:

The updated value for the current fill-mode. 

Comments: 

If an invalid value (other than TRUE or FALSE) is passed as input parameter, the fill-mode is set to 

FALSE by default.

Side Effects:

None

See Also:
None

Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object

fFill Boolean value: 

Set fFill to TRUE to turn on the fill-mode. 

Set fFill to FALSE to turn off the fill-mode.

TRUE For on 

FALSE For off
204



IGraphics Interface  
IGRAPHICS_SetPaintMode() 

Description:

This function sets the paint mode. In AEE_PAINT_COPY mode, the new graphics content overwrites 

the previous one. In AEE_PAINT_XOR mode, the color is determined by the XOR binary operation of 

the old and new colors. 

Given an arbitrary background color and an arbitrary new foreground color, XORing the foreground 

color against the background color twice, recovers the background color. 

Prototype:
AEEPaintMode IGRAPHICS_SetPaintMode(IGraphics * pIGraphics, AEEPaintMode 

mode) 

Parameters:

Return Value:

Comments: 

If an invalid integer (enum) value is passed as the input "mode" parameter, the paint mode is set to 

AEE_PAINT_COPY by default.

Side Effects:

None

See Also:
None

Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object

mode enum value for paint mode

Updated enum value 

for paint mode.
205



IGraphics Interface  
IGRAPHICS_SetPointSize() 

Description:

This function sets the size (width) of a point in terms of number of pixels.

Prototype:
uint8 IGRAPHICS_SetPointSize(IGraphics * pIGraphics, uint8 u8Size) 

Parameters:

Return Value:

Comments:

None

Side Effects:

None

See Also:
None

Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object

u8Size Size (width) of a point in terms of number of pixels

The updated value of 

the point size.
206



IGraphics Interface  
IGRAPHICS_SetViewport()

Description:

A world-coordinate area selected for display is called a window. An area on a display device to which a 

window is mapped is called a viewport.

This function sets the viewport (a rectangular area) for drawing. The default viewport is the screen 

without a frame If pRect is NULL, this function resets the viewport to the default.

Prototype:
boolean IGRAPHICS_SetViewport(IGraphics * pIGraphics, AEERect * pRect,uint8 

nFlag)

Parameters:

Return Value:

Comments:

It returns TRUE only if the displayable area is non-empty and the viewport is completely contained in 

the physical screen. Otherwise, it return FALSE.

If AEE_GRAPHICS_FRAME is set, it draws the frame.

If AEE_GRAPHICS_CLEAR is set, it clears the viewport to the background color.

pIGraphics Pointer to the IGraphics Interface object

pRect Pointer to the rectangular shape, which specifies the area for display

nFlag Bitmap flags for different options

• If flag is set as AEE_GRAPHICS_FRAME then the minimum value for dx, dy is 

3 pixel.

• If flag is set as AEE_GRAPHICS_NONE then the minimum value for dx, dy is 1 

pixel.

• If IGRAPHICS_SetViewport returns FALSE for any reason, then previous 

viewport settings are retained.

TRUE If successful

FALSE If otherwise
207



IGraphics Interface  
While the inputs of other IGraphics functions are in the world-coordinate system, the input of this 

function is in the screen-coordinate system.

Side Effects:

None

See Also:
IGRAPHICS_GetViewport()

Return to the List of functions
208



IGraphics Interface  
IGRAPHICS_Translate() 

Description:

This function translates the window's origin in the world-coordinate system. Namely, different areas of 

the world are thereby displayed. The units are in number of pixels. The window's origin is always its 

upper left corner, which is the default origin of the world-coordinate system. As a result of the translation, 

all geometric primitives are translated by the same amount, but in the opposite direction in the viewport. 

Please refer to IGRAPHICS_SetViewport() for the definition of window and viewport. 

Prototype:
void IGRAPHICS_Translate(IGraphics * pIGraphics, int16 x, int16 y)

Parameters:

Return Value:

None.

Comments:

Conceptually, it helps to imagine a window as the camera. This camera can be translated such that it 

points to different area of the world. The world is the scene that the programmer has designed. 

Side Effects:

None.

See Also:
IGRAPHICS_Pan()
Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object

x The window's origin to be translated by x pixels along X-axis

y The window's origin to be translated by y pixels along Y-axis
209



IGraphics Interface  
IGRAPHICS_Update() 

Description:

If double buffering is supported and enabled, it swaps the two buffers and pushes the offscreen buffer 

to the screen. If the double buffering is not supported or it is not enabled, this function updates the 

device screen.

Prototype:
void IGRAPHICS_Update(IGraphics * pIGraphics) 

Parameters:

Return Value:

None

Comments: 

Double buffering is not supported in this release.

Side Effects:

None

See Also:
None

Return to the List of functions

pIGraphics Pointer to the IGraphics Interface object
210



IHeap Interface

The IHeap Interface includes functions for allocating and freeing memory, and for obtaining information 

about the amount of device memory that is available and in use. For simple memory allocation tasks, 

you can use the MALLOC() and FREE() macros that are defined in the file AEEStdLib.h.

IHEAP_CheckAvail() checks whether there is enough memory available to allocate a block of a 

specified size. IHEAP_GetMemStats() returns the amount (number of bytes) of memory in the system 

that is currently in use (you can use the function ISHELL_GetDeviceInfo() to obtain the total amount of 

memory on the device).

The function IHEAP_Malloc() allocates a block of memory of a specified size and returns a pointer to it. 

IHEAP_MallocRec() takes as input a data type; it allocates enough memory for a single instance of this 

data type and returns a pointer to the memory allocated (the pointer is cast to the specified type). 

IHEAP_Realloc() is used to change the size of an allocated memory block. IHEAP_StrDup() makes a 

copy of a character string and returns a pointer to the memory allocated to hold the copy. You call 

IHEAP_Free() to free the memory blocks allocated by these functions.
211



IHeap Interface  
List of functions

Functions in this interface include:

IHEAP_AddRef()

IHEAP_CheckAvail()

IHEAP_Free()

IHEAP_GetMemStats()

IHEAP_Malloc()

IHEAP_MallocRec()

IHEAP_Realloc()

IHEAP_Release()

IHEAP_StrDup()

Return to the Contents
212



IHeap Interface  
IHEAP_AddRef()

Description:

This function increments the reference count for the heap object

Prototype:
uint32 IHEAP_AddRef(IHeap * pIHeap)

Parameters:

Return Value:

The updated reference count

Comments: 

None

Side Effects: 

None

See Also: 
IHEAP_Release()
Return to the List of functions

pIHeap Pointer to IHeap Interface to the heap object
213



IHeap Interface  
IHEAP_CheckAvail() 

Description:

This function checks whether a memory block of the given size can be allocated. This function does not 

do any actual allocation of memory. It just returns TRUE or FALSE indicating whether or not it is possible 

to allocate a block of the given size.

Prototype:
boolean IHEAP_CheckAvail(IHeap * pIHeap, uint32 dwSize) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

This function may walk-through the heap (and collapse adjacent free blocks if any) 

See Also:
IHEAP_GetMemStats()

Return to the List of functions

pIHeap Pointer to IHeap Interface to the heap object 

dwSize Size of the block whose allocation needs to be verified 

TRUE If a block of the given size can be allocated

FALSE If unsuccessful or if a block of the given size cannot be allocated
214



IHeap Interface  
IHEAP_Free() 

Description:

This function frees an allocated block of memory. It releases the memory back to the memory pool.

Prototype:
void IHEAP_Free(IHeap * pIHeap, void * pMemFree) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pIHeap Pointer to IHeap Interface to the heap object 

pMemFree Pointer to the memory block that needs to be freed
215



IHeap Interface  
IHEAP_GetMemStats() 

Description:

This function returns statistics about the current memory use. It returns the total memory currently in 

use. To check if a block of a specific size can be allocated, the function IHEAP_CheckAvail() must be 

called. To get the total memory in the system, the function ISHELL_GetDeviceInfo() must be called.

Prototype:
uint32 GetMemStats(IHeap * pIHeap) 

Parameters:

Return Value:

Total used memory in the system

Comments: 

None

Side Effects: 

None

See Also:
IHEAP_CheckAvail()

ISHELL_GetDeviceInfo()

Return to the List of functions

pIHeap Pointer to IHeap Interface to the heap object 
216



IHeap Interface  
IHEAP_Malloc() 

Description:

This function allocates a block of memory of the requested size and returns the pointer to that memory 

block.

Prototype:
void * IHEAP_Malloc(IHeap * pIHeap, uint32 dwSize) 

Parameters:

Return Value:

If successful, returns pointer to the allocated memory block

If failed, returns NULL

Comments: 

None

Side Effects: 

None

See Also:
IHEAP_Realloc()

IHEAP_MallocRec()

Return to the List of functions

pIHeap Pointer to IHeap Interface to the heap object 

dwSize Specifies the size of the memory block to be allocated
217



IHeap Interface  
IHEAP_MallocRec() 

Description:

This function allocates the memory required for a specified standard data type. It then casts the 

allocated pointer to that data type before returning to the caller.

Prototype:
(type * ) IHEAP_MallocRec(IHeap * pIHeap,type dataType) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
IHEAP_Malloc()

IHEAP_Realloc()
Return to the List of functions

pIHeap Pointer to IHeap Interface to the heap object 

dataType Specifies the standard data type for which memory needs to be allocated

Pointer To the requested data type, if successful,

NULL If fails,
218



IHeap Interface  
IHEAP_Realloc() 

Description:

This function re-allocates a memory block and changes its size.

Prototype:
void * IHEAP_Realloc(IHeap * pIHeap, void * pMemBlock, uint32 dwNewSize) 

Parameters:

Return Value:

Comments: 

The return value is NULL if the size is 0 (zero) and pMemBlock is valid, or if there is not enough 

available memory to expand pMemBlock to the given size. In the first case, the original block is freed. 

In the second, the original block is unchanged.

Side Effects: 

None

See Also:
None

Return to the List of functions

pIHeap Pointer to IHeap Interface to the heap object 

pMemBlock Pointer to the memory block that needs to be re-allocated. If pMemblock is NULL, 

this function behaves the same way as malloc and allocates a new block of 

dwNewSize bytes. 

dwNewSize Specifies the new size of the memory block 

Pointer To the re-allocated block, if successful

NULL If unsuccessful
219



IHeap Interface  
IHEAP_Release()

Description:

This function decrements the reference count for the heap object and does appropriate cleanup if the 

reference count reaches 0 (zero).

Prototype:
uint32 IHEAP_Release(IHeap * pIHeap)

Parameters:

Return Value:

The updated reference count

Comments: 

None

Side Effects: 

None

See Also: 
IHEAP_AddRef()

Return to the List of functions

pIHeap Pointer to IHeap Interface to the heap object
220



IHeap Interface  
IHEAP_StrDup() 

Description:

This function duplicates a given string. It allocates memory for the new string and then copies the 

contents of the incoming string into this new string. It then returns the new string.

Prototype:
AECHAR * IHEAP_StrDup(IHeap * pIHeap, AECHAR * pszIn) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pIHeap Pointer to IHeap Interface to the heap object 

pszIn Pointer to the string that needs to be duplicated

Pointer To the duplicated string, If successful

NULL If unsuccessful
221



IImage Interface

The IImage Interface is used for drawing bitmap images and displaying animated bitmaps to the screen. 

This interface supports bitmaps in the Windows Bitmap (.BMP) format and may support a native bitmap 

formats specific to each device. Each instance of the IImage Interface is associated with a single bitmap 
image, which can be read in either from a resource file created with the BREW Resource Editor or 

directly from a file containing the bitmap. A call to IDISPLAY_Update() or IDISPLAY_UpdateEx() is 

needed to update the screen.
The IImage Interface supports the display of animated bitmaps. An animated bitmap consists of multiple 

frames that are side by side along the width of the bitmap (for example, an animated bitmap with four 

20x20 frames would be 80 pixels wide and 20 pixels high). When you start animation, IImage displays 
the frames of the image one after the other at a rate you can specify. When the last frame has been 

displayed, the animation starts again with the first frame, and IImage repeatedly cycles through the 

frames until you explicitly stop the animation or release the IImage Interface instance.
The IIMAGE_Draw() function draws a bitmap image on the screen at a specified position. 

IIMAGE_DrawFrame() draws a single frame of an animated bitmap. IIMAGE_GetInfo() retrieves 

information about a bitmap, including its height and width in pixels, the number of colors, and the 
number of frames it contains if the bitmap is animated. 

Return to the List of functions is used when you are reading the bitmap contents directly from a file 

instead of from a BREW resource file. In this case, you use the IFileMgr Interface and IFile Interface to 
read the bitmap file into a buffer in memory, create an instance of the IImage Interface, and then use 

Return to the List of functions to associate the address of the memory buffer with the IImage instance.

IIMAGE_Start() starts the animation of an animated bitmap, displaying its frames at the specified screen 
coordinates (before you call this function, you must use IIMAGE_SetParm() to define the number of 

frames in the image, as described later in this section). IIMAGE_Stop() stops the animation, with the 

last displayed frame of the image remaining on the screen until it is overwritten.
IIMAGE_SetParm() is used to set the values of the following image parameters:

•  IPARM_SIZE determines the height and width of the bitmap. By reducing these values from 

the bitmap’s original size, you can display a smaller portion of the bitmap. For example, 

setting the size of a 50x50 bitmap to 40x40 effectively removes a 10-pixel-wide strip from the 

right side and bottom of the image when it is displayed.

•  IPARM_OFFSET determines the x and y coordinates of the bitmap’s origin, which are both 0 

(zero) by default. By setting the origin to a larger value, you can display a smaller portion of 

the bitmap. For example, changing the origin of a 50x50 bitmap from (0,0) to (10, 10) 

effectively removes a 10-pixel-wide strip from the left side and top of the image when it is 

displayed.

•  IPARM_CXFRAME sets the width in pixels of each frame in an animated bitmap. This 

parameter or IPARM_NFRAMES must be set before starting animation of the bitmap. The 

frame width can evenly divide the total width of the bitmap.

•  IPARM_NFRAMES sets the total number of frames in an animated bitmap. This parameter 

or IPARM_CXFRAME must be set before starting animation of the bitmap. The number of 
222



IImage Interface  
frames can evenly divide the total width of the bitmap. If this value is specified to be less than 

or equal to 0 (zero), the number of frames is automatically calculated using the formula: 

•  nFrames = WidthOfImage / HeightOfImage.

•  IPARM_RATE sets the animation rate, which is the number of milliseconds between the 

display of each frame of an animated bitmap. The default value is 150 milliseconds.

•  IPARM_ROP sets the raster operation, which defines how the pixels currently on the screen 

(the destination bitmap) are to be logically combined with those of the bitmap image that is 

to be drawn on the screen (the source bitmap). The supported raster operations and the 

Boolean pixel operations they represent are as follows:

To use the IImage Interface
Obtain an instance of the IImage Interface that contains the bitmap you choose to display. 

1 Next do one of the following:

If your bitmap is contained in a BREW resource file, call ISHELL_LoadResImage(), which returns a 

pointer to an IImage instance that contains the bitmap you specified. 
You can also use ISHELL_LoadImage() to load the bitmap format image directly from the file. If your 

bitmap is contained in a file, call ISHELL_LoadImage() and pass the file name of the bitmap file. If the 

function is successful, then it returns a valid pointer to the IImage Interface object .
If your image is not animated, call IIMAGE_Draw() to draw the image at the desired position on the 

screen. If your image is animated, call IIMAGE_Start() to begin animation at a specified screen position 

and use IIMAGE_Stop() to stop the animation.
Call IIMAGE_Release() to free the IImage Interface instance (this also stops animation if necessary).

Example 1:
IImage * pImage; // Place holder for IImage interface pointer

// Use ISHELL to load the image from resource file

pImage = ISHELL_LoadResImage(.....);

IIMAGE_Draw(pIMage,x,y); // Draw image

AEE_RO_OR src | dest

AEE_RO_NOT !src

AEE_RO_XOR src ^ dest

AEE_RO_COPY src

AEE_RO_TRANSPARENT src

AEE_RO_MASK src & dest

AEE_RO_MASKNOT !src & dest

AEE_RO_MERGENOT !src | dest
223



IImage Interface  
In addition to the simple drawing ability, the IImage Interface also supports animated images. This 

includes image formats that do not normally support animation (such as Windows .BMP). 

Example 2:
IImage * pImage; // Place holder for IImage interface pointer 

// Use ISHELL to load the image from resource file

pImage = ISHELL_LoadResImage(.....);

// If the image is a BMP, we can divide into "frames" each of

// which is "cxFrames" wide as follows:

IIMAGE_SetParm(IImage,IPARM_CXFRAME,cxFrame,0);

IIMAGE_Start(IImage,10,10); // Start animating the image

// Later we can stop the animation by either calling IIMAGE_Stop

// or IIMAGE_Release.

IIMAGE_Stop(IImage); // Stop the animation
224



IImage Interface  
List of functions

Functions in this interface include:

IIMAGE_AddRef()

IIMAGE_Draw()

IIMAGE_DrawFrame()

IIMAGE_GetInfo()

IIMAGE_HandleEvent()

IIMAGE_Notify()

IIMAGE_Release()

IIMAGE_SetParm()

IIMAGE_SetStream()

IIMAGE_Start()

IIMAGE_Stop()

Return to the Contents
225



IImage Interface  
IIMAGE_AddRef() 

Description: 
This function increments the reference count of the IImage Interface object. This allows the object to be 

shared by multiple callers. The object is freed when the reference count reaches 0 (zero). See 

IIMAGE_Release().

Prototype:
uint32 IIMAGE_AddRef(IImage * pIImage) 

Parameters:

Return Value:

Comments: 

A valid object returns a positive reference count.

Side Effects: 

None

See Also:
IIMAGE_Release()

Return to the List of functions

pIImage Pointer to the IImage Interface object

Incremented reference count for the object
226



IImage Interface  
IIMAGE_Draw()

Description:

This function draws the image on the screen at the specified position.

Prototype:
void IIMAGE_Draw(IImage * pIImage, int x, int y)

Parameters:

Return Value:

None

Comments:

None

Side Effects:

None

See Also:
IIMAGE_DrawFrame()

Return to the List of functions

pIImage A valid pointer to the IImage Interface object

x Specifies the x-coordinates of the upper left corner of the destination rectangular 

area where the image needs to be drawn

y Specifies the y-coordinates of the upper left corner of the destination rectangular 

area where the image needs to be drawn
227



IImage Interface  
IIMAGE_DrawFrame()

Description:

This function draws a specific frame (contained within the image) on the screen at the specified position.

Prototype:
void IIMAGE_DrawFrame(IImage * pIImage, int nFrame, int x, int y)

Parameters:

Return Value:

None

Comments: 

None

Side Effects: 

None

See Also:
IIMAGE_Draw()

Return to the List of functions

pIImage Pointer to the IImage Interface object whose frame needs to 

be drawn on the screen

nFrame Specifies the frame that needs to be drawn. Frame Numbers start 

from 0 (zero). 

x Specifies the x-coordinates of the upper left corner of the 

destination rectangular area where the frame needs to be drawn

y Specifies the y-coordinates of the upper left corner of the 

destination rectangular area where the frame needs to be drawn
228



IImage Interface  
IIMAGE_GetInfo()

Description:
This function retrieves information about the specific image. The information is returned in the 

AEEImageInfo data structure.

Prototype:
void IIMAGE_GetInfo(IImage * pIImage, AEEImageInfo * pi)

Parameters:

Return Value:

None

Comments: 

None

Side Effects: 

None

See Also:
AEEImageInfo

Return to the List of functions

pIImage  [in] Pointer to the IImage Interface object whose information 

needs to be retrieved

pi  [in/out] On input, this must be a valid pointer to the AEEImageInfo 
data structure. On output, the data structure is filled with 

valid information about the image.
229



IImage Interface  
IIMAGE_HandleEvent()

Description: 

This function is used to pass events to an IImage instance.

Prototype:
boolean IIMAGE_HandleEvent(IImage * pIImage, AEEEvent evt, uint16 wParam, 

uint32 dwParam)

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also: 
 None
Return to the List of functions

 pIImage Pointer to an IImage interface instance that will receive the event

evt event code

wParam 16-bit event data

dwParam 32-bit event data

TRUE If the event was processed by the IImage instance

FALSE If otherwise
230



IImage Interface  
IIMAGE_Notify()

Description: 
This function registers a callback function that is invoked when a streaming I/O operation initiated by 

IIMAGE_SetStream() completes retrieving the image data.

Prototype:
void IIMAGE_Notify(IImage * pIImage , PFNIMAGEINFO pfn, void * pUser)

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also: 
IIMAGE_SetStream()

Return to the List of functions

pIImage Pointer to an IImage interface instance whose image data is being retrieved from an 

asynchronous stream

pfn pointer to the callback function invoked when the image data is completely available

pUser pointer to user-specific data that is passed to the callback function
231



IImage Interface  
IIMAGE_Release() 

Description: 
This function decrements the reference count of the IImage Interface object. The object is freed from 

memory and is no longer valid once the reference count reaches 0 (zero). 

Prototype:
uint32 IIMAGE_Release(IImage * pIImage) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
IIMAGE_AddRef()

Return to the List of functions

pIImage Pointer to the IImage Interface object

reference count Decremented reference count for the object

0 (zero) If the object has been freed and is no longer valid 
232



IImage Interface  
IIMAGE_SetParm()

Description:
This function can be used for setting various image related parameters of an IImage Interface object. 

The parameter to be set is specified by nParm and can be one of the following: IPARM_SIZE , 

IPARM_OFFSET, IPARM_CXFRAME, IPARM_NFRAMES, IPARM_ROP, IPARM_RATE, 

IPARM_OFFSCREEN. The new parameter values are specified using p1 and p2.

If nParm is IPARM_SIZE , this function is used to specify the size of the image that needs to be used 

for display or animation purposes. The Image is loaded using the ISHELL_LoadResImage(). If the 

image to be considered for display must be less than the actual image that has been loaded from the 

resource file, the size can be changed using this function. In this case, the parameters p1 and p2 

specify the new width and height of the image, respectively. If either p1 or p2 is negative, the width value 

or height value reverts to full screen width or full screen height respectively. If both are negative, the full 

screen is used. 

•  If nParm is IPARM_OFFSET, this function is used to specify the offset within the entire image 

that must be used for displaying the image. In this case, the parameters p1 and p2 specify 

the x and y coordinates of the image offset, respectively. The default offset is (0, 0).

•  If nParm is IPARM_CXFRAME, this function is used to specify the parameter p1 as the width 

of each frame. If p1 is less than or equal to 0 (zero), the frame width is set to be equal to the 

height of the image. The parameter p2 is not used. 

NOTE: This image parameter is used only for the formats that normally don't support 

animation (such as Windows .BMP). This is not used for formats that support animation 

natively (such as GIF). 

•  If nParm is IPARM_NFRAMES, this function is used to specify the parameter p1 as the 

number of frames. In this case, the width of each frame is determined by the total width / the 

number of frames. If p1 is less than or equal to 0 (zero), then the number of frames is 

automatically calculated using the formula:

nFrames = WidthOfImage / HeightOfImage.

The parameter p2 is not used. 
233



IImage Interface  
NOTE: that this image parameter is used only for the formats that normally don't support 
animation (such as Windows .BMP). This is not used for formats that support animation 

natively (such as GIF). 

•  If nParm is IPARM_RATE, this function is used to specify the parameter p1 as the animation 

rate in milliseconds. The default animation rate is 150 milliseconds. The parameter p2 is not 

used. 

NOTE: that this image parameter is used only for the formats that normally don't support 

animation (such as Windows .BMP). This is not used for formats that support animation 
natively (such as GIF). 

•  If nParm is IPARM_ROP, this function is used to specify the parameter p1 as the Raster 

operation to be used while drawing the image. The default Raster operation is 

AEE_RO_COPY.The parameter p2 is not used.

If nParm is IPARM_OFFSCREEN , this function is used to specify whether to draw the 

image to the off-screen buffer.

Prototype:
void IIMAGE_SetParm(IImage * pIImage, int nParm, int p1, int p2)

Parameters:

Return Value:

None

Comments: 

 Some of the usage examples of this function are:

If an image of size 50x60 has been loaded, for example, using the ISHELL_LoadResImage(), and you 
are interested only in a size of 30x40 for display or animation purpose, you need to call:

pIImage Pointer to the IImage Interface object

nParm  [IPARM_SIZE | IPARM_OFFSET | IPARM_CXFRAME | IPARM_NFRAMES | 

IPARM_ROP | IPARM_RATE | IPARM_OFFSCREEN]

p1 nParm specific parameter value

p2 nParm specific parameter value
234



IImage Interface  
IIMAGE_SetParm(pIImage,IPARM_SIZE,30,40);

2 In the above example, if you are interested only in that portion of the image which starts at 

offset (10,10),ou need to call:

IIMAGE_SetParm(pIImage,IPARM_OFFSET,10,10);

3 Now, if you want to split the bitmap into three frames, you need to call:

IIMAGE_SetParm(pIImage,IPARM_NFRAMES,3,0);

Side Effects: 

None

See Also:
AEE IImage Parameters

Return to the List of functions
235



IImage Interface  
IIMAGE_SetStream()

Description: 
This function allows an IAStream interface to be associated with an IImage Interface object to allow 

image data to be streamed in from a file or socket.

Prototype:
void IIMAGE_SetStream (IImage * pIImage, IAStream * pIAStream)

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also: 
IASTREAM_Read()

IASTREAM_Readable() 
Return to the List of functions

pIImage Pointer to an IImage Interface object that receives the streaming image 

data input

ps Pointer to an instance of a class that implements the IAStream interface (e.g., IFile 

or ISocket) 
236



IImage Interface  
IIMAGE_Start()

Description:
This function animates the given image. It cycles through the individual frames of the image. Each 

frame is displayed at the coordinates specified by the parameter x and y. The animation timer (that is, 

time-interval between displaying of two successive frames) is 1500 milliseconds. The animation 
continues until IIMAGE_Stop() is called.

Prototype:
void IIMAGE_Start(IImage * pIImage, int x, int y)

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
IIMAGE_Stop()

Return to the List of functions

pIImage Pointer to the IImage Interface object that needs to be animated

x Specifies the x-coordinates of the upper left corner of the destination 

rectangular area where the frame needs to be drawn

y Specifies the y-coordinates of the upper left corner of the destination 

rectangular area where the frame needs to be drawn
237



IImage Interface  
IIMAGE_Stop()

Description:
This function stops the animation of the image that has been started using the IIMAGE_Start().

Prototype:
void IIMAGE_Stop(IImage * pIImage)

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
IIMAGE_Start()

Return to the List of functions

pIImage Pointer to the IImage Interface object whose animation 

needs to be stopped
238



 IMemAStream Interface

The IMemAStream interface extends the IAStream Interface to allow a specified memory chunk to be 

read as a stream. An instance of the IMemAStream can be created using the ISHELL_CreateInstance() 

Function (with class ID AEECLSID_MEMASTREAM). The specified memory chunk is freed when the 

IMemAStream Interface object is released. 

In addition to the standard IBase Interface functions, AddRef() and Release(), and the standard 

IAStream Interface functions, Readable(), Read(), and Cancel(), the IMemAStream Interface includes 

the Set function.
239



IMemAStream Interface  
List of functions

Functions in this interface include:

IMEMASTREAM_AddRef()

IMEMASTREAM_Cancel()

IMEMASTREAM_Read()

IMEMASTREAM_Readable()

IMEMASTREAM_Release()

IMEMASTREAM_Set()

Return to the Contents
240



IMemAStream Interface  
IMEMASTREAM_AddRef() 

Description: 

This function increments the reference count of IMemAStream Interface object. This allows the object 

to be shared by multiple callers. The object is freed when the reference count reaches 0 (zero). See 

IMEMASTREAM_Release().

Prototype:
uint32 IMEMASTREAM_AddRef(IMemAstream * po) 

Parameters:

Return Value:

Incremented reference count for the object

Comments: 

A valid object returns a positive reference count.

Side Effects: 

None

See Also:
IMEMASTREAM_Release()

Return to the List of functions

po Pointer to the IMemAStream Interface object
241



IMemAStream Interface  
IMEMASTREAM_Cancel()

Description: 

This function allows you to cancel a notification function previously registered using 

IMEMASTREAM_Readable().

Prototype:
void IMEMASTREAM_Cancel(IMemAStream *pIStream, PFNNOTIFY pfn, void * pUser)

Parameters:

Return Value: 

None.

Comments: 

None

Side Effects: 

None

See Also: 
IMEMASTREAM_Readable()

Return to the List of functions

pIStream Pointer to the IMemAStream Interface object

pfn Pointer to the user function that was set as the notification function in 

IMEMASTREAM_Readable().

pUser Pointer to user data that was provided as a parameter when calling pfn
242



IMemAStream Interface  
IMEMASTREAM_Read()

Description: 

This function is used to read the number of bytes, nBytes, from the stream, pIMemAStream, into the 

destination buffer pDest. If fewer than nBytes are available in the stream, the function returns the actual 

number of bytes read.

This function attempts to read data from the buffer that has been set into the IMemAStream Interface 

object using IMEMASTREAM_Set(). Hence, prior to calling this function, the function 

IMEMASTREAM_Set() must be invoked to set a valid memory buffer into the IMemAStream Interface 

object.

Prototype:
int32 IMEMASTREAM_Read(IMemAStream *pIStream, void * pDest, uint32 nBytes)

Parameters:

Return Value:

Number of bytes read

Comments: 

If nBytes is greater than the size of the data available in the buffer, which is set using 

IMEMASTREAM_Set(), then only the available data is read, and this size is returned.

Side Effects: 

None

See Also: 
IMEMASTREAM_Set()
Return to the List of functions

pIStream Pointer to the IMemAStream Interface object

pDest Pointer to the buffer into which the data will be read 

NBytes Number of bytes to read from the stream
243



IMemAStream Interface  
IMEMASTREAM_Readable()

Description: 

This function allows you to specify a function pfn used by the IMemAStream Interface object to notify 

you when the stream has available data to be read. For the IMemAStream Interface object, the callback 

is attempted immediately since the data is read from a memory buffer invoked using the Set() function.

Prototype:
void IMEMASTREAM_Readable(IMemAStream *pIStream, PFNNOTIFY pfn, void * 

pUser)

Parameters:

Return Value: 

None.

Comments: 

None

Side Effects: 

None

See Also: 
Return to the List of functions

pIStream Pointer to the IMemAStream Interface object

pfn Pointer to the user function that must be called by the IMemAStream Interface 

object when data is available for reading

pUser Pointer to user data that must be used as a parameter when calling pfn
244



IMemAStream Interface  
IMEMASTREAM_Release() 

Description: 

This function decrements the reference count of IMemAStream Interface object. The object is freed 

from memory and is no longer valid once the reference count reaches 0 (zero). When the reference 

count reaches 0 (zero), the memory buffer, previously set using the call to IMEMASTREAM_Set(), is 

also freed.

Prototype:
uint32 IMEMASTREAM_Release(IMemAstream * po) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
IMEMASTREAM_Set()

Return to the List of functions

po Pointer to the IMemAStream Interface object

Reference count Decremented reference count for the object

0 (zero) If the object is freed and no longer valid 
245



IMemAStream Interface  
IMEMASTREAM_Set()

Description: 

This function allows you to set the memory chunk that needs to be read as a stream. An instance of the 

IMemAStream Interface object must already exist.

The responsibility of freeing the buffer pBuff lies with the IMemAStream Interface. You must not free this 

buffer. The buffer is freed when either of the following two actions occur:

•  The IMemAStream Interface object is released using IMEMASTREAM_Release()

•  A subsequent call to IMEMASTREAM_Set() is attempted with another buffer

If a buffer has already been set into the stream using a previous call to this function, that buffer is freed 

before setting the new buffer. 

CAUTION: It is dangerous to attempt two consecutive calls to IMEMASTREAM_Set() with 

the same buffer. 

Prototype:
void IMEMASTREAM_Set( 

 IMemAStream * pIMemAStream, 

 byte * pBuff, 

 uint32 dwSize, 

 uint32 dwOffset, 

 boolean bSysMem

)

Parameters:

pIMemAStream  Pointer to the IMemAStream Interface

pBuff  Pointer to the memory chunk that needs to be read as a stream

dwSize  Size of the memory chunk
246



IMemAStream Interface  
Return Value:

None

Comments:

None

Side Effects: 

None

See Also:
IMEMASTREAM_Release()

Return to the List of functions

dwOffset  Offset from the beginning of the memory chunk to be set as the start data for the 

memory stream

bSysMem  Flag to specify if the memory for the buffer pBuff belongs to the user area or the 

system memory. This flag is used to decide whether the routines FREE() or 

SYSFREE() must be used by the IMemAStream Interface object to free the buffer 

when this object is released or when another Set() is made. For example, if you 

perform a MALLOC() to allocate the buffer, then bSysMem must be set to FALSE.
247



IMenuCtl Interface

Menu controls allow the device user to make a selection from a list of items. The UP, DOWN, LEFT and 

RIGHT arrow keys are used to identify the currently selected menu item, which appears highlighted on 

the screen. When the user presses the SELECT key and command sending is enabled (see later in this 

section), an EVT_COMMAND is sent to the application or dialog that created the menu, which includes 

the identifier of the currently selected item. There are four types of menu controls (you select the type 

you want by specifying its ClassID when you create an instance of the menu control):

•  A standard menu control (ClassID AEECLSID_MENUCTL) displays one menu item per row 

on the screen, with each row containing the item's bitmap icon and/or text string. If all the 

items do not fit on the screen, you can use the UP and DOWN arrow keys to scroll the menu 

up or down. 

•  A list control (ClassID AEECLSID_LISTCTL) displays only the currently selected menu item 

on the screen. This type of menu is useful in applications where the available screen real 

estate is limited. Items in a list control menu contain only text (there are no bitmap icons). You 

use the UP and DOWN arrow keys to navigate to the desired menu selection.

•  A SoftKey menu control (ClassID AEECLSID_SOFTKEYCTL) displays the menu items side 

by side along the bottom portion of the screen. You use the LEFT and RIGHT arrow keys to 

designate the selected menu item.

•  An icon-view menu control (ClassID AEECLSID_ICONVIEWCTL) uses a bitmap icon to 

represent each menu item. The bitmap icons are displayed in one or more rows on the 

screen, and the arrow keys are used to move between rows and between the icons in each 

row. The text string corresponding to the currently selected item appears at the bottom of the 

screen.

As mentioned above, IMENUCTL_HandleEvent() handles the UP, DOWN, LEFT and RIGHT arrow 

keys and the SELECT key. If a calendar view menu is specified (see later in this section), a standard 

menu control also handles, the device number keys (AVK_0 through AVK_9), which are used to enter 

the time of a calendar appointment. Except for SoftKey menus, a menu control sends a control tabbing 

event (EVT_CTL_TAB) when the user presses the LEFT and RIGHT keys. You can use control tabbing 

to move between controls in a multicontrol screen (if your menu control is part of a dialog, the dialog 

intercepts the control tabbing events and changes control focus appropriately).
248



IMenuCtl Interface  
Menu controls support a number of properties that can be set with IMENUCTL_SetProperties() (the 

property names are the names of the bitmask constants you use to get and set the properties):

•  MP_WRAPSCROLL causes scrolling to wrap around, for example, the first menu item 

becomes selected when the DOWN key is pressed while the last menu item is selected. This 

property is always set for soft key and list control menus. 

•  MP_NO_ARROWS applies only to icon-view menus for which the 

MP_ICON_SINGLE_FRAME property is set. It prevents the drawing of arrows on either side 

of the item text.

•  MP_NO_REDRAW suppresses the re-drawing of the menu each time the selected item of a 

menu changes or the menu is set to active. 

•  MP_MAXSOFTKEYITEMS increases to 12, the number of SoftKey menu items that can be 

displayed on the screen at once. By default at most three items are displayed.

•  MP_CALENDAR allows a standard menu to be used as a calendar program. Horizontal lines 

are drawn between the menu items, and each item represents a calendar appointment at a 

particular hour of the day. The device's number keys are used to select the hour of an 

appointment, and the user can enter menu-item text describing the appointment.

•  MP_AUTOSCROLLTIME automatically scrolls a calendar-view menu so that the entry 

corresponding to the current time appears on the screen when the calendar is displayed.

•  MP_ICON_TEXT_TOP causes the text string of the currently selected item in an icon-view 

menu to appear at the top of the screen instead of the bottom.

•  MP_ICON_SINGLE_FRAME displays only the icon of the currently selected menu item on 

the screen (by default, an icon-view menu displays all the icons in rows and columns and 

highlights the selected one).

•  MP_UNDERLINE_TITLE causes the menu's title to be underlined.

Menu controls implement several functions in addition to those in the IControl Interface. 

IMENUCTL_SetTitle() is used to specify a value for the menu's title, which is drawn at the top of its 

rectangle. IMENUCTL_EnableCommand() enables or disables the sending of EVT_COMMAND events 

to your application when the user presses the SELECT key (command sending is enabled by default). 

IMENUCTL_SetStyle is used to customize the appearance of the selected item and of the non-selected 

items in a menu, including special pixel borders, padding space around each item, and other 

appearance elements.
249



IMenuCtl Interface  
After creating a menu, you must specify the items that the menu contains. The function 

IMENUCTL_AddItem() is used to add items to the menu that do not contain bitmap icons. When calling 

this function, you specify the item's text string (either from a resource file or defined in your code), an 

integer item ID, and an optional double-word data pointer. When the user selects the item, your 

application's IAPPLET_HandleEvent() function is called with an EVT_COMMAND event; the item ID 

and double-word pointer are specified as the wParam and dwParam parameters in this function call. 

The function IMENUCTL_AddItemEx() is an extended version of IMENUCTL_AddItem() that provides 

additional information about the added menu item, including its bitmap icon and the font to be used to 

display its text string. IMENUCTL_DeleteItem() deletes a menu item with a particular ID, and 

IMENUCTL_DeleteAll() deletes all the items from a menu.

IMENUCTL_GetSel() returns the item ID of the currently selected menu item. You can use this function 

when the user's selection is not obtained by pressing the SELECT key (for example, you may wish to 

retrieve the user's selection when the dialog containing the menu control is terminated). 

IMENUCTL_SetSel() specifies the item ID that to be the currently selected one. The menu control 

normally determines this based on user presses of the arrow keys, but you can use

IMENUCTL_SetSel() to designate the initially selected item when the menu is first displayed. 

IMENUCTL_GetItemData() retrieves the double-word data pointer of a menu item. 

IMENUCTL_SetItemText() is used to change the text string of an existing menu item.

IMENUCTL_SetItemTime() sets the start time and duration associated with an item in a calendar menu 

(see above), and IMENUCTL_GetItemTime() retrieves the time information of a calendar-menu item.

To create and use a menu control, perform the following steps

1 Call ISHELL_CreateInstance() to create the menu control instance and obtain an interface 

pointer to it, specifying which of the four types of menu control you would like by its ClassID.

2 Call IMENUCTL_SetTitle() to specify a menu title if desired, and call IMENUCTL_AddItem() 

or IMENUCTL_AddItemEx() for each item to be added to the menu.

3 Call IMENUCTL_SetRect() to define the screen rectangle in which the menu is to be drawn.

4 Call IMENUCTL_SetProperties() if needed to set any of the menu control properties, and 

call IMENUCTL_SetStyle if you would like to customize the appearance of your menu 

items.

5 When you have completely specified the contents and properties of the menu control, call 

IMENUCTL_SetActive() to draw the control on the screen and enable it to receive key 
250



IMenuCtl Interface  
events from the user. While the menu control is active, your application's 

IAPPLET_HandleEvent() function must call IMENUCTL_HandleEvent() to pass all handled 

key events to the menu control for processing.

6 Determine how you are to obtain the user's menu selection. If you process the selection 

when the user presses the SELECT key, the IAPPLET_HandleEvent() function can contain 

logic to handle the selection of each menu item when the EVT_COMMAND is received. If 

your application receives EVT_COMMAND events from more than one control, be sure 

that the item IDs passed in the wParam parameter are unique. If you will retrieve the user's 

selection at some other time, you must call IMENUCTL_GetSel() and/or 

IMENUCTL_GetItemData() at this time to access the currently selected menu item and its 

double word data (if any).

7 When you no longer need the menu control, call IMENUCTL_Release() to free it.
251



IMenuCtl Interface  
List of functions

Functions in this interface include:

IMENUCTL_AddRef()

IMENUCTL_AddItem()

IMENUCTL_AddItemEx()

IMENUCTL_DeleteAll()

IMENUCTL_DeleteItem()

IMENUCTL_EnableCommand()

IMENUCTL_GetItemData()

IMENUCTL_GetItemTime()

IMENUCTL_GetProperties()

IMENUCTL_GetRect()

IMENUCTL_GetSel()

IMENUCTL_HandleEvent()

IMENUCTL_IsActive()

IMENUCTL_Redraw()

IMENUCTL_Release()

IMENUCTL_Reset()

IMENUCTL_SetActive()

IMENUCTL_SetColors()

IMENUCTL_SetItemText()

IMENUCTL_SetItemTime()

IMENUCTL_SetProperties()

IMENUCTL_SetRect()

IMENUCTL_SetSel()

IMENUCTL_SetStyle

IMENUCTL_SetTitle()

Return to the Contents
252



IMenuCtl Interface  
IMENUCTL_AddRef()

Description: 

This function increments the reference count of the IMenuCtl Interface object. This allows the object to 

be shared by multiple callers. The object is freed when the reference count reaches 0 (zero). See 

IMENUCTL_Release()

Prototype:
uint32 IMENUCTL_AddRef(IMenuCtl * pIMenuCtl)

Parameters:

Return Value:

Comments: 

A valid object returns a positive reference count.

Side Effects: 

None

See Also:
IMENUCTL_Release()

Return to the List of functions

pIMenuCtl Pointer to the IMenuCtl Interface object

Incremented reference count for the object
253



IMenuCtl Interface  
IMENUCTL_AddItem() 

Description: 

This function adds a new menu item to a menu. The text string identifying the menu can be specified 

from a resource file or using the pText parameter. If pText parameter is a valid string, it uses this string 

as item name. If pText is NULL, it reads the string corresponding to the given resource identifier, 

wResID, from resource file and sets it as item name. If the text string and the resource information are 

invalid, IMENUCTL_AddItem() fails. If the text string in the pText field and the resource file information 

are both valid, the pText parameter field take precedence, and is used for the menu item name. If the 

object identified by IMenuCtl Interface is soft key menu, this function also determines the extent of new 

item in x-axis and maximum number of items able to be displayed on soft key bar. The lData is used to 

store a double-word data value associated with the menu item to be created. 

IMENUCTL_GetItemData() can be used to get back the parameter value.

Prototype:
boolean IMENUCTL_AddItem(IMenuCtl * pIMenuCtl, const char * pszResFile, 

uint16 wResID, uint16 nItemID, AECHAR * pText, uint32 lData) 

Parameters:

Return Value:

Comments: 

This function does not automatically update the screen. For the new menu item to take effect on the 

device screen, use IMENUCTL_Redraw(). If the menu is to be activated subsequent to adding menu 

items, IMENUCTL_Redraw() does not need to used since IMENUCTL_SetActive() updates the screen 

with the new menu items. IMENUCTL_DeleteItem()can be used to remove an item from the menu

pIMenuCtl Pointer to the IMenuCtl Interface object

pszResFile NULL terminated string that contains the resource file name

wResID Resource identifier that identifies a text string resource

nItemID Item identifier that uniquely identifies a menu item

pText Null terminated string that contains the menu item name

lData Item data associated with the menu item

TRUE If successful

FALSE If unsuccessful
254



IMenuCtl Interface  
Side Effects: 

When the newly added menu item is activated by a user, nItemID and lData values are sent to the 

applet event handling function in the short-data and long-data fields respectively.

See Also:
IMENUCTL_DeleteItem()

IMENUCTL_Redraw()

IMENUCTL_SetActive()
Return to the List of functions
255



IMenuCtl Interface  
IMENUCTL_AddItemEx() 

Description: 

This function adds an item to a menu, list or icon view. The new item’s properties are indicated by the 

CtlAddItem * parameter. 

If pai->pText parameter is a valid string, it uses this string as item name.

If pai->pText is NULL, it reads the string corresponding to the given resource identifier 
associated with pai->wText and pai->pszResText. If this fails, IMENUCTL_AddItemEx() 

returns FALSE.

if pai->pImage is a valid IImage * , the function calls IIMAGE_AddRef() and uses the image. 

This allows the caller to release the image object. 

If the text string in the pai->pText field and the resource file information are both valid, the pai-

>pText parameter field take precedence, and is used for the menu item name.

If the pai->pImage is NULL and the pai->wImage is specified, the function attempts to load the 
image from the specified resource.

If the image fails to load, the function returns FALSE. 

Prototype:
boolean IMENUCTL_AddItemEx(IMenuCtl * pIMenuCtl, CtlAddItem * pai)

Parameters:

Return Value: 

Comments: 

This function does not automatically update the screen. For the new menu item to take effect on the 

device screen, use IMENUCTL_Redraw(). If the menu is to be activated subsequent to adding menu 

items, IMENUCTL_Redraw() does not need to used since IMENUCTL_SetActive() updates the screen 

with the new menu items.

pIMenuCtl Pointer to the IMenuCtl Interface object

pai Pointer to CtlAddItem structure

TRUE If successful

FALSE If unsuccessful 
256



IMenuCtl Interface  
Side Effects: 

When the newly added menu item is activated by a user, nItemID and lData values are sent to the 

applet event handling function in the long-data and short-data fields, respectively.

See Also: 
IMENUCTL_Redraw()

IMENUCTL_AddItem()

IMENUCTL_AddItemEx()
Return to the List of functions
257



IMenuCtl Interface  
IMENUCTL_DeleteAll() 

Description: 

This function deletes all the menu items from a menu control object.

Prototype:
boolean IMENUCTL_DeleteAll(IMenuCtl * pIMenuCtl) 

Parameters:

Return Value:

Comments: 

This function does not update the device screen when invoked. To update the device screen use 

IMENUCTL_Redraw().

Side Effects: 

None

See Also:
None
Return to the List of functions

pIMenuCtl Pointer to IMenuCtl Interface object

TRUE If successful

FALSE If unsuccessful
258



IMenuCtl Interface  
IMENUCTL_DeleteItem() 

Description: 

This function deletes a menu item from the menu control object. The nItemID field identifies the menu 

item to be deleted.

Prototype:
boolean IMENUCTL_DeleteItem(IMenuCtl * pIMenuCtl,uint16 nItemID) 

Parameters:

Return Value:

Comments: 

This function does not update the device screen when invoked. To update the device screen use 

IMENUCTL_Redraw().

Side Effects: 

None

See Also:
None

Return to the List of functions

pIMenuCtl Pointer to IMenuCtl Interface object

nItemID Menu item identifier that is used when the menu item was added 

to the menu

TRUE If successful

FALSE If unsuccessful
259



IMenuCtl Interface  
IMENUCTL_EnableCommand() 

Description: 

This function is used to enable sending of specified command by the menu control object to the AEE 

Shell upon receiving the event generated by pressing SELECT key.

Prototype:
void IMENUCTL_EnableCommand(IMenuCtl * pIMenuCtl, boolean bEnable) 

Parameters:

Return Value: 

None

Comments: 

The SELECT key is located on different physical locations of a device depending on the device 

manufacturer and/or model. When this key is pressed the event received by the applet is of type 

AVK_SELECT.

Side Effects: 

None

See Also:
IMENUCTL_HandleEvent()

Return to the List of functions

pIMenuCtl Pointer to IMenuCtl Interface of the menu control object

bEnable Enable/Disable flag
260



IMenuCtl Interface  
IMENUCTL_GetItemData() 

Description: 

This function gets the data associated with a menu item in the given menu control object. The nItemID 

parameter identifies the menu item, of which the data is requested.

Prototype:
boolean IMENUCTL_GetItemData(IMenuCtl * pIMenuCtl, uint16 nItemID, uint32 * 

plData) 

Parameters:

Return Value:

Comments: 

The data that is retrieved is associated with a menu when the menu item is added. See 

IMENUCTL_AddItem() for more information on menu item data.

Side Effects: 

None

See Also:
IMENUCTL_AddItem()

Return to the List of functions

pIMenuCtl [in] Pointer to IMenuCtl Interface object

nItemID [in] Menu item identifier that is used when this menu item is added to 

the menu

plData [out] Placeholder for item data

TRUE If successful

FALSE If unsuccessful
261



IMenuCtl Interface  
IMENUCTL_GetItemTime() 

Description: 

If the menu control is calendar, it retrieves the start time and duration (difference between end time and 

start time) of the menu item specified by the menu item Id.

Prototype:
int IMENUCTL_GetItemTime(IMenuCtl * pIMenuCtl, uint16 nItemID, uint16 * 

pwDuration) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
IMENUCTL_SetItemTime()

Return to the List of functions

pIMenuCtl [in] Pointer to the IMenuCtl Interface object

nItemID [in] Menu item Identifier

pwDuration [out] Duration in minutes

Start time Which is set in IMENUCTL_SetItemTime() 

-1 If the menu item cannot be found
262



IMenuCtl Interface  
IMENUCTL_GetProperties() 

Description: 

This function is used to retrieve the menu control-specific properties.

or flags.

Prototype:
uint32 IMENUCTL_GetProperties(IMenuCtl * pIMenuCtl) 

Parameters:

Return Value: 

Following are 32-bit properties defined for the menu control object:

Following are attributes defined only for icon view of the menu control object:

Following are two attributes defined only for calendar event list view of the menu control object:

pIMenuCtl Pointer to the IMenuCtl Interface object

MP_WRAPSCROLL If set, wrap when scrolling off the end of screen

(only applicable to SoftKey and List controls)

MP_NO_ARROWS If set, no arrows even if scroll is possible (Icon View) 

MP_MAXSOFTKEYITEMS Shows maximum number of soft key items per screen

MP_NO_REDRAW If set, IMENUCTL_Redraw() function is not internally called in 

IMENUCTL_SetActive() or when changing selection

MP_PAGESCROLL If set scroll by pages, otherwise smooth

MP_ICON_TEXT_TOP Icon View: Text at top

MP_ICON_TEXT_NOSEL Icon View: Non reverse-video text

MP_ICON_SINGLE_FRAME Icon View: Single Frame

MP_UNDERLINE_TITLE Menu: Underline title 
263



IMenuCtl Interface  
Comments: 

None

Side Effects: 

None

See Also:
IMENUCTL_SetProperties()

Return to the List of functions

MP_CALENDAR If set, specifies that menu control object is in calendar event list 

view

MP_AUTOSCROLLTIME If set, specifies that auto-scroll if in calendar list view
264



IMenuCtl Interface  
IMENUCTL_GetRect() 

Description: 

This function returns the control rectangle value of the menu control object. This is particularly useful 

after a control object is created to determine its optimal/default size and positions.

Prototype:
void IMENUCTL_GetRect(IMenuCtl * pIMenuCtl, AEERect * prc) 

Parameters:

Return Value: 

None

Comments: 

The menu control object is displayed in a rectangle area of the screen specified by the coordinates 

stored in the menu control object. These coordinates by default correspond to the coordinates of the 

whole display screen when the menu control object is instantiated. Subsequently these coordinates can 

be changed by using the IMENUCTL_SetRect() function to encompass any section of the display 

screen. The IMENUCTL_GetRect() function is used to retrieve the current specifications of the control 

rectangle. 

Side Effects: 

None

See Also:
IMENUCTL_SetRect()

Return to the List of functions

pIMenuCtl Pointer to the IMenuCtl Interface object

prc Rectangle to be filled with the rectangle coordinates of the menu 

control
265



IMenuCtl Interface  
IMENUCTL_GetSel() 

Description: 

This function gets the menu item identifier of the menu control objects current selection. 

Prototype:
uint16 IMENUCTL_GetSel(IMenuCtl * pIMenuCtl) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
IMENUCTL_SetSel()

Return to the List of functions

pIMenuCtl Pointer to the IMenuCtl Interface object

Returns the ID of the 

current menu item 

selection 

Of the IMenuCtl Interface object
266



IMenuCtl Interface  
IMENUCTL_HandleEvent() 

Description: 

This function is used by menu control object to handle events received by it. An active menu control 

object handles key press events as well as set title and add item events received by it whereas an 

inactive menu control object handles only set title and add item events. The typical key press events 

processed by the menu control object are the press of UP, DOWN, LEFT and RIGHT keys. If command 

sending is enabled for the menu control object, upon receiving event generated by the press of “select” 

key, it sends a command event to the AEE Shell. 

Prototype:
boolean IMENUCTL_HandleEvent(IMenuCtl * pIMenuCtl, AEEEvent evt, uint16 wp, 

uint32 dwp) 

Parameters:

Return Value:

Comments: 

The menu control event handler is used in applets to handle menu related inputs from a user. for 

example, when a user presses the down arrow key to move from one menu item selection to another, 

this event is handled by the menu control event handler. In this case the applet event handler function 

receives the corresponding event. The applet event handler at this time can call the menu control object 

event handler to process this event. If the applet event handler does not call the menu control event 

handler, this event remains unprocessed. The SELECT key is located on different physical locations of 

a device depending on the device manufacturer and/or model. When this key is pressed the event word 

parameter wParam received by the applet is of type AVK_SELECT. 

pIMenuCtl Pointer to the IMenuCtl Interface object

evt Event code

wp 16-bit event data

dwp 32-bit event data

TRUE If the event was processed by the IMenuCtl Interface object

FALSE If the event was not processed
267



IMenuCtl Interface  
Side Effects: 

None

See Also:
IMENUCTL_EnableCommand()

Return to the List of functions
268



IMenuCtl Interface  
IMENUCTL_IsActive() 

Description: 

This function returns the active/inactive state of the menu control object.

Prototype:
boolean IMENUCTL_IsActive(IMenuCtl * pIMenuCtl) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
IMENUCTL_SetActive()

Return to the List of functions

pIMenuCtl Pointer to the IMenuCtl Interface object

TRUE If the menu control is active

FALSE If otherwise
269



IMenuCtl Interface  
IMENUCTL_Redraw() 

Description: 

This function instructs the menu control object to redraw its contents. The menu control object does not 

redraw its contents every time the underlying data behind the menu control changes. This allows 

several data updates to occur while minimizing screen flashes. For example, several changes can be 

made to the contents of the menu control object with no visible effect until the Redraw function is called.

Prototype:
boolean IMENUCTL_Redraw(IMenuCtl * pIMenuCtl) 

Parameters:

Return Value:

Comments: 

The menu control object is displayed in a rectangle area of the screen specified by the coordinates 

stored in the menu control object. These coordinates by default correspond to the coordinates of the 

whole display screen when the menu control object is instantiated. Subsequently these coordinates can 

be changed by using the IMENUCTL_SetRect() to encompass any section of the display screen. The 

IMENUCTL_Redraw() function only redraws the menu in the area of the screen bounded by the current 

specifications of the menu control object rectangle coordinates.

Side Effects: 

None

See Also:
None

Return to the List of functions

pIMenuCtl Pointer to the IMenuCtl Interface object

TRUE If the menu control was redrawn

FALSE If unsuccessful
270



IMenuCtl Interface  
IMENUCTL_Release() 

Description:

This function decrements the reference count of the IMenuCtl Interface object and does appropriate 

cleanup if the reference count reaches 0 (zero).

Prototype:
uint32 IMENUCTL_Release(IMenuCtl * pIMenuCtl) 

Parameters:

Return Value:

Returns the updated reference count.

Comments: 

None

Side Effects: 

None

See Also:
IMENUCTL_AddRef()

Return to the List of functions

pIMenuCtl Pointer to the IMenuCtl Interface object
271



IMenuCtl Interface  
IMENUCTL_Reset() 

Description:

This function instructs the menu control to reset (free/delete) its contents as well as to immediately leave 

active/focus mode. Resetting of the menu control object removes the menu items from the menu and 

removes the title associated with the menu.

Prototype:
void IMENUCTL_Reset(IMenuCtl * pIMenuCtl) 

Parameters:

Return Value:

None

Comments:

A reset of a menu control object does not update the device screen, hence, all the graphics associated 

with the menu remains on the device screen. To remove the menu from the device screen use 

IMENUCTL_Redraw() of the menu control object.

Side Effects:

A Reset menu control object does not handle any events received from a user, such as UP, DOWN, 

LEFT, and RIGHT arrow key presses.

See Also:
IMENUCTL_SetActive()

IMENUCTL_Redraw()

Return to the List of functions

pIMenuCtl Pointer to the IMenuCtl Interface object
272



IMenuCtl Interface  
IMENUCTL_SetActive() 

Description: 

This function is used to make a menu control object active or inactive. Only an active menu control 

object handles the event sent to it. Inactive menu control object just ignores the events.

Prototype:
void IMENUCTL_SetActive(IMenuCtl * pIMenuCtl,boolean bActive)

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
IMENUCTL_IsActive()

Return to the List of functions

pIMenuCtl Pointer to the IMenuCtl Interface object

 bActive Boolean flag that specifies whether to activate (TRUE) or deactivate (FALSE) the 

menu control object
273



IMenuCtl Interface  
IMENUCTL_SetColors()

Description: 

By default, the color of menu elements are determined by entries in the system color table defined by 

the handset manufacturer. These entries include:

This function allows the caller to override most of these settings for the menu control objects.

Prototype:
void IMENUCTL_SetColors(IMenuCtl * pIMenuCtl, AEEMenuColors * pc);

Parameters:

Return Value: 

None

CLR_SYS_ITEM  Background color of unselected items

CLR_SYS_ITEM_TEXT  Text color for unselected items and Arrows

CLR_SYS_ITEM_SEL  Background color for selected items

CLR_SYS_ITEM_SEL_TEXT  Text color for selected items

CLR_USER_FRAME  Simple frame color

CLR_SYS_SCROLLBAR  Scrollbar frame color

CLR_SYS_SCROLLBAR_FILL  Fill color of scrollbar

CLR_SYS_TITLE  Background of title text

CLR_SYS_TITLE_TEXT  Color of title text

pIMenuCtl  Pointer to the menu control interface object.

pc  Pointer to structure containing both:

Bitmask to indicate the item whose color needs to 

be changed, and

Color values
274



IMenuCtl Interface  
Comments: 

Passing NULL to this function will reset the menu colors. The caller cannot override the system settings 

for 3-D framed objects.

Side Effects: 

None

See Also: 
AEEMenuColors

Return to the List of functions
275



IMenuCtl Interface  
IMENUCTL_SetItemText() 

Description: 

This function sets a new menu item text name, given the menu item Id. The new text is passed in 

through a string pointer or through a resource file name and an Id. If both are provided, the string pointer 

takes precedence.

Prototype:
void IMENUCTL_SetItemText(IMenuCtl * pIMenuCtl, uint16 nItemID, const char 

* pszResFile, uint16 wResID, TCHAR * pText) 

Parameters:

Return Value: 

None

Comments: 

This function can be used to overwrite a menu name of a currently existing menu item. In this case, the 

nItemID parameter contains the currently existing menu item ID. 

Side Effects: 

None

See Also:
None

Return to the List of functions

pIMenuCtl Pointer to IMenuCtl Interface object

nItemID Menu item identifier

pszResFile NULL terminated string containing the resource file name

wResID Resource Id

pText New menu item text in string form
276



IMenuCtl Interface  
IMENUCTL_SetItemTime() 

Description: 

If the menu control is calendar, it sets a new time of the menu item specified by the menu item Id.

Prototype:
void IMENUCTL_SetItemTime(IMenuCtl * pIMenuCtl, uint16 nItemID, uint16 

wMinStart, uint16 wDuration) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
IMENUCTL_GetItemTime()
Return to the List of functions

pIMenuCtl Pointer to IMenuCtl Interface object

nItemID Menu item identifier

wMinStart Start time in minutes

wDuration Duration in minutes
277



IMenuCtl Interface  
IMENUCTL_SetProperties() 

Description: 

This function sets menu control-specific properties or flags. These properties define the behavior of the 

menu control object.

Prototype:
void IMENUCTL_SetProperties(IMenuCtl * pIMenuCtl, uint32 dwProps) 

Parameters:

Following are 32-bit properties defined for the menu control object:

Following are attributes defined only for icon view of the menu control object.

Following are two attributes defined only for calendar event list view of the menu control object:

pIMenuCtl Pointer to the IMenuCtl Interface object

dwProps 32-bit set of flags/properties

MP_WRAPSCROLL If set, wrap when scrolling off the end of screen

(only applicable to SoftKey and List controls)

MP_NO_ARROWS If set, no arrows even if scroll is possible (IconView) 

MP_MAXSOFTKEYITEMS Shows maximum number of soft key items per screen

MP_NO_REDRAW If set, IMENUCTL_Redraw() function is not internally called in 

IMENUCTL_SetActive() or when changing selection

MP_ICON_TEXT_TOP Icon View: Text at top

MP_ICON_SINGLE_FRAME Icon View: Single Frame

MP_UNDERLINE_TITLE Menu: Underline title

MP_CALENDAR If set, specifies that menu control object is in calendar event list 

view.

MP_AUTOSCROLLTIME If set, specifies that auto-scroll if in calendar list view.
278



IMenuCtl Interface  
Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
IMENUCTL_GetProperties()

Return to the List of functions
279



IMenuCtl Interface  
IMENUCTL_SetRect() 

Description: 

This function is used to set the coordinates of the control rectangle of the menu control object. The 

control rectangle of the menu control object represents the area on the device screen where the menu 

is drawn. The values of the control rectangle are stored within the menu control object. This function is 

used to change the value of the control rectangle to a new one.

Prototype:
void IMENUCTL_SetRect(IMenuCtl * pIMenuCtl, const AEERect * prc) 

Parameters:

This rectangle specifies the coordinates on the device screen where the menu is to be drawn.

Return Value: 

None

Comments:

The coordinates stored in the control rectangle of the menu control object by default corresponds to the 

whole device display screen. This function can be used to set the control rectangle coordinates to a new 

value. If no other menu draw operations follow the invocation of this function, the IMENUCTL_Redraw() 

needs to be used for the new control rectangle coordinates to take effect. In the case of the soft key 

menu the default control rectangle encompasses the whole device screen, where the soft key menu is 

draw at the bottom of the device screen. When the IMENUCTL_SetRect() is used to set the control 

rectangle to a new area, such as the top half of the device screen, the soft key menu is placed at the 

bottom of new control rectangle area. In this case the soft key menu is in the middle of the screen, since 

the bottom of the new control rectangle corresponds to the middle of the device screen.

Side Effects: 

None

pIMenuCtl Pointer to the IMenuCtl Interface object

prc Control rectangle for the menu control object
280



IMenuCtl Interface  
See Also:
IMENUCTL_GetRect()

Return to the List of functions
281



IMenuCtl Interface  
IMENUCTL_SetSel() 

Description: 

This function makes a menu item the current selection of the menu control object and requests a redraw 

if the MP_NO_REDRAW property is not set.

Prototype:
void IMENUCTL_SetSel(IMenuCtl * pIMenuCtl, uint16 nItemID) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
IMENUCTL_GetSel()

Return to the List of functions

pIMenuCtl Pointer to the IMenuCtl Interface object

nItemID Menu item identifier that is used when this menu item is added to 

the menu
282



IMenuCtl Interface  
IMENUCTL_SetStyle

Description: 

This function sets the display style for the menu items. Different styles can be set for normal (not 

selected)/selected menu items. This can also be used to change the menu cursor size.

Prototype:
void IMENUCTL_SetStyle(IMenuCtl * pIMenuCtl, AEEItemStyle * pNormal, 

AEEItemStyle * pSel)

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also: 
None.
Return to the List of functions

pIMenuCtl  Pointer to the IMenuCtl Interface object

pNormal  Style for normal menu items

pSel  Style for selected menu items
283



IMenuCtl Interface  
IMENUCTL_SetTitle() 

Description: 

This function is used to set the title of a menu control object. The text string identifying the title can be 

specified from a resource file or using the pText parameter. If pText parameter is a valid string, it uses 

this string as title name. If pText is NULL, it reads the string corresponding to the given resource 

identifier, wResID, from resource file and sets it as title name. If the text string and the resource 

information are invalid IMENUCTL_SetTitle() fails. If the title string in the pText field and the resource 

file information are both valid, the pText parameter field take precedence, and is used for the menu title.

Prototype:
boolean IMENUCTL_SetTitle(IMenuCtl * pIMenuCtl, const char * pszResFile, 

uint16 wResID, TCHAR * pText) 

Parameters:

Return Value:

Comments: 

This function does not update the device screen when invoked. For the new title to take effect on the 

device screen, use IMENUCTL_Redraw. 

The title of a soft key control menu is not displayed.

Side Effects: 

None

pIMenuCtl Pointer to IMenuCtl Interface object

pszResFile NULL terminated string containing resource file name

wResID Resource identifier

pText NULL terminated character string to be used for the menu title

TRUE If successful

FALSE If unsuccessful
284



IMenuCtl Interface  
See Also:
IMENUCTL_Redraw()

Return to the List of functions
285



IModule Interface

The IModule Interface provides a mechanism for controlling access to a grouping of associated applets 

or components. The module provides a single point of entry for the AEE Shell to request classes owned 

by the module. In most cases, a module exposes a single applet or shared-component class. However, 

the use of the IModule Interface allows for modules to expose a wide variety of classes without fixed 

entry-points to expose each such class. Further, the module can serve as a base object for any 

associated objects. This may allow them to share memory, and so forth via the private implementation 

of the module class.
286



IModule Interface  
List of functions

Functions in this interface include:

IMODULE_AddRef()

IMODULE_CreateInstance()

IMODULE_FreeResources()

IMODULE_Release()

Return to the Contents
287



IModule Interface  
IMODULE_AddRef() 

Description: 

This function increments the reference count of the IModule Interface object. This allows the object to 

be shared by multiple callers. The object is freed when the reference count reaches 0 (zero). See 

IMODULE_Release().

Prototype:
uint32 IMODULE_AddRef(IModule * pIModule) 

Parameters:

Return Value:

Incremented reference count for the object. 

Comments: 

A valid object returns a positive reference count.

Side Effects: 

None

See Also:
IMODULE_Release()

Return to the List of functions

pIModule Pointer to the IModule Interface object
288



IModule Interface  
IMODULE_CreateInstance() 

Description: 

IMODULE_CreateInstance() provides the mechanism for the AEE to request classes on an as-needed 

basis from the module. Upon successful creation of the requested object class, the module can return 

the class object with a positive reference count. 

NOTE: The requested class must be implemented in accordance with the class definition 

specified for the class.

Prototype:
int IMODULE_CreateInstance(IModule * pIModule,IShell * pIShell,AEECLSID 

ClsId,void * * ppObj) 

Parameters:

Return Value:

Comments: 

Object must be returned with a positive reference count

Side Effects: 

None

See Also:
None

Return to the List of functions

pIModule [in] Pointer to theIModule Interface object

pIShell [in] Pointer to the IShell Interface object

ClsId [in] Requested ClassID exposed by the module

ppObj [out] Returned object. Filled by the IMODULE_CreateInstance() 

function

SUCCESS Object class was created

ENOMEMORY Insufficient memory

EBADCLASS Requested class is unsupported
289



IModule Interface  
IMODULE_FreeResources() 

Description: 

This function is called by the AEE Shell when the shell or device detects a low memory or storage 

condition. This can include low RAM or Flash/File storage. The module is passed a pointer to IHeap 

Interface and/or IFileMgr Interface depending upon the specific condition involved. The module can 

release any unused RAM/File storage under this condition. 

Prototype:
void IMODULE_FreeResources(IModule * pIModule, IHeap * ph, IFileMgr * pfm) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pIModule Pointer to the IModule Interface object

ph Pointer to IHeap Interface object

pfm Pointer to IFileMgr Interface object
290



IModule Interface  
IMODULE_Release() 

Description: 

This function decrements the reference count of the IModule Interface object. The object is freed from 

memory and is no longer valid once the reference count reaches 0 (zero).

Prototype:
uint32 IMODULE_Release(IModule * pIModule) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
IMODULE_AddRef()
Return to the List of functions

pIModule Pointer to the IModule Interface object

reference count The decremented reference count for the object

0 (zero) If the object has been freed and is no longer valid 
291



INetMgr Interface

The INetMgr Interface functions provide mechanisms to get and set the parameters associated with the 

network subsystem of the device. It also provides a means to create multiple I socket interfaces which 

use TCP or UDP to transmit and receive data over the network The ISocket Interface contains functions 

that connect the sockets, read and write data over the connections, and close the sockets. 

CAUTION: Your application must have a privilege level of Network or All to be able to invoke 

the functions in this interface.

The function INETMGR_OpenSocket() is used to open a TCP or UDP socket. If successful, this function 

returns a pointer to an instance of the ISocket Interface. You can use this pointer to call the 

ISOCKET_Connect() function to specify the destination IP address and port number to which the socket 

is to be connected. When the first socket is connected on the device, BREW brings up the network 

subsystem, including the CDMA physical layer, Radio Link Protocol (RLP) and Point-to-Point Protocol 

(PPP) connections. These connections are shared by all of the device’s connected sockets. You close 

a socket by calling the ISOCKET_Release(). When the last connected socket on the device is closed, 

BREW terminates the network subsystem connections after a specified linger time.

The function INETMGR_GetHostByName() takes as input the name of a host (for example, 

brew.qualcomm.com) and returns a list of IP addresses that can be used to access that host. Because 

retrieving this list requires network communication, INETMGR_GetHostByName() is asynchronous: 

you specify the name of a callback function as an input parameter, and this function is called when the 

IP address list is available. INETMGR_GetMyIPAddr() returns the device’s own IP address. 

INETMGR_NetStatus() returns the current status (opening, open, closing, or closed) of the device’s 

PPP connection as well as some statistics on the current performance of the network subsystem. 

INETMGR_SetLinger() sets the linger time of the PPP connection. This is the amount of time that 

BREW is to wait to terminate the PPP connection after the device’s last connected socket is closed (the 

default value is 30 seconds).

The function INETMGR_GetLastError() returns information about the last error detected by a function 

in the INetMgr Interface. In cases where such a function returns something other than success, 

INETMGR_GetLastError() provides more detailed information about why the function failed to perform 

its task.

To use the functions in the INetMgr Interface

1 Call ISHELL_CreateInstance() to create an instance of the INetMgr Interface.
292



INetMgr Interface  
2 Use functions in the INetMgr Interface as needed:

• Call INETMGR_GetHostByName() or INETMGR_GetMyIPAddr() to obtain remote or local 

IP address information.

• Call INETMGR_NetStatus() to obtain PPP connection status.

• Call INETMGR_SetLinger() to set the PPP linger time.

To set up a TCP or UDP socket and transfer data over it:

1 Call INETMGR_OpenSocket() to open the socket.

2 Using the pointer returned by INETMGR_OpenSocket(), call ISOCKET_Connect() to 

connect the socket to the desired destination address.

3 Use functions in the ISocket to read and write data on the connection.

4 Call ISOCKET_Release() to close the connection when you have completed the necessary 

exchange of data.

5 Call INETMGR_Release() when you no longer need the INetMgr Interface instance. 

CAUTION: This brings down the network subsystem, so you must not release the interface 

while there are any connected sockets on the device.
293



INetMgr Interface  
List of functions

Functions in this interface include:

INETMGR_AddRef()

INETMGR_GetHostByName()

INETMGR_GetLastError()

INETMGR_GetMyIPAddr()

INETMGR_NetStatus()

INETMGR_OnEvent()

INETMGR_OpenSocket()

INETMGR_Release()

INETMGR_SetLinger()

Return to the Contents
294



INetMgr Interface  
INETMGR_AddRef()

Description: 

This function increments the reference count of the INetMgr Interface object. This allows the object to 

be shared by multiple callers. The object is freed when the reference count reaches 0 (zero). See 

INETMGR_Release().

Prototype:
uint32 INETMGR_AddRef(INetMgr * pINetMgr)

Parameters:

Return Value:

Incremented reference count for the object. 

Comments: 

A valid object returns a positive reference count.

Side Effects: 

None

See Also:
INETMGR_Release()

Return to the List of functions

pINetMgr Pointer to the INetMgr Interface object
295



INetMgr Interface  
INETMGR_GetHostByName() 

Description:

This function initiates retrieval of IP addresses associated with the specified host name. Results are 

placed in the result structure and a callback is called to notify the caller of completion. An AEECallback 

record is used to specify and cancel callbacks, a la ISHELL_Resume (see comments on AEECallback, 

later in this section).

The memory 'pres' and 'pcb' point to must remain valid for the entire duration of the operation (i.e until 

the completion callback is called, or until the operation is canceled.) The result structure need not be 

initialized before the operation; GetHostByName will assign its values.

The AEECallback must be properly initialized.

The text string at 'psz' can be discarded after the call to INETMGR_GetHostByName(). 

The call to INETMGR_GetHostByName() always "succeeds" in that it guarantees the callback will be 

called. Any errors related to handling the request are delivered to the callback, so all error checking can 

be done there.

Prototype:
void INETMGR_GetHostByName(INetMgr *pINetMgr,

AEEDNSResult *pres,

const char * psz,

AEECallback *pcb);

Parameters:

Return Value:

None

pINetMgr Pointer to INetMgr Interface object

 pres Pointer to result structure

 psz Domain name to be resolved, terminated by a colon (":”), or slash ("/") character. 

nill ('\0'),

 pData User data pointer sent as first argument to callback
296



INetMgr Interface  
On completion:

•  pres->addrs[] contains the result IP addresses.

•  pres->nResult contains the number of addresses obtained (1...AEEDNSMAXADDRS), or an 

error code if the host has no addresses or if an error was encountered while requesting the 

information. The following error code definitions are specific to 

INETMGR_GetHostByName():

Other error codes related to network connection failure, and so forth,  are also possible.  See 

ISOCKET_SendTo() for a complete list.

Comments: 

AEECallback conventions and hints:

•  To specify the callback function to be called and its argument,  one can use the 

CALLBACK_Init macro: 

CALLBACK_Init(&callback, CallbackFunction, (void *)ptrArg) 

This must be done before the GetHostByName() call.  For clarity, CALLBACK_Init() must 

immediately preceed the scheduling call.

•  Before the AEECallback record is first used -- typically, in the constructor of the object that 

contains the AEECallback -- its pfnCancel member must be intialized to NULL.  (For heap- 

allocated objects in BREW, which are initialized to zero, this step is unnecessary.)

•  To cancel a request in progress and prevent the callback from  being called, use 

CALLBACK_Cancel(&callback).

•  Any object containing an AEECallback must call CALLBACK_Cancel () from its destructor to 

guarantee that no dangling callback pointers are left.

•  An AEECallback can be re-used multiple times, either before of  after completion of the 

previous asynchronous operation.  An  AEECallback can only keep track of one pending 

callback at a time.  Using the AEECallback to initiate a new asynchronous operation before 

AEE_NET_BADDOMAIN Host name is mal-formed; not a valid host name.

AEE_NET_UNKDOMAIN Unknown host, or one without IP addresses.

AEE_NET_ETIMEDOUT No response was seen within the maximum time limit.

EUNSUPPORTED No DNS servers are configured.

ENOMEMORY Can not perform query due to allocation failure.
297



INetMgr Interface  
the  prior one completes will stop the still-in-progress operation and  cancel the pending 

callback.

Performance issues:

Results will be cached for the duration specified by the DNS TTL value. An internal limit on the number 

of cache entries will be  applied, and when exceeded the oldest entries will be expired to make room  

for new ones. Multiple requests for the same domain will be coalesced into a  single transaction with 

the DNS server(s). If there is no response from the network, GetHostByName() will  stop trying after 

about 42 seconds.  Applications are free to impose their own time limits and cancel the operation.  

Specifically, interactive applications can allow the user to terminte the operation.

Side Effects: 

None

See Also:
None
Return to the List of functions
298



INetMgr Interface  
INETMGR_GetLastError() 

Description:

This function returns the last error that occurred at the INetMgr Interface. The value returned depends 

on the most recently called function. The documentation for each function describes what 

INETMGR_GetLastError() can return when called right after that function.

Prototype:
int INETMGR_GetLastError(INetMgr * pINetMgr) 

Parameters:

Return Value:

The most recently occurred error

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pINetMgr Pointer to the INetMgr Interface object to be used to retrieve the last error
299



INetMgr Interface  
INETMGR_GetMyIPAddr() 

Description:

This function returns the IP address of the local host (i.e device).

Prototype:
INAddr INETMGR_GetMyIPAddr(INetMgr * pINetMgr) 

Parameters:

Return Value:

IP address of the device

Comments: 

None

Side Effects: 

None

See Also:
None
Return to the List of functions

pINetMgr Pointer to the INetMgr Interface object to be used to retrieve the IP address
300



INetMgr Interface  
INETMGR_NetStatus() 

Description:

This function returns the current network status. It returns a NetState enum of the type NetState. If the 

AEENetStats pointer is valid, the buffer is filled with the current network connection information such as 

data rate, active time, bytes sent, and other items. This allows the caller to view the performance of the 

current session as well as all sessions since the last time the device was reset. 

Prototype:
NetState INETMGR_NetStatus(INetMgr * pINetMgr, AEENetStats * pNetStats)

Parameters:

Return Value:

A NetState enum indicating the current network status

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pINetMgr Pointer to the INetMgr Interface object to be used to get the current 

network status

pNetStats Pointer to block to be filled with statistical data 
301



INetMgr Interface  
INETMGR_OnEvent()

Description:

This function allows the caller to register to receive notification of in progress INetMgr operations. These 

include both network and socket functions.

Prototype:
void INETMGR_OnEvent(INetMgr * po, PFNNETMGREVENT pfn, void * pUser, boolean 

bRegister)

Parameters:

Return Value:

None

Comments:

None

Side Effects:

None

See Also:
None

Return to List of functions

po Pointer to the INetMgr Interface

pfn User-specified callback to call when event occurs

pUser User-specified context data passed as first argument to callback

bRegister TRUE, if registering, FALSE if deregistering
302



INetMgr Interface  
INETMGR_OpenSocket() 

Description:

This function creates a socket and returns a pointer to the ISocket Interface.

Prototype:
ISocket * INETMGR_OpenSocket(INetMgr * pINetMgr, NetSocket type) 

Parameters:

Return Value:

Error Codes:

Comments: 

None

Side Effects: 

None

pINetMgr Pointer to the INetMgr Interface object to be used to create the 

socket

type Specifies the socket type: 

AEE_SOCK_STREAM for TCP

AEE_SOCK_DGRAM for UDP

Pointer To the ISocket Interface, if successful, 

NULL In this case, specific error code can be retrieved by calling 

INETMGR_GetLastError() 

AEE_NET_EMFILE No more sockets available for opening 

AEE_NET_ESOCKN

OSUPPORT 

The specified socket type is not supported in this address family 

AEE_NET_GENERA

L_FAILURE 

General Failure
303



INetMgr Interface  
See Also:
None

Return to the List of functions
304



INetMgr Interface  
INETMGR_Release() 

Description:

This function decrements the reference count for the INetMgr Interface object and does appropriate 

cleanup if the reference count reaches 0 (zero).

Prototype:
uint32 INETMGR_Release(INetMgr * pINetMgr) 

Parameters:

Return Value:

The updated reference count

Comments: 

If linger time has not been set and there are no more open sockets for this INetMgr Interface object , this 

function closes the associated PPP connection.

Side Effects: 

None

See Also:
INETMGR_SetLinger()

Return to the List of functions

pINetMgr Pointer to the INetMgr Interface object whose reference count 

needs to be decremented
305



INetMgr Interface  
INETMGR_SetLinger()

Description:

This function sets the linger time for the network connection specified by pINetMgr. The function sets 

the linger time to the value specified by wSecs and returns the previous set value. When the connection is 

created, the default linger time is set to 30 seconds. If the linger time is set to 0 (zero) and the linger time is running, 

the network connection is closed.

Prototype:
uint16 INETMGR_SetLinger(INetMgr * pINetMgr, uint16 wSecs)

Parameters:

Return Value:

Previous linger time value

Comments:

None

Side Effects:

None

See Also:
INETMGR_Release()

Return to the List of functions

pINetMgr Pointer to the INetMgr Interface

wSecs Linger time in seconds
306



INotifier Interface

Description: 

Notifications is a mechanism by which classes can be notified when certain events occur in other 

classes. For example, an applet can register to be notified when there is an incoming UDP Packet. 

Whenever there is an incoming UDP Packet, the applet that has registered to be notified receives an 

EVT_NOTIFY event.

Notifiers are classes that generate and dispatch notifications when certain events occur. For example, 

the INetMgr Interface acts as a notifier and it sends out notifications when a network connection is 

opened or closed. Whenever a notifier needs to send out notifications, it uses the ISHELL_Notify() 

function.

The applets can register for notifications by using the ISHELL_RegisterNotify() function. For example, 

an applet can use this mechanism to register for notification from the INetMgr Interface for events 

specific to that class.

The INotifier Interface specifies the functions that must be implemented by any class that needs to be 

a notifier. Any class that wants to send out notifications so that other applets can receive it must 

implement the functions in the INotifier Interface.

To have a class be a notifier:

1 The class must implement the INotifier Interface. 

2 Define the set of notifications (or masks) that the class can issue. For example, some of the 

notifications that the INetMgr Interface class can issue include:

NMASK_OPENED

NMASK_CLOSED 

NMASK_UDP_LISTEN

These masks must be made available to other applets so the applets that are interested in 

these notifications can register for them.
307



INotifier Interface  
3 Whenever the notifier class wants to issue a notification, it must invoke the ISHELL_Notify() 

function. The AEE Shell then takes care of informing all the applets that have registered for 

this notification.
308



INotifier Interface  
List of functions

Functions in this interface include:

INOTIFIER_AddRef()

INOTIFIER_Release()

INOTIFIER_SetMask()

Return to the Contents
309



INotifier Interface  
INOTIFIER_AddRef() 

Description: 

This function increments the reference count of the INotifier Interface object. This allows the object to 

be shared by multiple callers. The object is freed when the reference count reaches 0 (zero). 

Prototype:
uint32 INOTIFIER_AddRef(INotifier * pINotifier) 

Parameters:

Return Value:

Incremented reference count for the object. .

Comments: 

A valid object returns a positive reference count

Side Effects: 

None

See Also:
INOTIFIER_Release()

Return to the List of functions

pINotifier Pointer to the INotifier Interface object
310



INotifier Interface  
INOTIFIER_Release() 

Description: 

This function decrements the reference count of the INotifier Interface object. The object is freed from 

memory and is no longer valid once the reference count reaches 0 (zero).

Prototype:
uint32 INOTIFIER_Release(INotifier * pINotifier) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
INOTIFIER_AddRef()
Return to the List of functions

pINotifier Pointer to the INotifier Interface object

Referenceecount Decremented reference count for the object

0 (zero) If the object has been freed and is no longer valid 
311



INotifier Interface  
INOTIFIER_SetMask()

Description: 

This function is invoked by the AEE Shell to inform the notifier class of all the notifications (issued by 

that class) that other applets are interested in. This function must be implemented by all notifiers (i.e. 

by all classes that implement the INotifier Interface). This function is strictly meant to be invoked 

internally by the AEE Shell. It must never be directly invoked by other applets or classes.

Prototype:
void INOTIFIER_SetMask(INotifier * pINotifier, const uint32 * dwMasks)

Parameters:

Return Value:

None

Comments:

A class may be capable of emitting multiple notifications (for example, NMASK_OPENED, 

NMASK_CLOSED, and NMASK_UDP_LISTEN). However, the applets that have registered for 

notifications may only be interested in the NMASK_OPENED and NMASK_CLOSED notifications. 

Whenever an application registers for a notification using the ISHELL_RegisterNotify(), it must specify 

the mask for the notification that it is interested in. The AEE Shell then invokes this function 

INOTIFIER_SetMask() on the notifier to inform the notifier of all the notifications that the applets are 

interested in.

Side Effects: 

None

See Also:
ISHELL_RegisterNotify()

ISHELL_Notify()
Return to the List of functions

pINotifier Pointer to the INotifier Interface object

dwMasks Specifies the array of masks representing the notifications that other applets are 

interested in
312



IShell Interface

The functions in the IShell Interface provide a variety of services to BREW applications. Later in this 

section is a high-level overview of the IShell Interface functions, with each subsection describing a 

group of related functions.

Alarms

The AEE Shell’s alarm functions enable an application to be notified when the current time reaches a 

specified value. Unlike timers, which can only be active while your application is running, you can 

receive notification that an alarm has expired even when your application is not running. Alarms are 

typically used when the time of notification is in the fairly distant future. For example, a calendar 

application can use an alarm to alert the user when a time of a calendar appointment is about to be 

reached.

To set an alarm, you call the ISHELL_SetAlarm() function, specifying the number of minutes from the 

current time at which the alarm notification is to occur, a 16-bit alarm code, and the BREW ClassID of 

the application (yours or another) that receives notification when the alarm time is reached. At the 

notification time, the IAPPLET_HandleEvent() function of the notified application is called with an 

EVT_ALARM event and the 16-bit alarm code as parameters (the latter parameter allows an application 

to distinguish among more than one simultaneously active alarm). If the notified application is not 

currently running, the AEE Shell creates an instance of it to process the notification event, after which 

it isterminated (the application may choose to activate itself if necessary). The AEE Shell stores alarms 

in a BREW database and continuously checks for alarm expirations while the BREW-enabled device is 

turned on. If an alarm’s expiration time passes while the device is turned off, the AEE Shell generates 

the notification the next time the device is turned on.

The ISHELL_CancelAlarm() function is used to cancel a currently active alarm. ISHELL_AlarmsActive() 

checks whether any of BREW’s built-in annunciators (alarm clock, countdown timer, or stopwatch) are 

currently active.
313



IShell Interface  
Application management

The AEE Shell’s application management functions have a number of purposes, including

•  Creating, starting, and stopping BREW classes and applications 

•  Obtaining information about the modules and classes present on the device 

•  Allowing applications to send events to each other

•  Allowing BREW applications to execute without interfering with other activities that the device 

must perform

The ISHELL_CreateInstance() function is used to create instances of both BREW classes and of user-

defined classes supported by the modules present on the device. ISHELL_StartApplet() allows a 

specified applet to start execution. It creates an instance of the applet if necessary, suspends the 

currently running applet (if any), and then invokes the specified applet’s IAPPLET_HandleEvent() 

function with the EVT_APP_START event, which allows it to begin execution. ISHELL_CloseApplet() 

sends the currently executing applet the EVT_APP_STOP event and calls its Release function. 

ISHELL_CloseApplet() is used primarily by the AEE Shell itself, since it is not possible for one applet to 

stop another.

ISHELL_ActiveApplet() is used to obtain the ClassID of the applet that is currently running. The 

functions ISHELL_EnumAppletInit() and ISHELL_EnumNextApplet() can be used to enumerate the 

applets in the modules that are present on the device. As each applet is enumerated, 

ISHELL_EnumNextApplet() returns a pointer to an AEEAppInfo data structure for the applet, which 

identifies the applet’s MIF file, titles, icons, and type (game, tool, PIM, and other types). 

ISHELL_QueryClass() determines if a particular class is available on the device (if the class is an 

applet, you can supply a pointer to an AEEAppInfo data structure, which is populated with the relevant 

information if the applet is available).

You use the ISHELL_SendEvent() function to send an event to a specified class. If an instance of that 

class is not currently present, the AEE Shell creates one, and then invokes its IAPPLET_HandleEvent() 

function with the specified event code and data parameters. Unless it chooses to start itself, the 

application terminates after it completes processing of the event. The function ISHELL_PostEvent() is 

similar, except that the destination class’s IAPPLET_HandleEvent() function is not called immediately. 

The event is placed in a queue and is sent at a later time, which allows the calling application to continue 

its processing without interruption. ISHELL_HandleEvent() is used when the identity of the class that is 

to receive the event is not known; in this case, the AEE Shell sends the event to the currently running 

applet or its active dialog (if any).
314



IShell Interface  
The AEE Shell includes several functions that enable BREW applications to coexist with other activities 

on the device. The BREW application model is based on cooperative multitasking, which means that 

each application must be designed to execute for as short a time as possible when processing an event 

and then exit to give other device activities a chance to execute. The function ISHELL_Busy() lets a 

BREW application determine if any activities are in progress on the device that require it to exit 

immediately (ISHELL_ForceExit() is identical to ISHELL_Busy()). ISHELL_Resume() allows an 

application to break up time-consuming tasks into smaller, interruptible chunks. Each chunk is 

represented by a callback function and an associated data pointer; calling ISHELL_Resume() 

schedules the callback function to be invoked at a later time with the data pointer as its only parameter. 

ISHELL_CanStartApplet() is used to check if it is possible to start a BREW application, which may not 

be true if higher-priority activities are in progress on the device.

Dialogs, message boxes, and prompts

A dialog consists of a screen containing one or more BREW controls that allow the device user to enter 

data or select an item from a menu. Although you can create such a screen with the BREW control 

interfaces (IDateCtl Interface, IMenuCtl Interface, ITextCtl Interface and ITimeCtl Interface), BREW’s 

IDialog Interface greatly simplifies this task:

•  You can create a dialog using the BREW Resource Editor, including specification of each of 

the controls in the dialog.

•  The BREW Application Execution Environment (AEE) maintains a stack of the dialogs 

associated with the currently executing application. When you create a dialog, it is placed at 

the top of the stack; when a dialog is ended, it is removed from the stack, and the dialog 

below it is restored. This makes it easy to implement applications that step the user through 

a sequence of screens (for example, a menu hierarchy).

•  When a dialog is active, it receives all events and distributes them to the currently active 

controls. The dialog also handles control tabbing, which allows the device user to move 

between controls in a multicontrol dialog. This frees you from having to implement code to 

distribute and handle these events yourself.

You use the ISHELL_CreateDialog() function to create a dialog. This function accepts either the 

identifier of a dialog you have created in the BREW Resource Editor or a pointer to a data structure that 

you populate in your code to specify the controls in the dialog. If successful, the function displays the 

dialog’s controls on the screen and pushes it onto the dialog stack. To end the dialog, you call the 

ISHELL_EndDialog() function, which terminates the dialog at the top of the stack and displays the 

dialog immediately below it on the stack (if any). This function also sends the EVT_DIALOG_END event 

to your application, which allows you to perform any processing associated with the dialog’s 

termination, such as retrieving values entered by the user in the dialog’s controls. ISHELL_EndDialog() 

also frees all the resources that are being used by the dialog.
315



IShell Interface  
ISHELL_CreateDialog() does not return an interface pointer to the dialog it creates. The function 

ISHELL_GetActiveDialog() is used to obtain an IDialog Interface pointer for the dialog at the top of the 

stack. You can use this pointer to invoke the functions that comprise the IDialog Interface: 

IDIALOG_GetControl(), which returns interface pointers to any of the dialog’s controls, and 

IDIALOG_SetFocus(), which is used to specify which control in a multicontrol dialog receives input from 

the user.

The AEE Shell also provides functions that can be used to create some simple, commonly used dialogs 

with a single function call. ISHELL_Prompt() displays a dialog with a SoftKey control menu that prompts 

the user to make a selection; when the user does so, the selection is returned to your application via an 

EVT_COMMAND and the dialog is automatically terminated. There are also two functions that create 

a dialog that displays a read-only text message and title: ISHELL_MessageBox() reads the title and 

message text from a BREW resource file, while ISHELL_MessageBoxText() accepts pointers to title 

and message text strings that you specify in your code. The dialogs created by these functions end 

when the user presses a key.

Device and application configuration information 

These functions allow configuration information about the device itself and particular applications to be 

obtained. ISHELL_GetDeviceInfo() returns a pointer to an AEEDeviceInfo structure for the device, 

which includes information about its screen size and color support, amount of available memory, 

character encoding, and other items.

ISHELL_GetPrefs() and ISHELL_SetPrefs() provide a general-purpose mechanism for applications to 

register configuration information. You can use ISHELL_SetPrefs() to associate a pointer to 

configuration data and a version number for this data with the ClassID of your application. Other 

applications can obtain this data by calling ISHELL_GetPrefs() with the desired ClassID and version 

number (you also need to make available a structure declaration that defines the content of each 

version of your application’s configuration data).

Miscellaneous

ISHELL_Beep() allows an application to provide several types of audible or vibrating signals to the user. 

Depending on what a given device supports, there are audible signals that correspond to device-off, 

alert, reminder, message arrival and error events, and vibrating signals for alerts and reminders. There 

is also a Boolean loudness parameter that can be specified.
316



IShell Interface  
Notifications

IShell’s notification mechanism allows a BREW class to notify other classes that certain events have 

occurred. A class wishing to receive a notification must register its interest with the AEE Shell, 

specifying the ClassID of the notifier class and the events for which notification is desired. When an 

event requiring notification occurs, the notifier class calls ISHELL_Notify(), which sends notification to 

each class that has registered to be notified of the occurrence of that event.

The AEE Shell provides two ways for a class to register for notification of an event:

•  You can register by specifying information about the notification in your application’s MIF file 

using the MIF Editor. This method of registering is used by applications that must be notified 

of events even when they are not running. One example is a call-logging application that 

receives notification of each incoming and outgoing call; such an application would need to 

process notifications even while the user was not running the app to display the call log.

•  If notification is required only at certain times while your application is running, you can call 

ISHELL_RegisterNotify() to initiate event notification. For example, a game application might 

display a message when an incoming call arrives that would allow the user to accept the call 

or continue playing the game. This application requires notification of incoming calls only 

while the user is actually playing the game, so it would call ISHELL_RegisterNotify() when 

the user starts to play the game.

The events for which a notifier class provides notifications are represented by a 32-bit variable. The low-

order 16 bits of this variable contain the notification mask, with each bti corresponding to one event. The 

high-order 16 bits contain the notifier match value, which can be used for data associated with an event 

(for example, events representing activity on a UDP socket use the match value for the port on which 

the activity has occurred). When it registers for notification, a class provides a value for the mask 

variable with the bit for each event of interest set to 1. If a class no longer requires notification of an 

event, it can call ISHELL_RegisterNotify() with that event’s bit set to 0 (zero) in the mask variable (for 

example, an application might call ISHELL_RegisterNotify() with the mask variable set to 0 (zero) upon 

termination). 

NOTE: The AEE Shell creates an instance of the notifier class when another class registers 
for notification of its events. This instance is released when all classes have un-registered 

for event notification.

When a notifier class calls ISHELL_Notify(), the AEE Shell sends an event of type EVT_NOTIFY to 

each application that has registered for the event. This results in the invocation of the application’s 

IAPPLET_HandleEvent() function. If the application is not currently running, the AEE Shell creates an 

instance of it to process the event, after which the application terminates (the application can choose to 
317



IShell Interface  
send itself a start event if it wishes to continue running). In the call to IAPPLET_HandleEvent(), the 

application also is passed a pointer to a structure of type AEENotify, which identifies the event that 

occurred, the class that generated the notification, and some additional data specific to the notification.

At present, the INetMgr class provides notifications. It notifies other interested classes of changes in 

the network connection state and the arrival of data on particular UDP ports. You can also implement 

your own notifier classes. To provide notifier functionality in your class, perform the following steps:

•  Your class must implement the INotifier Interface (refer to the sample notifications application 

for details on how to declare this interface when defining your class). The INotifier Interface 

requires you to implement a INOTIFIER_SetMask() function for your class. The AEE Shell 

calls this function whenever another class registers for event notification from your class. 

INOTIFIER_SetMask() has a single argument, which is a 32-bit variable that is the logical OR 

of the mask variables that each class used when it registered for notifications from your class. 

This variable has a value of 1 for a bit if at least one class has registered for notification of 

the corresponding event. You can use this variable to perform any initialization needed when 

a class first registers to be notified of an event, and any finalization when there are no longer 

any classes requiring notification of a particular event.

•  Provide an include file that contains constants defining the bits assigned to each notification 

event, and typedefs for the event-specific data that is provided as part of an event 

notification. This include file is used by applications that register for notifications from your 

class.

•  Call ISHELL_Notify() whenever a notification event occurs and at least one class has 

registered to be notified of that event’s occurrence.

Resource files and file handlers

The AEE Shell provides a number of functions that your application can use to read in various types of 

data from files. These files can be BREW resource (.bar) files created with the BREW Resource Editor, 

or they can be files whose content is associated with a MIME type and/or identified by the file’s 

extension. You can also extend the set of file types that BREW recognizes by defining your own handler 

classes and using them to manipulate files of particular MIME types.
318



IShell Interface  
You can use the following functions to access BREW resource files (each function’s parameters include 

the name of the resource file and the integer resource ID):

•  ISHELL_LoadResData() is used to load resources other than strings and bitmap images. At 

present, these include several resource types associated with dialogs. The memory used to 

store the resource information is freed by calling ISHELL_FreeResData().

•  ISHELL_LoadResImage() loads a bitmap image from a specified resource file and returns a 

pointer to an instance of the IImage Interface that contains the bitmap. IIMAGE_Release() 

frees the data used to store the bitmap.

•  ISHELL_LoadResObject() is a utility function used in the implementation of the sound and 

image loading functions. The functions ISHELL_LoadImage(), ISHELL_LoadResImage(), 

ISHELL_LoadSound(), and ISHELL_LoadResSound() are all macros that invoke this 

function with different parameters.

•  ISHELL_LoadResSound() loads a sound resource from the specified resource file and 

returns a pointer to an instance of the ISoundPlayer Interface that contains the sound file. 

ISOUNDPLAYER_Release() frees the data used to store the sound data.

•  ISHELL_LoadResString() reads a string resource into a character buffer, a pointer to which 

is one of the function’s arguments.

The functions ISHELL_LoadImage() and ISHELL_LoadSound() can be used to load image and sound 

files directly, without first placing their contents into a BREW resource file. The files must contain one 

of the built-in MIME types supported by BREW, which include Windows bitmap (.BMP) or a device-

specific native bitmap format for images and MIDI (.midi) or CMX (.cmx) sound files. 

You can use the function ISHELL_RegisterHandler() to associate a MIME file type with the ClassID of 

the BREW handler class you have implemented to handle files of that type. The function 

ISHELL_GetHandler() returns the ClassID of the handler class associated with a given MIME type 

(including the BREW built-in types mentioned above).

Call ISHELL_GetHandler() to get the ClassID of the handler class for the file’s MIME type.

Call ISHELL_CreateInstance() to create an instance of the handler class.

Use the IFileMgr Interface and IFile Interface to read the contents of the file into memory and associate 

the file’s contents with the handler class instance you have created (for example, see the Return to the 

List of functions function). You can also register your MIME type handlers in your application’s MIF.
319



IShell Interface  
Timers

The AEE Shell’s timer facility is used by a currently instantiated application (that is, an application 

whose reference count is non-zero) to perform an action when a specified amount of time has passed. 

These time periods are typically short (on the order of seconds or milliseconds); you can use the AEE 

Shell’s alarm functions to obtain notification when longer time periods have passed, even when your 

application is not currently instantiated.

To start a timer, you call the ISHELL_SetTimer() function, specifying the timer duration in milliseconds, 

the address of a callback function, and a pointer to an application-specific data structure. When the 

timer expires, the AEE Shell calls the callback function with the application-specific data pointer as its 

only parameter. BREW timers are one-shot, nonrecurring timers. It is not possible to specify a timer that 

repeats at a fixed time interval. To obtain this behavior, you can call ISHELL_SetTimer() within your 

callback function and specify the function’s own address as ISHELL_SetTimer()’s callback function 

parameter.

ISHELL_GetTimerExpiration() can be used to determine the number of milliseconds remaining before 

a particular timer expires; a timer is identified by the callback function and data structure addresses 

supplied when it was created. ISHELL_CancelTimer() cancels a running timer. If a null value is supplied 

for the callback function parameter, all timers associated with the specified data structure address are 

canceled. When an application instance’s reference count drops to 0 (zero), all timers associated with 

that application are canceled.
320



IShell Interface  
List of functions

Functions in this interface include:

ISHELL_ActiveApplet()

ISHELL_AddRef()

ISHELL_AlarmsActive()

ISHELL_Beep()

ISHELL_BrowseFile()

ISHELL_BrowseURL()

ISHELL_Busy()

ISHELL_CancelAlarm()

ISHELL_CancelTimer()

ISHELL_CanStartApplet()

ISHELL_CheckPrivLevel()

ISHELL_CloseApplet()

ISHELL_CreateDialog()

ISHELL_CreateInstance()

ISHELL_EndDialog()

ISHELL_EndDialog()

ISHELL_EnumAppletInit()

ISHELL_EnumNextApplet()

ISHELL_ForceExit()

ISHELL_FreeResData()

ISHELL_GetActiveDialog()

ISHELL_GetDeviceInfo()

ISHELL_GetHandler()

ISHELL_GetItemStyle()

ISHELL_GetPosition()

ISHELL_GetPrefs()

ISHELL_GetTimerExpiration()

ISHELL_HandleEvent()

ISHELL_IsValidResource()
321



IShell Interface  
ISHELL_LoadImage()

ISHELL_LoadResData()

ISHELL_LoadResImage()

ISHELL_LoadResObject()

ISHELL_LoadResSound()

ISHELL_LoadResString()

ISHELL_LoadSound()

ISHELL_MessageBox()

ISHELL_MessageBoxText()

ISHELL_Notify()

ISHELL_PostEvent()

ISHELL_Prompt()

ISHELL_QueryClass()

ISHELL_RegisterHandler()

ISHELL_RegisterNotify()

ISHELL_Release()

ISHELL_Resume()

ISHELL_SendEvent()

ISHELL_SetAlarm()

ISHELL_SetPrefs()

ISHELL_SetTimer()

ISHELL_ShowCopyright()

ISHELL_StartApplet()

Return to the Contents
322



IShell Interface  
ISHELL_ActiveApplet() 

Description: 

This function returns the AEECLSID associated with the currently running applet. 

Prototype:
AEECLSID ISHELL_ActiveApplet(IShell * pIShell) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
ISHELL_StartApplet()

ISHELL_CloseApplet()

ISHELL_CanStartApplet()
Return to the List of functions

pIShell Pointer to the IShell Interface object

applet ID ID of the active applet, if applet is running 

0 (zero) If no applet is running
323



IShell Interface  
ISHELL_AddRef()

Description: 

This function increments the reference count of the IShell Interface object. This allows the object to be 

shared by multiple callers. The object is freed when the reference count reaches 0 (zero). See 

ISHELL_Release().

Prototype:
uint32 ISHELL_AddRef(IShell * pIShell)

Parameters:

Return Value:

Incremented reference count for the object. 

Comments: 

A valid object returns a positive reference count.

Side Effects: 

None

See Also:
ISHELL_Release()

Return to the List of functions

pIShell Pointer to the IShell Interface object
324



IShell Interface  
ISHELL_AlarmsActive() 

Description: 

This function returns TRUE if any of ANNUN_ALARMCLOCK, ANNUN_COUNTDOWN and 

ANNUN_STOPWATCH are set. This function does not check for any other type of alarms. 

Prototype:
boolean ISHELL_AlarmsActive(IShell * pIShell) 

Parameters:

Return Value: 

Comments: 

On Windows, this function always returns FALSE because annunciators are not supported in the BREW 

Emulator.

Side Effects: 

None

See Also:
IDISPLAY_SetAnnunciators()

Return to the List of functions

pIShell Pointer to the IShell Interface object

TRUE If there are active annunciators

FALSE If there are no active annunciators
325



IShell Interface  
ISHELL_Beep() 

Description: 

This function provides a very simple interface to play system beeps and/or vibrate the device.

Prototype:
boolean ISHELL_Beep(IShell * pIShell, BeepType nBeep, boolean bLoud) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
BeepType

Return to the List of functions

pIShell Pointer to the IShell Interface object

nBeep Type of beep to play

bLoud TRUE if the beep can be played at a higher volume

TRUE If the beep was played

FALSE If the beep was not played
326



IShell Interface  
ISHELL_BrowseFile()

Description:

This function attempts to find the associated registered applet for the extension of the file whose path 

is given by the pszFile parameter. If a handler applet is found, this function creates an instance of it and 

sends the instance the EVT_APP_START event. If the applet starts successfully, ISHELL_BrowseFile() 

sends it the EVT_APP_BROWSE_FILE event along with the file path (the handler applet can then 

browse the file).

Prototype:
void ISHELL_BrowseFile (IShell * pIShell, const char * pszFile);

Parameters:

Return Value:

None

Comments: 

None

Side Effects:

None

See Also:
ISHELL_RegisterHandler()

ISHELL_GetHandler()

ISHELL_BrowseURL()
Return to the List of functions

pIShell Pointer to the IShell Interface object

pszFile Pointer to a string containing the name of the file to be browse. The file's extension 

(e.g., gif, htm) is used to locate the handler applet that will browse the file.
327



IShell Interface  
ISHELL_BrowseURL()

Description: 

This function attempts to find the associated registered applet for the URL scheme of the URL contained 

in the string pointed to by the pszURL parameter. If a handler applet is found, this function creates an 

instance of it and sends the instance the EVT_APP_START event. If the applet starts successfully, 

ISHELL_BrowseURL() sends it the EVT_APP_BROWSE_URL event along with the URL (the handler 

applet can then browse the URL).

Prototype:
void ISHELL_BrowseURL (IShell * pIShell, const char * pszURL);

Parameters:

Return Value:

None

Comments:

None

Side Effects:

None

See Also:
ISHELL_RegisterHandler()

ISHELL_GetHandler()

ISHELL_BrowseFile()
Return to the List of functions

pIShell Pointer to the IShell Interface object

pszURL Pointer to a string containing the URL to be browsed. The URL’s scheme (e.g., http, 

mailto) is used to locate the handler applet that will browse the URL.
328



IShell Interface  
ISHELL_Busy() 

Description: 

This function returns TRUE if the applet must exit. This function is provided only for very special use by 

browsers or other applications that may do substantial processing before returning from the 

ISHELL_HandleEvent() function.

Prototype:
boolean ISHELL_Busy(IShell * pIShell) 

Parameters:

Return Value: 

Comments: 

This function uses ISHELL_ForceExit() 

Side Effects: 

None

See Also:
ISHELL_ForceExit()

Return to the List of functions

pIShell Pointer to the IShell Interface object

TRUE If the applet must stop processing and exit

FALSE If the applet can continue to do processing
329



IShell Interface  
ISHELL_CancelAlarm() 

Description: 

This function cancels an alarm set via ISHELL_SetAlarm(). The proper class and 16-bit user code must 

be specified.

Prototype:
int ISHELL_CancelAlarm(IShell * pIShell, AEECLSID cls, uint16 nUserCode) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
ISHELL_SetTimer()
Return to the List of functions

pIShell Pointer to the IShell Interface object

cls Applet class of alarm to cancel

nUserCode 16-bit use code of alarm to cancel

SUCCESS If alarm is found and canceled

EFAILED If alarm can not be found or canceled
330



IShell Interface  
ISHELL_CancelTimer() 

Description: 

This function cancels a timer that has been set by ISHELL_SetTimer(). If pfn is non-NULL, the timer 

associated with pfn and pUser is canceled. If pfn is NULL, all timers associated with the pUser value 

are canceled. 

Prototype:
int ISHELL_CancelTimer(IShell * pIShell, PFNNOTIFY pfn, void * pUser) 

Parameters:

Return Value: 

Comments: 

Attempting to cancel timers that have not been set is harmless.

Side Effects: 

None

See Also:
ISHELL_SetTimer()

ISHELL_GetTimerExpiration()

Return to the List of functions

pIShell Pointer to the IShell Interface object

pfn User callback

pUser User data

SUCCESS Always
331



IShell Interface  
ISHELL_CanStartApplet() 

Description: 

This function queries the AEE Shell to determine whether it is safe to start an applet. Under normal 

conditions, this call returns TRUE. However, in some cases, new applet startup may be prevented when 

critical dialogs are displayed or other applets are running. 

Prototype:
boolean ISHELL_CanStartApplet(IShell * pIShell, AEECLSID cls) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
ISHELL_StartApplet()

ISHELL_CloseApplet()

ISHELL_ActiveApplet()
Return to the List of functions

pIShell Pointer to the IShell Interface object

cls ClassID of the applet that needs to be checked

TRUE If it is safe to start the applet

FALSE If it is not safe to start the applet
332



IShell Interface  
ISHELL_CheckPrivLevel()

Description: 

This function checks the privilege level of the currently executing application against the specified value. 

If the privilege level matches, the function returns TRUE. If the privilege level does not match, the 

function returns FALSE and conditionally terminates the application with a system message.

Prototype:
boolean ISHELL_CheckPrivLevel(IShell * pIShell, uint16 wPrivWant, boolean 

bQueryOnly)

Parameters

Return Value:

Comments: 

If the bQueryOnly value is FALSE and the function returns FALSE, no further processing is done on 

the application as it will be terminated.

Side Effects:

None

See Also: 
None

Return to the List of functions

pIShell Pointer to the IShell Interface object

wPrivWant  Desired privilege bits to check

bQueryOnly  TRUE if this is a query only. If FALSE, the app will terminate if it does not have the 

privileges specified in wPrivWant.

TRUE  App supports this privilege level mask

FALSE  App does not support this privilege level
333



IShell Interface  
ISHELL_CloseApplet() 

Description: 

This function instructs the AEE Shell to close the active applet. The applet is sent the EVT_APP_STOP 

message and the IAPPLET_Release() function is called. The bReturnToIdle parameter indicates 

whether the AEE must close all other active applications and return the idle screen. 

Prototype:
int ISHELL_CloseApplet(IShell * pIShell,boolean bReturnToIdle) 

Parameters:

Return Value: 

Comments: 

The bReturnToIdle parameter is not supported on the BREW Emulator.

Side Effects: 

None

See Also:
ISHELL_StartApplet()

ISHELL_CanStartApplet()
ISHELL_ActiveApplet()

Return to the List of functions

pIShell Pointer to the IShell Interface object

bReturnToIdle This parameter indicates whether the AEE Shell must close all other active 

applications and Return to the idle screen 

SUCCESS Operation was successful

EFAILED Operation failed
334



IShell Interface  
ISHELL_CreateDialog() 

Description: 

This function instructs the AEE Shell to start a dialog associate with the input DialogInfo data structure 

or the dialog information in the associated resource file. This call causes the AEE Shell to create an 

IDialog Interface. This interface processes the dialog input parameters to create all associated controls, 

and other items. The dialog is placed at the top of the active dialog stack. 

During creation, execution, and termination, the IDialog Interface sends a number of dialog-related AEE 

Events (such as: EVT_DIALOG_INIT, EVT_DIALOG_START, EVT_DIALOG_END) to the active 

applet. This allows the applet to control the initial contents of controls, manage control changes and 

retrieve the contents of controls at termination. The applet can obtain pointers to the underlying, dialog 

controls by calling the IDIALOG_GetControl() function.

Prototype:
int ISHELL_CreateDialog(IShell * pIShell, const char * pszResFile, uint16 

wID, DialogInfo * pInfo) 

Parameters:

Return Value: 

Comments: 

Display of the dialog title is not supported in this release.

pIShell Pointer to the IShell Interface object

pszResFile Pointer to the resource file containing the dialog information

wID ID of the dialog inside the resource file

pInfo Alternate dialog information structure. If this structure is provided, the 

pszResFile/wID parameters are ignored.

SUCCESS If successful

ENOMEMORY Insufficient memory

EBADPARM Invalid parameter

EFAILED If unsuccessful
335



IShell Interface  
Side Effects: 

None

See Also:
DialogInfo

ISHELL_GetActiveDialog(),
ISHELL_EndDialog(), 

IDIALOG_SetFocus()

IDIALOG_GetControl()
EVT_DIALOG_INIT, 

EVT_DIALOG_START, 

EVT_DIALOG_END
Return to the List of functions
336



IShell Interface  
ISHELL_CreateInstance() 

Description: 

This function is called to create an object associated with the 32-bit ClassID specified. The object return 

must match the interface supported by the ClassID provided. Upon success, the ppobj is filled with an 

object of the specified class. The object is returned with a positive reference count. 

Prototype:
int ISHELL_CreateInstance(IShell * pIShell, AEECLSID cls, void * * ppobj) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
IMODULE_CreateInstance()

Return to the List of functions

pIShell [in] Pointer to the IShell Interface object

cls [in] 32-bit ClassID of the requested interface

ppobj [out] pointer to the memory to fill with the pointer to the object

SUCCESS Class created

ENOMEMORY Insufficient memory

ECLASSNOSUPPORT Class specified is not supported

EBADPARM If null ppobj was passed in
337



IShell Interface  
ISHELL_EndDialog() 

Description: 

This function closes the currently active dialog. 

Prototype:
ISHELL_EndDialog(IShell * pIShell) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
ISHELL_CreateDialog()

ISHELL_GetActiveDialog()

IDIALOG_SetFocus()
IDIALOG_GetControl()

Return to the List of functions

pIShell Pointer to the IShell Interface object

SUCCESS Active dialog successfully closes

EFAILED No dialog is active
338



IShell Interface  
ISHELL_EnumAppletInit() 

Description: 

This function resets the AEE Shell’s internal applet enumeration index. This call is used in conjunction 

with ISHELL_EnumNextApplet() as follows: 

ISHELL_EnumAppletInit(pShell) ; while(ISHELL_EnumNextApplet(pShell, &ai) ) 

{ process... } 

Prototype:
void ISHELL_EnumAppletInit(IShell * pIShell) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
ISHELL_EnumNextApplet()
Return to the List of functions

pIShell Pointer to the IShell Interface object
339



IShell Interface  
ISHELL_EnumNextApplet() 

Description: 

This function returns information regarding the next applet. It is used in conjunction with 

ISHELL_EnumAppletInit() as follows: 

ISHELL_EnumAppletInit(pShell) ; while(ISHELL_EnumNextApplet(pShell, &ai) ) 

{ process... } 

Prototype:
AEECLSID ISHELL_EnumNextApplet(IShell * pIShell, AEEAppInfo * pai)

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
AEEAppInfo
ISHELL_EnumAppletInit()

Return to the List of functions

pIShell Pointer to the IShell Interface object

pai Pointer to AEEAppInfo structure to fill

ClassID Of the next applet, if successful

0 (zero) When there are no more applets to enumerate or if pai is NULL
340



IShell Interface  
ISHELL_ForceExit() 

Description: 

This function returns TRUE if the applet must exit. This function is provided only for very special use by 

browsers or other applications that may do substantial processing before returning from the 

ISHELL_HandleEvent() function.

Prototype:
boolean ISHELL_ForceExit(IShell * pIShell) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
ISHELL_Busy()

Return to the List of functions

pIShell Pointer to the IShell Interface object

TRUE If the applet must stop processing and exit

FALSE If the applet can continue to do processing
341



IShell Interface  
ISHELL_FreeResData() 

Description: 

This function frees the data previously returned by ISHELL_LoadResData().

Prototype:
void ISHELL_FreeResData(IShell * pIShell, void * pData) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
ISHELL_LoadResData()

Return to the List of functions

pIShell Pointer to the IShell Interface object

pData Resource Data that is to be freed that must have been returned by a prior call to 

ISHELL_LoadResData()
342



IShell Interface  
ISHELL_GetActiveDialog() 

Description: 

This function returns the current active dialog. This call is provided so that applets may query the dialog 

for underlying controls, and other items.

Prototype:
IDialog * ISHELL_GetActiveDialog(IShell * pIShell) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
ISHELL_CreateDialog()
ISHELL_EndDialog()

IDIALOG_SetFocus()

IDIALOG_GetControl()
Return to the List of functions

pIShell Pointer to the IShell Interface object

Pointer  To the currently active dialog, if successful

NULL  If there is no active dialog or if unsuccessful
343



IShell Interface  
ISHELL_GetDeviceInfo() 

Description: 

This function queries the AEE Shell for information regarding the capabilities of the device. This 

includes such information as the amount of supported RAM, display information, and other items. In 

order to obtain values for the fields "dwNetLinger" and "dwSleepDefer" of the AEEDeviceInfo structure, 

you MUST fill-in the wStructSize element of the structure before passing this to the GetDeviceInfo call. 

The element wStructSize must be set to be equal to the sizeof(AEEDeviceInfo) structure before making 

the call to this function. 

Example:

AEEDeviceInfo di;

di.wStructSize = sizeof(AEEDeviceInfo);

ISHELL_GetDeviceInfo(&di);

Prototype:
void ISHELL_GetDeviceInfo(IShell * pIShell, AEEDeviceInfo * pi) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
AEEDeviceInfo

pIShell Pointer to the IShell Interface object

pi Pointer to AEEDeviceInfo structure to fill
344



IShell Interface  
Return to the List of functions
345



IShell Interface  
ISHELL_GetHandler() 

Description: 

This function provides query access to the AEE Shell’s database of registered content viewers and 

protocol scheme handlers. This database is provided to allow browsers and content viewers to expose 

handlers for content or data protocols they may support. 

The AEEHandlerType data structure indicates whether the input string is a viewer (for example image 

type) or a sound type. 

Prototype:
AEECLSID ISHELL_GetHandler(IShell * pIShell,AEEHandlerType t, const char * 

pszIn) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
ISHELL_RegisterHandler()

Return to the List of functions

pIShell Pointer to the IShell Interface object

t Handler type (HTYPE_VIEWER, HTYPE_BROWSE, or HTYPE_SOUND) 

pszIn Input string

AEECLSID Of the associated handler class

0 (zero) If otherwise
346



IShell Interface  
ISHELL_GetItemStyle()

Description: 

This function queries the AEE Shell for information regarding the default style for menu, icon, list items. 

The information is placed into the two specified pointers. The first (pNormal) contains information 

regarding drawing the item in a normal (non-selected) case. The second (pSel) contains information 

regarding drawing the item in the selected case. 

Prototype:
boolean ISHELL_GetItemStyle(IShell * pIShell, AEEItemType t, AEEItemStyle * 

pNormal, AEEItemStyle * pSel)

Parameters:

Return Value:

Comments:

None

Side Effects:

None

See Also:
AEEItemType, 

AEEItemStyle’ 

Return to the List of functions

pIShell [in] Pointer to the IShell Interface object

t [in] Item type

pNormal [out] Pointer to AEEItemStyle to fill for items that are not selected

pSel [out] Pointer to AEEItemStyle to fill for selected items

TRUE If successful

FALSE If otherwise
347



IShell Interface  
ISHELL_GetPosition()

Description: 

This method provides access to the gpsOne location feature on the handset. The precision specified 

indicates how exact the location will be returned. The precision is also directly related to the time it will 

take to satisfy the request. 

Warning: Requests for position location may be protected by the privacy policies determined 

by the OEM or carrier. 

Upon completion, the callback will be made to the user with the position or an appropriate error.

Prototype:
int ISHELL_GetPosition(IShell * pIShell, AEEPosAccuracy prc, PFNPOSITIONCB 

pfn, void * pUser)

Parameters:

Return Value:

Comments: 

Currently, this function is not implemented. It returns EUNSUPPORTED.

Side Effects: 
None

See Also: 
None

Return to the List of functions

pIShell  Pointer to the IShell object

rc  Precision

pfn  Pointer to callback

pUser  Pointer to callback data

SUCCESS  Call is in progress

EUNSUPPORTED  gps is not supported
348



IShell Interface  
ISHELL_GetPrefs() 

Description: 

This function provides a means of retrieving a structure containing applet or class level preferences.

Prototype:
int ISHELL_GetPrefs(IShell * pIShell, AEECLSID cls, uint16 wVer, void * pCfg, 

uint16 nSize) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
ISHELL_SetPrefs(), 

Return to the List of functions

pIShell Pointer to the IShell Interface object

cls AEECLSID of the preference type

wVer Version of the preference

pCfg Pointer to memory to fill with preference data

nSize Size of memory block to fill

SUCCESS Operation successful

EBADPARM Invalid parameter

ENOMEMORY Insufficient memory 

EFAILED Operation fails
349



IShell Interface  
ISHELL_GetTimerExpiration() 

Description: 

This function returns the remaining time in miliseconds before the timer associated with the user 

callback/data expires.

Prototype:
uint32 ISHELL_GetTimerExpiration(IShell * pIShell, PFNNOTIFY pfn, void * 

pUser) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
ISHELL_SetTimer()
ISHELL_CancelTimer()

Return to the List of functions

pIShell Pointer to the IShell Interface object

pfn User callback

pUser User data

time If there is a timer associated with specified user callback/data and it 

hasn’t expired, this function returns the remaining expiration time

0 (zero) If otherwise
350



IShell Interface  
ISHELL_HandleEvent() 

Description: 

This function sends one of the specified standard AEE Events (evt < EVT_USER) to the currently active 

applet. It internally invokes ISHELL_SendEvent() with ClassID set to 0 (zero). 

Prototype:
boolean ISHELL_HandleEvent(IShell * pIShell, AEEEvent evt, uint16 wp, uint32 

dwp) 

Parameters:

Return Value: 

Comments: 

The event sent must be one of the standard AEE Events (for example, it must be < EVT_USER) . This 

cannot be an EVT_USER event. Use ISHELL_PostEvent() to send user events.

Side Effects: 

None

See Also:
ISHELL_SendEvent()

ISHELL_PostEvent()

Return to the List of functions

pIShell Pointer to the IShell Interface object

evt AEE Events

wp Event-specific 16-bit value

dwp Event-specific 32-bit value

TRUE If the event was processed 

FALSE If the event was not processed
351



IShell Interface  
ISHELL_IsValidResource()

Description: 

This function checks to see if the specified resource file entry is valid for the type specified.

Prototype:
boolean ISHELL_IsValidResource(IShell * pIShell, const char * pszResFile, 

uint16 wID, ResType t, AEEHandlerType ht);

Parameters:

Return Value:

Side Effects: 

None

See Also: 
ResType

AEEHandlerType 
Return to the List of functions

pIShell Pointer to the IShell interface object

pszResFile Resource file name

wID ID of the resource

t Resource type

ht Handler type (ignored if t != RESTYPE_IMAGE)

TRUE Resource exists in file

FALSE Resource does not exist
352



IShell Interface  
ISHELL_LoadImage()

Description: 

This function loads an image from a file directly and returns a pointer to an IImage handler that can be 

used to display the image. 

Prototype:
IImage * ISHELL_LoadImage(IShell * pIShell, const char * pszResFile)

Parameters:

Return Value: 

Comments: 

Example: 

IImage * pImage;

pImage = ISHELL_LoadResImage(pShell, “Test.bmp“);

If (IImage) {

IIMAGE_draw(pImage, 10,70) ;

IIMAGE_Release(pImage);

}

Side Effects: 

None

See Also: 
ISHELL_LoadResData()
ISHELL_LoadResImage()

ISHELL_LoadResObject()

ISHELL_LoadResSound()

pIShell Pointer to the IShell Interface object

pszResFile Image file

Pointer To an IShell Interface that can be used for viewing the image
353



IShell Interface  
ISHELL_LoadResString()

ISHELL_LoadSound()
ISHELL_FreeResData()

Return to the List of functions
354



IShell Interface  
ISHELL_LoadResData() 

Description: 

This function returns a void * data block associated with the specified resource file, ID, and type. The 

memory returned must be freed using the ISHELL_FreeResData() call.

Prototype:
void * ISHELL_LoadResData(IShell * pIShell, const char * pszResFile, int16 

nResID, ResType nType) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 
None

See Also:
ISHELL_LoadImage()
ISHELL_LoadResImage()

ISHELL_LoadResObject()

ISHELL_LoadResSound()
ISHELL_LoadResString()

pIShell Pointer to the IShell Interface object

pszResFile Resource file containing the data

nResID ID of the data in the resource file

nType The type of resource 

[RESTYPE_STRING|RESTYPE_IMAGE|RESTYPE_DIALOG|RESTYPE_CON

TROL|RESTYPE_ LISTITEM|RESTYPE_BINARY]. If nType is 

RESTYPE_IMAGE, then the first byte indicates the offset where the actual image 

data begins. The second byte is zero. Starting from the third byte, the string 

indicates the mime type followed by the actual image data.

void * A void * pointing to the resource data, if successful

NULL If otherwise
355



IShell Interface  
ISHELL_LoadSound()

ISHELL_FreeResData()
Return to the List of functions
356



IShell Interface  
ISHELL_LoadResImage() 

Description: 

This function loads a bitmap resource from the given resource file and returns a valid IImage Interface 

pointer. This pointer can then be used for viewing the image.

Prototype:
IImage * ISHELL_LoadResImage(IShell * pIShell, const char * pszResFile, int16 

nResID) 

Parameters:

Return Value: 

Comments: 

This function uses SHELL_LoadResObject

Side Effects: 

None

See Also:
ISHELL_LoadImage()

ISHELL_LoadResData()
ISHELL_LoadResObject()

ISHELL_LoadResSound()

ISHELL_LoadResString()
ISHELL_LoadSound()

ISHELL_FreeResData()

Return to the List of functions

pIShell Pointer to the IShell Interface object

pszResFile Resource file containing the bitmap image

nResID ID of the bitmap in the resource file

pointer to an IImage Interface that can be used for viewing the image if succesful

NULL if unsuccessful
357



IShell Interface  
ISHELL_LoadResObject() 

Description: 

This function loads the specified resource and creates an handler that can be used on the resource 

Data. The type of handler created is indicated by the parameter hType to this function.

Prototype:
IBase * ISHELL_LoadResObject(IShell * pIShell, const char * pszResFile, int16 

nResID, AEEHandlerType hType) 

Parameters:

Return Value: 

Comments: 

Example: 

If the resource data is of type HTYPE_SOUND and if hType parameter is set to 
HTYPE_VIEWER, the behavior of this function is unpredictable.

If hType is HTYPE_VIEWER, it indicates that the resource data is a bitmap resource. Hence, 

this function creates an IImage Interface and associates the resource data with it. The IImage 
Interface pointer is then returned from this function. This interface pointer can be used to view 

the image.

If hType is HTYPE_SOUND, it indicates that the resource data is a sound stream. In this case, 

this function creates and returns a ISoundPlayer Interface pointer that can then be used to 

play the sound.

pIShell Pointer to the IShell Interface object

pszResFile Resource file containing the specified resource

nResID ID of the resource in the resource file

hType Type of handler that must be created and associated with the resource data.

The interface pointer returned from this function depends on the handler type 

specified. The AEEHandlerType must coincide with the actual type of the 

resource data. 

Valid interface pointer 

to handle the resource 

data 

If successful

NULL If unsuccessful
358



IShell Interface  
The ISHELL_LoadResImage() and ISHELL_LoadResSound() functions are specific usages of this 

function with the hType set to HTYPE_VIEWER and HTYPE_SOUND respectively.

Side Effects: 

None

See Also:
ISHELL_LoadImage()

ISHELL_LoadResData()
ISHELL_LoadResImage()

ISHELL_LoadResSound()

ISHELL_LoadResString()
ISHELL_LoadSound()

ISHELL_FreeResData()

Return to the List of functions
359



IShell Interface  
ISHELL_LoadResSound() 

Description: 

This function can be used when the sound data is included in a resource file as a raw stream of bytes. 

This function loads a raw sound buffer from the given resource file, creates an ISoundPlayer Interface 

pointer, sets the sound data into this interface by using the ISOUNDPLAYER_Set() function (with 

AEESoundPlayerInput data parameter set to SDT_BUFFER). The ISoundPlayer Interface pointer can 

then be used for playing the sound. 

Prototype:
ISoundPlayer * ISHELL_LoadResSound(IShell * pIShell, const char * 

pszResFile, int16 nResID) 

Parameters:

Return Value: 

Comments: 

This function uses ISHELL_LoadResObject().

See Also:
ISHELL_LoadImage()

ISHELL_LoadResData()

ISHELL_LoadResImage()
ISHELL_LoadResObject()

ISHELL_LoadResString()

ISHELL_LoadSound()
Return to the List of functions

pIShell Pointer to the IShell Interface object

pszResFile Resource file containing the raw sound data

nResID ID of the raw sound data

Pointer To an ISoundPlayer Interface used for playing the sound if successful

NULL If load unsuccessful
360



IShell Interface  
ISHELL_LoadResString() 

Description: 

This function allows the caller to retrieve UNICODE or ISOLATIN strings stored in the specified resource 

file. The returned string is placed into the buffer provided.

Prototype:
int ISHELL_LoadResString(IShell * pIShell, const char * pszResFile, int16 

nResID, AECHAR * pBuff, int nSize) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 
None

See Also:
ISHELL_LoadImage()

ISHELL_LoadResData()
ISHELL_LoadResImage()

ISHELL_LoadResObject()

ISHELL_LoadResSound()
ISHELL_LoadSound()

Return to the List of functions

pIShell [in] Pointer to the IShell Interface object

pszResFile [in] Resource file containing the string

nResID [[in] ID of the string in the resource file

pBuff [out] Buffer to fill with the string

nSize [in] Size in bytes of the input buffer

Number Number of bytes filled, if successful

0 (zero) If otherwise
361



IShell Interface  
ISHELL_LoadSound()

Description: 

This function loads a sound file from the file system and returns the ISoundPlayer Interface object for 

the file.

Prototype:
ISoundPlayer * ISHELL_LoadSound(IShell * pIShell, const char * pszResFile)

Parameters:

Return Value: 

Comments: 

This function uses ISHELL_LoadResObject()

Side Effects: 

None

See Also: 
ISHELL_LoadImage()
ISHELL_LoadResData()

ISHELL_LoadResImage()

ISHELL_LoadResObject()
ISHELL_LoadResSound()

ISHELL_LoadResString()

ISHELL_FreeResData()
Return to the List of functions

pIShell Pointer to the IShell Interface object

pszResFile Sound file

Pointer To an ISoundPlayer Interface that can be used for playing the sound, if 

successful

NULL If otherwise
362



IShell Interface  
ISHELL_MessageBox() 

Description: 

This function instructs the AEE Shell to display a message box to the user. A message box is a simple 

window with a title and text. The message box is dismissed via the END or CLR keys. The title and text 

are retrieved from the specified resource file.

Prototype:
boolean ISHELL_MessageBox(IShell * pIShell, const char * pszResFile, uint16 

wTitleID, uint16 wTextID) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
ISHELL_MessageBoxText()

Return to the List of functions

pIShell Pointer to the IShell Interface object

pszResFile Resource file containing the title/text. If this is NULL, then the resource ID of the 

text (for example, wTextID) is used to retrieve an error message from the 

BREW resource file (AEEControls.bar) located in the language directory 

(ex:"en" for English). This error message is then displayed in the message box.

wTitleID ID of the title, the maximum size of which can be 128 bytes (64 UNICODE 

characters)

wTextID ID of the text, the maximum size of which can be 256 bytes (128 UNICODE 

characters)

TRUE If the message box was created

FALSE If otherwise
363



IShell Interface  
ISHELL_MessageBoxText() 

Description: 

This function instructs the AEE Shell to display a message box to the user. A message box is a simple 

window with a title and text. The message box is dismissed via the END or CLR keys. Unlike 

ISHELL_MessageBox(), this function uses the title and text strings provided.

Prototype:
boolean ISHELL_MessageBoxText(IShell * pIShell, const AECHAR * pTitle, const 

AECHAR * pText) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
ISHELL_MessageBox()

Return to the List of functions

pIShell Pointer to the IShell Interface object

pTitle Pointer to title string

pText Pointer to text string

TRUE If successful

FALSE If otherwise
364



IShell Interface  
ISHELL_Notify() 

Description: 

This function is called by an object when it detects an event that may be associated with a notification 

requested by another class of object. For example, the INetMgr Interface calls this function when 

INetMgr-related events occur. The result is that any applets that have requested notification, whether 

actively loaded or not, are sent the EVT_NOTIFY with data regarding the specific event. The notification 

mask indicates what event occurred. The data pointer provided is specific to the mask of the event that 

occurred and is defined by the class that triggered the notification. All registered applets for a specific 

type of notification are called. If the applet is not currently active, it is loaded and the event is sent to it. 

It is not sent the EVT_APP_START/EVT_APP_STOP events under these conditions. If the applet 

wishes to start based upon the event it must call ISHELL_StartApplet().

Prototype:
void ISHELL_Notify(IShell * pIShell, AEECLSID clsType, uint32 dwMask, void 

* pData) 

Parameters:

Return Value: 

Comments: 

None

pIShell Pointer to the IShell Interface object

clsType Class that issued the notification

dwMask Mask of events in which normally only 1 bit is set for any given event

pData Context sensitive data

SUCCESS If successful

EBADCLASS Invalid ClassID

EBADPARM Invalid parameter

ENOMEMORY Insufficient memory

EREENTERED Attempt to re-enter ISHELL_Notify()

EBADTASK Invalid task issuing notify
365



IShell Interface  
Side Effects: 

None

See Also:
ISHELL_RegisterNotify()

Return to the List of functions
366



IShell Interface  
ISHELL_PostEvent() 

Description: 

This function posts an asynchronous event to the specified applet. This function is very similar to 

ISHELL_SendEvent(). The main difference is that this function posts the event to the applet while 

ISHELL_SendEvent() immediately sends the event to the applet. Event posting is provided for special 

cases where the caller either wishes to post a event from another task or wishes to defer the processing 

of the event until the next iteration of the event loop. This is useful in providing continued execution while 

allowing other events to be processed. Private events can be sent to an applet by defining the event at 

or above EVT_USER level and specifying the applet ClassID. An error is returned if events in the range 

of EVT_USER and above are sent without an associated ClassID.

Prototype:
boolean ISHELL_PostEvent(IShell * pIShell,AEECLSID clsApp,AEEEvent evt, 

uint16 wp, uint32 dwp) 

Parameters:

Return Value:

Comments: 

None

pIShell Pointer to the IShell Interface object

clsApp ClassID of the applet for the event. This parameter is required and must denote an 

applet. If the clsApp specified here does not belong to an applet, this function may 

still return TRUE, but the actual sending of the event fails when the event is popped 

out of the queue and an attempt is made to send to the applet specified by clsApp. 

evt AEE Events

wp Event-specific 16-bit value

dwp Event-specific 32-bit value

TRUE If the event was posted. The return status only indicates whether or not the event 

was successfully placed in the queue. It does not indicate that the event was 

successfully sent to the receiving applet. 

FALSE If the event was not posted
367



IShell Interface  
Side Effects: 

None

See Also:
ISHELL_SendEvent()

Return to the List of functions
368



IShell Interface  
ISHELL_Prompt() 

Description: 

This function provides a mechanism for an application to display a multiselection prompt. The text can 

be specified from a resource file or directly passed in the AEEPromptInfo data structure. The AEE Shell 

first examines the text pointers before attempting to load the text from the resource file. The buttons are 

specified by the values in the AEEPromptInfo->pBtnIDs list. For convenience, it is assumed that the 

IDs for the buttons are associated with both the text and command ID for the button. If the passed-in 

button pointer is NULL, the prompt must successfully be displayed without any button. The prompt 

dialog is automatically dismissed when any of the button selections is made by the user or when the 

CLR key is pressed. In this case, the EVT_COMMAND message is sent to the application with the 16-

bit extra parameter indicating the ID of the selection.

Prototype:
boolean ISHELL_Prompt(IShell * pIShell, AEEPromptInfo * pi) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
AEEPromptInfo, 

Return to the List of functions

pIShell Pointer to the IShell Interface object

pi Pointer to AEEPromptInfo data structure

TRUE If the prompt was created

FALSE If the prompt can not be created
369



IShell Interface  
ISHELL_QueryClass() 

Description: 

This function queries the AEE Shell to determine if the specified class or applet is supported. If the 

AEEAppInfo data structure pointer is provided, AEE Shell assumes the requested class is an applet. In 

that case, the structure is filled if the requested applet class was found. If the class is supported but is 

not an applet, the function returns FALSE. If the AEEAppInfo pointer is not passed, the AEE Shell 

assumes the request is simply made to check the availability of the class, regardless of whether it is an 

applet. 

Prototype:
boolean ISHELL_QueryClass(IShell * pIShell, AEECLSID cls, AEEAppInfo * pai) 

Parameters:

Return Value

Comments: 

If you provide an AEEAppInfo, this function returns FALSE if the class requested is available but is not 

an applet.

Side Effects: 

None

See Also:
AEEAppInfo, 

ISHELL_CreateInstance()

Return to the List of functions

pIShell [in] Pointer to the IShell Interface object

cls [[in] 32-bit ClassID of the requested interface

pai [out] Pointer to AEEAppInfo structure to fill with the applet information

TRUE Class is supported

FALSE Class not supported
370



IShell Interface  
ISHELL_RegisterHandler() 

Description: 

This function provides a mechanism for a content viewer or protocol engine to register itself with the 

AEE Shell. This allows other component to share its functionality when content or protocol types are 

encountered. As the handler is specified by class, it can be loaded dynamically on an as needed basis. 

In order to update a handler, the existing handler must be deleted from the database. This is done by 

calling ISHELL_RegisterHandler() with a 0 (zero) ClassID. 

Prototype:
int ISHELL_RegisterHandler(IShell * pIShell,AEEHandlerType t, const char * 

pszIn, AEECLSID cls) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

pIShell Pointer to the IShell Interface object

t Handler type (HTYPE_VIEWER,HTYPE_BROWSE, or HTYPE_SOUND) 

pszIn Input string. If this is NULL, EBADPARM is returned. The string contains a comma-

delimited list of the MIME types and/or schemes handled by the specified class.

cls AEECLSID of the handler. If this is set to 0 (zero), EBADPARM is returned. No other 

validations are done on this parameter.

SUCCESS Operation successful

EBADCLASS Invalid ClassID

EBADPARM Invalid parameter

ENOMEMORY Insufficient memory

EFAILED Operation failed

EALREADY Handler already set.
371



IShell Interface  
See Also:
AEEHandlerType

ISHELL_GetHandler()

Return to the List of functions
372



IShell Interface  
ISHELL_RegisterNotify() 

Description: 

This function provides a clean mechanism for applets to register for notifications that are issued from 

other classes. For example, an applet can use this mechanism to register for notification from the 

AEECLSID_NET interface for events specific to that class. The notification mask provided indicates the 

type of events of interest to the caller. These bits are defined on a per-class basis. This allows classes 

to define and share notifications without requiring all such notifications to be defined by the IShell 

Interface. The notification mask specified is used explicitly. The values are not OR’d with the existing 

notification mask if present. When a notification is requested of a specific object class, the object class 

is created or the reference count is incremented. When the notification is removed (mask=0), the 

object’s reference count is decremented.

Prototype:
int ISHELL_RegisterNotify(IShell * pIShell, AEECLSID clsNotify, AEECLSID 

clsType, uint32 dwMask) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

pIShell Pointer to the IShell Interface object

clsNotify The applet to create and notify when the event occurs

clsType The class that issues the event. This is the Notifier class. This class must implement 

the INotifier Interface functions.

dwMask The mask of events to trigger

SUCCESS If successful

EBADCLASS Invalid ClassID

EBADPARM Invalid parameter

ENOMEMORY Insufficient memory
373



IShell Interface  
See Also:
ISHELL_Notify()

INOTIFIER_SetMask()

Return to the List of functions
374



IShell Interface  
ISHELL_Release()

Description: 

This function decrements the reference count of the IShell Interface object. The object is freed from 

memory and is no longer valid once the reference count reaches 0 (zero).

Prototype:
uint32 ISHELL_Release(IShell * pIShell)

Parameters:

Return Value: 

Comments: 

This function doesn't do anything. A call to this function is ignored by AEE.

Side Effects: 

None

See Also: 
ISHELL_AddRef()

Return to the List of functions

pIShell Pointer to the IShell Interface object

0 (zero) Always
375



IShell Interface  

g 

d 

r 
ISHELL_Resume() 

Description: 

This function allows a callback to be registered with the AEE Shell. It adds the callback to AEE Shell's 

list of pending operations. The AEE Shell invokes the callback function the next time the event loop is 

called. This allows an application or object to cooperatively multitask. If the callback has already been 

registered, it is cancelled (de-registered) and then re-registered.

Prototype:
void ISHELL_Resume(IShell * pIShell, AEECallback * pcb) 

Parameters:

Return Value: 

None

Comments: 

When ISHELL_Resume() is executed, the AEE Shell automatically fills up some of the data members 

of the AEECallback structure passed to it (for example, the members pfnCancel, pCancelData are filled 

by the AEE Shell.) To cancel a callback that has been registered, execute the pfnCancel member of the 

AEECallback structure and pass the pCancelData as a parameter to it. 

Example: 

AEECallback cb;

// Fill up the members of the cb structure

pIShell Pointer to the IShell Interface object 

pcb Pointer to AEECallback structure. When the application invokes thIs function, the followin

members in the AEECallback structure must be set by the caller:

 a. pfnNotify member must be filled by the caller. This is the callback function that is invoke

by AEE when the event loop is called. 

 b. pNotifyData must be filled by caller. This is the data that is passed to the callback 

function.

 c. pfnCancel member must be set to NULL by the caller before registering the callback fo

the first time. The AEE Shell fills this member with the right value when this function 

returns. 
376



IShell Interface  
cb.pfnNotify = MyCB; // My callback function. It must be declared 

as void MyCB(void * ) 

cb.pNotifyData = pme; // Applet Specific data

cb.pfnCancel = NULL; // Initialize to NULL. It is updated by Shell

//To register the callback do the following:

ISHELL_Resume(myShellPtr,&cb) ;

// To cancel the CB do the following:

if(cb.pfnCancel) 

cb.pfnCancel(&cb) ;

Side Effects: 

None

See Also:
AEECallback

Return to the List of functions
377



IShell Interface  
ISHELL_SendEvent() 

Description: 

The entire execution model of the AEE is based around a semi-cooperative event passing model. Under 

this model, events are sent to the active dialog or applet using the ISHELL_SendEvent() function. The 

ISHELL_SendEvent() function allows for control over the destination applet. This function sends the 

event directly to the destination applet. Events from one task to another must always be posted. 

Attempts to send the events from one task to another is rejected. Events can be sent to a specific applet 

by specifying the destination applet. If the applet is not currently running it is loaded and the event is 

sent directly to it. Under these conditions, the applet is started in the background 

(EVT_APP_START/EVT_APP_STOP events are not sent to the applet). Private events can be sent to 

an applet by defining the event at or above EVT_USER and specifying the applet ClassID. An error is 

returned if events in the range of EVT_USER and above are sent without an associated ClassID. If there 

is a dialog active (ISHELL_CreateDialog()) , the event is passed to the dialog before being passed to 

the applet. The event is only passed to the applet if the dialog did not process the event. The wp and 

dwp parameters associated with the event are specific to the event. The AEE Shell does not examine 

these values. 

Prototype:
boolean ISHELL_SendEvent(IShell * pIShell, AEECLSID clsApp,AEEEvent evt, 

uint16 wp, uint32 dwp) 

Parameters:

Return Value: 

Comments: 

None

pIShell Pointer to the IShell Interface object

clsApp Class of the applet for the event. This parameter is required for events in the range 

of EVT_USER and above.

evt AEE Events 

wp Event-specific 16-bit value

dwp Event-specific 32-bit value

TRUE If the event was processed 

FALSE If the event was not processed 
378



IShell Interface  
Side Effects: 

None

See Also:
ISHELL_PostEvent()

Return to the List of functions
379



IShell Interface  
ISHELL_SetAlarm() 

Description: 

This function allows the caller to set a long-term alarm for an applet. When the alarm expires, the applet 

is loaded and passed an EVT_ALARM event with the specified 16-bit nUserCode as the user 

parameter. If the applet is not active at the time of the alarm, it is loaded but is not sent an 

EVT_APP_START event. If the applet wishes to be activated, it must call ISHELL_StartApplet(). More 

than one alarm can be set for an applet by specifying a different 16-bit alarm nUserCode.

Prototype:
int ISHELL_SetAlarm(IShell * pIShell, AEECLSID cls, uint16 nUserCode, uint32 

nMins)

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
ISHELL_CancelAlarm()

Return to the List of functions

pIShell Pointer to the IShell Interface object

cls Applet class to call when the alarm expires

nUserCode 16-bit code passed to the applet

nMins Number of minutes to set the alarm from the current time

SUCCESS if operation is successful

EBADPARM Invalid parameter

ENOMEMORY Insufficient memory
380



IShell Interface  
ISHELL_SetPrefs() 

Description: 

This function provides a means of storing a structure containing applet or class level preferences.

Prototype:
int ISHELL_SetPrefs(IShell * pIShell, AEECLSID cls, uint16 wVer, void * pCfg, 

uint16 nSize) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
ISHELL_GetPrefs(), 

Return to the List of functions

pIShell Pointer to the IShell Interface object

cls AEECLSID of the preference type

wVer Version of the preference

pCfg Pointer to the preference data to be stored

nSize Size of memory block to store

SUCCESS Operation successful

EBADPARM Invalid parameter

ENOMEMORY Insufficient memory 

EFAILED Operation failed
381



IShell Interface  
ISHELL_SetTimer() 

Description: 

This function allows the caller to set a short-term timer. Upon expiration, the specified callback function 

is called, passing it the specified user data pointer as its first argument. Note the following:

•  The timer expires at Current Time + <Milliseconds specified> 

•  Timer callbacks are made in the application’s task state. The system shields the application 

developer from managing non-task callbacks. 

•  Any normal processing can be done in the callback. This includes drawing to the screen, 

writing to files, and other items. 

•  Timers do not repeat. The users must restart the timer if they desire a repeating timer.

•  Specifying the same callback/data pointers automatically overrides a pending timer with the 

same callback/data pointers.

•  Upon termination of the currently active applet, the AEE Shell scans the timer list. If the 

terminated applet was deleted as a result of its termination (that is the reference count went 

to 0), and an associated timer was found with the data pointer pointing to the applet, the timer 

is deleted.

Prototype:
int ISHELL_SetTimer(IShell * pIShell, int32 dwMSecs, PFNNOTIFY pfn, void * 

pUser) 

Parameters:

Return Value:

pIShell Pointer to the IShell Interface object

dwMSecs Timer expiration in milliseconds. The expiration occurs at Current Time + 

dwMSecs.

pfn The user callback that is called when the timer expires

pUser The user data pointer that is passed as the only parameter to the callback

SUCCESS Timer successfully set

EBADPARM Invalid parameter
382



IShell Interface  
Comments: 

None 

Side Effects: 

None

See Also:
ISHELL_GetTimerExpiration()

ISHELL_CancelTimer()

Return to the List of functions

EINVALIDTIME Invalid expiration time

ENOMEMORY Not enough memory left on heap to create timer
383



IShell Interface  
ISHELL_ShowCopyright()

Description: 

This function provides a means for the application to display the copyright information about the applet. 

An applet can use this function to display copyright and other applet related information on the screen. 

The information to be displayed is obtained from the Module Information File (MIF) for that applet. The 

following pieces of information can be displayed:

•  Application Name

•  Application Icon

•  Copyright String

•  Company Name

These four items are obtained from the MIF for that applet. 

NOTE: The lengths of the strings must be less than 24 characters for them to be displayed. 

This information is displayed in the form of a dialog box, and it stays on the screen until the 
user dismisses the dialog (by pressing the clear button).

Prototype:
boolean ISHELL_ShowCopyright(IShell * pIShell);

Parameters:

Return Value: 

Comments: 

This function internally uses ISHELL_Prompt() for the implementation.

Side Effects: 

None

pIShell Pointer to the IShell Interface object

TRUE If the copyright information was successfully displayed

FALSE If the copyright information was not successfully displayed
384



IShell Interface  
See Also: 
None

Return to the List of functions
385



IShell Interface  
ISHELL_StartApplet() 

Description: 

This function instructs the AEE Shell to start the applet associated with the specified 32-bit ClassID. If 

the requested class is supported and can be started, the AEE Shell loads and starts the applet. This 

call returns immediately to the caller before starting the applet. The applet is started asynchronously. 

Hence, if the applet classID being specified is not found, this function returns TRUE but the applet is 

not started. When the applet is started or when it is resumed the display is cleared and the 

IAPPLET_HandleEvent() is sent the EVT_APP_START or EVT_APP_RESUME event along with the 

AEEAppStart parameter block. If an applet is started by another applet, the currently active applet is 

suspended. 

Prototype:
int ISHELL_StartApplet(IShell * pIShell, AEECLSID cls) 

Parameters:

Return Value:

Comments: 
None

Side Effects: 
None

See Also:
ISHELL_CreateInstance()

ISHELL_CanStartApplet()
ISHELL_CloseApplet()

ISHELL_ActiveApplet()

Return to the List of functions

pIShell Pointer to the IShell Interface object

cls 32-bit applet ClassID

SUCCESS Applet created and started

ENOMEMORY Insufficient memory

ECLASSNOSUPPORT Class specified is not supported

EEXPIRED Applet has expired
386



ISocket Interface

The ISocket Interface provides methods to connect, transmit and receive data over, and close TCP and 

UDP sockets that are opened using the INETMGR_OpenSocket().

CAUTION: Your application must have a privilege level of Network or All to be able to invoke 

the functions in this interface.

The function ISOCKET_Connect() is called immediately after opening a socket. If the network 

subsystem (physical layer, RLP and PPP) of the device is not active, this function first establishes the 

necessary lower-layer protocol connections. For TCP sockets, ISOCKET_Connect() then sets up a 

TCP connection to the specified IP address and port number. For UDP sockets, the IP address and port 

number supplied when calling ISOCKET_Connect() are used as defaults for write operations to the 

socket. Therefore, for UDP sockets, the caller may specify the destination IP address and port numbers 

for each read or write operation, thereby allowing data to be sent to and received from multiple IP 

addresses and ports.

Once the socket has been connected, read and write operations may be used to exchange data over 

it. All data transfer operations are non-blocking; callback functions are used to notify the caller of the 

availability of socket for read or write operations. The caller can use ISOCKET_Readable() to provide 

the address of a callback function that must be invoked when there is data available to read. Similarly, 

ISOCKET_Writeable() registers the callback function that gets invoked when the socket is available for 

writing. Callbacks are also invoked whenever BREW detects any error conditions on the socket that 

require the application using this interface to take action. The function ISOCKET_Cancel() is used to 

cancel a pending callback operation, thereby preventing the application from receiving notification when 

there is a change in the status of the socket it is waiting on.

The functions ISOCKET_Read() and ISOCKET_Write() are used for reading data from and writing data 

to TCP sockets. If the read or write do not make progress, ISOCKET_Read() and 

ISOCKET_Write()return an indication that blocking has occured. The caller can then use 

ISOCKET_Readable() or ISOCKET_Writeable() to arrange to be notified when blocking is no longer 

present. If the number of bytes actually read or written is less than the number requested, repeat calls 

to ISOCKET_Read() or ISOCKET_Write() to complete the data transfer.

The functions ISOCKET_ReadV() and ISOCKET_WriteV() are used to receive and send data on TCP 

sockets when the application uses multiple, non-contiguous buffers for reading and writing. In place of 

the single buffer pointer supplied as a parameter to ISOCKET_Read() and ISOCKET_Write() ), 

ISOCKET_ReadV() and ISOCKET_WriteV() each take an array of buffer descriptors as input, with each 
387



ISocket Interface  
array element specifying the length in bytes and starting address of a buffer. These functions attempt 

to transfer an amount of data equal to the sum of the buffer lengths, starting with the first buffer in the 

array.

The functions ISOCKET_RecvFrom() and ISOCKET_SendTo() are used to exchange data over UDP 

sockets. Both these functions allow data to be sent to and received from multiple IP addresses and port 

numbers. As with TCP sockets, the application may call ISOCKET_Readable() or 

ISOCKET_Writeable() to designate a callback function if the read or write operation does not make 

progress immediately. 

The function ISOCKET_Bind() associates a local port number with a socket (if an application does not 

call this function before ISOCKET_Connect(), a default value is used for the local port number). The 

function ISOCKET_GetLastError() returns the error code for the last error detected by a function in the 

ISocket Interface . In cases where such a function returns something other than success, 

ISOCKET_GetLastError() provides more detailed information about why the function failed to perform 

its task. The function ISOCKET_GetPeerName() returns the IP address and port number of the entity 

with which data was most recently exchanged on the socket.

After completion of data transfer, a call to ISOCKET_Release() closes the socket connection and 

releases the ISocket Interface and frees the associated resources.

To use the socket services, perform the following steps:

1 Call ISHELL_CreateInstance() to create an instance of the INetMgr Interface.

2 Call INETMGR_OpenSocket() to create an instance of the ISocket Interface (to open a TCP 

or UDP socket).

3 Call ISOCKET_Connect() to establish the socket connection with the network entity with 

which the application will communicate.

4 Use the functions in the ISocket Interface to operate on the socket.

To read or write data over the socket:

1 Call the relevant (TCP/UDP, single/multiple I/O buffers) read or write functions described 

above.
388



ISocket Interface  
2 If the function returns a blocking indication, call ISOCKET_Readable() or 

ISOCKET_Writeable() to attempt the operation at a later time.

3 If less than the requested number of bytes were transferred, call the read or write function 

again to effect the transfer of the remaining data.

4 Repeat steps 1-3, until all of your data has been transferred.

5 Call ISOCKET_Bind() to specify the socket's local port number.

6 Call ISOCKET_GetPeerName() to obtain the IP address and port number of the most 

recent communication partner on the socket.

7 Call ISOCKET_Release() to close the socket when after completing the data transfer.

8 Call INETMGR_Release() to release the INetMgr Interface instance.
389



ISocket Interface  
List of functions

Functions in this interface include:

ISOCKET_AddRef()

ISOCKET_Bind()

ISOCKET_Cancel()

ISOCKET_Connect()

ISOCKET_GetLastError()

ISOCKET_GetPeerName()

ISOCKET_IOCtl()

ISOCKET_Read()

ISOCKET_Readable()

ISOCKET_ReadV()

ISOCKET_RecvFrom()

ISOCKET_Release()

ISOCKET_SendTo()

ISOCKET_Writeable()

ISOCKET_Write()

ISOCKET_WriteV()

Return to the Contents 
390



ISocket Interface  
ISOCKET_AddRef()

Description: 

This function increments the reference count of the ISocket Interface object. This allows the object to 

be shared by multiple callers. The object is freed when the reference count reaches 0 (zero). See 

ISOCKET_Release().

Prototype:
uint32 ISOUNDPLAYER_AddRef(ISocket * pISocket)

Parameters:

Return Value:

Incremented reference count for the object. .

Comments: 

A valid object returns a positive reference count

Side Effects: 

None

See Also:
ISOCKET_Release()

Return to the List of functions

pISocket Pointer to the ISocket Interface object
391



ISocket Interface  
ISOCKET_Bind() 

Description:

This function associates a local address and port with the socket. The ISOCKET_Bind() function is used 

on an unconnected socket. It is used to bind to either connection-oriented (stream) or connection-less 

(datagram) sockets. When a socket is created with a call to the socket function, it exists in a name space 

(address family), but it has no name assigned to it. Passing AEE_INADDR_ANY (zero) for the address 

explicitly requests that the socket be assigned to any local address. 

This ability to bind to a specific local IP address is not presently supported, and AEE_INADDR_ANY is 

the only valid value for the INAddr parameter. The local IP address is assigned automatically by the 

sockets library. 

Also note the possibility of an AEE_NET_WOULDBLOCK result. This normally occurs only in cases 

where a network connection (for example, a PPP link) must be established. In that event, 

ISOCKET_Bind() returns AEE_NET_WOULDBLOCK, and can be called again to obtain the final result 

(error or success). For notification of when to call ISOCKET_Bind() again, the ISOCKET_Writeable() 

call can be used. Just as with ISOCKET_Write(), a ISOCKET_Writeable() callback guarantees 

completion of the ISOCKET_Bind() call, so the caller must be prepared to receive 

AEE_NET_WOULDBLOCK again.) The user is not required to call ISOCKET_Bind() again; the user 

can proceed to attempt to send and/or receive data using the ISOCKET_SendTo() or 

ISOCKET_RecvFrom() -- the bind operation is attempted in the background when possible.

Prototype:
int ISOCKET_Bind(ISocket * pISocket, INAddr a, uint16 wPort) 

Parameters:

Return Value:

pISocket Pointer to the ISocket Interface object that needs to be connected 

a IP Address

wPort Port

AEE_NET_SUCCESS If successful 

AEE_NET_ERROR On error 
392



ISocket Interface  
Comments: 

The specific error code can be retrieved by calling ISOCKET_GetLastError(). One of the following error 

codes is returned:

Specific addresses not currently supported.

Side Effects: 

None

See Also:
None
Return to the List of functions

AEE_NET_EBADF Invalid socket descriptor is specified

AEE_NET_EOPNOTSUPP Operation not supported

AEE_NET_EADDRINUSE Local address is already in use

AEE_NET_EINVAL Socket is already attached to a local name

AEE_NET_EFAULT Invalid address parameter has been specified

AEE_NET_EAFNOSUPPORT Address family not supported 

AEE_NET_GENERAL_FAILURE NULL socket interface pointer

AEE_NET_WOULDBLOCK No data available now; try again later (See ISOCKET_Readable()) 
393



ISocket Interface  
ISOCKET_Cancel() 

Description:

This function allows an application to cancel (un-register) a callback function that has been previously 

registered using the ISOCKET_Readable() or ISOCKET_Writeable(). Cancellation simply annuls the 

effect of the prior ISOCKET_Readable() or ISOCKET_Writeable() , so that the callback function is not 

called when the socket makes progress. When both the pfn and pUser parameters are NULL, all 

registered callbacks are canceled.

Prototype:
void ISOCKET_Cancel(ISocket * pISocket, PFNNOTIFY pfn, void * pUser) 

Parameters:

Return Value:

None

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pISocket Pointer to the ISocket Interface for which the callback function needs to be 

de-registered

pfn Pointer to the callback function that needs to be cancelled

pUser Callback data that was used to register the callback
394



ISocket Interface  
ISOCKET_Connect() 

Description:

For sockets of type AEE_SOCK_STREAM, this attempts to initiate a TCP connection to the specified 

address and port. For sockets of type AEE_SOCK_DGRAM, the specified host and port are associated 

with the socket, and they serve as the default destination address for subsequent ISOCKET_Write() 

calls.

Prior to performing the above socket-specific behavior, ISOCKET_Connect() tries to acquire an IP 

address and ensure the underlying network layer is ready for communication. This may involve the 

establishment of an Internet connection using CDMA Packet Data or QNC if such a connection has not 

already been established.

After establishment of a connection to the Internet (and in the case of AEE_SOCK_STREAM sockets, 

the TCP connection) or in the event of a failure, the specified callback is called. The callback is passed 

the error code that describes how the connect operation completed. As with all network callbacks, the 

callback is called within the same thread context, at some point in time after the caller returns control 

to the AEE event loop. 

Prototype:
int ISOCKET_Connect(ISocket * pISocket, INAddr a, INPort wPort, PFNCONNECTCB 

pfn, void * pUser) 

Parameters:

Return Value:

pISocket Pointer to the ISocket Interface object 

a IP Address

wPort Port

pfn Address of the callback function that is invoked by AEE when the connect operation 

either succeeds or fails

pUser User defined data that is passed to the callback function when it is invoked

AEE_NET_SUCCESS If successful, this indicates that the callback is called after the 

caller relinquishes control

AEE_NET_ERROR If the call can not schedule the callback (for example, the 

callback function or parameter was NULL)
395



ISocket Interface  
Comments:

The INAddr and INPort arguments are assumed to be in network byte order (for example, big-endian). 

This issue is important for portability across simulator environments and potential device targets.

The callback is passed one of the following values describing the completion of the connect operation:

Side Effects: 

None

See Also:
None

Return to the List of functions

AEE_NET_SUCCESS Connect completed successfully and the socket is prepared for 

reading and/or writing

AEE_NET_EBADF Invalid socket descriptor is specified

AEE_NET_ECONNREFUSED Connection attempt refused

AEE_NET_ETIMEDOUT Connection attempt timed out

AEE_NET_EFAULT address parameter is invalid

AEE_NET_EIPADDRCHANGED IP address changed due to PPP resync

AEE_NET_EISCONN Socket is already connected (result was already received by a 

previous call to Connect())

AEE_NET_ENETDOWN Network subsystem unavailable

AEE_NET_EOPNOTSUPP Invalid server address specified

AEE_NET_EADDRREQ Destination address is required

AEE_NET_GENERAL_FAILURE NULL socket interface pointer
396



ISocket Interface  
ISOCKET_GetLastError() 

Description:

This function returns the last error that occurred with the given Socket. The value returned depends on 

the most recently called function. The documentation for each function describes what this function can 

return when called right after that function.

Prototype:
int ISOCKET_GetLastError(ISocket * pISocket) 

Parameters:

Return Value:

The most recently occurred error

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functionst

pISocket Pointer to the ISocket Interface object
397



ISocket Interface  
ISOCKET_GetPeerName() 

Description:

This function returns the IP address and port of the peer (for example, the IP address of the entity that 

this socket last communicated with).

Prototype:
int ISOCKET_GetPeerName(ISocket * pISocket, INAddr * pa, uint16 * pwPort) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
None
Return to the List of functions

pISocket Pointer to the I ISocket Interface object

pa Pointer to IP Address

pwPort Pointer to port

AEE_NET_SUCCESS If successful

AEE_NET_EBADF If unsuccessful or socket descriptor is invalid
398



ISocket Interface  
ISOCKET_IOCtl()

Description:

This function is under development and not available, as a result a call always returns EFAILED.

Prototype:
int ISocket_IOCtl(ISocket * pISocket, int nOption, uint32 dwVal)

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also: 
None
Return to the List of functions

 pISocket Function is under development and not available

 nOption Function is under development and not available

 dwVal Function is under development and not available

 EFAILED  Function is under development and not available.
399



ISocket Interface  
ISOCKET_Read() 

Description:

This function reads data from a socket. It reads data into a single buffer specified as a parameter to this 

function. This function always returns immediately. If there is no data available and the connection is 

still active, ISOCKET_Read() returns AEE_NET_WOULDBLOCK. To be notified when to call 

ISOCKET_Read() again, the caller must call ISOCKET_Readable().

Prototype:
int32 ISOCKET_Read(ISocket * pISocket, byte * pbDest, uint16 wSize) 

Parameters:

Return Value:

Comments: 

The specific error code can be retrieved by calling ISOCKET_GetLastError(). Error codes returned:

pISocket Pointer to the ISocket Interface object

pbDest Pointer to the buffer to hold the data that is to be received

wSize Specifies the number of bytes to read

bytes_read ( > 0) Any positive number indicates a number of bytes that have been 

successfully read into the provided buffer

0 (zero) There is no more data to be received; the peer has shut down the 

connection

AEE_NET_WOULDBLOCK No data available now; try again later (See 

ISOCKET_Readable()) 

AEE_NET_ERROR The socket is not in a valid state to receive data 

AEE_NET_EBADF Invalid socket descriptor is specfied

AEE_NET_ENOTCONN Socket not connected

AEE_NET_ECONNRESET TCP connection reset by server

AEE_NET_ECONNABORTED TCP connection aborted due to timeout or other failure

AEE_NET_EIPADDRCHANGED IP address changed, causing TCP connection reset
400



ISocket Interface  
Side Effects: 

None

See Also:
None

Return to the List of functions

AEE_NET_EPIPE Broken pipe

AEE_NET_EADDRREQ Destination address required

AEE_NET_ENETDOWN Network subsystem unavailable

AEE_NET_EFAULT Application buffer not valid part of address space

AEE_NET_GENERAL_FAILURE NULL socket interface pointer
401



ISocket Interface  
ISOCKET_Readable() 

Description:

This function allows an application to register a callback function to be invoked by the AEE when a non-

blocking read operation (Read, ReadV, or RecvFrom) on the specified socket can make progress. 

Progress can involve returning data, returning an error code, or returning 0 (zero) to indicate a closed 

connection -- anything but AEE_NET_WOULDBLOCK. This function would typically be used after a 

previous read attempt returned AEE_NET_WOULDBLOCK, but it can be used even if no read function 

has been called.

NOTE: There is no absolute guarantee that the read function makes progress after the 

callback, so the caller must always be prepared to call ISOCKET_Readable() again when the 

read function return AEE_NET_WOULDBLOCK.

Prototype:
void ISOCKET_Readable(ISocket * pISocket, PFNNOTIFY pfn, void * pUser) 

Parameters:

Return Value:

None

Comments: 

None

Side Effects: 

None

pISocket Pointer to the ISocket Interface object

pfn Address of the callback function. This function is invoked by AEE when the 

socket becomes ready to be read or when it is ready to be closed. If this 

is NULL, it cancels the Readable callback function registered by a 

previous call to ISOCKET_Readable (if any). It always returns 

AEE_NET_SUCCESS if pfn is passed as NULL.

pUser User defiend data that is passed to the callback function when it is invoked
402



ISocket Interface  
See Also:
None

Return to the List of functions
403



ISocket Interface  
ISOCKET_ReadV() 

Description:

This function reads data from a socket. It reads data into one or more buffers described by the entries 

in the iov[] array. This function always returns immediately. If there is no data available and the 

connection is still active, ISOCKET_ReadV() returns AEE_NET_WOULDBLOCK. To be notified when 

to call ISOCKET_ReadV() again, the caller must call ISOCKET_Readable(). 

Prototype:
int32 ISOCKET_ReadV(ISocket * pISocket, SockIOBlock iov[] , int16 iovcount) 

Parameters:

Return Value:

Comments: 

The specific error code can be retrieved by calling ISOCKET_GetLastError(). 

Error codes returned:

pISocket Pointer to the ISocket Interface object 

iov Array of SockIOBlock structures into which data can be read

iovcount Specifies the number of entries in the iov array

bytes_read ( > 0) Any positive number indicates the total of all the bytes read into the 

provided buffers

0 (zero) There is no more data to be received; the peer has shut down the 

connection

AEE_NET_WOULDBLOCK No data available now; try again later (See 

ISOCKET_Readable()) 

AEE_NET_ERROR The socket is not in a valid state to receive data 

AEE_NET_EBADF Invalid socket descriptor is specfied

AEE_NET_ENOTCONN Socket not connected

AEE_NET_ECONNRESET TCP connection reset by server

AEE_NET_ECONNABORTED TCP connection aborted due to timeout or other failure
404



ISocket Interface  
Side Effects: 

None

See Also:
None
Return to the List of functions

AEE_NET_EIPADDRCHANGED IP address changed, causing TCP connection reset

AEE_NET_EPIPE Broken pipe

AEE_NET_EADDRREQ Destination address required

AEE_NET_ENETDOWN Network subsystem unavailable

AEE_NET_EFAULT Application buffer not valid part of address space

AEE_NET_EWOULDBLOCK Operation would block

AEE_NET_GENERAL_FAILURE NULL socket interface pointer
405



ISocket Interface  
ISOCKET_RecvFrom() 

Description:

This functions reads data from UDP socket and records the IP address and port of the sender. This 

function always returns immediately with the number of bytes read. If no packets have arrived and the 

socket is still in a valid state, ISOCKET_RecvFrom() returns AEE_NET_WOULDBLOCK. 

ISOCKET_Readable() may be used to receive notification of when to try ISOCKET_RecvFrom() again.

Prototype:
int32 ISOCKET_RecvFrom(ISocket * pISocket, byte * pBuff, uint16 wbytes, 

uint16 wflags, INAddr * pa, INPort * pwPort) 

Parameters:

Return Value:

Comments: 
The specific error code can be retrieved by calling ISOCKET_GetLastError() and one of the following error 

codes is returned:

pISocket Pointer to the ISocket Interface object

pBuff Buffer to hold the received data

wBytes Size of the buffer, in terms of number of bytes

wflags Not used and must be set to 0

pa Pointer to IP Address

pwPort Pointer to port

bytes_read ( > 0) Any positive number indicates a number of bytes that have been 

successfully read into the provided buffer 

0 (zero) There is no more data to be received and the peer has shut down the 

connection 

AEE_NET_WOULDBLOCK No data available now; try again later (See ISOCKET_Readable()) 

AEE_NET_ERROR Socket is not in a valid state to receive data 

AEE_NET_EEOF End of file 

AEE_NET_EBADF Invalid socket descriptor is specfied

AEE_NET_EAFNOSUPPORT Address family not supported
406



ISocket Interface  
Side Effects: 

None

See Also:
None

Return to the List of functions

AEE_NET_EADDRREQ Destination address required 

AEE_NET_ENETDOWN Network subsystem unavailable

AEE_NET_EFAULT Application buffer not valid part of address space

AEE_NET_EOPNOTSUPP Option not supported

AEE_NET_GENERAL_FAILURE NULL socket interface pointer
407



ISocket Interface  
ISOCKET_Release() 

Description:

This function decrements the reference count for the ISocket Interface object. If the reference count 

reaches 0 (zero), the funhction closes the socket.

Prototype:
uint32 ISOCKET_Release(ISocket * pISocket)

Parameters:

Return Value:

The updated reference count

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pISocket Pointer to the ISocket Interface object
408



ISocket Interface  
ISOCKET_SendTo() 

Description:

This function sends a UDP packet to the specified IP address and port from the local port bound to the 

socket. This function must be used with sockets of type AEE_NET_DGRAM (UDP) -- not with sockets 

of type AEE_NET_STREAM (TCP). If the socket has not been bound to a local address and port, this 

function binds it to a port. 

Sockets always operate in non-blocking mode. This function returns immediately and, if successful, 

returns the number of bytes written. If no bytes can be successfully sent and the connection is still 

active, the function returns AEE_NET_WOULDBLOCK. To be notified when to call ISOCKET_SendTo() 

again, the caller must call ISOCKET_Writeable(). 

Prototype:
int32 ISOCKET_SendTo(ISocket * pISocket,

byte * pBuff, 

uint16 wBytes, 

uint16 wflags, 

IPAddr a, 

INPort wPort) 

Parameters:

pISocket Pointer to the ISocket Interface object

pBuff Buffer containing data to be sent

wBytes Size of the buffer, in terms of number of bytes

wflags Not used and must be set to 0

a IP Address

wPort Port 
409



ISocket Interface  
Return Value:

Comments: 

The specific error code can be retrieved by calling GetLastError(). One of the following error codes is 

returned:

Side Effects: 

None

See Also:
None
Return to the List of functions

AEE_NET_WOULDBLOCK Cannot send data at this time. Use ISOCKET_Writeable() to wait 

for readiness. This condition can be encountered if transmit buffers 

have been filled, or when a network connection is being 

established. 

AEE_NET_ERROR Indicates failure 

AEE_NET_EEOF End of file 

AEE_NET_EBADF Invalid socket descriptor is specfied

AEE_NET_EAFNOSUPPORT Address family not supported

AEE_NET_EADDRREQ Destination address required 

AEE_NET_ENETDOWN Network subsystem unavailable

AEE_NET_EFAULT Application buffer not valid part of address space

AEE_NET_EOPNOTSUPP Option not supported

AEE_NET_GENERAL_FAILURE NULL socket interface pointer
410



ISocket Interface  
ISOCKET_Writeable()

Description:

This function allows an application to register a callback function to be invoked by the AEE when a non-

blocking write operation (ISOCKET_Write(), ISOCKET_WriteV(), or ISOCKET_SendTo()) on the 

specified socket can make progress. Progress can involve writing data or returning an error code -- 

anything but AEE_NET_WOULDBLOCK. This function would typically be used after a previous write 

attempt returned AEE_NET_WOULDBLOCK, but it can be used even if no read function has been 

called.

NOTE: There is no absolute guarantee that the read function makes progress after the 

callback, so the caller must always be prepared to call ISOCKET_Readable() again when the 

write function return AEE_NET_WOULDBLOCK.

Prototype:
void ISOCKET_Writeable(ISocket * pISocket, PFNNOTIFY pfn, void * pUser)

Parameters:

Return Value:

None

Comments: 

None

Side Effects: 

None

pISocket Pointer to the ISocket Interface object for which the callback function needs to be 

registered

pfn Address of the callback function. This function is invoked by AEE when the socket 

becomes ready to receive data or when it is ready to be closed. If this is NULL, it 

cancels the Writeable callback function registered by a previous call to 

ISOCKET_Writeable().

pUser  User defined data that is passed to the callback function when it is invoked
411



ISocket Interface  
See Also:
None

Return to the List of functions
412



ISocket Interface  
ISOCKET_Write() 

Description:

This function writes data to a connected socket. It writes data from a single buffer. This function always 

returns immediately with the number of bytes that were successfully written. If no bytes can be 

successfully written and the connection is still active, ISOCKET_Write() returns 

AEE_NET_WOULDBLOCK. To be notified when to call ISOCKET_Write() again, the caller must call 

ISOCKET_Writeable().

Prototype:
int32 ISOCKET_Write(ISocket * pISocket, byte * pBuffer, uint16 wBytes) 

Parameters:

Return Value:

Comments: 

The specific error code can be retrieved by calling ISOCKET_GetLastError(). One of the following 

possible error codes is returned.

pISocket Pointer to the I ISocket Interface object

pBuffer Pointer to the buffer from which the data is sent

wByteCount Specifies the size of the buffer in terms of number of bytes in the buffer

bytes_written ( > 0) Any positive number indicates the number of bytes successfully written

AEE_NET_WOULDBLOCK No bytes can be written at this time; try again later (See 

ISOCKET_Writeable()) 

AEE_NET_ERROR Failed to write any bytes 

AEE_NET_EBADF Invalid socket descriptor is specfied

AEE_NET_ENOTCONN Socket not connected

AEE_NET_ECONNRESET TCP connection reset by server

AEE_NET_ECONNABORTED TCP connection aborted due to timeout or other failure

AEE_NET_EIPADDRCHANGED IP address changed, causing TCP connection reset

AEE_NET_EPIPE Broken pipe

AEE_NET_EADDRREQ Destination address required
413



ISocket Interface  
Side Effects: 

None

See Also:
None

Return to the List of functions

AEE_NET_ENETDOWN Network subsystem unavailable

AEE_NET_EFAULT Application buffer not valid part of address space

AEE_NET_GENERAL_FAILURE NULL socket interface pointer
414



ISocket Interface  
ISOCKET_WriteV() 

Description:

This function writes data to a connected socket. It gathers data from one or more buffers described by 

the entries in the iov[] array into a single write operation. With AEE_SOCK_STREAM (TCP) sockets, 

behaviour can differ from separate calls to ISOCKET_Write() in that multiple calls to ISOCKET_Write() 

might unnecessarily generate multiple TCP packets. With AEE_SOCK_DGRAM (UDP) sockets, the 

separate buffers are treated as an individual packet. 

This function always returns immediately with the number of bytes that were successfully written. If no 

bytes can be successfully written and the connection is still active, ISOCKET_Write() returns 

AEE_NET_WOULDBLOCK. To be notified when to call ISOCKET_WriteV() again, the caller must call 

ISOCKET_Writeable().

Prototype:
int32 ISOCKET_WriteV(ISocket * pISocket, SockIOBlock iov[] , uint16 

wiovcount) 

Parameters:

Return Value:

Comments: 

The specific error code can be retrieved by calling ISOCKET_GetLastError(). One of the following error 

codes is returned

pISocket Pointer to the ISocket Interface object

iov An array of SockIOBlocks containing the individual buffers to be sent

wiovcount Number of entries inside the SockIOBlock structure

bytes_written ( > 0) Any positive number indicates the total number of bytes successfully 

written from all of the iov[] buffers

AEE_NET_WOULDBLOCK No bytes can be written at this time; try again later (See 

ISOCKET_Writeable()

AEE_NET_ERROR Failed to write any bytes 
415



ISocket Interface  
Side Effects: 

None

See Also:
None

Return to the List of functions

AEE_NET_EBADF Invalid socket descriptor is specfied

AEE_NET_ENOTCONN Socket not connected

AEE_NET_ECONNRESET TCP connection reset by server

AEE_NET_ECONNABORTED TCP connection aborted due to timeout or other failure

AEE_NET_EIPADDRCHANGED IP address changed, causing TCP connection reset

AEE_NET_EPIPE Broken pipe

AEE_NET_EADDRREQ Destination address required

AEE_NET_ENETDOWN Network subsystem unavailable

AEE_NET_EFAULT Application buffer not valid part of address space

AEE_NET_GENERAL_FAILURE  NULL socket interface pointer
416



ISound Interface

The ISound Interface provides the basic sound services. These services enable playing of beeps, 

rings, vibrations, various tones and list of tones. ISound defines a set of tones that can be played for a 

period of time or continuously until explicitly stopped. The tone identifiers can be put in a list and all the 

tones in the list can be played using a single function call. The ISound Interface also provides functions 

to get and set the volume. 

To use the ISound Interface 

1 Create an instance of the ISound Interface with ClassID: AEECLSID_SOUND 

2 Register the status callback function using the ISOUND_RegisterNotify(). ISound always 

communicates with applets through this callback function. The Callback function carries 

information regarding user data, status callback types (AEE_SOUND_STATUS_CB, 

AEE_SOUND_VOLUME_CB) and status (AEE_SOUND_SUCCESS, 

AEE_SOUND_PLAY_DONE, AEE_SOUND_FAILURE) Data, if any, is returned in the 

callback through the dwParam parameter which points to AEESoundPlayerCmdData. 

Otherwise dwParam is NULL. It is not always required to register a callback function; 

applet developer can choose not to get any ISound events as follows:

ISOUND_RegisterNotify(pISound, NULL, NULL); 

3 Set ISound parameters using the ISOUND_Set(). This step is optional and ISound 

assumes default values for the parameters if it is not performed. After these steps, ISound 

is ready for service. See the ISound function description for more details on each function. 

Tone-Database: 

On the target device, device manufacturers can map elements of the AEESoundTone type to the 

corresponding IDs in the tone database. For example, AEE_TONE_0 maps to SND_0 on an MSM3300-

based device. 

In the BREW Emulator, device manufacturers or applet developers can define their own tone files in 

.WAV format and add them to BREW Emulator tone-database. The tones are saved in the 

<\bin\DataFiles> subdirectory under the <\BREW> directory(where BREW is installed) based on 

AEESoundTone type. For example, to add AEE_TONE_0 to BREW Emulator, save your .WAV file as 

"AEE_TONE_0.wav" in the <\bin\DataFiles> subdirectory under the <\BREW> directory(where BREW 

is installed). Same mechanism applies to BeepType required in ISHELL_Beep() function. For example, 
417



ISound Interface  
to create your own BEEP_ALERT tone, save your .WAV file as "BEEP_ALERT.wav" in the 

<\bin\DataFiles> subdirectory under the <\BREW> directory(where BREW is installed). A few sample 

tones and all beep types are provided. Their usage is illustrated in the sample Sound applet. 
418



ISound Interface  
List of functions

Functions in this interface include:

ISOUND_AddRef()

ISOUND_Get()

ISOUND_GetVolume()

ISOUND_PlayFreqTone()

ISOUND_PlayTone()

ISOUND_PlayToneList()

ISOUND_RegisterNotify()

ISOUND_Release()

ISOUND_Set()

ISOUND_SetDevice()

ISOUND_SetVolume()

ISOUND_StopTone()

ISOUND_StopVibrate()

ISOUND_Vibrate()

Return to the Contents
419



ISound Interface  
ISOUND_AddRef() 

Description: 

This function increments the reference count of the ISound Interface object. This allows the object to 

be shared by multiple callers. The object is freed when the reference count reaches 0 (zero). See 

ISOUND_Release().

Prototype:
uint32 ISOUND_AddRef(ISound * pISound) 

Parameters:

Return Value:

Returns the incremented reference count for the object. A valid object returns a positive reference 

count.

Comments: 

None

Side Effects: 

None

See Also:
ISOUND_Release()
Return to the List of functions

pISound Pointer to the ISound Interface object
420



ISound Interface  
ISOUND_Get() 

Description:

This function gets the device attributes of ISound Interface object.

Prototype:
void ISOUND_Get(ISound * pISound, const AEESoundInfo * pSoundInfo) 

Parameters:

Return Value: 

None

Comments:

See ISOUND_Set() function description for details on AEESoundInfo

Side Effects:

None

See Also:
None

Return to the List of functions

pISound [in] Pointer to ISound Interface object

pSoundInfo [out] Structure containing ISound device attributes
421



ISound Interface  
ISOUND_GetVolume() 

Description:

This function retrieves the current volume used for the device/method pair.

Prototype:
void ISOUND_GetVolume(ISound * pISound) 

Parameters:

Return Value: 

None

Comments:

None

Side Effects:

The volume level is sent back to the client via the callback function the <\bin\DataFiles> subdirectory 

under the <\BREW> directory(where BREW is installed). The result includes the status as well as the 

current volume level. The status can be one of the following values:

The current volume level is included in the status event as additional data.

See Also:
None

Return to the List of functions

pISound Pointer to ISound Interface object

AEE_SOUND_SUCCESS Successful retrieving the current volume level. The dwParam of the 

callback function contains volume

AEE_SOUND_FAILURE Failed to retrieve the current volume level and the volume level is reset 

to 0
422



ISound Interface  
ISOUND_PlayFreqTone() 

Description:

This function plays a tone given a high frequency and a low frequency for the specified amount of time. 

Prototype:
void ISOUND_PlayFreqTone(ISound * pISound, uint16 wHiFreq, uint16 wLoFreq, 

uint16 wDuration) 

Parameters:

Return Value: 

None

Comments:

If the duration is set to 0 (zero), the tone plays until the ISOUND_StopTone() call is issued. This function 

is not supported in the BREW Emulator but it is supported on the target device.

Side Effects:

The result of the operation is sent to the client via the callback function pointer. Also, when the operation 

is done, it notifies the client through the same callback function pointer.

The status can be one of the following values:

pISound Pointer to ISound Interface object

wHiFreq Higher frequency of the DTMF pair

wLoFreq Lower frequency of the DTMF pair

wDuration Tone play duration in milliseconds

AEE_SOUND_SUCCESS Successful playing the tone

AEE_SOUND_FAILURE Failed playing the tone

AEE_SOUND_PLAY_DONE Done playing the tone or replaced by another tone
423



ISound Interface  
See Also:
None

Return to the List of functions
424



ISound Interface  
ISOUND_PlayTone() 

Description:

This function plays a tone given a tone ID for the specified amount of time. 

Prototype:
void ISOUND_PlayTone(ISound * pISound, AEESoundToneData toneData) 

Parameters:

Return Value: 

None

Comments:

If the duration is set to 0 (zero) for any tone in the list, the tone plays until the ISOUND_StopTone() call 

is issued.

Side Effects:

The result of the operation is sent to the client via the callback function the <\bin\DataFiles> subdirectory 

under the <\BREW> directory(where BREW is installed). Also, when the operation is done, it notifies 

the client through the same callback function the <\bin\DataFiles> subdirectory under the <\BREW> 

directory(where BREW is installed).

The status can be one of the following values:

pISound Pointer to ISound Interface object

toneData Structure containing a ToneID and the duration in milliseconds for 

which that tone is to be played

AEE_SOUND_SUCCESS Successful playing the tone

AEE_SOUND_FAILURE Failed to play the tone

AEE_SOUND_PLAY_DONE Done playing the tone or replaced by another tone
425



ISound Interface  
See Also:
None

Return to the List of functions
426



ISound Interface  
ISOUND_PlayToneList() 

Description:

This function plays a list of tones, given a tone ID for the specified amount of time for each tone.

Prototype:
void ISOUND_PlayToneList(ISound * pISound, AEESoundToneData * pToneData, 

uint16 wDataLen)

Parameters:

Return Value: 

None.

Comments:

Call ISOUND_StopTone() to end the playing of tone list. If the duration is set to 0 (zero) for any tone in 

the list, the tone plays until the ISOUND_StopTone() call is issued. 

Side Effects:

The result of the operation is sent to the client, for each tone in the tone list, via the callback function 

pointer. Also, when the operation is done, it notifies the client through the same callback function 

pointer. The status can be one of the following values:

See Also:
None

pISound Pointer to ISound Interface object

pToneData List(Array) of AEESoundToneData structures, each containing ToneID and 

duration in milliseconds to be played for that tone

wDataLen Number of tones in the pToneData list

AEE_SOUND_SUCCESS Received for each successful playing of tone in the tone list

AEE_SOUND_FAILURE Failed playing the tone in the tone list and tone list playback ends

AEE_SOUND_PLAY_DONE Received for each tone, in the tone list, after the tone playback is 

complete or replaced by another tone
427



ISound Interface  
Return to the List of functions
428



ISound Interface  
ISOUND_RegisterNotify() 

Description:

This function registers the status callback function. 

Prototype:
void ISOUND_RegisterNotify(ISound * pISound, PFNSOUNDSTATUS pfn, const void 

* pUser) 

Parameters:

Return Value: 

None

Comments:

The following functions and their callback status types are listed here:

pISound Pointer to ISound Interface object

pfn Status callback function pointer (can be NULL, if no callback is 

required)

pUser User data for unique correlation/identification of the transaction. 

This piece of information is not retrieved or processed by ISound 

and can be NULL if no identifying data is required. This same data 

pointer is passed back to the client along with callback status to 

correlate the transactions.

ISOUND_PlayTone AEE_SOUND_STATUS_CB

ISOUND_PlayToneList AEE_SOUND_STATUS_CB

ISOUND_PlayFreqTone AEE_SOUND_STATUS_CB

ISOUND_StopTone AEE_SOUND_STATUS_CB

ISOUND_Vibrate AEE_SOUND_STATUS_CB

ISOUND_StopVibrate AEE_SOUND_STATUS_CB

ISOUND_GetVolume AEE_SOUND_VOLUME_CB

ISOUND_SetVolume AEE_SOUND_STATUS_CB
429



ISound Interface  
The above list also indicates what types of status are sent out through the callback functions. The status 

types determine the way the data portion of the status is interpreted. The status indicates the status of 

the operations or the result of the query in case of get-operations. See each of the function descriptions 

to find out the effects of this registered callback function.

Side Effects:

None

See Also:
None
Return to the List of functions
430



ISound Interface  
ISOUND_Release() 

Description: 

This function decrements the reference count of an object. The object is freed from memory and is no 

longer valid once the reference count reaches 0 (zero).

Prototype:
uint32 ISOUNDPLAYER_Release(ISound * pISound) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
ISOUND_AddRef()
Return to the List of functions

pISound Pointer to the ISound Interface object

reference count Decremented reference count for the object

0 (zero) If the object has been freed and is no longer valid 
431



ISound Interface  
ISOUND_Set() 

Description:

This function sets the device attributes of ISound Interface object. The device attributes include Device, 

Method, APath, Ear-piece Mute Control and Mic Mute Control.

Prototype:
int ISOUND_Set(ISound * pISound, const AEESoundInfo * pSoundInfo) 

Parameters:

Return Value: 

Comments:

The device is not connected until you call ISOUND_SetDevice().

Side Effects:

If SUCCESS is NOT returned, then ISound Interface retains the previous values. If it is created first time 

it has the default values. 

See Also:
AEESoundInfo

Return to the List of functions

pISound Pointer to ISound Interface object

pSoundInfo Structure containing ISound device attributes

SUCCESS ISound device attributes are set

EBADPARAM One or more AEESoundInfo parameters are wrong
432



ISound Interface  
ISOUND_SetDevice() 

Description:

This function commands ISound to connect to a specific audio device. There is always one, and only 

one, audio device connected at any particular time. The audio device is specified by the call to the 

ISOUND_Set() function.

Prototype:
void ISOUND_SetDevice(ISound * pISound) 

Parameters:

Return Value: 

None

Comments:

This function is not supported in BREW Emulator but it is supported on the target device.

Side Effects:

The result of the operation is sent to the client via the callback function the <\bin\DataFiles> subdirectory 

under the <\BREW> directory(where BREW is installed). The status can be one of the following values:

See Also:
ISOUND_Set()

Return to the List of functions

pISound Pointer to ISound Interface object

AEE_SOUND_SUCCESS Successful connecting to the new sound device

AEE_SOUND_FAILURE Failed to connect to the new sound device
433



ISound Interface  
ISOUND_SetVolume() 

Description:

This function sets the volume to be used for the device/method pair specified in the call to 

ISOUND_Set(). 

Prototype:
void ISOUND_SetVolume(ISound * pISound, uint16 wVolume) 

Parameters:

Return Value: 

None

Comments:

The range of volume is from 0 (zero, lowest) to AEE_MAX_VOLUME (highest). In the BREW Emulator, 

the volume increases linearly. This may not be the case on target device. 

Side Effects:

The result of the operation is sent to the client via the callback function pointer. The result can be one 

of the following:

See Also:
ISOUND_Set()
Return to the List of functions

pISound Pointer to ISound Interface object

wVolume New volume level for device/method

AEE_SOUND_SUCCESS Successful setting the new volume level

AEE_SOUND_FAILURE Failed setting the new volume level; the old level still 

prevails
434



ISound Interface  
ISOUND_StopTone() 

Description:

This function stops playing current tone or ends the playback of tone list. 

Prototype:
void ISOUND_StopTone(ISound * pISound)

Parameters:

Return Value: 

None.

Comments:

In BREW Emulator, this function stops the vibration tone, if vibration is active.

Side Effects:

The result of the operation is sent to the client, via the callback function pointer. Also, when the 

operation is done, it notifies the client through the same callback function pointer. The status can be one 

of the following values:

See Also:
ISOUND_Vibrate()

Return to the List of functions

pISound  Pointer to ISound Interface object

AEE_SOUND_SUCCESS Successful and accepted the stop command. If playback of a tone 

or tone list is active, then it also generates 

AEE_SOUND_PLAY_DONE callback

AEE_SOUND_FAILURE Failed and did not accept the stop command
435



ISound Interface  
ISOUND_StopVibrate() 

Description:

This stops the current vibration. 

Prototype:
void ISOUND_StopVibrate(ISound * pISound) 

Parameters:

Return Value: 

None

Comments:

In the BREW Emulator, this function is the same as calling ISOUND_StopTone(). As a result, it may stop 

an ongoing ISOUND_PlayTone() playback.

Side Effects:

This function does not cause any callback.

See Also:
ISOUND_Vibrate()

Return to the List of functions

pISound Pointer to ISound Interface object
436



ISound Interface  
ISOUND_Vibrate() 

Description:

This function causes the device to vibrate for the specified amount or until ISOUND_StopVibrate() is 

called.

Prototype:
void ISOUND_Vibrate(ISound * pISound, uint16 w6Duration) 

Parameters:

Return Value: 

None

Comments:

In the BREW Emulator, this function is the same as calling ISOUND_PlayTone() with a sample tone. As 

a result, it may stop ongoing ISOUND_PlayTone() playback or vice versa. 

Side Effects:

This function does not cause any callback.

See Also:
ISOUND_StopVibrate()

Return to the List of functions

pISound Pointer to the public ISound object

wDuration Duration of vibration in milliseconds
437



ISoundPlayer Interface

This interface provides the sound player services for MIDI and MP3. 

To use the services of ISoundPlayer Interface

1 Create the ISoundPlayer object by calling ISHELL_CreateInstance() with 

AEECLSID_SOUNDPLAYER as ClassID. .

2 Call ISOUND_RegisterNotify() to register the ISoundPlayer callback function. The 

ISoundPlayer Interface always uses this callback function to notify the applet of any events 

or status changes. There are five types of callback functions invoked by the ISoundPlayer 

Interface.

AEE_SOUNDPLAYER_PLAY_CB, 

AEE_SOUNDPLAYER_SOUND_CB, 

AEE_SOUNDPLAYER_STATUS_CB,

AEE_SOUNDPLAYER_TIME_CB.

AEE_SOUNDPLAYER_VOLUME_CB

Each callback type, in turn, contains a set of status indications that are valid only for 

callbacks of that type.

For example, for AEE_SOUNDPLAYER_PLAY_CB, the status type can be 

AEE_SOUNDPLAYER_SUCCESS, 

AEE_SOUNDPLAYER_PAUSE, 

AEE_SOUNDPLAYER_RESUME, and so forth

Any Data is returned in a callback through the dwParam parameter which points to an 

AEESoundPlayerCmdData structure, if data is present. Otherwise the dwParam is NULL. 

It is not always required to register a callback function; you can choose not to get any 

ISoundPlayer events by calling ISOUNDPLAYER_RegisterNotify() as follows:

ISOUNDPLAYER_RegisterNotify(pISoundPlayer, NULL, NULL); 

3 Set the source of the MIDI/MP3 media (file/buffer/MIME) using the ISOUNDPLAYER_Set() 

function.

4 In the applet event handler, call
438



ISoundPlayer Interface  
5 Before exit, always:

a. Un-register the callback function by calling

ISOUNDPLAYER_RegisterNotify(pISoundPlayer, NULL, NULL);

b. Call ISOUNDPLAYER_Stop()

More on callback:

During playback, every second, the applet is notified of AEE_SOUNDPLAYER_TICK_UPDATE status 

via AEE_SOUNDPLAYER_PLAY_CB. This can be used by applet to update the progress of playback.

After rewind, fast forward, pause or resume, the dwParam parameter of 

AEE_SOUNDPLAYER_PLAY_CB callback function points to the current position, in milliseconds, of the 

playback.

Again, applets can use this to update the playback progress. These mechanisms are demonstrated in 

the sample MIDI-MP3 applet.

ISoundPlayer internally uses an instance of ISound for setting the device and for setting/getting the 

volume of the output. This makes it easy. You need not create an ISound instance for these operations. 

These mechanisms are demonstrated in the sample MIDI-MP3 Player applet 

ISOUNDPLAYER_Play() To play the MIDI/MP3 file 

ISOUNDPLAYER_Stop() To stop the playback

ISOUNDPLAYER_Rewind() To rewind playback for n milliseconds

ISOUNDPLAYER_FastForward() To fast forward playback for n milliseconds

ISOUNDPLAYER_Pause() To pause the playback

ISOUNDPLAYER_Resume() To resume the playback

. . . And other ISoundPlayer functions
439



ISoundPlayer Interface  
List of functions

Functions in this interface include:

ISOUNDPLAYER_AddRef()

ISOUNDPLAYER_FastForward()

ISOUNDPLAYER_GetTotalTime()

ISOUNDPLAYER_GetVolume

ISOUNDPLAYER_Pause()

ISOUNDPLAYER_Play()

ISOUNDPLAYER_RegisterNotify()

ISOUNDPLAYER_Release()

ISOUNDPLAYER_Resume()

ISOUNDPLAYER_Rewind()

ISOUNDPLAYER_Set()

ISOUNDPLAYER_SetSoundDevice()

ISOUNDPLAYER_SetStream()

ISOUNDPLAYER_SetTempo()

ISOUNDPLAYER_SetTune()

ISOUNDPLAYER_SetVolume()

ISOUNDPLAYER_Stop()

Return to the Contents
440



ISoundPlayer Interface  
ISOUNDPLAYER_AddRef()

Description: 

This function increments the reference count of the ISoundPlayer Interface object. This allows the 

object to be shared by multiple callers. The object is freed when the reference count reaches 0 (zero). 

See ISOUNDPLAYER_Release().

Prototype:
uint32 ISOUNDPLAYER_AddRef(ISoundPlayer * pISoundPlayer)

Parameters:

Return Value:

Incremented reference count for the object

Comments: 

A valid object returns a positive reference count.

Side Effects: 

None

See Also:
ISOUNDPLAYER_Release()

Return to the List of functions

pISoundPlayer Pointer to the ISoundPlayer Interface object
441



ISoundPlayer Interface  
ISOUNDPLAYER_FastForward() 

Description:

This function issues a command to fast-forward the current MIDI/MP3 playback.

Prototype:
void ISOUNDPLAYER_FastForward(ISoundPlayer * pISoundPlayer, uint32 dwTime) 

Parameters:

Return Value: 

None

Comments:

None

Side Effects:

The result of the operation is sent to the client via the callback function pointer. The status can be one 

of the following values:

If this operation is successful, the function also triggers another event to be sent to the client with the 

AEE_SOUNDPLAYER_FFORWARD value for the playback transaction.

See Also:
None

Return to the List of functions

pISoundPlayer Pointer to ISoundPlayer Interface object

dwTime Amount of time, in milliseconds, to fast-forward the current 

playback

AEE_SOUNDPLAYER_SUCCESS Successful and accepted the fast-forward command

AEE_SOUNDPLAYER_FAILURE Failed and did not accept the fast-forward command
442



ISoundPlayer Interface  
ISOUNDPLAYER_GetTotalTime() 

Description:

This function issues a command to request the calculation of the total playback time of the specified 

MP3/MIDI input source. 

Prototype:
void ISOUNDPLAYER_GetTotalTime(ISoundPlayer * pISoundPlayer) 

Parameters:

Return Value: 

None

Comments:

Only one play or get-total-time command executes at a time; a play command overrides any previous 

play or get-total-time command. However, a get-total-time command does not interrupt a play 

command.

Side Effects:

The result of the operation is sent to the client via the AEE_SOUNDPLAYER_TIME_CB callback 

function pointer. The status can be one of the following values:

See Also:
None

Return to the List of functions

pISoundPlayer Pointer to ISoundPlayer Interface object

AEE_SOUNDPLAYER_SUCCESS Successful getting the total playback time

AEE_SOUNDPLAYER_FAILURE Failed getting the total playback time

AEE_SOUNDPLAYER_DONE Successful getting the total playback time. The dwParam parameter 

to the callback function points to AEESoundPlayerCmdData . The 

dwTotalTime parameter contains the current time in milliseconds.

AEE_SOUNDPLAYER_ABORTED Command is aborted by the ISOUNDPLAYER_Play() command
443



ISoundPlayer Interface  
ISOUNDPLAYER_GetVolume

Description:

This function gets the volume for the current playback device and method.

Prototype:
void ISOUNDPLAYER_GetVolume(ISoundPlayer * pISoundPlayer)

Parameters:

Return Value: 

None.

Comments:

The volume range is from 0 (zero, lowest) to AEE_MAX_VOLUME (highest).

Side Effects:

The result of the operation is sent to the client via the AEE_SOUND_VOLUME_CB callback function 

pointer. The status can be one of the following values:

See Also
AEESoundCmd

ISOUNDPLAYER_SetVolume()
Return to the List of functions

 pISoundPlayer  Pointer to the ISoundPlayer Interface object

AEE_SOUNDPLAYER_SUCCESS Successful getting volume value. The dwParam points to 

AEESoundPlayerCmdData and the wVolume contains the current 

volume. 

AEE_SOUNDPLAYER_FAILURE Failed to get volume value
444



ISoundPlayer Interface  
ISOUNDPLAYER_Pause() 

Description:

This function issues a command to pause the current MIDI/MP3 playback.

Prototype:
void ISOUNDPLAYER_Pause(ISoundPlayer * pISoundPlayer) 

Parameters:

Return Value: 

None

Comments:

None

Side Effects:

The result of the operation is sent to the client via the callback function pointer. The status can be one 

of the following values:

If this operation is successful, the function also triggers another event to be sent to the client with the 

AEE_SOUNDPLAYER_PAUSE value for the playback transaction.

See Also:
None
Return to the List of functions

pISoundPlayer  Pointer to the ISoundPlayer Interface object

AEE_SOUNDPLAYER_SUCCESS Successful and accepted the pause command

AEE_SOUNDPLAYER_FAILURE Failed and did not accept the pause command
445



ISoundPlayer Interface  
ISOUNDPLAYER_Play() 

Description:

This function issues a command to play a MIDI/MP3 audio from the input source specified in the call to 

ISOUNDPLAYER_Set().

Prototype:
void ISOUNDPLAYER_Play(ISoundPlayer * pISoundPlayer) 

Parameters:

Return Value: 

None

Comments:

Only one play or get-total-time command is executed at a time. A play command overrides any previous 

play or get-total-time command. However, a get-total-time command does not interrupt a play 

command.

Side Effects:

The registered callback function, with AEE_SOUNDPLAYER_PLAY_CB, is triggered multiple times 

during the playback to indicate the status of the current playback transaction. The status can be one of 

the following values:

pISoundPlayer Pointer to the ISoundPlayer Interface object

AEE_SOUNDPLAYER_SUCCESS Play command was accepted and begins playback

AEE_SOUNDPLAYER_REWIND Playback is rewinding

AEE_SOUNDPLAYER_FFORWARD Playback is fast-forwarding

AEE_SOUNDPLAYER_PAUSE Playback is paused

AEE_SOUNDPLAYER_RESUME Playback is resuming after a pause, rewind, fast-

forward process

AEE_SOUNDPLAYER_TEMPO Playback tempo factor has been updated

AEE_SOUNDPLAYER_TUNE Playback tune factor has been updated
446



ISoundPlayer Interface  
The following information is passed along in the status event in the pServerData parameter.

:

See Also:
ISOUNDPLAYER_Set()
Return to the List of functions

AEE_SOUNDPLAYER_AUDIO_SPEC Relevant file specs are provided. In BREW Emulator, 

only file type is returned. 

AEE_SOUNDPLAYER_TICK_UPDATE periodic tick update every second

AEE_SOUNDPLAYER_DATA_ACCESS_DELAY Data access delay is causing the playback to be 

temporarily delayed

AEE_SOUNDPLAYER_ABORTED Playback was aborted

AEE_SOUNDPLAYER_DONE Playback is finished

AEE_SOUNDPLAYER_FAILURE Play command was not accepted or there was an error 

processing the audio input

If MIDI/CMX Pointer to AEESoundPlayerMIDISpec structure

If MP3 Pointer to AEESoundPlayerMP3Spec structure
447



ISoundPlayer Interface  
ISOUNDPLAYER_RegisterNotify() 

Description:

This function registers the status event callback function. 

Prototype:
void ISOUNDPLAYER_RegisterNotifyCB

(

ISoundPlayer * pISoundPlayer, 

PFNSOUNDPLAYERSTATUS pfn, 

void * pUser

) 

Parameters:

Return Value:

None

Comments:

The following functions and their callback status types are listed here:

pISoundPlayer Pointer to ISoundPlayer Interface object

pfn Status callback function pointer which can be NULL

pUser User data for unique correlation/identification of the 

transaction. This piece of information is not retrieved or 

processed by ISound and can be NULL if no identifying data 

is required. This same data pointer is passed back to the 

client along with status callback to correlate the transactions.

ISOUNDPLAYER_Play AEE_SOUNDPLAYER_PLAY_CB

ISOUNDPLAYER_Stop AEE_SOUNDPLAYER_STATUS_CB

ISOUNDPLAYER_Rewind AEE_SOUNDPLAYER_STATUS_CB

ISOUNDPLAYER_FastForward AEE_SOUNDPLAYER_STATUS_CB

ISOUNDPLAYER_Pause AEE_SOUNDPLAYER_STATUS_CB
448



ISoundPlayer Interface  
The above list also indicates what types of status are sent back through the callback functions. The 

status type determines the way the data portion of the status is interpreted. The status indicates the 

status of the operations or the result of the query in case of get-operations. See each of the function 

descriptions to find out the effects of this registered callback function.

Side Effects:

None

See Also:
None

Return to the List of functions

ISOUNDPLAYER_Resume AEE_SOUNDPLAYER_STATUS_CB

ISOUNDPLAYER_SetTempo AEE_SOUNDPLAYER_STATUS_CB

ISOUNDPLAYER_SetTune AEE_SOUNDPLAYER_STATUS_CB

ISOUNDPLAYER_SetVolume AEE_SOUNDPLAYER_STATUS_CB

ISOUNDPLAYER_GetVolume AEE_SOUNDPLAYER_VOLUME_CB

ISOUNDPLAYER_GetTotalTime AEE_SOUNDPLAYER_TIME_CB

ISOUNDPLAYER_SetSoundDevice AEE_SOUNDPLAYER_STATUS_CB
449



ISoundPlayer Interface  
ISOUNDPLAYER_Release()

Description: 

This function decrements the reference count of an object. The object is freed from memory and is no 

longer valid once the reference count reaches 0 (zero).

Prototype:
uint32 ISOUNDPLAYER_Release(ISoundPlayer * pISoundPlayer)

Parameters:

Return Value: 

Decremented reference count for the object. The object has been freed and is no longer valid if 0 (zero) 

is returned. 

Comments: 

None

Side Effects: 

None

See Also: 
ISOUNDPLAYER_AddRef()

Return to the List of functions

pISoundPlayer Pointer to the ISoundPlayer Interface object
450



ISoundPlayer Interface  
ISOUNDPLAYER_Resume() 

Description:

This function issues a command to resume the current MIDI/MP3 playback.

Prototype:
void ISOUNDPLAYER_Resume(ISoundPlayer * pISoundPlayer) 

Parameters:

Return Value: 

None

Comments:

Playback must have been paused with the ISOUNDPLAYER_Pause() function.

If playback is not currently paused by the ISOUNDPLAYER_Pause() function, this function call has no 

effect.

Side Effects:

The result of the operation is sent to the client via the callback function pointer. The status can be one 

of the following values:

If this operation is successful, the function also triggers another event to be sent to the client with the 

AEE_SOUNDPLAYER_RESUME value for the playback transaction.

See Also:
ISOUNDPLAYER_Pause()
Return to the List of functions

pISoundPlayer Pointer to ISoundPlayer Interface object

AEE_SOUNDPLAYER_SUCCESS Successful and accepted the resume command

AEE_SOUNDPLAYER_FAILURE Failed and did not accept the resume command
451



ISoundPlayer Interface  
ISOUNDPLAYER_Rewind() 

Description:

This function issues a command to rewind the current MIDI/MP3 playback.

Prototype:
void ISOUNDPLAYER_Rewind(ISoundPlayer * pISoundPlayer, uint32 dwTime) 

Parameters:

Return Value: 

None

Comments:

None

Side Effects:

The result of the operation is sent to the client via the callback function pointer. The status can be one 

of the following values:

If this operation is successful, the function also triggers another event to be sent to the client with the 

AEE_SOUNDPLAYER_REWIND value for the playback transaction.

See Also:
None

Return to the List of functions

pISoundPlayer Pointer to an ISoundPlayer Interface object

dwTime Amount of time, in milliseconds, to rewind the current playback

AEE_SOUNDPLAYER_SUCCESS Successful and accepted the rewind command

AEE_SOUNDPLAYER_FAILURE Failed and did not accept the rewind command
452



ISoundPlayer Interface  
ISOUNDPLAYER_Set() 

Description:

This function sets the source of the MIDI/MP3 audio.

Prototype:
void ISOUNDPLAYER_Set(ISoundPlayer * pISoundPlayer, AEESoundPlayerInput t, 

void * pData) 

Parameters:

Return Value: 

None

Comments:

Only SDT_FILE is supported in the BREW Emulator.

Side Effects:

None

See Also:
None
Return to the List of functions

pISoundPlayer Pointer to ISoundPlayer Interface object

pData Pointer to data of specified type

t Source type of pData. Supported values include:

SDT_FILE -Specified data is file name

SDT_BUFFER -Specified data is raw buffer
453



ISoundPlayer Interface  
ISOUNDPLAYER_SetSoundDevice() 

Description:

This function commands the device to connect to a specific audio device; there is always one, and only 

one, audio device connected at any particular time. 

Prototype:
void ISOUNDPLAYER_SetSoundDevice(ISoundPlayer * pISoundPlayer, 

AEESoundDevice eDevice, AEESoundMuteCtl eEarMute, AEESoundMuteCtl eMicMute ) 

Parameters:

Return Value: 

None

Comments:

This function is not supported in the BREW Emulator, but it is supported on the target device.

Side Effects:

The result of the operation is sent to the client via the AEE_SOUNDPLAYER_SOUND_CB callback 

function pointer. The status can be one of the following values:

See Also:
None, 

Return to the List of functions

pISoundPlayer Pointer to ISoundPlayer Interface object

eDevice Audio device to be connected

eEarMute Mute or unmute the ear piece

eMicMute Mute or unmute the microphone

AEE_SOUNDPLAYER_SUCCESS Successful connecting to the new sound device

AEE_SOUNDPLAYER_FAILURE Failed connecting to the new sound device
454



ISoundPlayer Interface  
ISOUNDPLAYER_SetStream()

Description: 

This function allows an IAStream interface to be associated with an ISoundPlayer instance to allow 

audio input to be streamed from a file or socket.

Prototype:
void ISOUNDPLAYER_SetStream (ISoundPlayer * pISoundPlayer, IAStream * ps)

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also: 
IASTREAM_Read()

IASTREAM_Readable() 
Return to the List of functions

pISoundPlayer Pointer to ISoundPlayer Interface object that will receive 

the streaming audio input

ps Pointer to an instance of a class that implements the 

IAStream interface (e.g., IFile or ISocket) 
455



ISoundPlayer Interface  
ISOUNDPLAYER_SetTempo() 

Description:

This function issues a command to modify the playback tempo of the current MIDI/MP3 playback as a 

percentage of the normal playback tempo. 

Prototype:
void ISOUNDPLAYER_SetTempo(ISoundPlayer * pISoundPlayer, uint32 

dwTempoFactor) 

Parameters:

Return Value: 

None

Comments:

For example, a dwTempoFactor of 50 means half of the normal playback tempo. 

The maximum supported tempo factor is 500%, or five times of the normal playback tempo.

The minimum tempo factor is 1% of the normal playback tempo. The tempo factor is initially 100% when 

the ISOUNDPLAYER_Play() function is called. This function is not supported in the BREW Emulator, 

but it is supported on the target device.

Side Effects:

The result of the operation is sent to the client via the callback function pointer. The status can be one 

of the following values:

pISoundPlayer Pointer to ISoundPlayer Interface object

dwTempoFactor This parameter is used to modify the playback tempo as 

a percentage of the normal playback tempo

AEE_SOUNDPLAYER_SUCCESS Successful setting a new tempo value

AEE_SOUNDPLAYER_FAILURE Failed setting a new tempo value; old value remains
456



ISoundPlayer Interface  
If this operation is successful, the function also triggers another event to be sent to the client with the 

AEE_SOUNDPLAYER_TEMPO value for the playback transaction.

See Also:
ISOUNDPLAYER_Play()

Return to the List of functions
457



ISoundPlayer Interface  
ISOUNDPLAYER_SetTune() 

Description:

It issues a command to modify the tune (pitch level) of the current MIDI/MP3 playback in half-step 

increments. 

Prototype:
void ISOUNDPLAYER_SetTune(ISoundPlayer * pISoundPlayer, uint8 nStep) 

Parameters:

Return Value: 

None

Comments:

This function is not supported in the BREW Emulator, but it is supported on the target device.

Side Effects:

The result of the operation is sent to the client via the callback function pointer. The status can be one 

of the following values:

If this operation is successful, the function also triggers another event to be sent to the client with the 

AEE_SOUNDPLAYER_TUNE value for the playback transaction.

pISoundPlayer Pointer to ISoundPlayer Interface object

nStep This parameter is used to modify the tune of the playback in half-step 

increments. For example, a tune factor 0 (zero) indicates normal playback. A 

tune factor 1 indicates 1 half-step higher than the normal playback. Only 

values from -12 to 12 are supported. Namely the tune can be 1 octave higher 

than the normal playback at maximum, and 1 octave lower than the normal 

playback at minimum. This parameter is used to modify the playback tune as 

a percentage of the normal playback tune.

AEE_SOUNDPLAYER_SUCCESS Successful setting a new tune value

AEE_SOUNDPLAYER_FAILURE Failed setting a new tune value; old value remains
458



ISoundPlayer Interface  
See Also:
ISOUNDPLAYER_Play()

Return to the List of functions
459



ISoundPlayer Interface  
ISOUNDPLAYER_SetVolume() 

Description:

This function sets the volume for the current playback device. 

Prototype:
void ISOUNDPLAYER_SetVolume(ISoundPlayer * pISoundPlayer, uint16 wVolume)

Parameters:

Return Value: 

None

Comments:

The volume range is from 0 (zero, lowest) to AEE_MAX_VOLUME (highest).

Side Effects:

The result of the operation is sent to the client via the AEE_SOUNDPLAYER_SOUND_CB callback 

function pointer. The status can be one of the following values:

See Also:
ISOUNDPLAYER_GetVolume

Return to the List of functions

pISoundPlayer Pointer to the ISoundPlayer Interface object

wVolume New volume level for device/method

AEE_SOUNDPLAYER_SUCCESS Successful setting a new volume value

AEE_SOUNDPLAYER_FAILURE Failed to set a new volume value; old value remains
460



ISoundPlayer Interface  
ISOUNDPLAYER_Stop() 

Description:

This function issues a command to stop the current MIDI/MP3 playback.

Prototype:
void ISOUNDPLAYER_Stop(ISoundPlayer * pISoundPlayer) 

Parameters:

Return Value: 

None

Comments:

None

Side Effects:

The result of the operation is sent to the client via the callback function pointer. The status can be one 

of the following values:

If this operation is successful, the function also triggers another event to be sent to the client with the 

AEE_SOUNDPLAYER_DONE value for the playback transaction.

See Also:
None
Return to the List of functions

pISoundPlayer Pointer to ISoundPlayer Interface object

AEE_SOUNDPLAYER_SUCCESS Successful and accepted the stop command

AEE_SOUNDPLAYER_FAILURE Failed and did not accept the stop command
461



IStatic Interface

The IStatic Interface allows you to create a static text control, which consists of a read-only text message 

and a title that appears at the top of the control's rectangle. Unlike the text controls created with the 

ITimeCtl Interface, the text in a static text control cannot be entered or modified by the device user. The 

text message is broken into lines within the control rectangle, with each line containing an integral 

number of words (that is, words are not broken across lines). If the text message is too long to 

completely fit on the device screen, the static text control automatically scrolls the message. When the 

end of the message is reached, the continuous scrolling starts again from the beginning. Instead of 

using a text message as the control's contents, you can choose to display an animated bitmap created 

with the IImage Interface. If this option is selected, the bitmap is displayed centered inside the static text 

control's rectangle.

The IStatic Interface provides a number of properties that can be used to customize the appearance 

and behavior of the static text control. These properties, which are all initially unset and can be set with 

the ISTATIC_SetProperties() function, are as follows:

•  ST_ICONTEXT indicates that an animated bitmap is used instead of a text message. When 

this property is set, ISTATIC_SetText() expects a pointer to an IImage Interface instance 

instead of a pointer to the message text string (see later in this section).

•  ST_TEXTALLOC tells ISTATIC_SetText() not to allocate storage for the message text string 

(you set this property if you have already allocated storage for the message string in your 

code).

•  ST_TITLEALLOC tells ISTATIC_SetText() not to allocate storage for the control title string 

(you set this property if you have already allocated storage for the title in your code).

•  ST_NOSCROLL disables the automatic scrolling of long text messages (in later releases, 

setting this property will allow the device user to manually scroll the text with the UP and 

DOWN keys).

•  ST_MIDDLETEXT specifies that the message text to be vertically centered within the control's 

rectangle (by default, the text begins at the top of the rectangle, immediately below the control 

title).

•  ST_UNDERLINE causes the control title to be underlined.

•  ST_CENTERTEXT centers each line of the message text (by default, the lines are left-

justified within the control rectangle).
462



IStatic Interface  
•  ST_CENTERTITLE centers the control title (by default, the title is left-justified). 

The following steps are typically followed to use a static text control (refer to the function descriptions 

in the following subsections and the IStatic Interface usage examples for details on the parameter lists 

and return values of each IStatic Interface function):

To use a static text control

1 Create an instance of an IStatic Interface using the ISHELL_CreateInstance().

2 Set the dimensions of the control's rectangle using the ISTATIC_SetRect().

3 Obtain the text for the control's title and text message strings, either by reading them from 

a BREW resource file or from text strings in your code. If a bitmap is being used in place of 

the text message, read in the bitmap and use IIMAGE_SetParm() function to set its 

animation properties (number of frames, animation rate, and other items).

4 Call ISTATIC_SetText() to specify the control's title string, message string or bitmap, and 

the fonts to be used for the title and text. You must call ISTATIC_SetRect() (see step 2) 

before calling ISTATIC_SetText(), since the latter uses information about the control 

rectangle to determine how to display the control.

5 Call ISTATIC_Redraw() to display the control's contents on the screen. 

6 When the control is no longer needed, call ISTATIC_Release(). This function frees the 

memory for the control's message text and title, but it does NOT release an animated 

bitmap, so you must explicitly release the IImage Interface if you created an instance of one 

in step 3.
463



IStatic Interface  
List of functions

Functions in this interface include:

ISTATIC_AddRef()

ISTATIC_GetProperties()

ISTATIC_GetRect()

ISTATIC_HandleEvent()

ISTATIC_Redraw()

ISTATIC_Release()

ISTATIC_Reset()

ISTATIC_SetProperties()

ISTATIC_SetRect()

ISTATIC_SetText()

Return to the Contents
464



IStatic Interface  
ISTATIC_AddRef()

Description: 

This function increments the reference count of the IStatic Interface object. This allows the object to be 

shared by multiple callers. The object is freed when the reference count reaches 0 (zero). 

Prototype:
uint32 ISTATIC_AddRef(IStatic * pIStatic)

Parameters:

Return Value:

Incremented reference count for the object. 

Comments: 

A valid object returns a positive reference count.

Side Effects: 

None

See Also:
ISTATIC_Release()

Return to the List of functions

pIStatic Pointer to the IStatic Interface object
465



IStatic Interface  
ISTATIC_GetProperties() 

Description: 

This function retrieves the properties of the IStatic Interface object. The properties determine the 

physical look and feel of the object.

Prototype:
uint32 ISTATIC_GetProperties(IStatic * pIStatic) 

Parameters

:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
ISTATIC_SetProperties()

Return to the List of functions

pIStatic Pointer to the IStatic Interface object

ST_CENTERTEXT Center text

ST_CENTERTITLE Center title

ST_NOSCROLL Do not scroll text

ST_TEXTALLOC Text allocated - dialog now owns it

ST_TITLEALLOC Title allocated - dialog now owns it

ST_MIDDLETEXT Text is drawn in the middle of the screen

ST_UNDERLINE Underline the title

ST_ICONTEXT Text is llmage
466



IStatic Interface  
ISTATIC_GetRect() 

Description: 

This function retrieves the location and size of the IStatic Interface object.

Prototype:
void ISTATIC_GetRect(IStatic * pIStatic, const AEERect * prc) 

Parameters

:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
ISTATIC_SetRect()
AEERect

Return to the List of functions

pIStatic Pointer to the IStatic Interface object

prc Pointer to the IStatic object rectangle (location and size) 
467



IStatic Interface  
ISTATIC_HandleEvent() 

Description: 

This function handles key events for the active IStatic Interface object. 

Prototype:
boolean ISTATIC_HandleEvent(IStatic * pIStatic, AEEEvent eCode, uint16 

wParam, uint32 dwParam) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
AEE Events

Return to the List of functions

pIStatic Pointer to the IStatic Interface object

eCode Event code

wParam 16-bit first event parameter

dwParam 32-bit second event parameter

TRUE Event has been processed

FALSE Event has not been processed
468



IStatic Interface  
ISTATIC_Redraw() 

Description: 

This function refreshes the IStatic object on the screen

Prototype:
boolean ISTATIC_Redraw(IStatic * pIStatic) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
None
Return to the List of functions

pIStatic Pointer to the IStatic InterfaceIStatic Interface object

TRUE Always
469



IStatic Interface  
ISTATIC_Release()

Description: 

This function decrements the reference count of the IStatic Interface object. The object is freed from 

memory and is no longer valid once the reference count reaches 0 (zero).

Prototype:
uint32 ISTATIC_Release(IStatic * pIStatic)

Parameters:

Return Value: 

Decremented reference count for the object. 

Comments: 

The object has been freed and is no longer valid if 0 is returned. 

Side Effects: 

None

See Also: 
ISTATIC_AddRef()

Return to the List of functions

pIStatic Pointer to the IStatic Interface object
470



IStatic Interface  
ISTATIC_Reset() 

Description: 

This function resets an IStatic Interface object. It cleans up the title and text of the IStatic Interface 

object. 

NOTE: Any timer(s) scheduled with AEE using this object as pUser parameter of 

ISHELL_SetTimer() are also cancelled.

Prototype:
void ISTATIC_Reset(IStatic * pIStatic) 

Parameters:

Return Value: 

None 

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pIStatic Pointer to the IStatic Interface object
471



IStatic Interface  
ISTATIC_SetProperties() 

Description: 

This function set the properties of the IStatic Interface object. The properties value determines the 

physical look and feel of the object.

Prototype:
void ISTATIC_SetProperties(IStatic * pIStatic, uint32 nProperties) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
ISTATIC_GetProperties()

Return to the List of functions

pIStatic Pointer to the IStatic Interface object

nProperties Properties value

ST_CENTERTEXT Center text

ST_CENTERTITLE Center title

ST_NOSCROLL Do not scroll text

ST_TEXTALLOC Text allocated - dialog now owns it

ST_TITLEALLOC Title allocated - dialog now owns it

ST_MIDDLETEXT Text is drawn in the middle of the screen

ST_UNDERLINE Underline the title

ST_ICONTEXT Text is llmage
472



IStatic Interface  
ISTATIC_SetRect() 

Description: 

This function set the location and size of the IStatic Interface object.

Prototype:
void ISTATIC_SetRect(IStatic * pIStatic, const AEERect * prc) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
ISTATIC_GetRect()

AEERect

Return to the List of functions

pIStatic Pointer to the IStatic Interface object

prc Pointer to the IStatic Interface object rectangle (location and size) 
473



IStatic Interface  
ISTATIC_SetText() 

Description: 

This function sets the text and title of the IStatic Interface object. 

Prototype:
boolean ISTATIC_SetText(IStatic * pIStatic, AECHAR * pTitle, AECHAR * pText, 

AEEFont fntTitle, AEEFont fntText) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
AEEFont
Return to the List of functions

pIStatic Pointer to the IStatic Interface object

pTitle Pointer to the title string

pText Pointer to the text string

fntTitle Title font type

fntText Text font type

TRUE If text and title were set correctly

FALSE If otherwise
474



ITAPI Interface

ITAPI is a simple interface to the telephony layer in the device. This function provides the following 

services:

•  Retrieving status

•  Placing voice calls

•  Extracting SMS text from SMS messages

•  Obtaining caller ID on incoming or in-progress calls

The ITAPI interface is obtained through the ISHELL_CreateInstance() function.
475



ITAPI Interface  
List of functions

Functions in this interface include:

ITAPI_AddRef()

ITAPI_ExtractSMSText()

ITAPI_GetCallerID()

ITAPI_GetStatus()

ITAPI_MakeVoiceCall()

ITAPI_Release()

Return to the Contents
476



ITAPI Interface  
ITAPI_AddRef() 

Description: 

This function increments the reference count of ITAPI Interface object. This allows the object to be 

shared by multiple callers. The object is freed when the reference count reaches 0 (zero). See ITAPI 

Interface.

Prototype:
uint32 ITAPI_AddRef(ITapi * pITapi) 

Parameters:

Return Value:

Incremented reference count for the object

Comments: 

Side Effects: 

None

See Also:
ITAPI_Release()

Return to the List of functions

pITapi Pointer to the ITAPI Interface object

A valid object returns a positive reference count
477



ITAPI Interface  
ITAPI_ExtractSMSText()

Description:

This function extracts the formatted text from a raw SMS message. The format of the input parameter 

is AEESMSMsg. The buffer returned is valid until the next call to ITAPI_ExtractSMSText or until the 

interface is released.

Prototype:
// C Users

AEESMSTextMsg * ITAPI_ExtractSMSText(ITAPI * po,const AEESMSMsg * pMsg)

Parameters:

Return Value:

Comments:

This function is not supported on the device emulator.

Side Effects:

None

See Also:
Return to the List of functions

po Pointer to the ITAPI Interface object

pMsg Pointer to input AEESMSMsg

NULL If this function fails
478



ITAPI Interface  
ITAPI_GetCallerID()

Description:

This function retrieves the ID, in digits, of an incoming or outgoing voice call.

Prototype:
// C Users

boolean ITAPI_GetCallerID(ITAPI * po,AECHAR * pDest, int nSize)

Parameters:

Return Value:

Comments:

None

Side Effects:

None

See Also:
Return to the List of functions

po Pointer to the ITAPI Interface object

pDest Destination pointer

nSize Size in bytes of the destination buffer

TRUE Call in progress and buffer filled

FALSE No call in progress or invalid buffer
479



ITAPI Interface  
ITAPI_GetStatus()

Description:

This function obtains the current status of the telephony device, including service and call status. 

Applications can also register to receive updated TAPIStatus information on any changes through the 

ISHELL_RegisterNotify() function.

Prototype:
// C Users

int ITAPI_GetStatus(ITPAI * po, TAPIStatus * ps)

Parameters:

Return Value:

Comments: 

None

Side Effects:

None

See Also:
ISHELL_RegisterNotify()

Return to the List of functions

po Pointer to the ITAPI Interface object

ps Pointer to the status information to be filled

SUCCESS Valid status information

EBADPARM Bad parameter
480



ITAPI Interface  
ITAPI_MakeVoiceCall() 

Description:

This function is called to place a voice call. The number dialed is specified in the digits string. Note the 

following when using this function:

•  No call is placed if the input string is empty or NULL. Only specific digits are allowed, 0 (zero) 

through 9, #, and *. All other digits are ignored.

•  If a voice call is in progress, EALREADY is returned.

•  If a data call is in progress and no network activity is in progress (for example, TCP), the data 

call is ended, and the call is placed.

•  This function enforces the privacy policies established by the carrier. These may include 

intermediate prompts to you.

Prototype:
//C Users

int ITAPI_MakeVoiceCall(ITAPI * po, const char * pszNumber,AEECLSID 

clsReturn)

Parameters:

Return Value: 

Comments: 

None

po Pointer to the ITAPI Interface object

pszNumber Pointer to number to dial

clsReturn The application to be started when the call ends

SUCCESS Function in progress

EBADPARM Invalid number

EALREADY Voice call already in progress
481



ITAPI Interface  
Side Effects: 

None

See Also:
Return to the List of functions
482



ITAPI Interface  
ITAPI_Release() 

Description: 

This function decrements the reference count of ITAPI Interface object. The object is freed from memory 

and is no longer valid once the reference count reaches 0 (zero). 

Prototype:
uint32 ITAPI_Release(ITapi * pITapi) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
ITAPI_AddRef()
Return to the List of functions

pITapi Pointer to the ITAPI Interface object

Reference count Decremented reference count for the object

0 (zero) If the object has been freed and is no longer valid 
483



ITextCtl Interface

A text control enables the device user to enter a string of text using the keys on the device. The text 

control consists of an optional title and a rectangular window containing one or more lines in which the 

entered text is displayed to the user. The text control handles the translation of user key presses into 

characters, so your application only needs to pass keypress events to the text control while it is active 

and retrieve the text from the control when user text entry has completed. The translation process 

depends on the text entry modes the device supports (for example, the standard multi-tap mode in 

which the user selects from the characters mapped to each key, and Tegic's T9 predictive text input 

mode). If more than one text entry mode is supported, your application can make it possible for the user 

to select the desired mode while the text control is active. The text control allows you to specify a softkey 

menu that is used for this purpose. While the text control is active, your application must send all 

keypress events to it by calling ITEXTCTL_HandleEvent().

Text controls support the following properties, which can be set with ITEXTCTL_SetProperties() (the 

property names are the names of the bit-mask constants used to set and test the property values):

TP_MULTILINE allows multiple lines of text to appear in the text entry window (by default, only 

a single line appears).

TP_FRAME draws a frame around the text control.

TP_T9_MODE specifies that T9 is the default text entry mode for the device (if this property is 

not set, multi-tap is the default mode). This mode is not supported on the BREW Emulator.

Text controls provide several functions in addition to those in the IControl Interface. 

ITEXTCTL_SetTitle() and ITEXTCTL_SetText() specify values for the control's title and for the text 

string that appears in the text entry window (the latter function can be used to provide an initial value for 

the window's contents that the user can edit). ITEXTCTL_GetText() retrieves the current value of the 

control's text string and copies it into a buffer. ITEXTCTL_GetTextPtr() is similar, except that it returns 

a pointer to the character string in the text control that is used to store the text, without making a copy 

of it. ITEXTCTL_SetMaxSize() determines the maximum number of characters that can be entered into 

the text control. ITEXTCTL_EnableCommand() enables the sending of an EVT_COMMAND to your 

application when the user presses the SELECT key (this function is not supported at present).

ITEXTCTL_SetSoftKeyMenu() associates a SoftKey menu control with the text control. This is typically 

a SoftKey menu that you have created and that appears on the screen while the text control is 

displayed. ITEXTCTL_SetSoftKeyMenu() adds an item to the SoftKey menu that allows the user to 

change the text entry mode (the text string for this item indicates the currently selected mode). When it 

receives this command, the text control displays a menu allowing the user to select the new text entry 

mode. After the user selects the new mode, the text control is reactivated and the user continues 
484



ITextCtl Interface  
entering text. While entering text, the user can press the SELECT key to leave text-edit mode and 

activate the SoftKey menu. While the SoftKey menu is active, the user can press the UP key to return 

to edit mode without making a menu selection.

To use a text control in your application

1 Call ISHELL_CreateInstance() to create an instance of the text control.

2 Call ITEXTCTL_SetRect() to specify the screen rectangle that will contain the text control.

3 If desired, call ITEXTCTL_SetTitle() and/or ITEXTCTL_SetText() to specify the control's 

title and the initial value of its text string.

4 Call ITEXTCTL_SetProperties() to set any text control properties.

5 Call Call ITEXTCTL_SetSoftKeyMenu() to specify the SoftKey menu that is associated with 

the text control, if any.

6 Call ITEXTCTL_SetActive() to activate the text control and draw its contents on the screen.

7 While the text control is active, call ITEXTCTL_HandleEvent() to pass it any key events 

generated by the user.

8 When the user has completed entering text, call ITEXTCTL_GetText() or 

ITEXTCTL_GetTextPtr() to retrieve the text the user has entered. (If you are using a 

SoftKey menu, the user may signal the completion of text entry with a "Done" item in the 

menu, or by pressing the SELECT or other key if no SoftKey menu is present).

9 Call ITEXTCTL_Release() to free the text control when you no longer need it.
485



ITextCtl Interface  
List of functions

Functions in this interface include:

ITEXTCTL_AddRef()

ITEXTCTL_EnableCommand()

ITEXTCTL_GetProperties()

ITEXTCTL_GetRect()

ITEXTCTL_GetText()

ITEXTCTL_GetTextPtr()

ITEXTCTL_HandleEvent()

ITEXTCTL_IsActive()

ITEXTCTL_Redraw()

ITEXTCTL_Release()

ITEXTCTL_Reset()

ITEXTCTL_SetActive()

ITEXTCTL_SetInputMode()

ITEXTCTL_SetMaxSize()

ITEXTCTL_SetProperties()

ITEXTCTL_SetRect()

ITEXTCTL_SetSoftKeyMenu()

ITEXTCTL_SetText()

ITEXTCTL_SetTitle()

Return to the Contents
486



ITextCtl Interface  
ITEXTCTL_AddRef()

Description:

This function increments the reference count for the text control object

Prototype:
uint32 ITEXTCTL_AddRef(ITextCtl * pITextCtl)

Parameters:

Return Value:

Incremented reference count for the object

Comments: 

None

Side Effects:

None

See Also:
ITEXTCTL_Release()
Return to the List of functions

 pITextCtl Pointer to the ITextCtl Interface object
487



ITextCtl Interface  
ITEXTCTL_EnableCommand() 

Description:

This function is used to enable sending of specified command by the text control object to the shell 

object upon receiving the event generated by pressing the SELECT key.

Prototype:
void ITEXTCTL_EnableCommand(ITextCtl * pITextCtl, boolean bEnable, uint16 nCmdId) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object

bEnable Boolean value for enable/disable flag

nCmdId Command id
488



ITextCtl Interface  
ITEXTCTL_GetProperties() 

Description: 

This function returns the text control-specific properties or flags.

Prototype:
uint32 ITEXTCTL_GetProperties(ITextCtl * pITextCtl) 

Parameters:

Return Value: 

32-bit properties for the text control

Following properties are returned by the text control object

Comments: 

None

Side Effects: 

None

See Also:
ITEXTCTL_SetProperties()
Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object

TP_MULTILINE If set, text control object is multiple line control

TP_FRAME If set, text control object has a frame

TP_T9_MODE If set, text control object is in T9 mode
489



ITextCtl Interface  
ITEXTCTL_GetRect() 

Description: 

This function fills given pointer to AEERect with the coordinates of the current bounding rectangle of the 

text control object. This is particularly useful after a control is created to determine its optimal/default 

size and position.

Prototype:
void ITEXTCTL_GetRect(ITextCtl * pITextCtl, AEERect * prc) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
ITEXTCTL_SetRect()

Return to the List of functions

pITextCtl te Pointer to the ITextCtl Interface object

prc Rectangle to be filled with the coordinates of the text control object
490



ITextCtl Interface  
ITEXTCTL_GetText() 

Description: 

This function is used to read text associated with the ITextCtl Interface object in the given buffer subject 

to the maximum of nMaxChars.

Prototype:
boolean ITEXTCTL_GetText(ITextCtl * pITextCtl, TCHAR * pBuffer, unsigned int nMaxChars) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
ITEXTCTL_GetTextPtr()
Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object

pBuffer Placeholder for the text

nMaxChars Maximum number of characters to be read

TRUE If successful

FALSE If unsuccessful
491



ITextCtl Interface  
ITEXTCTL_GetTextPtr() 

Description: 

It returns the pointer to the text maintained by the ITextCtl object. The difference between this function 

and GetText is that latter copies the content to a destination buffer, and the former just returns the 

pointer to the text inside the ITextCtl object.

Prototype:
TCHAR * ITEXTCTL_GetTextPtr(ITextCtl * pITextCtl) 

Parameters:

Return Value: 

pointer to the text buffer of the test control object

Comments: 

None

Side Effects: 

None

See Also:
ITEXTCTL_GetText()

Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object
492



ITextCtl Interface  
ITEXTCTL_HandleEvent() 

Description: 

This function is used to handle the events received by text control object. If the text control object is in 

non edit mode, it processed only set title, set text and press of UP and DOWN key events. In text edit 

mode, it processes various events like key up, key down, key held, set title, set text, command event 

from soft key menu.

Prototype:
boolean ITEXTCTL_HandleEvent(ITextCtl * pITextCtl, AEEEvent evt, uint16 wp, uint32 dwp) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object

evt Event code

wp 16-bit event data

dwp 32-bit event data

TRUE If the event was processed by the text control

FALSE If otherwise
493



ITextCtl Interface  
ITEXTCTL_IsActive() 

Description: 

This function returns the active state of the text control object.

Prototype:
boolean ITEXTCTL_IsActive(ITextCtl * pITextCtl) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object

TRUE If the text control is active

FALSE If otherwise
494



ITextCtl Interface  
ITEXTCTL_Redraw() 

Description: 

This function instructs the text control object to redraw its contents. The ITextCtl Interface object does 

not redraw its contents every time the underlying data behind the text control changes. This allows 

several data updates to occur while minimizing screen flashes. For example, several changes can be 

made to the contents of the text control object with no visible effect until ITEXTCTL_Redraw() function 

is called.

Prototype:
boolean ITEXTCTL_Redraw(ITextCtl * pITextCtl) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
None
Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object

TRUE If the text control was redrawn

FALSE If otherwise
495



ITextCtl Interface  
ITEXTCTL_Release() 

Description:

This function decrements the reference count for the ITextCtl Interface object and does appropriate 

cleanup if the reference count reaches 0 (zero).

Prototype:
uint32 ITEXTCTL_Release(ITextCtl * pITextCtl) 

Parameters:

Return Value:

Updated reference count for the object.

Comments: 

None

Side Effects: 

None

See Also:
ITEXTCTL_AddRef()
Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object whose reference count needs 

to be decremented
496



ITextCtl Interface  
ITEXTCTL_Reset() 

Description: 

This function instructs the text control to reset (free/delete) its contents as well as to immediately leave 

active/focus mode.

Prototype:
void ITEXTCTL_Reset(ITextCtl * pITextCtl) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
ITEXTCTL_SetActive()

Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object
497



ITextCtl Interface  
ITEXTCTL_SetActive() 

Description: 

This function is used to make a text control object active. Only an active text control object handles the 

event sent to it. Inactive text control object just ignores the events. Also an inactive text control object 

does not draw its frame. 

Prototype:
void ITEXTCTL_SetActive(ITextCtl * pITextCtl,boolean bActive)

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
None
Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object

bActive Boolean flag that specifies:

TRUE: to activate the text control object

FALSE: to deactivate the text control object
498



ITextCtl Interface  
ITEXTCTL_SetInputMode()

Description: 

This function allows the caller to set the selected text input mode.

Prototype:
AEETextInputMode ITEXTCTL_SetInputMode(ITextCtl * pITextCtl, AEETextInputMode wMode)

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also: 
AEETextInputMode 

Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object

wMode  Text input mode
499



ITextCtl Interface  
ITEXTCTL_SetMaxSize() 

Description: 

This function is used to set the maximum text size supported by the text control object. If the size being 

set is more than the size already set, this leads to the freeing up of the memory associated with the 

previous size and allocation of the memory per the new size.

Prototype:
void ITEXTCTL_SetMaxSize (ITextCtl * pITextCtl, uint16 nMaxSize) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
None
Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object

nMaxSize Maximum text size in AECHAR characters excluding NULL and if 0 (zero) then 

no effect
500



ITextCtl Interface  
ITEXTCTL_SetProperties() 

Description: 

This function sets text control-specific properties or flags. 

Prototype:
void ITEXTCTL_SetProperties(ITextCtl * pITextCtl, uint32 dwProps) 

Parameters:

Following properties are used for text control object:

Return Value: 

None

Comments: 

None

Side Effects: 

It deactivates the text control.

See Also:
ITEXTCTL_GetProperties()

Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object

dwProps 32-bit set of flags/properties

TP_MULTILINE If set, text control object is multiple line control.

TP_FRAME If set, text control object has a frame.

TP_T9_MODE If set, text control object is in T9 mode.
501



ITextCtl Interface  
ITEXTCTL_SetRect() 

Description: 

This function can be used to set the coordinates specified by prc as control rectangle of the text control 

object. A call to this function, also leads to calculate control rectangle for text line.

Prototype:
void ITEXTCTL_SetRect(ITextCtl * pITextCtl, const AEERect * prc) 

Parameters:

Return Value: 

None

Comments: 

By default, the control rectangle of the text control object has device screen width as width and (device 

screen height - text height) as height starting from upper left corner.

Side Effects: 

None

See Also:
ITEXTCTL_GetRect()

Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object

prc Bounding rectangle for the text control object
502



ITextCtl Interface  
ITEXTCTL_SetSoftKeyMenu() 

Description: 

It replaces the existing SoftKey menu of the text control object with the specified menu control object.

Prototype:
void ITEXTCTL_SetSoftKeyMenu(ITextCtl * pITextCtl, IMenuCtl * pm) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

IMenuCtl’s reference count is bumped up and a new menu item is added to the menu if an entry mode 

string is maintained by the text manager.

See Also:
None
Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object

pm New menu control object for the soft key menu
503



ITextCtl Interface  
ITEXTCTL_SetText() 

Description: 

This function is used to assign given string as text of the text control object.

Prototype:
boolean ITEXTCTL_SetText(ITextCtl * pITextCtl, const TCHAR * psz, int cch) 

Parameters:

Return Value

:

Comments: 

None

Side Effects: 

None

See Also:
None
Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object

psz Text string to be set

cch Number of AECHAR characters to be assigned from the string to the 

text of the text control object. If cch is negative or greater than the 

length of psz string, then the length of string is used. 
504



ITextCtl Interface  
ITEXTCTL_SetTitle() 

Description: 

This function is used to set title of a text control object. If pText is not NULL, it sets the string specified 

by pText as the title of the text control object. If pText is NULL, it reads title string corresponding to the 

given resource identifier from resource file and sets it as the title of the text control object.

Prototype:
boolean ITEXTCTL_SetTitle(ITextCtl * pITextCtl, const char * pszResFile, uint16 wResID, TCHAR * 

pText) 

Parameters:

Return Value:

Comments: 

None

Side Effects:

If pText is NULL and pszResFile, WResID are valid, this function assigns the text control object title 

string to pText.

See Also:
None

Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object

pszResFile File containing resource string

wResID Resource identifier

pText Null terminated title string

TRUE If successful

FALSE If otherwise
505



ITimeCtl Interface

Time controls allow the device user to enter a time value in several different formats. They can also be 

used to display a time value to the user. When entering a time value, the user presses the LEFT and 

RIGHT keys to select the time field that is to be modified (that is, hours, minutes or seconds), and 

presses the UP and DOWN keys to increase or decrease the value of the edited field. When the user 

presses the SELECT key and command sending is enabled (see later in this section), an 

EVT_COMMAND event is sent to the application or dialog that created the time control, which signals 

to your application that the user has completed entry of a time value. You can also specify the time value 

that is displayed in the time control. This feature can be used to repeatedly update the control to reflect 

a changing time value. For example, to implement a stopwatch, the time control does not measure time 

itself by setting timers or accessing the current time of day, (so you must obtain the necessary time 

values in your code using functions like GET_TIMEMS()). 

There are three types of time controls, each of which displays the time in a different format (you select 

the type you want by specifying its ClassID when you create an instance of the time control):

•  A clock control (ClassID AEECLSID_CLOCKCTL) displays the number of hours and minutes 

along with an AM/PM indicator. This type of control can be used to specify the time at which 

an alarm clock is to go off.

•  A countdown control (ClassID AEECLSID_COUNTDOWNCTL) displays the number of hours, 

minutes and seconds. This display format is useful for a countdown timer that allows the user 

to set the timer duration and then displays the time remaining until the timer expires.

•  A stopwatch control (ClassID AEECLSID_STOPWATCHCTL) displays the number of hours, 

minutes, seconds and hundredths of seconds. It can be used to implement a stopwatch.

A time control sends a control tabbing event (EVT_CTL_TAB) when the user presses the LEFT and 

RIGHT keys while editing the LEFT-most and RIGHT-most fields in the time control, respectively. You 

can use control tabbing to move between controls in a multicontrol screen (if your time control is part of 

a dialog, the dialog intercepts the control tabbing events and changes control focus appropriately).
506



ITimeCtl Interface  
Time controls support a number of properties that can be set with ITIMECTL_SetProperties() (the 

property names are the names of the bitmask constants you use to test and set the properties):

TP_AUTOREDRAW causes the time control to be redrawn whenever it is set active.

TP_NO_SECONDS prevents the display and editing of the number of seconds in a countdown 
control.

TP_NO_MSECONDS suppresses the display of the number of hundredths of seconds in a 
stopwatch control.

TP_NOEDIT_AMPM prevents the user from editing the AM/PM field in a clock control.

Time controls implement several functions in addition to those in the IControl Interface. 

ITIMECTL_SetTime() sets the value of the time (in number of milliseconds) stored in the time control 

and displays its value in the time control's format. ITIMECTL_SetTimeEx() is an extended version of 

this function that updates only the displayed value of the time but not the internally stored value. 

ITIMECTL_GetTime() retrieves the current time in milliseconds that is stored in the time control. 

ITIMECTL_GetTimeString() takes a time value in milliseconds as input and converts it into a text string 

that contains the corresponding number of hours and minutes, and can optionally include the number 

of seconds and hundredths of seconds and an AM/PM indicator. The numerical portions of the time 

string are separated by colons.

ITIMECTL_EnableCommand() is used to enable or disable the sending of EVT_COMMAND events to 

your application when the user presses the SELECT key (command sending is disabled by default). 

ITIMECTL_SetIncrement() sets the number of minutes by which the minutes field of the text control is 

incremented or decremented when the user presses the UP or DOWN arrow keys while editing the field 

(the default value is one minute). ITIMECTL_SetEditField() is used to specify which field of the time 

control is being edited by the user. Possible values are the hours, minutes, or seconds fields (if the 

seconds field is specified for a clock control, the AM/PM field is selected, assuming that it is editable; 

the hundredth-seconds field of a stopwatch control is not editable). The user selects the field to be 

edited with the LEFT and RIGHT arrow keys, so ITIMECTL_SetEditField() can be used to select the 

initial field to be edited.

To create and use a time control

1 Call ISHELL_CreateInstance() to create the time control instance and obtain an interface 

pointer to it, specifying which of the three types of time control you would like by its ClassID.

2 Call ITIMECTL_SetTime() to specify an initial time value for the time control if one is 

desired.

3 Call ITIMECTL_SetRect() to define the screen rectangle in which the time control will be 

drawn.
507



ITimeCtl Interface  
4 Call ITIMECTL_SetProperties() if needed to set any of the time control properties, and call 

ITIMECTL_SetIncrement() and/or ITIMECTL_SetEditField() if you would like to change the 

default minutes increment or initial edit field.

5 When you have completely specified the contents and properties of the time control, call 

ITIMECTL_SetActive() to draw the control on the screen and (if your control supports 

editing by the user) enable it to receive key events from the user to select a time value. 

While the time control is active, your application's IAPPLET_HandleEvent() function must 

call ITIMECTL_HandleEvent() to pass all handled key events to the time control for 

processing.

6 To display a changing time value to the user, call ITIMECTL_SetTime() or 

ITIMECTL_SetTimeEx() to update the display each time the value changes.

7 To access the time value entered by the user, call ITIMECTL_GetTime() when the user has 

completed entering the value (the user can signal completion by pressing the SELECT key 

or dismissing the screen that contains the time control). You can then call 

ITIMECTL_GetTimeString() to convert the number of milliseconds into a printable form.

8 When you no longer need the time control, call ITIMECTL_Release() to free it.
508



ITimeCtl Interface  
List of functions

Functions in this interface include:

ITIMECTL_AddRef()

ITIMECTL_EnableCommand()

ITIMECTL_GetProperties()

ITIMECTL_GetRect()

ITIMECTL_GetTime()

ITIMECTL_GetTimeString()

ITIMECTL_HandleEvent()

ITIMECTL_IsActive()

ITIMECTL_Redraw()

ITIMECTL_Release()

ITIMECTL_Reset()

ITIMECTL_SetActive()

ITIMECTL_SetEditField()

ITIMECTL_SetIncrement()

ITIMECTL_SetProperties()

ITIMECTL_SetRect()

ITIMECTL_SetTime()

ITIMECTL_SetTimeEx()

Return to the Contents
509



ITimeCtl Interface  
ITIMECTL_AddRef()

Description: 

This function increments the reference count of the ITimeCtl Interface object. This allows the object to 

be shared by multiple callers. The object is freed when the reference count reaches 0 (zero). 

Prototype:
uint32 ITIMECTL_AddRef(ITimeCtl * pITimeCtl)

Parameters:

Return Value:

Incremented reference count for the object. 

Comments: 

A valid object returns a positive reference count.

Side Effects: 

None

See Also:
ITIMECTL_Release()

Return to the List of functions

pITimeCtl Pointer to the ITimeCtl Interface object
510



ITimeCtl Interface  
ITIMECTL_EnableCommand() 

Description:

This function is used to enable sending of specified command by the time control object to the AEE 

Shell upon receiving the event generated by pressing center key. 

Prototype:
void ITIMECTL_EnableCommand(ITimeCtl * pITimeCtl, boolean bEnable, uint16 

nCmdId) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
None
Return to the List of functions

pITimeCtl Pointer to I the ITimeCtl Interface object

bEnable Boolean value for enable/disable flag

nCmdId Command id
511



ITimeCtl Interface  
ITIMECTL_GetProperties() 

Description: 

This function returns the time control-specific properties or flags.

Prototype:
uint32 ITIMECTL_GetProperties(ITimeCtl * pITimeCtl) 

Parameters:

Return Value: 

32-bit properties for the time control

Following properties are returned by time control object:

Comments: 

None

Side Effects: 

None

See Also:
ITIMECTL_SetProperties()

Return to the List of functions

pITimeCtl Pointer to the ITimeCtl Interface object

TP_AUTOREDRAW If set, control redraws on SetActive.

TP_NO_SECONDS If set, control doesn’t show the seconds in the COUNTDOWN control.

TP_NO_MSECONDS If set, control doesn’t show milliseconds in STOPWATCH.

TP_NOEDIT_AMPM If set, control doesn’t allow to edit AM/PM.
512



ITimeCtl Interface  
ITIMECTL_GetRect() 

Description: 

This function fills given pointer to AEERect with the coordinates of the bounding rectangle of the time 

control object. This is particularly useful after a control is created to determine its optimal/default size 

and position.

Prototype:
void ITIMECTL_GetRect(ITimeCtl * pITimeCtl, AEERect * prc) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
ITIMECTL_SetRect()

AEERect
Return to the List of functions

pITimeCtl Pointer to the ITimeCtl Interface object

prc Rectangle to be filled with the coordinates of the time control
513



ITimeCtl Interface  
ITIMECTL_GetTime() 

Description: 

This function gets the time value from the time control object. The time value is in milliseconds.

Prototype:
int32 ITIMECTL_GetTime(ITimeCtl * pITimeCtl) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
None
Return to the List of functions

pITimeCtl Pointer to the ITimeCtl Interface object

Time In milliseconds elapsed since 00:00:00 for this object
514



ITimeCtl Interface  
ITIMECTL_GetTimeString() 

Description: 

This function converts the time in milliseconds to a string in the specified format.

Prototype:
void ITIMECTL_GetTimeString(ITimeCtl * pITimeCtl, uint32 dwSecs, AECHAR * 

pDest, unsigned int nSize, uint16 wFlags) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
None
Return to the List of functions

pITimeCtl Pointer to the ITimeCtl Interface object

dwSecs Time in milliseconds to be converted into a string

pDest Converted time in a string

nSize Size Of Pdest In Bytes

wFlags Bitmap that specifies the time format to use for the string conversion the 

following are supported:

GTS_MSECS: use centiseconds, and display 2 digit centiseconds

GTS_SECS: use seconds

GTS_AMPM: use AM or PM
515



ITimeCtl Interface  
ITIMECTL_HandleEvent() 

Description: 

This function is used to handle the events received by time control object. A time control object handles 

events received by it only if it is active. The events processed by the time control object are the press 

of UP, DOWN, LEFT and RIGHT keys. If command sending is enabled for the time control object, upon 

receiving event generated by the press of center key, it sends the command specified by 

ITIMECTL_EnableCommand() function as command event to the AEE Shell. 

Prototype:
boolean ITIMECTL_HandleEvent(ITimeCtl * pITimeCtl, AEEEvent evt, uint16 wp, 

uint32 dwp) 

Parameters:

Return Value:

Comments: 

None 

Side Effects: 

None

See Also:
None
Return to the List of functions

pITimeCtl  Pointer to the ITimeCtl Interface object

evt  Event code

wp  16-bit event data

dwp  32-bit event data

TRUE If the event was processed by the time control

FALSE If otherwise
516



ITimeCtl Interface  
ITIMECTL_IsActive() 

Description: 

This function returns the active/inactive state of the ITimeCtl Interface object.

Prototype:
boolean ITIMECTL_IsActive(ITimeCtl * pITimeCtl) 

Parameters:

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pITimeCtl  Pointer to the ITimeCtl Interface object

TRUE If the time control is active

FALSE If otherwise
517



ITimeCtl Interface  
ITIMECTL_Redraw() 

Description: 

This function instructs the time control object to redraw its contents. The time control object does not 

redraw its contents every time the underlying data behind the time control changes. This allows several 

data updates to occur while minimizing screen flashes. For example, several changes can be made to 

the contents of the time control object with no visible effect until the Redraw function is called.

Prototype:
boolean ITIMECTL_Redraw(ITimeCtl * pITimeCtl) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pITimeCtl Pointer to the ITimeCtl Interface object

TRUE If the time control was redrawn

FALSE If otherwise
518



ITimeCtl Interface  
ITIMECTL_Release() 

Description:

This function decrements the reference count for the ITimeCtl Interface object and does appropriate 

cleanup if the reference count reaches 0 (zero).

Prototype:
uint32 ITIMECTL_Release(ITimeCtl * pITimeCtl) 

Parameters:

Return Value:

Updated reference count for the object.

Comments: 

None

Side Effects: 

None

See Also:
None
Return to the List of functions

pITimeCtl Pointer to the ITimeCtl Interface object whose reference count needs 

to be decremented
519



ITimeCtl Interface  
ITIMECTL_Reset() 

Description: 

This function instructs the time control to reset (free/delete) its contents as well as to immediately leave 

active/focus mode.

Prototype:
void ITIMECTL_Reset(ITimeCtl * pITimeCtl) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
ITIMECTL_SetActive()

Return to the List of functions

pITimeCtl Pointer to the ITimeCtl Interface object
520



ITimeCtl Interface  
ITIMECTL_SetActive() 

Description: 

This function is used to make a time control object active. Only an active time control object handles 

the event sent to it. An inactive time control object just ignores the events.

Prototype:
void ITIMECTL_SetActive(ITimeCtl * pITimeCtl,boolean bActive)

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pITimeCtl Pointer to t the ITimeCtl Interface object

bActive Boolean flag that indicates:

TRUE: to activate the time control object 

FALSE: to deactivate the time control object 
521



ITimeCtl Interface  
ITIMECTL_SetEditField() 

Description: 

This function sets specified field for editing.

Prototype:
void ITIMECTL_SetEditField(ITimeCtl * pITimeCtl, ITField field) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

pITimeCtl Pointer to the ITimeCtl Interface object

field Field to be set for editing. Field can be one of

ITF_HOUR

ITF_MIN

ITF_SEC
522



ITimeCtl Interface  
ITIMECTL_SetIncrement() 

Description: 

This function sets a new time increment value in minutes. The default is 1.

Prototype:
void ITIMECTL_SetIncrement(ITimeCtl * pITimeCtl, uint16 wMins) 

Parameters:

Return Value: 

None

Comments: 

The increment for only the minute field can be set. All other fields cannot be set.

Side Effects: 

None

See Also:
None

Return to the List of functions

pITimeCtl Pointer to the ITimeCtl Interface object

wMins New time increment value in minutes
523



ITimeCtl Interface  
ITIMECTL_SetProperties() 

Description: 

This function sets time control-specific properties. 

Prototype:
void ITIMECTL_SetProperties(ITimeCtl * pITimeCtl, uint32 dwProps) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
ITIMECTL_GetProperties()
Return to the List of functions

pITimeCtl Pointer to the ITimeCtl Interface object

dwProps 32-bit set of flags/properties. Following properties are used for time control object:

TP_AUTOREDRAW: if set, redraw on SetActive

TP_NO_SECONDS: if set, do not show the seconds in the COUNTDOWN control

TP_NO_MSECONDS: if set, do not show milliseconds in STOPWATCH

TP_NOEDIT_AMPM: if set, do not allow to edit AM/PM
524



ITimeCtl Interface  
ITIMECTL_SetRect() 

Description: 

This function can be used to set the coordinates specified by prc as the control rectangle of the time 

control object.

Prototype:
void ITIMECTL_SetRect(ITimeCtl * pITimeCtl, const AEERect * prc) 

Parameters:

Return Value: 

None

Comments: 

By default, entire device screen is set as the control rectangle of the time control object.

Side Effects: 

None

See Also:
ITIMECTL_GetRect()
Return to the List of functions

pITimeCtl Pointer to the ITimeCtl Interface object

prc Bounding rectangle for the time control
525



ITimeCtl Interface  
ITIMECTL_SetTime() 

Description: 

This function can be used to set given time and redraw time string on device screen. It is the same as 

calling ITIMECTL_SetTimeEx with the third parameter to be FALSE.

Prototype:
void ITIMECTL_SetTime(ITimeCtl * pITimeCtl, int32 tod) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also: 
None
Return to the List of functions

pITimeCtl Pointer to the ITimeCtl Interface object

tod Time in milliseconds expired since 00:00:00. Negative value is ignored
526



ITimeCtl Interface  
ITIMECTL_SetTimeEx() 

Description: 

This function can be used to set a given time and redraw a time string on a device screen.

Prototype:
void ITIMECTL_SetTime(ITimeCtl * pITimeCtl, int32 tod, boolean bIncUpdate) 

Parameters:

Whether TRUE or FALSE, the time integer is saved.

Return Value: 

None

Comments: 

bIncUpdate affects only the time string of the ITimeCtl Interface object. Time integer is always saved.

Side Effects: 

None

See Also:
None

Return to the List of functions

pITimeCtl Pointer to I the ITimeCtl Interface object

tod Time in milliseconds expired since 00:00:00, where negative values are 

ignored

bIncUpdate Boolean flag:

TRUE means to save the time string in the buffer of time control object.

FALSE means to just draw on screen and don’t save the time string.
527



IViewer Interface

The IViewer Interface is identical to the IImage Interface. It includes an identical list of functions. 

The Descriptions of the IImage functions also describe the IViewer functions (See List of functions)

The Prototypes are the same with the exception that each place where there is IIMAGE, it is replaced 

by IVIEWER. 

The Parameters are the same as IImage’s parameters. The parmeter pIImiage is replaced with 

pIViewer which is the IViewer Interface opject.

The Return Values are the same return values as shown in the IImage Interface.

The Comments applicable to the IImage functions are also applicable to the IViewer functions.

The Side Effects applicable to the IImage functions are also applicable to the IViewer functions.

The See Also relationship between functions in the IImage functions are also applicable between the 

IViewer functions.
528



IViewer Interface  
List of functions

Functions in this interface include:

Return to the Contents

IVIEWER_AddRef() See IIMAGE_AddRef()

IVIEWER_Draw() See IIMAGE_Draw()

IVIEWER_DrawFrame() See IIMAGE_DrawFrame()

IVIEWER_GetInfo() See IIMAGE_GetInfo()

IVIEWER_HandleEvent() See IIMAGE_HandleEvent()

IVIEWER_Notify() See IIMAGE_Notify()

IVIEWER_Release() See IIMAGE_Release()

IVIEWER_SetParm() See IIMAGE_SetParm()

IVIEWER_SetStream() See IIMAGE_SetStream()

IVIEWER_Start() See IIMAGE_Start()

IVIEWER_Stop() See IIMAGE_Stop()
529



Helper Functions

This section provides documentation for the various helper functions offered by AEE. This includes 

string functions, functions in the standard C library, utility functions and other items. standard C library 

refers to the ANSI standard C library supplied with C/C++ compilers/IDE. Applications must not directly 

invoke the standard C library functions (for example, memcpy). Instead, applications must use the 

functions provided by AEE (such as MEMCPY()). A distinct difference between the functions 

documented here and the rest of the AEE functions is that an interface pointer is not needed to access 

these functions. For example, to invoke the function MEMCPY(), no interface pointer is necessary. 

Applications can directly invoke MEMCPY(). Some of the functions provided here make direct calls to 

the standard C library functions (for example, MEMCPY() directly invokes the C library function 

memcpy() ). However, these functions are provided here for two reasons: 

•  To prevent the need for every application to statically link with the standard C library. When 

there are multiple apps loaded on the device, each application has the extra baggage of 

carrying the standard C library. To avoid this, AEE maintains a single copy of the standard C 

library. All applications can make use of this copy. Applications must not make direct calls to 

the standard C library functions (thereby, preventing the application from being associated 

with the baggage of static C library) 

•  To use dynamic apps that must not have any static data associated with them. If applications 

were to make direct calls to the standard C library functions such as memcpy() , they need 

to include the corresponding header files (for example, memory.h) and these header files 

may contain static data. Hence, using the standard C library function would prevent the 

application from being dynamically loadable. 

For the above two reasons, AEE offers the helper functions, some of which are wrappers that directly 

call the standard C library functions.
530



Helper Functions  
List of functions

Functions in this interface include:

ATOI()

CALLBACK_Cancel()

CALLBACK_Init()

CALLBACK_IsQueued()

CONVERTBMP()

CREATEOBJ()

DBGPRINTF()

FADD()

FCMP_E()

FCMP_G()

FCMP_GE()

FCMP_L()

FCMP_LE()

FDIV()

FLOAT_TO_WSTR()

FMUL()

FREE()

FREEOBJ()

FSUB()

GETAEEVERSION()

GET_APP_INSTANCE()

GETCHTYPE()

GET_JULIANDATE()

LOCALTIMEOFFSET()

GET_NOTIFIER_MASK()

GET_NOTIFIER_VAL()

GET_RAND()

GET_SECONDS()

GET_TIMEMS()
531



Helper Functions  
GET_UPTIMEMS()

MALLOC()

MEMCPY()

MEMSET()

OEMSTRLEN()

OEMSTRSIZE()

REALLOC()

SETAEERECT()

SPRINTF()

STR_TO_WSTR()

STRCAT()

STRCHR()

STRCMP()

STRCPY()

STRLEN()

STRNCPY()

STRRCHR()

STRTOUL()

SYSFREE()

UTF8_TO_WSTR()

WSPRINTF()

WSTR_TO_FLOAT()

WSTR_TO_STR()

WSTR_TO_UTF8()

WSTRCAT()

WSTRCHR()

WSTRCMP()

WSTRCOMPRESS()

WSTRCPY()

WSTRDUP()

WSTRLEN()

WSTRLOWER()
532



Helper Functions  
WSTRNCOPYN()

WSTRRCHR()

WSTRSIZE()

WSTRUPPER()

WWRITELONGEX()

Return to the Contents
533



Helper Functions  
ATOI()

Description: 

This function is a wrapper around the atoi() function provided by the standard C library. Its behavior is 

identical to that of atoi(). This function converts the input string to an integer. 

Prototype:
int ATOI( const char * src )

Parameters

:

Return Value:

Comments: 

None

Side Effects: 

None

See Also: 
None

Return to the List of functions

src  Pointer to the source string

Integer Represented by the input string
534



Helper Functions  
CALLBACK_Cancel()

Description:

This function cancels a callback that has been previously registered using the ISHELL_Resume() The 

callback can be cancelled only if the callback has not already happened. To check if the callback has 

already happened, check the member pfnCancel inside the AEECallback structure and check to see 

if it is NULL. It it has been set to NULL by the AEE, it cannot be cancelled.

Prototype:
void CALLBACK_Cancel(AEECallback * pcb)

Parameters:

Return Value:

None

Comments:

None

Side Effects:

None

See Also:
ISHELL_Resume()

Return to the List of functions 

pcb Valid pointer to an AEECallback structure that has been registered 

using the ISHELL_Resume()
535



Helper Functions  
CALLBACK_Init()

Description:

This function initializes the members of an AEECallback structure.

Prototype:
void CALLBACK_Init(AEECallback * pcb, PFNNOTIFY pfn, void * pd)

Parameters:

Return Value:

None

Comments:

None

Side Effects:

None

See Also:
ISHELL_Resume()
Return to the List of functions

pcb Valid pointer to an AEECallback structure that must be initialized

pfn Valid pointer to the callback function

pd Pointer to data that must be passed to the pfn function when it is 

invoked
536



Helper Functions  
CALLBACK_IsQueued()

Description:

This function checks whether a callback that was registered with ISHELL_Resume() is still queued for 

processing. The callback is no longer queued if it has already occurred or if it was cancelled with the 

function CALLBACK_Cancel().

Prototype:
boolean CALLBACK_IsQueued(AEECallback * pcb)

Parameters:

Return Value:

Comments:

If the callback is no longer queued, the pfnCancel member of the AEECallback structure referred by 

pcb is NULL. This function checks pcb->pfnCancel is NULL to determine whether callback is queued.

Side Effects:

None

See Also:
ISHELL_Resume()

Return to the List of functions

pcb  Pointer to an AEECallback structure that has been registered with 

ISHELL_Resume()

TRUE  if the callback is still queued for processing

FALSE  otherwise
537



Helper Functions  
CONVERTBMP() 

Description: 

This function converts a Windows bitmap into the native format. The native format is specific to each 

device. On Windows, the native format is same as the Windows bitmap format. Typical usage of this 

function: If the user has a raw data buffer containing a Windows bitmap, it can be passed to this function 

to convert it into a native format so that the IDISPLAY_BitBlt() function can be used on this format to 

display the image. The BREW Emulator does not support 16 bit and 24 bit format .BMP file format.

Prototype:
void * CONVERTBMP(void * pSrcBuffer, AEEImageInfo * pii, boolean * pbRealloc) 

Parameters:

Return Value:

Comments: 

None

pSrcBuffer [in] Pointer to a buffer containing the Windows bitmap. One of the ways of 

constructing this is to read the contents of a Windows .BMP file into a 

memory buffer. This buffer is converted to native format on return.

pii  [out] On return, the AEEImageInfo structure pointed to by this member 

contains valid information about the converted image (such as width, 

height, color depth, and other items).

pbRealloc  [out] On return, this is set to TRUE or FALSE depending on whether or not the 

CONVERTBMP() function did separate memory allocation for the buffer 

that is returned from this function. If this is set to TRUE, the caller must 

release the buffer returned from this function using SYSFREE() after 

the buffer is used.

Valid buffer containing 

the converted image 

This is the incoming image pSrcBuffer converted into native format.If pbRealloc is 

set to true on return, the caller must release this buffer using SYSFREE() after 

using the buffer. On Windows, since the native format is the same as the .BMP 

format, the pointer returned from this function is identical to pSrcBuffer. Also, 

bRealloc is FALSE on Windows since no new allocation is done. The pii parameter, 

on return, contains information about the image (such as width, height, color depth, 

and other items).

NULL If unsuccessful
538



Helper Functions  
Side Effects: 

None

See Also:
None

Return to the List of functions 
539



Helper Functions  
CREATEOBJ() 

Description: 

This is an alias of MALLOC().

Prototype:
void * CREATEOBJ(dword dwSize) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
MALLOC()

Return to the List of functions 

dwSize Specifies the size (in bytes) that must be allocated

Pointer Pointing to a buffer of size dwSize bytes, if successful

NULL If unsuccessful
540



Helper Functions  
DBGPRINTF()

Description: 

This function is used in printing out debugging information.

Prototype:
void dbgprintf(const char * pszFormat,...)

Parameters: 

Return Value:

None

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions 

pszFormat Format-control string; please refer to the documentation of the standard C 

library function printf() on the corresponding platform (Microsoft Windows 

or ARM® Developer Suite) 
541



Helper Functions  
FADD()

Description: 

This function does floating point "+" operation. 

Prototype:
double FADD(double v1, double v2)

Parameters:

Return Value:

Returns the result of "+"

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions 

v1 Operand #1

v2 Operand #2
542



Helper Functions  
FCMP_E()

Description: 

This function performs float point "==" comparison. 

Prototype:
boolean FCMP_E(double v1, double v2)

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions 

v1 Operand #1

v2 Operand #2

TRUE If v1 == v2

FALSE If v1 != v2
543



Helper Functions  
FCMP_G()

Description: 

This function performs float point ">" comparison. 

Prototype:
boolean FCMP_G(double v1, double v2)

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also: 
None

Return to the List of functions

v1 Operand #1

v2 Operand #2

TRUE If v1 > v2

FALSE If v1 <= v2
544



Helper Functions  
FCMP_GE()

Description: 

This function performs float point ">=" comparison. 

Prototype:
boolean FCMP_GE(double v1, double v2)

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also: 
None

Return to the List of functions 

v1 Operand #1

v2 Operand #2

TRUE If v1 >= v2

FALSE If v1 < v2
545



Helper Functions  
FCMP_L()

Description: 

This function performs float point "<" comparison. 

Prototype:
boolean FCMP_L(double v1, double v2)

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also: 
None

Return to the List of functions

v1 Operand #1

v2 Operand #2

TRUE If v1 < v2

FALSE If v1 >= v2
546



Helper Functions  
FCMP_LE()

Description: 

This function performs float point "<=" comparison. 

Prototype:
boolean FCMP_LE(double v1, double v2)

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also: 
None

Return to the List of functions 

v1 Operand #1

v2 Operand #2

TRUE If v1 <= v2

FALSE If v1 > v2
547



Helper Functions  
FDIV()

Description: 

This function does floating point "/" operation. 

Prototype:
double FDIV(double v1, double v2)

Parameters:

Return Value:

Returns the result of "/"

Comments: 

None

Side Effects: 

None

See Also: 
None

Return to the List of functions 

v1 Operand #1

v2 Operand #2
548



Helper Functions  
FLOAT_TO_WSTR() 

Description: 

This function converts a floating point value to a wide string. Internally, this function first converts the 

given float value into a single-byte string using the standard C library function sprintf(). It then uses 

STR_TO_WSTR() to convert this single-byte string into a wide string.

Prototype:
boolean FLOAT_TO_WSTR(double v, AECHAR * psz, int nSize) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
WSTR_TO_FLOAT()

Return to the List of functions 

v Floating point value that must be converted into a wide string

psz Pointer to wide-string buffer to hold the resultant wide string

nSize Size (in bytes) of the psz buffer

TRUE If successful

FALSE If unsuccessful, if psz is NULL, or if nSize <= 0
549



Helper Functions  
FMUL()

Description: 

This function does floating point "*" operation. 

Prototype:
double FMUL(double v1, double v2)

Parameters:

Return Value:

Returns the result of "*"

Comments: 

None

Side Effects: 

None

See Also: 
None

Return to the List of functions 

v1 Operand #1

v2 Operand #2
550



Helper Functions  
FREE()

Description: 

This function corresponds to free() in the standard C library. Internally, it does more than just free(), 

though the external behavior is the same as free(). 

Prototype:
void FREE(void * po)

Parameters

:

Return Value:

None

Comments: 

None

Side Effects: 

None

See Also: 
MALLOC() 

REALLOC()()
Return to the List of functions 

po  Points to the memory to be freed
551



Helper Functions  
FREEOBJ() 

Description: 

This is an alias of FREE().

Prototype:
void FREEOBJ(void * pObj) 

Parameters:

Return Value:

None 

Comments: 

None

Side Effects: 

None

See Also:
FREE()

Return to the List of functions 

pObj Pointer to the memory buffer that must be release. This buffer 

must have been allocated using the CREATEOBJ().
552



Helper Functions  
FSUB()

Description: 

This function does floating point "-" operation. 

Prototype:
double FSUB(double v1, double v2)

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also: 
None

Return to the List of functions 

v1 Operand #1

v2 Operand #2

The result of "-"
553



Helper Functions  
GETAEEVERSION()

Description: 

This function retrieves information about the version number of the current BREW software being used. 

The version number is stored in w.x.y.z format where

w: denotes Major Version Number

x: denotes Minor Version Number

y: denotes a Sub-version number

z: denotes a build number

This function also places the information in the incoming string pszString. On the phone, this function 

can also be used to determine the chipset on which the BREW software is running. 

Prototype: 
uint32 GETAEEVERSION(byte * pszString, int nSize, uint16 wFlags)

Parameters:

Return Value:

pszString Pointer to a buffer where the string containing the version number is to be 

placed. It can be of the form "1.0.0.15" or "1.0.0.15(MSM3100)" depending 

on whether or not the MSM information is requested.

nsize Size of the pszString buffer in bytes

wFlags Specifies the type of information to retrieve. It can be a combination of one or 

more of the following flags:

GAV_LATIN1: pszString is returned as a Single byte string

GAV_MSM: pszString contains the MSM chip number in addition to the 

build number 

For example, 1.0.0.15 (MSM3100). This flag is not supported on the BREW 

Emulator. It is supported only in the physical device environment.

A 32 bit number 

containing the version 

number 

 The information is organized as follows:

Hi Byte of Hi Word  Major Version Number

Low Byte of Hi Word  Minor Version Number
554



Helper Functions  
Comments: 

None

Side Effects: 

None

See Also: 
None

Return to the List of functions 

Hi Byte of Lo Word  Sub-Version Number

Lo Byte of Lo Word  Build Number

A 32 bit number 

containing the version 

number 

 The information is organized as follows:
555



Helper Functions  
GET_APP_INSTANCE()

Description: 

This function returns the IApplet instance of the currently executing applet. It is valid during all BREW 

API calls, callbacks, and events.

Prototype:
IApplet * GET_APP_INSTANCE(void);

Parameters:

None

Return Value:

Returns the IApplet pointer to the currently executing applet.

Comments: 

None

Side Effects: 

None

See Also: 
None

Return to the List of functions
556



Helper Functions  
GETCHTYPE() 

Description: 

This function returns the type (numeric, alpha, and other types) of a wide character.

Prototype:
TChType GETCHTYPE(AECHAR ch) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions

ch Character whose type is to be determined

The type of the given 

character 

The type can be any of following

SC_ALPHA

SC_DIGIT

SC_WHITESPACE

SC_UNKNOWN
557



Helper Functions  
GET_JULIANDATE() 

Description: 

This function fills a JulianType data structure based upon the input second value. This value represents 

the number of seconds since Jan 6 1980 00:00:00 GMT, the device reference time. If the input value is 

0 (zero), the current system time is returned.

Prototype:
void GET_JULIANDATE(uint32 dwSecs, JulianType * pDate) 

Parameters:

Return Value: 

None

Comments: 

On Windows, the upper limit for dwSecs is the difference between the maximum value allowed by the 

uint32 and the difference between device reference time Jan 6, 1980 GMT and PC reference time Jan 

1, 1970.

Side Effects: 

None

See Also:
GET_SECONDS()
GET_TIMEMS()

GET_UPTIMEMS()

Return to the List of functions

dwSecs Seconds since Jan 6 1980 GMT, the device reference time

 pDate Pointer to the structure that needs to be filled on return
558



Helper Functions  
GET_NOTIFIER_MASK()

Description:

Returns Mask Value (lower 16-bits) from specified 32-bit notification mask.

Prototype:
uint16 GET_NOTIFIER_MASK(uint32 dwMasks)

Parameters:

Return Value:
Mask Value (lower 16-bits)

Comments: 

None

Side Effects: 

None

See Also: 
None
Return to the List of functions

dwMasks  32-bit notification mask
559



Helper Functions  
GET_NOTIFIER_VAL()

Description:

Returns Notification Match Value (upper 16-bits) from specified 32-bit notification mask.

Prototype:
uint16 GET_NOTIFIER_VAL(uint32 dwMasks)

Parameters:

Return Value:
Notification Match Value (upper 16-bits)

Comments: 

None

Side Effects: 

None

See Also: 
None
Return to the List of functions

dwMasks  32-bit notification mask
560



Helper Functions  
GET_RAND() 

Description: 

This function uses the random number generator on the device to fill an input buffer with an array of 

random values.

Prototype:
void Get_Rand(byte * pDest, int nSize) 

Parameters:

Return Value: 

None

Comments: 

None

Side Effects: 

None

See Also:
None
Return to the List of functions

pDest Pointer to destination buffer

nSize Size in bytes of the buffer
561



Helper Functions  
GET_SECONDS() 

Description: 

This function returns the number of seconds, adjusted for local time, since January 6, 1980 00:00:00 

GMT.

Prototype:
uint32 GET_SECONDS() 

Parameters:

None

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
GET_JULIANDATE()

GET_TIMEMS()
GET_UPTIMEMS()

Return to the List of functions

Seconds Elapsed since January 6, 1980 00:00:00 GMT
562



Helper Functions  
GET_TIMEMS() 

Description: 

This function returns the current time of day in milliseconds. The value returned by this call depends on 

the device's current time of day value. On phone, this value is obtained from the base station and may 

change dramatically when the phone first acquires system coverage.

Prototype:
uint32 GET_TIMEMS() 

Parameters:

None

Return Value: 

Comments: 

None

Side Effects: 

None

See Also:
GET_JULIANDATE()

GET_SECONDS()

GET_UPTIMEMS()
Return to the List of functions

Millisecond Elapsed since midnight
563



Helper Functions  
GET_UPTIMEMS() 

Description: 

This function returns the millisecond elapsed since the time the device was powered on. Unlike 

GET_TIMEMS(), this value does not change dramatically due to initial acquisition of system coverage. 

Prototype:
uint32 GET_UPTIMEMS() 

Parameters:

None

Return Value: 

Comments: 

On Emulator, this function returns the number of milliseconds elapsed since the present device 

configuration was selected in the Emulator.

Side Effects: 

None

See Also:
GET_TIMEMS()

GET_SECONDS()

GET_JULIANDATE()
Return to the List of functions

Milliseconds Elapsed since the time the device was powered on
564



Helper Functions  
LOCALTIMEOFFSET()

Description:

This function returns the local time zone offset from UTC, in seconds. Optionally returns a flag indicating 

that daylight savings time is active (if it is, the value of the local time zone offset already takes the shift 

into account; the flag is just for controlling display of a time zone name if desired). The returned value 

is added to UTC to give local time, or subtracted from local time to give UTC time. UTC = local time - 

bias (where, bias is the value returned from this function).

Prototype:
int32 LOCALTIMEOFFSET(boolean * pbDaylightSavings);

Parameters:

Return Value:

Returns the local time zone offset from UTC in seconds.

Comments: 

None

Side Effects: 

None

See Also: 
None
Return to the List of functions

pbDaylightSavings  [in/out] If non NULL on input, this flag specifies whether or not Daylight savings 

time is active on return
565



Helper Functions  
MALLOC()

Description: 

This function is corresponding to malloc() in standard C library. 

Prototype:
void * MALLOC(dword dwSize)

Parameters

Return Value:

Comments: 

None

Side Effects: 

None

See Also: 
FREE() 

REALLOC()

Return to the List of functions

dwSize  Size of buffer in bytes

Pointer  To the allocated memory
566



Helper Functions  
MEMCPY() 

Description: 

This function is a wrapper around the memcpy() function provided by the standard C library. Its behavior 

is identical to that of memcpy(). This function copies count bytes of src to dest. 

Prototype:
void * MEMCPY( void * dest, const void * src, uint16 count ) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
MEMSET()
Return to the List of functions

dest Pointer to the destination buffer

src Pointer to the source buffer

count Specifies the number of bytes that must be coped from src to dest

a pointer to the dest 

buffer 

If successful
567



Helper Functions  
MEMSET() 

Description: 

This function is a wrapper around the memset() function provided by the standard C library. Its behavior 

is identical to that of memset(). This function sets the first count bytes of the dest buffer to a specified 

byte b.

Prototype:
void * MEMSET( void * dest, byte b, uint16 count ) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
MEMCPY()

Return to the List of functions

dest Pointer to the destination buffer

b Specifies the byte that must be copied into the dest buffer

count Specifies the number of bytes in dest that must be set to the value b

Pointer To the destination buffer, if successful
568



Helper Functions  
OEMSTRLEN()

Description:

This function returns the length of a byte string. The string must be null-terminated. If the first byte of a 

character is greater than 0x7f, it is treated as a 2-byte character. The two bytes are counted as one 

single character.

Prototype:
int OEMSTRLEN(byte * p)

Parameters:

Return Value:

Comments: 

None

Side Effects:

None

See Also:
None
Return to the List of functions

p Valid pointer to a null-terminated byte string

The length of byte 

string 

If successful

0 (zero) If p is NULL
569



Helper Functions  
OEMSTRSIZE()

Description:

This function returns the size, in bytes, of the byte string, which must be null-terminated.

Prototype:
int OEMSTRSIZE(byte * p)

Parameters:

Return Value:

Comments: 

None

Side Effects:

None

See Also:
None

Return to the List of functions

p Pointer to a null-terminated byte string

The size of byte string In bytes, if successful, 

0 (zero) If p is NULL
570



Helper Functions  
REALLOC()

Description: 

This function is corresponding to realloc() in standard C library. 

Prototype:
void * REALLOC(void * pSrc, uint32 dwSize)

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also: 
MALLOC() 

FREE()
Return to the List of functions

pSrc Points to the previously allocated memory

dwSize New size in bytes

Pointer To the newly allocated memory 
571



Helper Functions  
SETAEERECT()

Description: 

This function initializes the specified rectangle with origin, width and height.

Prototype:
void SETAEERECT(AEERect * rc, int x, int y, int cx, int cy)

Parameters:

Return Value: 

None

Comments: 

No validation is performed on specified values. Proving a NULL rectangle resulst in a crash.

Side Effects: 

None

See Also: 
None.

Return to the List of functions

rc Rectangle to be initialized

x x-coordinate of the rectangle origin

y y-coordinate of the rectangle origin

cx width

cy height
572



Helper Functions  
SPRINTF() 

Description: 

This function is a wrapper around the sprintf() function provided by the standard C library. Its behavior 

is identical to that of sprintf(). It writes formatted data into a string. This function always takes single-

byte character string as input. To work with wide strings, use WSPRINTF(). 

Prototype:
int SPRINTF( char * buffer, const char * format [, argument] ... ) 

Parameters:

For more information about the function or its arguments, please refer to the documentation of the 

standard C library function sprintf() on the corresponding platform (Windows / ARM).

Return Value:

Comments: 

This function does not support %f in the format string. If %f is found anywhere within the format string, 

this function returns 0 (zero) without doing any processing. 

Side Effects: 

None

See Also:
WSPRINTF()
Return to the List of functions 

buffer Storage location for output

format Format-control string

argument Optional arguments

Number Of bytes stored in buffer, not counting the terminating null character 
573



Helper Functions  
STR_TO_WSTR() 

Description: 

This function converts a single-byte string into a wide string

Prototype:
AECHAR * STR_TO_WSTR(char * pszIn, AECHAR * pDest, int nSize) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
WSTR_TO_STR()

Return to the List of functions

pszIn Pointer to null terminated string comprised of single-byte characters

pDest Pointer to destination buffer to receive the wide string

nSize Size (in bytes) of pDest buffer. If this is <= 0, this function does not do 

any conversion. It returns pDest as is without any changes.

The destination string If successful
574



Helper Functions  
STRCAT() 

Description: 

This function is a wrapper around the strcat() function provided by the standard C library. Its behavior 

is identical to that of strcat(). This function appends the src string into dest and returns the dest string. 

All characters up to and including the first null character in src are appended to dest. This function 

always takes single-byte character strings as input. Applications wanting to append the wide strings 

must always use the WSTRCAT() function.

Prototype:
char * STRCAT( char * dest, const char * src ) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
WSTRCAT()
Return to the List of functions 

dest Pointer to the NULL terminated destination string

src Pointer to the NULL terminated source string

Pointer To the destination string, if successful
575



Helper Functions  
STRCHR() 

Description: 

This function is a wrapper around the strchr() function provided by the standard C library. Its behavior 

is identical to that of strchr(). This function finds a character in a string. This function always takes 

single-byte character as input.

Prototype:
char * STRCHR( const char * string, int c ) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
WSTRCHR()

Return to the List of functions 

string Null terminated string to search

c Character to be located

Pointer To the first occurrence of c in the string 

NULL If c is not found
576



Helper Functions  
STRCMP() 

Description: 

This function is a wrapper around the strcmp() function provided by the standard C library. Its behavior 

is identical to that of strcmp(). This function compares the given two single-byte strings. This function 

always takes single-byte character as input. 

Prototype:
int STRCMP( const char * str1, const char * str2 ) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
WSTRCMP()

Return to the List of functions 

str1,str2 Pointers to the two null terminated strings that need to be compared

value < 0 If string1 less than string2 

0 (zero) If string1 identical to string2 

value > 0 If string1 greater than string2 
577



Helper Functions  
STRCPY() 

Description: 

This function is a wrapper around the strcpy() function provided by the standard C library. Its behavior 

is identical to that of strcpy(). This function copies the src string into dest and returns the dest string. All 

characters up to and including the first null character in src are copied into dest. This function always 

takes single-byte character strings as input. Applications wanting to copy wide strings from one buffer 

into the other must always use the WSTRCPY() function.

Prototype:
char * STRCPY( char * dest, const char * src ) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
WSTRCPY()

WSTRNCOPYN()

Return to the List of functions 

dest Pointer to the destination string

src Pointer to the source string

Pointer to the 

destination string 

If successful
578



Helper Functions  
STRLEN() 

Description: 

This function is a wrapper around the strlen() function provided by the standard C library. Its behavior 

is identical to that of strlen(). This function gets the length of the given null terminated string. This 

function always takes single-byte character as input. To get the length of a wide string, use WSTRLEN(). 

Prototype:
int STRLEN( const char * str) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
WSTRLEN()

Return to the List of functions 

str Null terminated string whose length is to be determined

Number Of characters in string, excluding the terminal NULL 
579



Helper Functions  
STRNCPY()

Description: 

This function is a wrapper around the standard C library function strncpy(). It copies specified number 

of characters from one string to another. The strncpy() function copies the initial count characters of 

strSource to strDest and returns strDest. If count is less than or equal to the length of strSource, a 

null character is not appended automatically to the copied string. If count is greater than the length of 

strSource, the destination string is padded with null characters up to length count. The behavior of 

strncpy is undefined if the source and destination strings overlap.

Prototype:
char * STRNCPY( char * strDest, const char * strSource, size_t count );

Parameters:

Return Value:

This function returns strDest.

Comments

None

Side Effects

None

See Also:
None
Return to the List of functions 

strDest  [in/out]  Destination string

strSource  [in/out]  Source string

count  [in]  Number of characters to be copied
580



Helper Functions  
STRRCHR() 

Description: 

This function is a wrapper around the strrchr() function provided by the standard C library. Its behavior 

is identical to that of strrchr(). This function searches a string for the last occurrence of a character This 

function always takes a single-byte character strings as input.

Prototype:
char * STRRCHR( const char * string, int c ) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
WSTRRCHR()

Return to the List of functions 

string Null terminated string to search

c Character to be located

Pointer A pointer to the last occurrence of c in string, if found

NULL If c is not found
581



Helper Functions  
STRTOUL()

Description: 

This function is a wrapper around the standard C library function strtoul(). It converts strings to an 

unsigned long-integer value. It stops reading the string nptr at the first character it cannot recognize as 

part of a number. This may be the terminating null character, or it may be the first numeric character 

greater than or equal to base. If endptr is not NULL, a pointer to the character that stopped the scan is 

stored at the location pointed to by endptr. If no conversion can be performed (no valid digits were 

found or an invalid base was specified), the value of nptr is stored at the location pointed to by endptr.

Prototype:
unsigned long STRTOUL( const char * nptr, char * * endptr, int base );

Parameters:

Return Value:

This function returns the converted value. It returns 0 if no conversion can be performed.

Comments:

None

Side Effects:

None

See Also:
None

Return to the List of functions 

nptr  [in]  Null-terminated string to convert

endptr  [out]  If Non-null in input, it points to character that stops scan on return

base  [in]  Number base to use
582



Helper Functions  
SYSFREE()

Description: 

This function is provided to allow developers to return system memory pointers returned from 

CONVERTBMP(). This function is ONLY valid for memory objects returned by CONVERTBMP() where 

the bReallocated flag has been set to TRUE.

Prototype:
void SYSFREE(void * pBuff);

Parameters:

Return Value:

None

Comments: 

None

Side Effects: 

None

See Also: 
CONVERTBMP()

Return to the List of functions 

pBuff Pointer to memory allocated by CONVERTBMP()
583



Helper Functions  
UTF8_TO_WSTR() 

Description: 

This function converts a converts a UTF8 string to a wide string.

Prototype:
boolean UTF8_TO_WSTR(const byte * pSrc,int nLen, AECHAR * pDst, int nSize) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
WSTR_TO_UTF8()

Return to the List of functions 

pSrc pointer to Null terminated Input string

nLen Length of input string in bytes

pDst Destination string

nSize Size in bytes of destination

TRUE If successful

FALSE If unsuccessful 
584



Helper Functions  
WSPRINTF() 

Description: 

This function is the wide-string equivalent of sprintf(). It writes formatted data into a string. This function 

has certain limitations compared to sprintf(). Conversion specifiers for strings must have the form "%s" 

(alignment and field-width information, for example, %-20.10s, is not allowed).

Prototype:
void WSPRINTF(AECHAR * pDest, int nSize, AECHAR * pFormat,...) 

Parameters:

For more information about the function or its arguments, please refer to the documentation of the 

standard C library function sprintf() on the corresponding platform (Windows / ARM).

Return Value:

None

Comments: 

This function does not support %f in the format string. If %f is found anywhere within the format string, 

this function fills a null character in the starting location of the destination string and returns immediately 

without doing any processing.

Side Effects: 

None

See Also:
SPRINTF()

Return to the List of functions 

pDest Storage location for output

nSize Specifies the total size (in bytes) of pDest buffer

pFormat Format control string
585



Helper Functions  
WSTR_TO_FLOAT() 

Description: 

This function converts a wide string into a floating point value. Internally, this function first converts the 

given wide string into a single-byte string using the WSTR_TO_STR() and then uses the standard C 

library function atof() to convert the single-byte string to a double value.

Prototype:
double WSTR_TO_FLOAT(AECHAR * psz) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
FLOAT_TO_WSTR()

Return to the List of functions 

psz Pointer to null terminated wide string that must be converted to float

Floating point value Of the given string, if successful
586



Helper Functions  
WSTR_TO_STR() 

Description: 

This function converts a wide string into a single-byte string.

Prototype:
char * WSTR_TO_STR(AECHAR * pIn, char * pszDest, int nSize) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
STR_TO_WSTR()

Return to the List of functions 

pIn Pointer to null terminated wide string that must be converted to single-byte 

character string

pszDest Pointer to destination buffer to receive the single-byte string

nSize Size (in bytes) of pDest buffer. If this is <= 0, this function does not do any 

conversion. It returns pszDest as is without any changes.

The destination string If successful
587



Helper Functions  
WSTR_TO_UTF8() 

Description: 

This function converts a wide string to a UTF8 string.

Prototype:
boolean WSTR_TO_UTF8(const AECHAR * pSrc,int nLen, byte * pDst, int nSize) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
WSTR_TO_UTF8()

Return to the List of functions 

pSrc Input string

nLen Length of input string in AECHARs

pDst Destination string

nSize Size in bytes of destination

TRUE If successful

FALSE If unsuccessful 
588



Helper Functions  
WSTRCAT() 

Description: 

This function appends the src string into dest. All characters up to and including the first null character 

in src are appended to dest. Both src and dest are wide strings.

Prototype:
AECHAR * WSTRCAT(AECHAR * pDest, AECHAR * pSrc) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
STRCAT()
Return to the List of functions 

pDest pointer to the NULL terminated destination string

pSrc pointer to the NULL terminated source string

Pointer To the destination string, if successful
589



Helper Functions  
WSTRCHR()

Description:

This function is the wide string counterpart of STRCHR(). Its behavior is identical to that of STRCHR(). 

This function always takes a wide string as input.

Prototype:
AECHAR * WSTRCHR( AECHAR * s1, AECHAR c )

Parameters:

Return Value:

Comments: 

None

Side Effects:

None

See Also:
STRCHR()

Return to the List of functions 

s1 Null terminated wide string to search

c Character to be located

Pointer To the first occurrence of c in s1

NULL If c is not found
590



Helper Functions  
WSTRCMP()

Description:

This function compares the two strings, s1 and s2, lexicographically. It returns an integer value that 

indicates the comparison result. In this function, NULL string pointer and empty string are treated the 

same. Both s1 and s2 are wide strings.

Prototype:
int WSTRCMP(AECHAR * s1, AECHAR * s2)

Parameters:

Return Value:

Comments:

None

Side Effects:

None

See Also:
STRCMP() 

Return to the List of functions 

s1 Pointer to first NULL terminated string

s2 Pointer to second NULL terminated string

0 If s1 == s2

1 If s1 > s2

-1 If s1 < s2
591



Helper Functions  
WSTRCOMPRESS()

Description: 

This function compresses the input wide string: if a character is less than or equal to 127, then the 

function reduces the two bytes to one byte.

Prototype:
void WSTRCOMPRESS(const AECHAR * pSrc, int nLen,byte * pDest, int nSize)

Parameters:

Return Value:

None

Comments: 

None

Side Effects: 

None

See Also: 
STRLEN()

Return to the List of functions 

pSrc  Null terminated source string 

nLen  Length of the source string in AECHARs

pDest  Pointer to the destination buffer

nSize  Size of the destination buffer in bytes
592



Helper Functions  
WSTRCPY() 

Description: 

This function copies the src string into dest. Both src and dest are wide strings. 

Prototype:
AECHAR * WSTRCPY(AECHAR * pDest, AECHAR * pSrc) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
WSTRNCOPYN()

STRCPY()

Return to the List of functions 

pDest Pointer to destination buffer

pSrc Pointer to null-terminated string that must be copied into pDest

Pointer To the destination string, if successful
593



Helper Functions  
WSTRDUP() 

Description: 

This is a convenience function that can be used make a duplicate copy of an existing wide string. This 

function first allocates memory (using the CREATEOBJ() ) required to store a copy of the incoming 

string and then copies this string into the newly allocated buffer. This newly allocated buffer is then 

returned from the function. After use, the buffer must be released using the FREEOBJ().

Prototype:
AECHAR * WSTRDUP(AECHAR * pIn) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
None

Return to the List of functions 

pIn Valid pointer to a null-terminated wide string

pointer Containing a copy of the incoming string pIn, if successful. After using this 

pointer, it must be released using the FREEOBJ().

NULL If unsuccessful
594



Helper Functions  
WSTRLEN() 

Description: 

This function gets the length of the given null terminated wide string. 

Prototype:
int WStrLen(AECHAR * str) 

Parameters:

Return Value:

Comments: 

None

Side Effects: 

None

See Also:
STRLEN() 

Return to the List of functions 

str Null terminated string whose length is to be determined

Number of AECHAR 

characters 

In string excluding the terminal, if successful

0 (zero) If str is NULL or if str is empty
595



Helper Functions  
WSTRLOWER() 

Description: 

This function converts all upper case characters in a wide string to lower case.

Prototype:
void WSTRLOWER(AECHAR * pszDest) 

Parameters:

Return Value:

None

Comments: 

None

Side Effects: 

None

See Also:
WSTRUPPER()

Return to the List of functions 

pszDest On input, this is a pointer to NULL terminated source string. On return, 

this buffer contains the converted string.
596



Helper Functions  
WSTRNCOPYN()

Description:

This function copies specified length of the source string into destination. The destination is guaranteed 

to be null-terminated. Both src and dest are wide strings.

Prototype:
AECHAR * WSTRNCOPYN(AECHAR * pDest, int cbDest, AECHAR * pSrc, int lenSource)

Parameters:

Return Value:

Comments: 

None

Side Effects:

None

See Also:
WSTRCPY()

Return to the List of functions 

pDest [out] Pointer to destination buffer

cbDest [in] Size of pDest in AECHARs

pSrc [in] Pointer to null-terminated string that must be copied into 

pDest

lenSource [in] Maximum string length to copy into pDest. It does not need 

to include null character. If it is set to -1, then the entire pSrc 

is copied to pDest

Destination string
597



Helper Functions  
WSTRRCHR()

Description:

This function is the wide string counterpart of STRRCHR(). Its behavior is identical to that of 

STRRCHR(). This function always takes a wide string as input.

Prototype:
AECHAR * WSTRRCHR( AECHAR * s1, AECHAR c )

Parameters:

Return Value:

Comments: 

None

Side Effects:

None

See Also:
STRRCHR()

Return to the List of functions 

s1 Null terminated wide string to search

c Character to be located

Pointer To the first occurrence of c in s1, 

NULL If c is not found
598



Helper Functions  
WSTRSIZE()

Description:

This function returns the size, in bytes, of the wide string.

Prototype:
int WSTRSIZE(AECHAR * p)

Parameters:

Return Value:

Comments: 

None

Side Effects:

None

See Also:
None

Return to the List of functions 

p Valid pointer to a null-terminated wide string

The size of wide 

string 

In bytes 

0 (zero) If p is NULL 
599



Helper Functions  
WSTRUPPER() 

Description: 

This function converts all lower case characters in a wide string to upper case

Prototype:
void WSTRUPPER(AECHAR * pszDest) 

Parameters:

Return Value:

None

Comments: 

None

Side Effects: 

None

See Also:
WSTRLOWER()

Return to the List of functions 

pszDest On input, this is a pointer to NULL terminated source string. On return, 

this buffer contains the converted string.
600



Helper Functions  
WWRITELONGEX()

Description:

This function converts a long into wide string. The string may be padded with wide character '0' and may 

contain only a portion of the long input value based on the parameters nPad and nRemaining. 

Prototype:
AECHAR * WWRITELONGEX(AECHAR * pszBuf, long n, int nPad, int * pnRemaining)

Parameters:

Return Value:

Comments: 

None

pszBuf [out] Valid pointer to a null-terminated wide string to which the converted 

long is written

n [in] Input long number

nPad [in] Specifies the maximum amount of padding. The value of nPad must 

be less than 12 otherwise it is ignored. 

The padding is the number of digits that must be present in the final 

string. For example, if n is set to 245 and nPad is set to 5, then the 

output string contains 00245. If this value is greater than or equal to 

12 or if it is less than the minimal size needed to represent the number, 

then it is ignored. For example, if n is set to 245 and nPad is set to 1, 

it is ignored. If npad is set to 0 or a negative number, it is ignored.

nRemaining [in/out] This pointer, on input, points to an integer that specifies the size of 

pszBuf. The size is described in terms of the total number of 

characters (AECHARs). 

This pointer, on output, points to an integer that denotes the unused 

space (in terms of number of AECHARs) left in pszBuf. The 

difference between the output and input values denotes the number of 

characters written to pszBuf (excluding the null character). 

Pointer To the beginning of the unused portion of pszBuf. This is the portion in 

pszBuf after the formatted wide string has been written.

NULL If unsuccessful
601



Helper Functions  
Side Effects:

None

See Also:
WSPRINTF()

Return to the List of functions 
602



Data Structures

This section contains type definitions and descriptions of the data structures used by the BREW API 

functions. These data structures define the format and content of the data that is passed by applications 

to the BREW API functions and received by the applications as output from the functions. Type 

definitions for the BREW data structures are contained in the BREW header files that are shipped with 

the BREW SDK. Most data structures are specific to a particular BREW interface, and their type 

definitions are contained in the header file for that interface. Many data structures that are used by more 

than one interface are found in the files AEE.h and AEEError.h. The descriptions in this section are in 

alphabetical order by data structure name. The description of each BREW API function contains links 

to the descriptions of all relevant data structures.

BREW data structures are of three main types:

•  Structures and Unions: Many BREW functions take pointers to structures as input 

parameters. To use such a function, you populate an instance of a structure and pass a 

pointer to the instance when calling the function. For example, the IGraphics shape-drawing 

functions have structures as input parameters that define the dimensions of the shape to be 

drawn. Many BREW functions return pointers to structures as output; for example, the IFile 

Interface and IImage Interface functions that return information about files and images store 

this information in structures. In this section, each field in each of the BREW structures is 

described.

•  Enumerated Types: Many BREW variables and structure members take on values from a 

finite set defined by the C typedef enum construct. For example, the font types supported by 

the IDisplay Interface's text-drawing functions are specified with an enumerated-type 

definition. This section describes each value of each enumerated type.

•  Constant Definitions: The BREW API functions make use of a number of constants that are 

defined with the #define construct. One common use of constants is to define a set of bit 

masks for testing and setting the values of the bits in a bit-vector variable. For example, the 

BREW menu, time, text and static text controls all have a 32-bit variable used to store control 

properties, with one bit per property. Each control defines a set of bit-mask constants that are 

used to test and set the values of each of the control's properties. In this section, each set of 

related constants used by the BREW API functions is described.
603



Data Structures  
List of data structures

Data structures in this interface include:

AEE Applet Flags

AEE Events

AEE IImage Parameters

AEE IMenuCtl Properties

AEE ITextCtl Properties

AEE ITimeCtl Properties

AEE Privilege Levels

AEE Standard Control Properties

AEEAppInfo

AEEAppStart

AEEArc

AEECallback

AEECircle

AEEClip

AEEClipShape

AEEClrItem

AEEDBField

AEEDBFieldName

AEEDBFieldType

AEEDeviceInfo

AEEDNSResult

AEEEllipse

AEEFrameType

AEEFont

AEEHandlerType

AEEImageInfo

AEEItemStyle

AEEItemType

AEELine
604



Data Structures  
AEEMenuColors

AEEMenuColorsMask

AEENetStats

AEENotify

AEENotifyStatus

AEEPaintMode

AEEPie

AEEPoint

AEEPolygon

AEEPolyline

AEEPosAccuracy

AEEPositionInfo

AEEPromptInfo

AEERasterOp

AEERect

AEESoundAPath

AEESoundCmd

AEESoundCmdData

AEESoundDevice

AEESoundInfo

AEESoundMethod

AEESoundMuteCtl

AEESoundPlayerAudioSpec

AEESoundPlayerCmd

AEESoundPlayerCmdData

AEESoundPlayerFile

AEESoundPlayerInput

AEESoundPlayerMIDISpec

AEESoundPlayerMP3BitRate

AEESoundPlayerMP3Channel

AEESoundPlayerMP3Emphasis

AEESoundPlayerMP3Extension
605



Data Structures  
AEESoundPlayerMP3Layer

AEESoundPlayerMP3SampleRate

AEESoundPlayerMP3Spec

AEESoundPlayerMP3Version

AEESoundPlayerSource

AEESoundPlayerStatus

AEESoundStatus

AEESoundTone

AEESoundToneData

AEESymbol

AEETextInputMode

AEETriangle

AEEVoicePrompt

BeepType

CtlAddItem

DialogInfo

DialogInfoHead

DialogItem

DialogItemHead

DListItem

FileAttrib

FileInfo

FileSeekType

IDISPLAY Flags

IGRAPHICS Flags

ITField

JulianType

NetSocket

NetState

OpenFileMode

PFNAEEEVENT

PFNCONNECTCB
606



Data Structures  
PFNIMAGEINFO

PFNPOSITIONCB

PFNSOUNDPLAYERSTATUS

PFNSOUNDSTATUS

ResType

RGBVAL

SockIOBlock

TChType

Return to the Contents.
607



Data Structures  
AEE Applet Flags

Description:

Applet specific flags.

Definition:

Members:

None

Comments:

None

See Also:
None

Return to the List of data structures.

AFLAG_HIDDEN Applet is hidden

AFLAG_CFG Applet has a CFG menu

AFLAG_SYSTEM_CFG Applet has a hidden CFG menu

AFLAG_TOOL Applet is a tool

AFLAG_GAME Applet is a game

AFLAG_PIM Applet is a PIM

AFLAG_WEB Applet is a Web Applet

AFLAG_STATIC System use only

AFLAG_DYNAMIC System use only
608



Data Structures  
AEE Events

Description:

These are the defined AEE events that can be received by an applet and/or control. For each event the 

wParam and dwParam parameters, if any, that are passed to the applet or control are given.

Definition:

Applet Events 

EVT_APP_START Main App started

EVT_APP_STOP App stopped: no parameters

EVT_APP_SUSPEND App suspended: no parameters

EVT_APP_RESUME App resumed: dwParam = (AEEAppStart * )

EVT_APP_CONFIG Alternate App Start: configuration screen can be shown

EVT_APP_HIDDEN_CONFIG Alternate App Start: hidden configuration screen

EVT_APP_BROWSE_URL Called after EVT_APP_START: dwParam = (const AECHAR * pURL)

EVT_APP_BROWSE_FILE Called after EVT_APP_START

EVT_APP_MESSAGE Text message: dwParam = ASCIIZ

Key Events 

EVT_KEY App keyup: wParam = KEYCODE

EVT_KEY_PRESS App keydown: wParam = KEYCODE

EVT_KEY_RELEASE App keyheld: wParam = KEYCODE

EVT_KEY_HELD Key held: wParam = KEYCODE

Control Events 

EVT_COMMAND App custom control

EVT_CTL_TAB App TAB event sent by controls: dwParam = control, wParam = 0-left, 

1-right

EVT_CTL_SET_TITLE Message interface to set title: wParam = ID, dwParam = res file

(if ID != 0) or text

EVT_CTL_SET_TEXT Message interface to set text: wParam = ID, dwParam = res file (if ID 

!= 0) or text

EVT_CTL_ADD_ITEM Message interface to add item: dwParam = CtlAddItem

EVT_CTL_CHANGING App dwParam = CtlValChange
609



Data Structures  
.

Members:

None

Comments

The user defined events start from EVT_USER

See Also:
None 
Return to the List of data structures.

EVT_CTL_CHANGING App dwParam = CtlValChange

EVT_CTL_MENU_OPEN Sent by text controls before their associated softkey menus are 

activated

Dialog Events 

EVT_DIALOG_INIT Dialog Event: Controls created, pre-init values, flags, and other items

EVT_DIALOG_START Dialog Event: Dialog opening, wParam = ID, dwParam = IDialog * 

EVT_DIALOG_END Dialog Event: Dialog completed normally, wParam = ID, dwParam = 

IDialog * 

EVT_COPYRIGHT_END Dialog Event: Copyright dialog ended

AEE Shell Events 

EVT_ALARM App wParam = uCode

EVT_NOTIFY dwParam = AEENotify * 

EVT_BUSY 0x404

Device Events 

EVT_FLIP wParam = TRUE if open, FALSE if closed

EVT_LOCKED wParam = TRUE if user interface is locked

EVT_KEYGUARD wParam = TRUE if keyguard is on

User defined events 

EVT_USER Start of App/User defined Events (Private to apps)
610



Data Structures  
AEE IImage Parameters

Description:

These are the parameters defined for IImage Interface.

Definition:

Members:

None

Comments:

None

See Also:
IIMAGE_SetParm()
Return to the List of data structures.

IPARM_SIZE Specifies the actual size of the image that needs to be used for displaying 

purposes

IPARM_OFFSET Specifies the offset within the entire image that must be used for displaying

IPARM_CXFRAME Specifies the width of each frame for formats not normally supporting 

animation (such as Windows .BMP)

IPARM_NFRAMES Specifies the number of frames

IPARM_RATE Specifies the animation rate in milliseconds

IPARM_ROP Specifies the Raster operation to be used while drawing the image

IPARM_OFFSCREEN Specifies whether to draw the image to the offscreen buffer
611



Data Structures  
AEE IMenuCtl Properties

Description:

These are the properties defined for IMenuCtl Interface.

Definition:

Properties valid only for SoftKey list view of the menu control object:

Properties valid only for icon list view of the menu control object:

Properties valid only for calendar event list view of the menu control object:

Members:

None

MP_WRAPSCROLL If set, wrap when scrolling off the end of screen (Only applicable to 

SoftKey and List controls)

MP_NO_ARROWS If set, no arrows even if scroll is possible

MP_NO_REDRAW If set, IMENUCTL_Redraw() function is not internally called in 

IMENUCTL_SetActive() or when changing selection

MP_UNDERLINE_TITLE If set, underline title

MP_BI_STATE_IMAGE If set, 2 state image with no framing (unsel/sel)

MP_TRI_STATE_IMAGE If set, 3 state image with no framing (unsel/sel/pressed)

MP_MAXSOFTKEYITEMS If set, show maximum number of soft key items per screen

MP_ICON_TEXT_TOP If set, Icon View: Text at top

MP_ICON_SINGLE_FRAME If set, Icon View: Single Frame

MP_CALENDAR If set, menu control object is in calendar event list view

MP_AUTOSCROLLTIME If set, auto-scroll if in calendar list view
612



Data Structures  
Comments

None

See Also:
IMENUCTL_SetProperties()

IMENUCTL_GetProperties()
Return to the List of data structures.
613



Data Structures  
AEE ITextCtl Properties

Description:

These are the properties defined for ITextCtl Interface.

Definition:

Members:

None

Comments

None

See Also:
ITEXTCTL_SetProperties() 

ITEXTCTL_GetProperties()
Return to the List of data structures.

TP_MULTILINE If set, text control object is multiple line control

TP_FRAME If set, text control object has a frame

TP_T9_MODE If set, text control object is in T9 mode
614



Data Structures  
AEE ITimeCtl Properties

Description:

These are the properties defined for ITimeCtl Interface.

Definition:

Members:

None

Comments:

None

See Also:
ITIMECTL_SetProperties(), 

ITIMECTL_GetProperties()

Return to the List of data structures.

TP_AUTOREDRAW if set, redraw on SetActive

TP_NO_SECONDS if set, do not show the seconds in the COUNTDOWN control

TP_NO_MSECONDS if set, do not show milliseconds in STOPWATCH

TP_NOEDIT_AMPM if set, do not allow to edit AM/PM
615



Data Structures  
AEE Privilege Levels

Description:

These flags define the privilege levels that an application can have. An application can have zero or 

more privilege levels, which are stored internally in a bit vector. These flags can be used to test and set 

the value of each privilege bit in this vector.

Definition:

Members:

None

Comments:

None

See Also:
ISHELL_CheckPrivLevel()
Return to the List of data structures.

PL_FILE The application has create and write access to files and databases

PL_NETWORK The application has access to the functions in the INetMgr Interface 

and ISocket Interface.

PL_TAPI The application has access to telephony functionality (not supported 

at present).

PL_DOWNLOAD The application has access to the IDownload interface, which 

contains functions for accessing BREW application download 

servers (this privilege level is only available to carriers and device 

manufacturers).

PL_SHARED_WRITE The application has access to the shared application directory, 

which allows applications to share files.

PL_POS_LOCATION The application has access to position-location functionality (not 

supported at present).

PL_SYSTEM The application has all of the above privilege levels and additional 

functionality (this privilege level is only available to carriers and 

device manufacturers).
616



Data Structures  
AEE Standard Control Properties

Description:

These are the defined Standard Control Properties.

Definition:

Members:

None

Comments

None

See Also:
None

Return to the List of data structures.

CP_BORDER Control has a border

CP_STATIC Control is static and SetActive has no effect with this control type

CP_3D_BORDER 3D Border

CP_USE_DEFAULT Use default properties
617



Data Structures  
AEEAppInfo

Description:

This structure is used for storing information about the applet.

Definition:
typedef struct

{

AEECLSID cls;

char * pszMIF;

uint16 wIDBase;

uint16 wPad1;

uint16 wPad2;

uint16 wPad3;

uint16 wPad4;

uint16 wFlags;

} AEEAppInfo;

Members:

Comments:

None

 cls Applet ClassID

 pszMIF Applet Resource file

 wIDBase Base ID for locating title, icon, and other items in 

applet resource file

 wPad1 Padding

 wPad2 Padding

 wPad3 Padding

 wPad4 Padding

 wFlags AEE Applet Flags
618



Data Structures  
See Also:
AEE Applet Flags

Return to the List of data structures.
619



Data Structures  
AEEAppStart

Description:

This structure is sent on EVT_APP_START/EVT_APP_RESUME.

Definition:
typedef struct

{

int error;

AEECLSID clsApp;

IDisplay * pDisplay;

AEERect rc;

} AEEAppStart;

Members:

Comments:

None

See Also:
None

Return to the List of data structures.

 error Filled by app if there is an error

 clsApp Applet ID

 pDisplay Pointer to IDisplay Interface object

 rc Rectangle for the Applet
620



Data Structures  
AEEArc

Description:

This structure defines the circular arc data type.

Definition:
typedef struct _arc 

{

int16 cx, cy; 

int16 r; 

int16 startAngle; 

int16 arcAngle; 

} AEEArc;

Members:

Comments:

The first 3 fields are identical to that of AEECircle. This makes it convenient to explicitly cast an AEEArc 

structure to AEECircle when needed. 

See Also:
AEECircle 

IGRAPHICS_DrawArc()

IGRAPHICS_Translate()
Return to the List of data structures.

cx X coordinate of the center of the reference circle

cy Y coordinate of the center of the reference circle

r Radius of the reference circle

startAngle The angle, in degrees, from which the circular arc begins

arcAngle The angle of the circular arc, in degrees
621



Data Structures  
AEECallback

Description:

This structure specifies the data and functions for a callback registered with the ISHELL_Resume() 

function.

Definition:
typedef struct _AEECallback AEECallback; struct _AEECallback

{

AEECallback * pNext;

void * pmc;

PFNCBCANCEL pfnCancel;

void * pCancelData;

PFNNOTIFY pfnNotify;

void * pNotifyData;

void * pReserved;

};

Members:

Comments:

None

pNext Reserved and the caller must not modify this member 

pmc Reserved and the caller must not modify this member

pfnCancel Pointer to function called by the callback handler if this callback is 

cancelled. The caller must set this pointer to NULL.

pCancelData Data passed to pfnCancel. The caller must not modify this member.

pfnNotify This is the callback function that is invoked by AEE. The caller must set 

this pointer to the function to be called by the AEE callback handler.

pNotifyData Data to be passed to pfnNotify

pfnNotify. The caller must set this pointer to the data that must be passed to the 

pfnNotify function.

pReserved Reserved and this member will be used by the callback handler
622



Data Structures  
See Also:
None 

Return to the List of data structures.
623



Data Structures  
AEECircle

Description:

This structure defines the circle data type.

Definition:
typedef struct _circle

{

int16 cx, cy; 

int16 r; 

} AEECircle;

Members:

Comments:

None

See Also:
IGRAPHICS_DrawCircle()
IGRAPHICS_Translate().

Return to the List of data structures.

cx X coordinate of the circle's center

cy Y coordinate of the circle's center

r Radius of the circle, in number of pixels
624



Data Structures  
AEEClip

Description:

This structure defines the dimensions of a clipping shape that is used to restrict the region in which an 

IGraphics drawing operations takes effect.

Definition:
typedef struct _clipshape

{

AEEClipShape type;

union {

AEERect rect;

AEECircle circle;

AEEEllipse ellipse;

AEEPie pie;

AEETriangle triangle;

} shape;

} AEEClip;

Members:

Comments:
Shape is a UNION type. Only one of the shapes is effective at any moment. The program has to check 

the type and then access shape for the corresponding clipping shape.

See Also:
AEEClipShape.

Return to the List of data structures.

type Type of clipping shape

shape Union of clipping shape

shape.rect Rectangular clipping shape

shape.circle Circular clipping shape

shape.ellipse Ellipse as the clipping shape

shape.pie Circular pie as the clipping shape

shape.triangle Triangular clipping shape
625



Data Structures  
AEEClipShape

Description:

This ENUM specifies shape types for clipping region.

Definition:
typedef enum 

{

CLIPPING_NONE,

CLIPPING_RECT,

CLIPPING_CIRCLE,

CLIPPING_ELLIPSE

CLIPPING_PIE,

CLIPPING_TRIANGLE,

CLIPPING_POLYGON

} AEEClipShape;

Members:

Comments:

The default clipping shape is CLIPPING_RECT and the display window is the default clipping region. The 

program can change the clipping region by calling IGRAPHICS_SetClip().

See Also:
AEEClip, 

AEERect,
AEECircle, 

CLIPPING_NONE No clipping shape is specified, the display window is used as default

CLIPPING_RECT A rectangular shape

CLIPPING_CIRCLE A circular shape

CLIPPING_ELLIPSE A ellipse

CLIPPING_PIE A circular pie

CLIPPING_TRIANGLE A triangular shape

CLIPPING_POLYGON An arbitrary polygon
626



Data Structures  
AEEEllipse, 

AEEPie, 
AEETriangle,

AEEPolygon,

IGRAPHICS_SetClip()
Return to the List of data structures.
627



Data Structures  
AEEClrItem

Description:

This ENUM specifies color types for active drawing as well as system colors.

Definition:
typedef enum 

{ 

CLR_USER_TEXT=1, 

CLR_USER_BACKGROUND, 

CLR_USER_LINE, 

CLR_SYS_TITLE,

CLR_SYS_TITLE_TEXT,

CLR_SYS_ITEM,

CLR_SYS_ITEM_TEXT,

CLR_SYS_ITEM_SEL, 

CLR_SYS_ITEM_SEL_TEXT,

CLR_SYS_WIN,

CLR_SYS_FRAME_HI,

CLR_SYS_FRAME_LO,

CLR_SYS_LT_SHADOW,

CLR_SYS_DK_SHADOW,

CLR_SYS_SCROLLBAR,

CLR_SYS_SCROLLBAR_FILL,

CLR_SYS_LAST

} AEEClrItem;

Members:

CLR_USER_TEXT Active Text Color

CLR_USER_BACKGROUND Active Background color

CLR_USER_LINE Active Line color (frames, and other items)

CLR_SYS_TITLE Title Background

CLR_SYS_TITLE_TEXT Title Text
628



Data Structures  
Comments:

Only the CLR_USER_TEXT, CLR_USER_BACKGROUND and CLR_USER_LINE colors can be 

changed by the user via IDISPLAY_SetColor().

See Also:
IDISPLAY_SetColor()

Return to the List of data structures.

CLR_SYS_ITEM ITEM (SoftKey, menu, button) Background

CLR_SYS_ITEM_TEXT ITEM Text

CLR_SYS_ITEM_SEL ITEM Selected Background

CLR_SYS_ITEM_SEL_TEXT ITEM Selected Text

CLR_SYS_WIN Standard Window Background

CLR_SYS_FRAME_HI Frame Highlight color (usually white)

CLR_SYS_FRAME_LO Frame solid color (usually black)

CLR_SYS_LT_SHADOW Shadow color (usually light grey)

CLR_SYS_DK_SHADOW Shadow color (usually dark grey)

CLR_SYS_SCROLLBAR Scroll Bars: Background

CLR_SYS_SCROLLBAR_FILL Scroll Bars: Filled area
629



Data Structures  
AEEDBField

Description:

This structure defines fields in a record. This structure is used to retrieve and update database fields.

Definition:
typedef struct

{

AEEDBFieldType fType;

AEEDBFieldName fName;

uint16 wDataLen;

void * pBuffer;

} AEEDBField;

Members:

Comments:

None

See Also:
None 

Return to the List of data structures.

fType Database field type (See documentation)

fName Database field Name (See documentation)

wDataLen  Data Length (excluding header) of the field

pBuffer Pointer to buffer containing the field data
630



Data Structures  
AEEDBFieldName

Description:

AEEDBFieldName is used by IDBRECORD_NextField() and IDBRECORD_GetField() to return the 

field name of the field. 

Definition:
typedef enum

{

AEEDBFIELD_NONE,

AEEDBFIELD_FULLNAME,

AEEDBFIELD_LASTNAME,

AEEDBFIELD_FIRSTNAME,

AEEDBFIELD_HOME_PHONE,

AEEDBFIELD_WORK_PHONE,

AEEDBFIELD_MOBILE_PHONE,

AEEDBFIELD_FAX,

AEEDBFIELD_ADDRESS,

AEEDBFIELD_EMAIL,

AEEDBFIELD_URL,

AEEDBFIELD_DATE_TIME,

AEEDBFIELD_CATEGORY,

AEEDBFIELD_ALARM,

AEEDBFIELD_PREF_ID,

AEEDBFIELD_PREF_VER,

AEEDBFIELD_PREF_DATA,

AEEDBFIELD_TITLE,

AEEDBFIELD_TEXT

} AEEDBFieldName;

Members:

AEEDBFIELD_FULLNAME Field contains a full name

AEEDBFIELD_LASTNAME Field contains a last name
631



Data Structures  
Comments:

None

See Also:
None 
Return to the List of data structures.

AEEDBFIELD_FIRSTNAME Field contains a first name

AEEDBFIELD_HOME_PHONE Field contains a home phone number

AEEDBFIELD_WORK_PHONE Field contains a work phone number

AEEDBFIELD_MOBILE_PHONE Field contains a mobile phone number

AEEDBFIELD_FAX Field contains a fax number

AEEDBFIELD_ADDRESS  Field contains a mailing address

AEEDBFIELD_EMAIL Field contains an email address

AEEDBFIELD_URL Field contains a URL

AEEDBFIELD_DATE_TIME Field contains date and time

AEEDBFIELD_CATEGORY Field contains a category specification

AEEDBFIELD_ALARM Field contains an alarm

AEEDBFIELD_PREF_ID Field contains a Preference ID 

AEEDBFIELD_PREF_VER Field contains a Preference Version Number

AEEDBFIELD_PREF_DATA Field contains Preference Data (such as user preference)

AEEDBFIELD_TITLE Field contains a Title

AEEDBFIELD_TEXT Field contains text
632



Data Structures  
AEEDBFieldType

Description:

AEEDBFieldType is used by IDBRECORD_GetField() to return the field type of the specified field. 

Definition:
typedef enum

{

AEEDB_FT_NONE,

AEEDB_FT_BYTE, 

AEEDB_FT_WORD, 

AEEDB_FT_DWORD, 

AEEDB_FT_STRING, 

AEEDB_FT_BINARY, 

AEEDB_FT_PHONE, 

AEEDB_FT_BITMAP,

AEEDB_FT_MAX

} AEEDBFieldType;

Members:

Comments:
None

See Also:
None 
Return to the List of data structures.

AEEDB_FT_BYTE Field contains an 8 bit value

AEEDB_FT_WORD Field contains a 16 bit value

AEEDB_FT_DWORD Field contains a 32 bit value

AEEDB_FT_STRING Field contains an AECHAR array (0 terminated)

AEEDB_FT_BINARY Field contains a Binary value

AEEDB_FT_PHONE Field contains a Phone number

AEEDB_FT_BITMAP Field contains a bitmap in .BMP format
633



Data Structures  
AEEDeviceInfo

Description:

This structure contains mobile device information requested in ISHELL_GetDeviceInfo().

Definition:
typedef struct

{

uint16 cxScreen;

uint16 cyScreen; 

uint16 cxAltScreen;

uint16 cyAltScreen;

uint16 cxScrollBar;

uint16 wEncoding;

uint16 unused3;

uint16 nColorDepth;

EmptyEnum unused4; 

uint32 unused5; 

uint32 dwRAM;

int bAltDisplay:1;

int bFlip:1;

int bVibrator:1;

int bExtSpeaker:1;

int bVR:1;

int bPosLoc:1;

int bMIDI:1;

int bCMX:1;

uint32 dwPromptProps;

uint16 wKeyCloseApp;

uint16 wKeyCloseAllApps;

uint32 dwLang;

uint16 wStructSize;

uint32 dwNetLinger;
634



Data Structures  
uint32 dwSleepDefer;

uint16 wMaxPath;

} AEEDeviceInfo;

Members:

cxScreen  Physical screen size (pixels)

cyScreen  Physical screen size (pixels)

cxAltScreen  Physical screen size of 2nd display

cyAltScreen  Physical screen size of 2nd display

cxScrollBar  Width of standard scroll bars

wEncoding  Character set encoding (UNICODE, S_JIS, KSC5601, and other items.)

nColorDepth  Color Depth (1 = mono, 2 = grey, and so forth)

dwRAM  Total RAM installed (RAM)

bAltDisplay  Device has an alternate display (Pager)

bFlip  Device is a flip-phone

bVibrator  Vibrator installed

bExtSpeaker  External speaker installed

bVR  Voice recognition supported

bPosLoc  Position location supported

bMIDI  MIDI file formats supported

bCMX  CMX audio supported

dwPromptProps  Default prompt properties

wKeyCloseApp  Key to close current app

wKeyCloseAllApps  Key to close all apps (AVK_END is default)

dwLang  ISO defined language ID

dwRAM  Total RAM installed (RAM)

bAltDisplay  Device has an alternate display (Pager)

bFlip  Device is a flip-phone

bVibrator  Vibrator installed

bExtSpeaker  External speaker installed

bVR  Voice recognition supported

bPosLoc  Position location supported

bMIDI  MIDI file formats supported
635



Data Structures  
Comments:

In order to use dwNetLinger, dwSleepDefer and wMaxPath fields, you MUST fill-in the wStructSize 

element of the structure before passing this to the GetDeviceInfo call.

See Also:
None 
Return to the List of data structures.

bCMX  CMX audio supported

dwPromptProps  Default prompt properties

wKeyCloseApp  Key to close current app

wKeyCloseAllApps  Key to close all apps (AVK_END is default)

dwLang ISO defined language ID

wStructSize Size of this structure.

dwNetLinger Network PPP linger time

dwSleepDefer Active non-sleep

wMaxPath Max length of file path
636



Data Structures  
AEEDNSResult

Description:

This structure holds the result of an INETMGR_GetHostByName() operation.

Definition:
typedef struct

{

int nResult;

INAddr addrs[AEEDNSMAXADDRS];

} AEENetStats;

Members:

nResult  (if 1..4)  :Number of addresses retrieved

nResult (otherwise) :Error code (see INETMGR_GetHostByName())

addrs[AEEDNSMAXADDRS] :IP addresses

Comments:

None

See Also:

INETMGR_GetHostByName()
Return to the List of data structures.
637



Data Structures  
AEEEllipse

Description:

This structure defines the ellipse data type.

Definition:
typedef struct _ellipse 

{

int16 cx, cy; 

int16 wx; 

int16 wy; 

} AEEEllipse;

Members:

Comments:

All ellipses are axis-aligned. However the major axis can be either aligned with x-axis or y-axis.

See Also:
IGRAPHICS_DrawEllipse()

IGRAPHICS_Translate()
Return to the List of data structures.

cx X coordinate of the ellipse's center

cy Y coordinate of the ellipse's center

wx Semi-axis length of the ellipse along x-axis

wy Semi-axis length of the ellipse along y-axis
638



Data Structures  
AEEFrameType

Description:

This ENUM specifies the various frame types supported by the IDISPLAY_DrawFrame() function. 

Frame types are also used when specifying menu item styles with IMENUCTL_SetStyle function.

Definition:
typedef enum

{

AEE_FT_NONE, 

AEE_FT_EMPTY,

AEE_FT_3D_EMPTY,

AEE_FT_RAISED,

AEE_FT_LOWERED, 

AEE_FT_BOX,

AEE_FT_INDENT,

AEE_FT_TAB_BOTTOM_SEL,

AEE_FT_TAB_BOTTOM,

AEE_FT_TAB_TOP_SEL,

AEE_FT_TAB_TOP

} AEEFrameType;

Members:

AEE_FT_NONE No Frame

AEE_FT_EMPTY 1 Pixel Offset: No Frame Drawn

AEE_FT_3D_EMPTY 2 Pixel Offset: No Frame Drawn

AEE_FT_RAISED 3D 2 Pixel Raised Frame

AEE_FT_LOWERED 3D 2 Pixel Lowered Frame

AEE_FT_BOX 1 Pixel Box

AEE_FT_INDENT 3D 1 Pixel Lowered Frame

AEE_FT_TAB_BOTTOM_SEL 3D Bottom Tab (selected)

AEE_FT_TAB_BOTTOM 3D Bottom Tab
639



Data Structures  
Comments:

None

See Also:
AEEItemStyle
Return to the List of data structures.

AEE_FT_TAB_TOP_SEL 3D Top Tab (selected)

AEE_FT_TAB_TOP 3D Top Tab
640



Data Structures  
AEEFont

Description:

This ENUM specifies the logical font type used in IDisplay text drawing operations.

Definition:
typedef enum

{

AEE_FONT_NORMAL=0x8000,

AEE_FONT_BOLD,

AEE_FONT_LARGE,

AEE_FONT_TOTAL

} AEEFont;

Members:

Comments:

None

See Also:
None 

Return to the List of data structures.

AEE_FONT_NORMAL The normal font supported by the mobile device

AEE_FONT_BOLD Bold type font supported by the mobile device

AEE_FONT_LARGE Large type font supported by the mobile device

AEE_FONT_TOTAL Reserved
641



Data Structures  
AEEHandlerType

Description:

This ENUM specifies the handler type in ISHELL_RegisterHandler(), ISHELL_GetHandler(), and so forth

Definition:
typedef enum 

{ HTYPE_VIEWER,

HTYPE_SOUND

} AEEHandlerType;

Members:

Comments:

None

See Also:
None 

Return to the List of data structures.

HTYPE_VIEWER To specify that the handler provides image viewing services

HTYPE_SOUND To specify that the handler provides sound services

HTYPE_BROWSE To specify a handlerapplet that supports either schemes ( http, mailto, 

and so forth) or file extensions (.gif, .htm, and so forth)
642



Data Structures  
AEEImageInfo

Description:

This structure gets the information about an image

Definition:
typedef struct _AEEImageInfo

{

uint16 cx;

uint16 cy;

uint16 nColors;

boolean bAnimated;

uint16 cxFrame;

} AEEImageInfo;

Members:

Comments:

None

See Also:
None 

Return to the List of data structures.

cx The width of the image (in pixels)

cy The height of the image (in pixels)

nColors The number of colors in the image

bAnimated TRUE, if the image contains animation

cxFrame If the image is divided into frames, this member indicates the width of 

each frame
643



Data Structures  
AEEItemStyle

Description:

This structure specifies the item style.

Definition:
typedef struct 

{

AEEFrameType ft; 

uint16 xOffset; 

uint16 yOffset; 

AEERasterOp roImage;

} AEEItemStyle;

Members:

Comments:

None

See Also:
None 
Return to the List of data structures.

ft Frame type of item

xOffset X padding inside item (does not include frame size)

yOffset Y padding inside item (does not include frame size)

roImage Raster operation for drawing images inside the item
644



Data Structures  
AEEItemType

Description:

This ENUM specifies the item type whose style is requested using the ISHELL_GetItemStyle().

Definition:
typedef enum

{

AEE_IT_MENU,

AEE_IT_SOFTKEY,

AEE_IT_ICONVIEW

} AEEItemType;

Members:

Comments:

None

See Also:
None 

Return to the List of data structures.

AEE_IT_MENU Menu Item type

AEE_IT_SOFTKEY Soft key item type

AEE_IT_ICONVIEW  Icon View Item type
645



Data Structures  
AEELine

Description:

This structure defines the line segment data type.

Definition:
typedef struct _line 

{

int16 sx, sy; 

int16 ex, ey; 

} AEELine;

Members:

Comments:

Mathematically a line is infinitely long. So AEELine defines a line segment from (sx, sy) to (ex, ey), 

instead of a mathematical line. The line segment includes both end points.

See Also:
IGRAPHICS_DrawLine()

Return to the List of data structures.

sx X coordinate of the starting point of the line segment

sy Y coordinate of the starting point of the line segment

ex X coordinate of the ending point of the line segment

ey Y coordinate of the ending point of the line segment
646



Data Structures  
AEEMenuColors

Description:

AEEMenuColors is used to specify overriding color values for various menu control object elements.

Definition:
typedef struct

{

uint16 wMask;

RGBVALcBack;

RGBVALcText;

RGBVALcSelBack;

RGBVALcSelText;

RGBVALcFrame;

RGBVALcScrollbar;

RGBVALcScrollbarFill;

RGBVALcTitle;

RGBVALcTitleText;

} AEEMenuColors; 

Members:

wMask  Mask of bits to pay attention to in this struct

cBack  Background color of unselected items

cText  Text color for unselected items and Arrows

cSelBack  Background color for selected items

cSelText  Text color for selected items

cFrame  Simple frame color

cScrollbar  Scrollbar frame color

cScrollbarFill  Scrollbar fill color

cTitle  Background of title text

cTitleText  Color of title text
647



Data Structures  
Comments:

None

See Also:
IMENUCTL_SetColors()

AEEMenuColorsMask
Return to the List of data structures.
648



Data Structures  
AEEMenuColorsMask

Description:

Set of masks to indicate the item whose color needs to be changed. 

Definition:

Members:

None

Comments:

None.

See Also:
AEEMenuColors

Return to the List of data structures.

MC_BACK Unselected item background

MC_TEXT Unselected item text

MC_SEL_BACK Selected item background

MC_SEL_TEXT Selected item text

MC_FRAME Simple frame color

MC_SCROLLBAR Scrollbar frame color

MC_SCROLLBAR_FILL Scrollbar fill color

MC_TITLE Title background color. This mask is supported only for list 

controls.

MC_TITLE_TEXT Title text color. This mask is supported only for list 

controls.
649



Data Structures  
AEENetStats

Description:

This structure describes the status of the network connection (the state of the PPP link).

Definition:
typedef struct

{

uint32 dwOpenTime;

uint32 dwActiveTime;

uint32 dwBytes;

uint32 dwRate;

uint32 dwTotalOpenTime;

uint32 dwTotalActiveTime;

uint32 dwTotalBytes;

uint32 dwTotalRate;

} AEENetStats;

Members:

Comments:
None

See Also:
None 
Return to the List of data structures.

dwOpenTime Time in seconds since PPP connection established

dwActiveTime Time in seconds the PPP connection was actually active

dwBytes Total bytes sent on connection

dwRate Rate of transfer (bytes / sec)

dwTotalOpenTime Time in seconds for all open PPP sessions

dwTotalActiveTime Time in seconds for all active PPP sessions

dwTotalBytes Total bytes sent (all connections)

dwTotalRate Total rate (all connections)
650



Data Structures  
AEENotify

Description:

A pointer to this structure is passed as dwParam when EVT_NOTIFY event is sent to an app. An app 

receives this event as part of the notification(s) that it has registered for. 

Definition:

typedef struct

{

AEECLSID cls;

INotifier * pNotifier;

uint32 dwMask;

void * pData; 

AEENotifyStatus st;

} AEENotify;

Members:

Comments:

None

See Also:
ISHELL_RegisterNotify()

ISHELL_Notify()

AEENotifyStatus
Return to the List of data structures.

 cls Notifier Class

 pNotifier Notifier Object that issued the Notify

 dwMask Mask of bits that occurred

 pData Notification-specific data

 st Indicates to IShell if the app processed the notificaiot
651



Data Structures  
AEENotifyStatus

Description:

This enumerated type defines the notification status values that are returned to the shell by an applet 

that receives a notification. The applet returns the status of its processing of the notification by setting 

the st member of the AEENotify structure it is passed along with the EVT_NOTIFY event.

Definition:
typedef enum 

{

 NSTAT_PROCESSED,

 NSTAT_IGNORED,

 NSTAT_STOP 

} AEENotifyStatus;

Members:

Comments:

None.

See Also:
ISHELL_RegisterNotify()

ISHELL_Notify()

AEENotify
Return to the List of data structures.

NSTAT_PROCESSED The applet successfully processed the notification

NSTAT_IGNORED The applet ignored the notification

NSTAT_STOP The applet processed the notification, and the notification can not 

be sent to any other applets that have registered to be notified of 

this event.
652



Data Structures  
AEEPaintMode

Description:

This ENUM specifies the raster operation types for drawing.

Definition:
typedef enum 

{

AEE_PAINT_COPY,

AEE_PAINT_XOR

} AEEPaintMode;

Members:

Comments:

When the paint mode is set to AEE_PAINT_COPY, new content shall overwrite the old content in the 

display buffer. When the paint mode is set to AEE_PAINT_XOR, the "xor-ed" result of the new content 

and the old is written into the display buffer. IGraphics's paint mode is set to AEE_PAINT_COPY as 

default. The program can change the paint mode by calling IGRAPHICS_SetPaintMode().

See Also:
IGRAPHICS_SetPaintMode()

Return to the List of data structures.

AEE_PAINT_COPY Copy raster operation

AEE_PAINT_XOR XOR raster operation
653



Data Structures  
AEEPie

Description:

This structure defines the circular pie data type.

Definition:
typedef struct _pie 

{

int16 cx, cy; 

int16 r; 

int16 startAngle; 

int16 arcAngle; 

} AEEPie;

Members:

Comments:

The parameters in this data structure are identical to that of AEEArc. This makes it convenient to 

explicitly cast an AEEPie type to AEEArc if necessary. 

See Also:
AEEArc

IGRAPHICS_DrawPie(), IGRAPHICS_Translate()
Return to the List of data structures.

cx X coordinate of the center of the reference circle

cy Y coordinate of the center of the reference circle

r Radius of the reference circle

startAngle The angle, in degrees, from which the circular arc begins

arcAngle The angle of the circular arc, in degrees
654



Data Structures  
AEEPoint

Description:

This structure defines the point data type.

Definition:
typedef struct _point

{

int16 x, y;

} AEEPoint;

Members:

Comments:

None

See Also:
IGRAPHICS_DrawPoint()
Return to the List of data structures.

x  X-coordinate

y  Y-coordinate
655



Data Structures  
AEEPolygon

Description:

This structure defines the polygon data type.

Definition:
typedef struct _polygon 

{

int16 len; 

AEEPoint * points; 

} AEEPolygon;

Members:

Comments:

None

See Also:
IGRAPHICS_DrawPolygon()

IGRAPHICS_Translate()

Return to the List of data structures.

len Number of vertices of the polygon

points Array of vertices of the polygon
656



Data Structures  
AEEPolyline

Description:

This structure defines the polyline data type. Polyline is a sequence of connected line segments.

Definition:
typedef struct _polyline 

{

int16 len; 

AEEPoint * points; 

} AEEPolyline;

Members:

Comments:

This data type has exactly the same structure as AEEPolygon. This enables convenient casting 

between AEEPolyline and AEEPolygon. 

See Also:
IGRAPHICS_DrawPolyline()
IGRAPHICS_Translate()

Return to the List of data structures.

len Number of points in the polyline

points Array of points in the polyline
657



Data Structures  
AEEPosAccuracy 

Description: 

This data structure describes the Position Location Information Accuracy

Definition:
typedef enum 

{

AEE_ACCURACY_LOW,

AEE_ACCURACY_MED,

AEE_ACCURACY_HIGH

} AEEPosAccuracy;

Members:

None.

Comments:
The position location information precision is directly related to the 
time it will take to satisfy the ISHELL_GetPosition() request.

See Also:
ISHELL_GetPosition()
Return to the List of data structures.
658



Data Structures  
AEEPositionInfo

Description:

This data structure describes thePosition Location Information

Definition:
typedef struct 

{

int32 dwLat;

int32 dwLon;

uint32dwTimeStamp;

} AEEPositionInfo;

Members:

Comments:

None.

See Also:
ISHELL_GetPosition(),

Return to the List of data structures.

dwLat  Latitude

dwLon  Longitude

dwTimeStamp  Time Stamp
659



Data Structures  
AEEPromptInfo

Description:

This structure specifies the prompt information used by the ISHELL_Prompt() function.

Definition:
typedef struct

{

const char * pszRes;

const AECHAR * pTitle;

const AECHAR * pText;

uint16 wTitleID;

uint16 wTextID;

uint16 wDefBtn; 

const uint16 * pBtnIDs;

uint32 dwProps;

AEEFont fntTitle;

AEEFont fntText;

uint32 dwTimeout;

} AEEPromptInfo;

Members:

pszRes Resource file name used for prompt title and text information

pTitle If pszRes is not specified, the pointer to wide string containing the 

prompt title

pText If pszRes is not specified, the pointer to wide string containing the 

prompt text

wTitleID If pszRes is specified, the ID of the title string in the resource file

wTextID If pszRes is specified, the ID of the text string in the resource file

wDefBtn The ID of the default (or selected button)

pBtnIDs Pointer to array of button IDs

dwProps Property of the prompt (See the properties for the IStatic Interface)

fntTitle Title font
660



Data Structures  
Comments:

If pszRes ,pTitle, and pText are non-NULL, the prompt title and text are read from the resource file.

See Also:
None

Return to the List of data structures.

fntText Text font

dwTimeout Timeout for the prompt. If set to 0 (zero), the prompt has no timeout
661



Data Structures  
AEERasterOp

Description:

This ENUM specifies the raster operation for bit-block transfers of bitmaps, and drawing images on the 

screen with the functions in the IImage Interface.

Definition:
typedef enum

{

AEE_RO_OR,

AEE_RO_XOR,

AEE_RO_COPY,

AEE_RO_NOT,

AEE_RO_MASK,

AEE_RO_MERGENOT,

AEE_RO_MASKNOT,

AEE_RO_TRANSPARENT,

AEE_RO_TOTAL

} AEERasterOp;

Members:

AEE_RO_OR SRC .OR. DST

AEE_RO_XOR SRC .XOR. DST

AEE_RO_COPY DST = SRC

AEE_RO_NOT DST = (!SRC)

AEE_RO_MASK Same as AEE_RO_TRANSPARENT. In monochrome mode it is 

equivalent to DST .AND. SRC

AEE_RO_MERGENOT DST .OR. (!SRC)
662



Data Structures  
(where SRC is the source bitmap buffer, and DST is the destination bitmap buffer)

Comments:

None

See Also:
None
Return to the List of data structures.

AEE_RO_MASKNOT DST .AND. (!SRC)

AEE_RO_TRANSPARENT The SRC pixels with a certain color are transparent meaning that 

the corresponding DST pixels are seen through: 

For a monochrome device, the color is 

RGB_MASK_MONO, which is white.

For a gray -scale devices, the color is 

RGB_MASK_GREY which is white

For a color device, the color is 

RGB_MASK_COLOR, which is magenta.
663



Data Structures  
AEERect

Description:

AEERect is used to define a rectangle used by various Display, Graphics, Text Control, and other helper 

functions. 

Definition:
typedef struct 

{

int16 x,y;

int16 dx, dy;

} AEERect;

Members:

Comments:

None

See Also:
None
Return to the List of data structures.

x The horizontal coordinate for the beginning (top left corner) of the 

rectangle

y The vertical coordinate for the beginning (top left corner) of the 

rectangle

dx The width of the rectangle (in pixels)

dy The height of the rectangle (in pixels)
664



Data Structures  
AEESoundAPath

Description:

AEESoundAPath is used to indicate whether or not ISound Interface can transmit the tone over-the-air 

in a call

Definition:
typedef enum 

{

AEE_SOUND_APATH_LOCAL,

AEE_SOUND_APATH_TX,

AEE_SOUND_APATH_BOTH,

AEE_SOUND_APATH_MUTE,

AEE_SOUND_APATH_LAST

} AEESoundAPath;

Members:

Comments:

None

See Also:
None
Return to the List of data structures

AEE_SOUND_APATH_LOCAL DTMF on local audio

AEE_SOUND_APATH_TX Transmit DTMFs

AEE_SOUND_APATH_BOTH Transmit and sound DTMFs locally

AEE_SOUND_APATH_MUTE Mute DTMFs

AEE_SOUND_APATH_LAST Reserved
665



Data Structures  
AEESoundCmd

Description:

AEESoundCmd specifies the callback type used by ISound to send events and data to the application

Definition:
typedef enum 

{

AEE_SOUND_STATUS_CB,

AEE_SOUND_VOLUME_CB

} AEESoundCmd;

Members:

Comments:

None

See Also:
None

Return to the List of data structures

AEE_SOUND_STATUS_CB ISound status callback

AEE_SOUND_VOLUME_CB Get volume callback
666



Data Structures  
AEESoundCmdData

Description:

AEESoundCmdData specifies the data sent through callback to application.

Definition:
typedef union

{

uint16 wVolume;

uint16 wPlayIndex;

} AEESoundCmdData;

Members:

Comments:

None

See Also:
None
Return to the List of data structures

wVolume Volume sent through volume callback

wPlayIndex Current tone to be played. This is sent through status callback for 

PlayToneList
667



Data Structures  
AEESoundDevice

Description:

AEESoundDevice specifies the device selected and used by ISound Interface.

Definition:
typedef enum 

{

AEE_SOUND_DEVICE_UNKNOWN,

AEE_SOUND_DEVICE_HANDSET,

AEE_SOUND_DEVICE_HFK,

AEE_SOUND_DEVICE_HEADSET,

AEE_SOUND_DEVICE_AHFK,

AEE_SOUND_DEVICE_SDAC,

AEE_SOUND_DEVICE_TTY_HFK,

AEE_SOUND_DEVICE_TTY_HEADSET,

AEE_SOUND_DEVICE_CURRENT,

AEE_SOUND_DEVICE_LAST

} AEESoundDevice;

Members:

AEE_SOUND_DEVICE_UNKNOWN Unknown device

AEE_SOUND_DEVICE_HANDSET Handset

AEE_SOUND_DEVICE_HFK Hands Free Kit (HFK)

AEE_SOUND_DEVICE_HEADSET Headset

AEE_SOUND_DEVICE_AHFK Analog HFK

AEE_SOUND_DEVICE_SDAC Stereo DAC

AEE_SOUND_DEVICE_TTY_HFK TTY HFK

AEE_SOUND_DEVICE_TTY_HEADSET TTY Headset

AEE_SOUND_DEVICE_CURRENT Currently selected device

AEE_SOUND_DEVICE_LAST Reserved
668



Data Structures  
Comments:

None

See Also:
None

Return to the List of data structures
669



Data Structures  
AEESoundInfo

Description:

AEESoundInfo specifies the ISound attributes that are used by ISound for all its operations.

Definition:
typedef struct

{

AEESoundDevice eDevice;

AEESoundMethod eMethod;

AEESoundAPath eAPath;

AEESoundMuteCtl eEarMuteCtl;

AEESoundMuteCtl eMicMuteCtl;

} AEESoundInfo;

Members:

Comments:

None

See Also:
AEESoundDevice, AEESoundMethod, 

AEESoundAPath, AEESoundMuteCtl

Return to the List of data structures.

eDevice Device used

eMethod Method used

eAPath Over-the-air audio path

eEarMuteCtl Earpiece mute control

eMicMuteCtl Microphone mute control
670



Data Structures  
AEESoundMethod

Description:

AEESoundMethod specifies the method used by ISound Interface.

Definition:
typedef enum 

{

AEE_SOUND_METHOD_UNKNOWN,

AEE_SOUND_METHOD_VOICE,

AEE_SOUND_METHOD_BEEP,

AEE_SOUND_METHOD_MESSAGE,

AEE_SOUND_METHOD_RING,

AEE_SOUND_METHOD_CLICK,

AEE_SOUND_METHOD_MIDI,

AEE_SOUND_METHOD_AUX,

AEE_SOUND_METHOD_LAST

} AEESoundMethod;

Members:

Comments:

None

AEE_SOUND_METHOD_UNKNOWN Unknown method

AEE_SOUND_METHOD_VOICE Use the device's voice generator

AEE_SOUND_METHOD_BEEP Use the device's keybeep generator

AEE_SOUND_METHOD_MESSAGE Use the device's keybeep generator

AEE_SOUND_METHOD_RING Use the device's ring generator

AEE_SOUND_METHOD_CLICK Use the device's click generator 

AEE_SOUND_METHOD_MIDI Use the device's Midi generator

AEE_SOUND_METHOD_AUX Use the device's auxiliary generator if avail

AEE_SOUND_METHOD_LAST Reserved
671



Data Structures  
See Also:
None

Return to the List of data structures
672



Data Structures  
AEESoundMuteCtl

Description:

AEESoundMuteCtl is used to control ear piece and microphone muting.

Definition:
typedef enum 

{

AEE_SOUND_MUTECTL_UNMUTED,

AEE_SOUND_MUTECTL_MUTED,

AEE_SOUND_MUTECTL_LAST

} AEESoundMuteCtl;

Members:

Comments:

None

See Also:
None

Return to the List of data structures

AEE_SOUND_MUTECTL_UNMUTED  Audio path is not muted

AEE_SOUND_MUTECTL_MUTED Audio path is muted

AEE_SOUND_MUTECTL_LAST Reserved
673



Data Structures  
AEESoundPlayerAudioSpec

Description:

AEESoundPlayerAudioSpec indicates the audio specifications. It is used with the 

AEESOUNDPLAYER_AUDIO_SPEC playback callback.

Definition:
typedef union

{

AEESoundPlayerFile fType;

AEESoundPlayerMIDISpec MIDISpec;

AEESoundPlayerMP3Spec MP3Spec;

} AEESoundPlayerAudioSpec;

Members:

Comments:

None

See Also:
AEESoundPlayerFile, 

AEESoundPlayerMIDISpec, 

AEESoundPlayerMP3Spec
Return to the List of data structures

fType Audio File Type

MIDISpec MIDI specifications if file type is MIDI

MP3Spec MP3 specifications if file type is MP3
674



Data Structures  
AEESoundPlayerCmd

Description:

AEESoundPlayerCmd specifies the callback type used by ISoundPlayer to send events and data to 

application.

Definition:
typedef enum 

{

AEE_SOUNDPLAYER_STATUS_CB,

AEE_SOUNDPLAYER_PLAY_CB,

AEE_SOUNDPLAYER_TIME_CB,

AEE_SOUNDPLAYER_SOUND_CB, 

AEE_SOUNDPLAYER_VOLUME_CB 

} AEESoundPlayerCmd;

Members:

Comments:

None

See Also:
None
Return to the List of data structures

AEE_SOUNDPLAYER_STATUS_CB SoundPlayer status callback

AEE_SOUNDPLAYER_PLAY_CB Playback callback

AEE_SOUNDPLAYER_TIME_CB Get time callback

AEE_SOUNDPLAYER_SOUND_CB Sound callback

AEE_SOUNDPLAYER_VOLUME_CB Get volume callback
675



Data Structures  
AEESoundPlayerCmdData

Description:

AEESoundPlayerCmdData specifies the data sent through callback to application.

Definition:
typedef union 

{

uint32 dwElapsedTime;

uint32 dwTotalTime;

uint32 dwTempo;

uint32 dwTune;

uint32 dwPan;

uint16 wVolume;

AEESoundPlayerAudioSpec spSpec;

} AEESoundPlayerCmdData;

Members:

Comments:

None

See Also:
AEESoundPlayerAudioSpec

Return to the List of data structures

dwElapsedTime  Elapsed time sent through playback callback for Pause, Resume, 

Rewind, FastForward 

dwTotalTime Total Time sent through get time callback

dwTempo Tempo factor sent through playback callback for SetTempo

dwTune Tune factor sent through playback callback for SetTune

dwPan Not used

wVolume Indicates volume of the device, method pair. It ranges from 0 

(zero) to AEE_MAX_VOLUME

spSpec Audio specs sent through playback callback for Play
676



Data Structures  
AEESoundPlayerFile

Description:

AEESoundPlayerFile indicates the type of file being played.

Definition:
typedef enum 

{

AEE_SOUNDPLAYER_FILE_UNKNOWN,

AEE_SOUNDPLAYER_FILE_MIDI,

AEE_SOUNDPLAYER_FILE_MP3,

AEE_SOUNDPLAYER_FILE_LAST

} AEESoundPlayerFile;

Members:

Comments:

None

See Also:
None
Return to the List of data structures

AEE_SOUNDPLAYER_FILE_UNKNOWN  Invalid type

AEE_SOUNDPLAYER_FILE_MIDI MIDI

AEE_SOUNDPLAYER_FILE_MP3 MP3

AEE_SOUNDPLAYER_FILE_LAST Reserved
677



Data Structures  
AEESoundPlayerInput

Description:

AEESoundPlayerInput indicates the source where ISoundPlayer finds the data or file to be played.

Definition:
typedef enum 

{

SDT_NONE,

SDT_FILE,

SDT_BUFFER,

SDT_VOICEPROMPT

} AEESoundPlayerInput;

Members:

Comments:

None

See Also:
None
Return to the List of data structures

SDT_NONE Source unknown (reserved)

SDT_FILE Specified data is file name

SDT_BUFFER Specified data is raw buffer (reserved)

SDT_VOICEPROMPT Not used
678



Data Structures  
AEESoundPlayerMIDISpec

Description:

AEESoundPlayerMIDISpec indicates the audio specifications of the MIDI file type. It is used with the 

AEESoundPlayerAudioSpec playback callback.

Definition:
typedef struct 

{

AEESoundPlayerFile fType; 

} AEESoundPlayerMIDISpec;

Members:

Comments:

None

See Also:
AEESoundPlayerFile

Return to the List of data structures.

fType  Format of audio file
679



Data Structures  
AEESoundPlayerMP3BitRate

Description:

AEESoundPlayerMP3BitRate specifies the MP3 bit rate.

Definition:
typedef enum 

{

AEE_SOUNDPLAYER_MP3_BITRATE_FREE = 0,

AEE_SOUNDPLAYER_MP3_BITRATE_8K = 8, 

AEE_SOUNDPLAYER_MP3_BITRATE_16K = 16,

AEE_SOUNDPLAYER_MP3_BITRATE_24K = 24,

AEE_SOUNDPLAYER_MP3_BITRATE_32K = 32,

AEE_SOUNDPLAYER_MP3_BITRATE_40K = 40,

AEE_SOUNDPLAYER_MP3_BITRATE_48K = 48,

AEE_SOUNDPLAYER_MP3_BITRATE_56K = 56,

AEE_SOUNDPLAYER_MP3_BITRATE_64K = 64,

AEE_SOUNDPLAYER_MP3_BITRATE_80K = 80,

AEE_SOUNDPLAYER_MP3_BITRATE_96K = 96,

AEE_SOUNDPLAYER_MP3_BITRATE_112K = 112,

AEE_SOUNDPLAYER_MP3_BITRATE_128K = 128,

AEE_SOUNDPLAYER_MP3_BITRATE_144K = 144,

AEE_SOUNDPLAYER_MP3_BITRATE_160K = 160,

AEE_SOUNDPLAYER_MP3_BITRATE_176K = 176,

AEE_SOUNDPLAYER_MP3_BITRATE_192K = 192,

AEE_SOUNDPLAYER_MP3_BITRATE_224K = 224,

AEE_SOUNDPLAYER_MP3_BITRATE_256K = 256,

AEE_SOUNDPLAYER_MP3_BITRATE_288K = 288,

AEE_SOUNDPLAYER_MP3_BITRATE_320K = 320,

AEE_SOUNDPLAYER_MP3_BITRATE_352K = 352,

AEE_SOUNDPLAYER_MP3_BITRATE_384K = 384,

AEE_SOUNDPLAYER_MP3_BITRATE_416K = 416,

AEE_SOUNDPLAYER_MP3_BITRATE_448K = 448,
680



Data Structures  
AEE_SOUNDPLAYER_MP3_BITRATE_VAR = 500,

AEE_SOUNDPLAYER_MP3_BITRATE_UNK = 501

} AEESoundPlayerMP3BitRate;

Members:

This is Free bit rate (determined by software)

AEE_SOUNDPLAYER_MP3_BITRATE_FREE

The following are Fixed bit rates

AEE_SOUNDPLAYER_MP3_BITRATE_8K

AEE_SOUNDPLAYER_MP3_BITRATE_16K

AEE_SOUNDPLAYER_MP3_BITRATE_24K

AEE_SOUNDPLAYER_MP3_BITRATE_32K

AEE_SOUNDPLAYER_MP3_BITRATE_40K

AEE_SOUNDPLAYER_MP3_BITRATE_48K

AEE_SOUNDPLAYER_MP3_BITRATE_56K

AEE_SOUNDPLAYER_MP3_BITRATE_64K

AEE_SOUNDPLAYER_MP3_BITRATE_80K

AEE_SOUNDPLAYER_MP3_BITRATE_96K

AEE_SOUNDPLAYER_MP3_BITRATE_112K

AEE_SOUNDPLAYER_MP3_BITRATE_128K

AEE_SOUNDPLAYER_MP3_BITRATE_144K

AEE_SOUNDPLAYER_MP3_BITRATE_160K

AEE_SOUNDPLAYER_MP3_BITRATE_176K

AEE_SOUNDPLAYER_MP3_BITRATE_192K

AEE_SOUNDPLAYER_MP3_BITRATE_224K

AEE_SOUNDPLAYER_MP3_BITRATE_256K

AEE_SOUNDPLAYER_MP3_BITRATE_288K

AEE_SOUNDPLAYER_MP3_BITRATE_320K

AEE_SOUNDPLAYER_MP3_BITRATE_352K

AEE_SOUNDPLAYER_MP3_BITRATE_384K

AEE_SOUNDPLAYER_MP3_BITRATE_416K

AEE_SOUNDPLAYER_MP3_BITRATE_448K
681



Data Structures  
This is Variable bit rate (Changes each frame)

AEE_SOUNDPLAYER_MP3_BITRATE_VAR

Unable to determine bit-rate information

AEE_SOUNDPLAYER_MP3_BITRATE_UNK

Comments:

None

See Also:
None
Return to the List of data structures
682



Data Structures  
AEESoundPlayerMP3Channel

Description:

AEESoundPlayerMP3Channel specifies the MP3 channel.

Definition:
typedef enum 

{

AEE_SOUNDPLAYER_MP3_CHANNEL_STEREO

AEE_SOUNDPLAYER_MP3_CHANNEL_JOINT_STEREO

AEE_SOUNDPLAYER_MP3_CHANNEL_DUAL

AEE_SOUNDPLAYER_MP3_CHANNEL_SINGLE

} AEESoundPlayerMP3Channel;

Members:

Comments:

None

See Also:
None
Return to the List of data structures

AEE_SOUNDPLAYER_MP3_CHANNEL_STEREO Stereo data

AEE_SOUNDPLAYER_MP3_CHANNEL_JOINT_STEREO Joint Stereo data

AEE_SOUNDPLAYER_MP3_CHANNEL_DUAL Dual channel (stereo) data

AEE_SOUNDPLAYER_MP3_CHANNEL_SINGLE Single channel (mono) data
683



Data Structures  
AEESoundPlayerMP3Emphasis

Description:

AEESoundPlayerMP3Emphasis specifies MP3 emphasis flag.

Definition:
typedef enum 

{

AEE_SOUNDPLAYER_MP3_EMPHASIS_NONE,

AEE_SOUNDPLAYER_MP3_EMPHASIS_50_15_MS,

AEE_SOUNDPLAYER_MP3_EMPHASIS_RESERVED,

AEE_SOUNDPLAYER_MP3_EMPHASIS_CCITT_J17

} AEESoundPlayerMP3Emphasis;

Members:

Comments:

None

See Also:
None
Return to the List of data structures

AEE_SOUNDPLAYER_MP3_EMPHASIS_NONE Invalid flag

AEE_SOUNDPLAYER_MP3_EMPHASIS_50_15_MS 50_15_MS

AEE_SOUNDPLAYER_MP3_EMPHASIS_RESERVED Reserved

AEE_SOUNDPLAYER_MP3_EMPHASIS_CCITT_J17 CCITT J17
684



Data Structures  
AEESoundPlayerMP3Extension

Description:

AEESoundPlayerMP3Extension specifies MP3 extension for layers 1-3.

Definition:
typedef enum 

{

AEE_SOUNDPLAYER_MP3_EXT_BAND_4_31 = 0,

AEE_SOUNDPLAYER_MP3_EXT_BAND_8_31 = 1,

AEE_SOUNDPLAYER_MP3_EXT_BAND_12_31 = 2,

AEE_SOUNDPLAYER_MP3_EXT_BAND_16_31 = 3,

AEE_SOUNDPLAYER_MP3_EXT_INTENSITY_OFF_MS_OFF = 0,

AEE_SOUNDPLAYER_MP3_EXT_INTENSITY_ON_MS_OFF = 1,

AEE_SOUNDPLAYER_MP3_EXT_INTENSITY_OFF_MS_ON = 2,

AEE_SOUNDPLAYER_MP3_EXT_INTENSITY_ON_MS_ON = 3

} AEESoundPlayerMP3Extension;

Members:

// For Layer 1 and 2 files:

// For Layer 3 files

AEE_SOUNDPLAYER_MP3_EXT_BAND_4_31 Channel extension info, 4-31

AEE_SOUNDPLAYER_MP3_EXT_BAND_8_31 Channel extension info, 8-31

AEE_SOUNDPLAYER_MP3_EXT_BAND_12_31  Channel extension info, 12-31

AEE_SOUNDPLAYER_MP3_EXT_BAND_16_31  Channel extension info, 16-31

AEE_SOUNDPLAYER_MP3_EXT_INTENSITY_OFF_MS_OFF Intensity stereo off, 

MS off

AEE_SOUNDPLAYER_MP3_EXT_INTENSITY_ON_MS_OFF Intensify stereo on, 

MS off
685



Data Structures  
Comments:

None

See Also:
None

Return to the List of data structures

AEE_SOUNDPLAYER_MP3_EXT_INTENSITY_OFF_MS_ON Intensity stereo off, 

MS on

AEE_SOUNDPLAYER_MP3_EXT_INTENSITY_ON_MS_ON Intensity stereo on, 

MS on
686



Data Structures  
AEESoundPlayerMP3Layer

Description:

AEESoundPlayerMP3Layer specifies the MPEG layer information.

Definition:
typedef enum 

{

AEE_SOUNDPLAYER_LAYER_RESERVED, 

AEE_SOUNDPLAYER_LAYER_3, 

AEE_SOUNDPLAYER_LAYER_2, 

AEE_SOUNDPLAYER_LAYER_1, 

AEE_SOUNDPLAYER_LAYER_UNKNOWN 

} AEESoundPlayerMP3Layer;

Members:

Comments:

None

See Also:
None

Return to the List of data structures

AEE_SOUNDPLAYER_LAYER_RESERVED Reserved

AEE_SOUNDPLAYER_LAYER_3 MPEG layer 3 compression

AEE_SOUNDPLAYER_LAYER_2 MPEG layer 2 compression

AEE_SOUNDPLAYER_LAYER_1 MPEG layer 1 compression

AEE_SOUNDPLAYER_LAYER_UNKNOWN Unable to determine layer information
687



Data Structures  
AEESoundPlayerMP3SampleRate

Description:

AEESoundPlayerMP3SampleRate specifies MP3 sample rate.

Definition:
typedef enum 

{

AEE_SOUNDPLAYER_MP3_SAMPLE_RATE_UNKNOWN,

AEE_SOUNDPLAYER_MP3_SAMPLE_RATE_8000 = 1,

AEE_SOUNDPLAYER_MP3_SAMPLE_RATE_11025, 

AEE_SOUNDPLAYER_MP3_SAMPLE_RATE_12000, 

AEE_SOUNDPLAYER_MP3_SAMPLE_RATE_16000, 

AEE_SOUNDPLAYER_MP3_SAMPLE_RATE_22050, 

AEE_SOUNDPLAYER_MP3_SAMPLE_RATE_24000, 

AEE_SOUNDPLAYER_MP3_SAMPLE_RATE_32000, 

AEE_SOUNDPLAYER_MP3_SAMPLE_RATE_44100, 

AEE_SOUNDPLAYER_MP3_SAMPLE_RATE_48000, 

AEE_SOUNDPLAYER_MP3_SAMPLE_RATE_LAST

} AEESoundPlayerMP3SampleRate;

Members:

AEE_SOUNDPLAYER_MP3_SAMPLE_RATE_UNKNOWN Unknown rate

AEE_SOUNDPLAYER_MP3_SAMPLE_RATE_8000 8k 

AEE_SOUNDPLAYER_MP3_SAMPLE_RATE_11025 11.025k 

AEE_SOUNDPLAYER_MP3_SAMPLE_RATE_12000 12k 

AEE_SOUNDPLAYER_MP3_SAMPLE_RATE_16000 16k 

AEE_SOUNDPLAYER_MP3_SAMPLE_RATE_22050 22.050k 

AEE_SOUNDPLAYER_MP3_SAMPLE_RATE_24000 24k 

AEE_SOUNDPLAYER_MP3_SAMPLE_RATE_32000 32k 

AEE_SOUNDPLAYER_MP3_SAMPLE_RATE_44100 44.1k 
688



Data Structures  
Comments:

None

See Also:
None

Return to the List of data structures

AEE_SOUNDPLAYER_MP3_SAMPLE_RATE_48000 48k 

AEE_SOUNDPLAYER_MP3_SAMPLE_RATE_LAST Reserved 
689



Data Structures  
AEESoundPlayerMP3Spec

Description:

AEESoundPlayerMP3Spec indicates the audio specifications of MP3 file type. It is used with the 

AEESOUNDPLAYER_AUDIO_SPEC playback callback.

Definition:
typedef struct 

{

AEESoundPlayerFile fType; 

AEESoundPlayerMP3Version version; 

AEESoundPlayerMP3Layer layer; 

boolean crcFlag; 

AEESoundPlayerMP3BitRate bitrate; 

AEESoundPlayerMP3SampleRate sampleRate; 

AEESoundPlayerMP3Channel channel; 

AEESoundPlayerMP3Extension extension; 

boolean copyrightFlag;

boolean originalFlag; 

AEESoundPlayerMP3Emphasis emphasis; 

char title[AEE_ID3_TAG_LENGTH]; 

char artist[AEE_ID3_TAG_LENGTH]; 

char album[AEE_ID3_TAG_LENGTH]; 

char year[4]; 

char comment[AEE_ID3_TAG_LENGTH];

uint8 genre; 

} AEESoundPlayerMP3Spec;

Members:

Type Format of audio file

version MPEG version

layer MPEG layer description

crcFlag True if CRC protection
690



Data Structures  
Comments:

None

See Also:
AEESoundPlayerFile, 

AEESoundPlayerMP3Version, 

AEESoundPlayerMP3Layer, 
AEESoundPlayerMP3BitRate, 

AEESoundPlayerMP3SampleRate, 

AEESoundPlayerMP3Channel, 

AEESoundPlayerMP3Extension, 
AEESoundPlayerMP3Emphasis

Return to the List of data structures

bitrate Bit rate

sampleRate Sampling rate

channel Channel mode

extension Used Only when channel is 

AEE_SOUNDPLAYER_MP3_CHANNEL_JOINT_STEREO

copyrightFlag True if copyrighted

originalFlag True if original

emphasis Audio emphasis

title Song title

artist Song performer

album Album with the song

year Year Album released

comment Text comment

genre ID3 genre tag
691



Data Structures  
AEESoundPlayerMP3Version

Description:

AEESoundPlayerMP3Version specifies the MPEG version types.

Definition:
typedef enum 

{

AEE_SOUNDPLAYER_MP3_VERSION_25, 

AEE_SOUNDPLAYER_MP3_VERSION_RESERVED,

AEE_SOUNDPLAYER_MP3_VERSION_2, 

AEE_SOUNDPLAYER_MP3_VERSION_1, 

AEE_SOUNDPLAYER_MP3_VERSION_UNKNOWN 

} AEESoundPlayerMP3Version;

Members:

Comments:

None

See Also:
None

Return to the List of data structures

AEE_SOUNDPLAYER_MP3_VERSION_25 MPEG version 2.5

AEE_SOUNDPLAYER_MP3_VERSION_RESERVED Reserved

AEE_SOUNDPLAYER_MP3_VERSION_2 MPEG version 2.0

AEE_SOUNDPLAYER_MP3_VERSION_1 MPEG version 1.0

AEE_SOUNDPLAYER_MP3_VERSION_UNKNOWN Unable to determine version
692



Data Structures  
AEESoundPlayerSource

Description:

AEESoundPlayerSource used internally by the ISoundPlayer Interface.

Definition:
typedef enum 

{

AEE_SOUNDPLAYER_SOURCE_UNKNOWN, // An invalid type

AEE_SOUNDPLAYER_SOURCE_MEM, // Designates that data is found in the

AEE_SOUNDPLAYER_SOURCE_FILE, // Designates that data is found in 

the // Embedded File System (EFS)

AEE_SOUNDPLAYER_SOURCE_LAST

} AEESoundPlayerSource;

Members:

Comments:

None

See Also:
None
Return to the List of data structures

AEE_SOUNDPLAYER_SOURCE_UNKNOWN Invalid type

AEE_SOUNDPLAYER_SOURCE_MEM Data is found in the memory

AEE_SOUNDPLAYER_SOURCE_FILE Data is found in the Embedded File 

System (EFS)

AEE_SOUNDPLAYER_SOURCE_LAST Reserved
693



Data Structures  
AEESoundPlayerStatus

Description:

AEESoundPlayerStatus is returned in callback functions to indicate ISoundPlayer events and return 

data to application.

Definition:
typedef enum 

{

AEE_SOUNDPLAYER_UNKNOWN, 

AEE_SOUNDPLAYER_SUCCESS, 

AEE_SOUNDPLAYER_REWIND, 

AEE_SOUNDPLAYER_FFORWARD, 

AEE_SOUNDPLAYER_PAUSE, 

AEE_SOUNDPLAYER_RESUME, 

AEE_SOUNDPLAYER_TEMPO, 

AEE_SOUNDPLAYER_TUNE, 

AEE_SOUNDPLAYER_PAN, 

AEE_SOUNDPLAYER_AUDIO_SPEC, 

AEE_SOUNDPLAYER_TICK_UPDATE, 

AEE_SOUNDPLAYER_DATA_ACCESS_DELAY, 

AEE_SOUNDPLAYER_ABORTED, 

AEE_SOUNDPLAYER_REPEAT, 

AEE_SOUNDPLAYER_DONE, 

AEE_SOUNDPLAYER_FAILURE, 

AEE_SOUNDPLAYER_LAST

} AEESoundPlayerStatus;

Members:

AEE_SOUNDPLAYER_UNKNOWN Unknown status

AEE_SOUNDPLAYER_SUCCESS Request is accepted

AEE_SOUNDPLAYER_REWIND Playback is currently rewinding

AEE_SOUNDPLAYER_FFORWARD Playback is currently fast forwarding
694



Data Structures  
Comments:

None

See Also:
None

Return to the List of data structures

AEE_SOUNDPLAYER_PAUSE Playback is currently paused

AEE_SOUNDPLAYER_RESUME Playback has resumed

AEE_SOUNDPLAYER_TEMPO Playback tempo changed

AEE_SOUNDPLAYER_TUNE Playback tune changed

AEE_SOUNDPLAYER_PAN Playback stereo pan changed

AEE_SOUNDPLAYER_AUDIO_SPEC Audio spec information

AEE_SOUNDPLAYER_TICK_UPDATE  One second update during playback

AEE_SOUNDPLAYER_DATA_ACCESS_DELAY Playback is being delayed by data access

AEE_SOUNDPLAYER_ABORTED Command was aborted

AEE_SOUNDPLAYER_REPEAT Sound repeating

AEE_SOUNDPLAYER_DONE Command has been carried out

AEE_SOUNDPLAYER_FAILURE Error occurred with this request

AEE_SOUNDPLAYER_LAST Reserved
695



Data Structures  
AEESoundStatus

Description:

AEESoundStatus is returned in callback functions to indicate ISound events and return data to the 

application.

Definition:
typedef enum 

{

AEE_SOUND_UNKNOWN,

AEE_SOUND_SUCCESS,

AEE_SOUND_PLAY_DONE,

AEE_SOUND_FAILURE,

AEE_SOUND_LAST

} AEESoundStatus;

Members:

Comments:

None

See Also:
None

Return to the List of data structures

AEE_SOUND_UNKNOWN Unknown status

AEE_SOUND_SUCCESS Request is accepted

AEE_SOUND_PLAY_DONE Playback of the tone is either completed or overridden by 

another tone

AEE_SOUND_FAILURE Error occurred with this request

AEE_SOUND_LAST Reserved
696



Data Structures  
AEESoundTone

Description:

AEESoundTone specifies the tone identifiers which are used to play tone by ISound.

Definition:
typedef enum 

{

AEE_TONE_FIRST,

AEE_TONE_0,

AEE_TONE_1,

AEE_TONE_2,

AEE_TONE_3,

AEE_TONE_4,

AEE_TONE_5,

AEE_TONE_6,

AEE_TONE_7,

AEE_TONE_8,

AEE_TONE_9,

AEE_TONE_A,

AEE_TONE_B,

AEE_TONE_C,

AEE_TONE_D,

AEE_TONE_POUND,

AEE_TONE_STAR,

AEE_TONE_CTRL,

AEE_TONE_2ND,

AEE_TONE_WARN,

AEE_TONE_ERR,

AEE_TONE_TIME,

AEE_TONE_RING_A,

AEE_TONE_RING_B,

AEE_TONE_RING_C,
697



Data Structures  
AEE_TONE_RING_D,

AEE_TONE_RING_A4,

AEE_TONE_RING_AS4,

AEE_TONE_RING_B4,

AEE_TONE_RING_C4,

AEE_TONE_RING_CS4,

AEE_TONE_RING_D4,

AEE_TONE_RING_DS4,

AEE_TONE_RING_E4,

AEE_TONE_RING_F4,

AEE_TONE_RING_FS4,

AEE_TONE_RING_G4,

AEE_TONE_RING_GS4,

AEE_TONE_RING_A5,

AEE_TONE_RING_AS5,

AEE_TONE_RING_B5,

AEE_TONE_RING_C5,

AEE_TONE_RING_CS5,

AEE_TONE_RING_D5,

AEE_TONE_RING_DS5,

AEE_TONE_RING_E5,

AEE_TONE_RING_F5,

AEE_TONE_RING_FS5,

AEE_TONE_RING_G5,

AEE_TONE_RING_GS5,

AEE_TONE_RING_A6,

AEE_TONE_RING_AS6,

AEE_TONE_RING_B6,

AEE_TONE_RING_C6,

AEE_TONE_RING_CS6,

AEE_TONE_RING_D6,

AEE_TONE_RING_DS6,

AEE_TONE_RING_E6,

AEE_TONE_RING_F6,
698



Data Structures  
AEE_TONE_RING_FS6,

AEE_TONE_RING_G6,

AEE_TONE_RING_GS6,

AEE_TONE_RING_A7,

AEE_TONE_RBACK,

AEE_TONE_BUSY,

AEE_TONE_INTERCEPT_A,

AEE_TONE_INTERCEPT_B,

AEE_TONE_REORDER_TONE,

AEE_TONE_PWRUP,

AEE_TONE_OFF_HOOK_TONE,

AEE_TONE_CALL_WT_TONE,

AEE_TONE_DIAL_TONE_TONE,

AEE_TONE_ANSWER_TONE,

AEE_TONE_HIGH_PITCH_A,

AEE_TONE_HIGH_PITCH_B,

AEE_TONE_MED_PITCH_A,

AEE_TONE_MED_PITCH_B,

AEE_TONE_LOW_PITCH_A,

AEE_TONE_LOW_PITCH_B,

AEE_TONE_TEST_ON,

AEE_TONE_MSG_WAITING,

AEE_TONE_PIP_TONE_TONE,

AEE_TONE_SPC_DT_INDIA,

AEE_TONE_SIGNAL_INDIA,

AEE_TONE_DT_TONE_INDIA,

AEE_TONE_DT_TONE_BRAZIL,

AEE_TONE_DT_DTACO_TONE,

AEE_TONE_HFK_TONE1,

AEE_TONE_HFK_TONE2,

AEE_TONE_LAST

} AEESoundTone;
699



Data Structures  
Members:

AEE_TONE_FIRST  Reserved

AEE_TONE_0  DTMF for 0 key

AEE_TONE_1  DTMF for 1 key

AEE_TONE_2  DTMF for 2 key

AEE_TONE_3  DTMF for 3 key

AEE_TONE_4  DTMF for 4 key

AEE_TONE_5  DTMF for 5 key

AEE_TONE_6  DTMF for 6 key

AEE_TONE_7  DTMF for 7 key

AEE_TONE_8  DTMF for 8 key

AEE_TONE_9  DTMF for 9 key

AEE_TONE_A  DTMF for A key

AEE_TONE_B  DTMF for B key

AEE_TONE_C  DTMF for C key

AEE_TONE_D  DTMF for D key

AEE_TONE_POUND  DTMF for # key

AEE_TONE_STAR  DTMF for * key

AEE_TONE_CTRL Tone for a control key 

AEE_TONE_2ND Tone for secondary function on a key 

AEE_TONE_WARN Warning tone (for example, overwriting user phone# slot) 

AEE_TONE_ERR Tone to indicate an error 

AEE_TONE_TIME Time marker tone

AEE_TONE_RING_A 1st Ringer tone 

AEE_TONE_RING_B 2nd Ringer tone 

AEE_TONE_RING_C 3rd Ringer tone 

AEE_TONE_RING_D 4th Ringer tone 

AEE_TONE_RING_A4  440.0 Hz -Piano Notes-

AEE_TONE_RING_AS4  466.1 Hz

AEE_TONE_RING_B4  493.8 Hz

AEE_TONE_RING_C4  523.2 Hz
700



Data Structures  
AEE_TONE_RING_CS4  554.3 Hz

AEE_TONE_RING_D4  587.3 Hz

AEE_TONE_RING_DS4  622.2 Hz

AEE_TONE_RING_E4  659.2 Hz

AEE_TONE_RING_F4  698.5 Hz

AEE_TONE_RING_FS4  739.9 Hz

AEE_TONE_RING_G4  784.0 Hz

AEE_TONE_RING_GS4  830.6 Hz

AEE_TONE_RING_A5  880.0 Hz

AEE_TONE_RING_AS5  932.2 Hz

AEE_TONE_RING_B5  987.7 Hz

 AEE_TONE_RING_C5  1046.5 Hz

AEE_TONE_RING_CS5  1108.7 Hz

AEE_TONE_RING_D5  1174.6 Hz

AEE_TONE_RING_DS5  1244.3 Hz

AEE_TONE_RING_E5  1318.5 Hz

AEE_TONE_RING_F5  1397.0 Hz

AEE_TONE_RING_FS5  1479.9 Hz

AEE_TONE_RING_G5  1568.0 Hz

AEE_TONE_RING_GS5  1661.2 Hz

AEE_TONE_RING_A6  1760.0 Hz

AEE_TONE_RING_AS6  1864.7 Hz

AEE_TONE_RING_B6  1975.5 Hz

AEE_TONE_RING_C6  2093.1 Hz

AEE_TONE_RING_CS6  2217.4 Hz

AEE_TONE_RING_D6  2349.3 Hz

AEE_TONE_RING_DS6  2489.1 Hz

AEE_TONE_RING_E6  2637.0 Hz

AEE_TONE_RING_F6  2793.7 Hz

AEE_TONE_RING_FS6  2959.9 Hz

AEE_TONE_RING_G6  3135.9 Hz

AEE_TONE_RING_GS6  3322.4 Hz
701



Data Structures  
Comments:

None

AEE_TONE_RING_A7  3520.0 Hz

AEE_TONE_RBACK Ring back (audible ring)

AEE_TONE_BUSY Busy tone

AEE_TONE_INTERCEPT_A First tone of an intercept 

AEE_TONE_INTERCEPT_B Second tone of an intercept 

AEE_TONE_REORDER_TONE Reorder 

AEE_TONE_PWRUP Power-up tone 

AEE_TONE_OFF_HOOK_TONE Off-hook tone, IS-95 (CAI 7.7.5.5)

AEE_TONE_CALL_WT_TONE Call-waiting tone 

AEE_TONE_DIAL_TONE_TONE Dial tone

AEE_TONE_ANSWER_TONE Answer tone 

AEE_TONE_HIGH_PITCH_A  1st High pitch for IS-54B alerting

AEE_TONE_HIGH_PITCH_B  2nd High pitch for IS-54B alerting

AEE_TONE_MED_PITCH_A  1st Medium pitch for IS-54B alerting 

AEE_TONE_MED_PITCH_B  2nd Medium pitch for IS-54B alerting 

AEE_TONE_LOW_PITCH_A  1st Low pitch for IS-54B alerting 

AEE_TONE_LOW_PITCH_B  2nd Low pitch for IS-54B alerting 

AEE_TONE_TEST_ON  Test tone on 

AEE_TONE_MSG_WAITING  Message Waiting Tone 

AEE_TONE_PIP_TONE_TONE  Used for Pip-Pip-Pip-Pip (Vocoder) Tone

AEE_TONE_SPC_DT_INDIA  Used for India's Special Dial Tone

AEE_TONE_SIGNAL_INDIA  Used in Various India Signalling Tones 

AEE_TONE_DT_TONE_INDIA  Used for India's Normal Dial Tone (and others) 

AEE_TONE_DT_TONE_BRAZIL Used for Brazil's Dial Tone 

AEE_TONE_DT_DTACO_TONE  Used for DTACO's single tone (350Hz, 350Hz) 

AEE_TONE_HFK_TONE1 These two tones used for Voice Activation and 

AEE_TONE_HFK_TONE2 Incoming Call Answer in phone VR-HFK 

AEE_TONE_LAST Reserved
702



Data Structures  
See Also:
None

Return to the List of data structures
703



Data Structures  
AEESoundToneData

Description:

AEESoundToneData specifies tone id and duration to play the tone using the ISOUND_PlayTone() and 

ISOUND_PlayToneList().

Definition:
typedef struct

{

AEESoundTone eTone;

uint16 wDuration;

} AEESoundToneData ;

Members:

Comments:

None

See Also:
AEESoundTone
Return to the List of data structures.

eTone Tone ID

wDuration Duration in milliseconds
704



Data Structures  
AEESymbol

Description:

This ENUM specifies the special symbol whose corresponding AECHAR value is returned by 

IDISPLAY_GetSymbol(). Some mobile devices have AECHAR values defined for these symbols, and 

an IDISPLAY_DrawText() call with the AECHAR string corresponding to the symbol draws that symbol 

on the display.

Definition:
typedef enum

{

AEE_SYM_ELLIPSES,

AEE_SYM_AM,

AEE_SYM_PM,

AEE_SYM_KEY_LEFT,

AEE_SYM_KEY_RIGHT,

AEE_SYM_KEY_CLR,

AEE_SYM_KEY_1,

AEE_SYM_KEY_2,

AEE_SYM_KEY_3,

AEE_SYM_KEY_4,

AEE_SYM_KEY_5,

AEE_SYM_KEY_6,

AEE_SYM_KEY_7,

AEE_SYM_KEY_8,

AEE_SYM_KEY_9,

AEE_SYM_KEY_0,

AEE_SYM_KEY_STAR,

AEE_SYM_KEY_POUND,

AEE_SYM_KEY_SEND,

AEE_SYM_KEY_END,

AEE_SYM_KEY_SELECT

} AEESymbol;
705



Data Structures  
Members:

Comments:

None

See Also:
None

Return to the List of data structures

AEE_SYM_ELLIPSES Ellipses symbol

AEE_SYM_AM Symbol indicating AM for 12H time format

AEE_SYM_PM Symbol indicating PM for 12H time format

AEE_SYM_KEY_LEFT Left Arrow Key

AEE_SYM_KEY_RIGHT Right Arrow Key

AEE_SYM_KEY_CLR Clear Key

AEE_SYM_KEY_1 The "1" Key

AEE_SYM_KEY_2 The "2" Key

AEE_SYM_KEY_3 The "3" Key

AEE_SYM_KEY_4 The "4" Key

AEE_SYM_KEY_5 The "5" Key

AEE_SYM_KEY_6 The "6" Key

AEE_SYM_KEY_7 The "7" Key

AEE_SYM_KEY_8 The "8" Key

AEE_SYM_KEY_9 The "9" Key

AEE_SYM_KEY_0 The "0" Key

AEE_SYM_KEY_STAR The " * " Key

AEE_SYM_KEY_POUND The "#" Key

AEE_SYM_KEY_SEND The "Send", or "Call" Key

AEE_SYM_KEY_END The "End" Key

AEE_SYM_KEY_SELECT The Key to select, or "Enter" Key
706



Data Structures  
AEETextInputMode

Description:

This enumerated type specifies the text-entry modes that can be used to enter text into a text control. 

The function ITEXTCTL_SetInputMode() is used to select the input mode that is used for a particular 

text control instance.

Definition:
typedef enum 

{

AEE_TM_NONE,

AEE_TM_CURRENT,

AEE_TM_SYMBOLS,

AEE_TM_LETTERS,

AEE_TM_RAPID,

AEE_TM_NUMBERS

} AEETextInputMode;

Members:

Comments:

The available text entry modes differ with each BREW-enabled device.

See Also:
ITEXTCTL_SetInputMode()

Return to the List of data structures.

AEE_TM_NONE No input mode is currently specified.

AEE_TM_CURRENT Designates the currently active input mode.

AEE_TM_SYMBOLS Key presses will enter the special symbol (if any) associated with 

each key.

AEE_TM_LETTERS Key presses will enter the letter of the alphabet associated with each 

key.

AEE_TM_RAPID Rapid (T9) mode will be used.

AEE_TM_NUMBERS Key presses will enter the number associated with each key.
707



Data Structures  
AEETriangle

Description:

This structure defines the triangle data type.

Definition:
typedef struct _triangle {

int16 x0, y0;

int16 x1, y1;

int16 x2, y2;

} AEETriangle;

Members:

Comments:

None

See Also:
IGRAPHICS_DrawTriangle()
IGRAPHICS_Translate()

Return to the List of data structures.

x0 X coordinate of the first vertex of the triangle.

y0 Y coordinate of the first vertex.

x1 X coordinate of the second vertex.

y1 Y coordinate of the second vertex.

x2 X coordinate of the third vertex.

y2 Y coordinate of the third vertex.
708



Data Structures  
AEEVoicePrompt

Description:

AEEVoicePrompt is not implemented.

Definition:
typedef struct 

{

byte * pbData;

uint16 wNumFrames;

} AEEVoicePrompt;

Members:

Comments:

None

See Also:
None 

Return to the List of data structures

pbData  Not implemented

wNumFrames  Not implemented
709



Data Structures  
BeepType

Description:

This ENUM specifies the beep type in ISHELL_Beep() function.

Definition:
typedef enum { 

BEEP_OFF,

BEEP_ALERT,

BEEP_REMINDER,

BEEP_MSG, 

BEEP_ERROR,

BEEP_VIBRATE_ALERT,

BEEP_VIBRATE_REMIND

} BeepType;

Members:

Comments:
On a target device, BeepType is dependent on device manufacturers. In the BREW Emulator, device 

manufacturers or application developers can define their own BeepType tones. For example, to create 

your own BEEP_ALERT tone, save your .WAV file as "BEEP_ALERT.wav" in \Brew\bin\DataFiles 
directory. Sample tones for all beep types are provided and their usage is illustrated in the sample sound 

app.

See Also:
None 
Return to the List of data structures

BEEP_OFF Beep Off

BEEP_ALERT Beep to alert mobile user

BEEP_REMINDER Reminder beep

BEEP_MSG Beep to indicate arrival of SMS message

BEEP_ERROR Beep to indicate error

BEEP_VIBRATE_ALERT Silent mode vibration to alert mobile user

BEEP_VIBRATE_REMIND Silent mode vibration to remind mobile user
710



Data Structures  
CtlAddItem

Description:

An encapsulation for a control item added to the control.

Definition:
typedef struct _CtlAddItem

{

const AECHAR * pText; 

IImage * pImage; 

const char * pszResImage; 

const char * pszResText; 

uint16 wText; 

uint16 wFont; 

uint16 wImage; 

uint16 wItemID;

uint32 dwData;

} CtlAddItem;

Members:

Comments:

pText and pImage are used by default. If they are not set (NULL), the pszResImage and pszResText 

are used with wText and wImage to load the text and/or image respectively.

pText Text in the item

pImage Image in the item

pszResImage Name of the resource file

pszResText Name of the resource file

wText Resource ID of the text string

wFont 0 (zero): Default

wImage Resource ID of the Image

wItemID Control item ID

dwData Data value associated with menu item
711



Data Structures  
See Also:
None

Return to the List of data structures.
712



Data Structures  
DialogInfo

Description:

This ENUM specifies the resource type to identify resources in a resource file.

Definition:
typedef struct

{

DialogInfoHead h;

DialogItem controls[1];

} DialogInfo;

Members:

Comments:

None

See Also:
None 

Return to the List of data structures.

h Dialog Information header

controls Array of dialog items
713



Data Structures  
DialogInfoHead

Description:

This structure specifies the dialog information header.

Definition:
typedef struct

{

uint16 wID; 

uint16 nControls;

AEERect rc;

uint32 dwProps;

uint16 wTitle;

uint16 wFocusID;

} DialogInfoHead;

Members:

Comments:

None

See Also:
AEE Standard Control Properties 
Return to the List of data structures.

wID Dialog ID (Resource ID of the Dialog)

nControls Number of controls

rc Dialog rectangle ((-1, -1, -1, -1) is default)

dwProps Property of the dialog (Dialogs currently supports only the 

CP_BORDER, CP_3D_BORDER control parameters.)

wTitle Dialog Title. This field is not supported currently

wFocusID ID of the control that is active when the dialog is started
714



Data Structures  
DialogItem

Description:

This structure contains a dialog item.

Definition:
typedef struct

{

DialogItemHead h;

DListItem items[1];

} DialogItem;

Members:

Comments:

None

See Also:
None 

Return to the List of data structures.

h Dialog Item header

items Array of dialog list items
715



Data Structures  
DialogItemHead

Description:

This structure defines the dialog item header.

Definition:
typedef struct

{

AEECLSID cls; 

uint16 wID;

uint16 nItems;

uint32 dwProps;

uint16 wTextID;

uint16 wTitleID;

AEERect rc;

} DialogItemHead;

Members:

Comments:

None

See Also:
AEERect 
Return to the List of data structures.

cls ClassID of the control.

wID Control ID (Resource ID of the control).

nItems Number of dialog list items.

dwProps Property of the dialog control (See CP_BORDER, CP_STATIC, etc)

wTextID Resource ID of text string.

wTitleID Resource ID of title string.

rc Rectangle relative to the dialog ((-1, -1, -1, -1) is default).
716



Data Structures  
DListItem

Description:

This structure defines a dialog list item.

Definition:
typedef struct _DListItem 

{

uint16 wID; 

uint16 wTextID; // Text 

uint16 wIconID; // Icon ID

uint16 pad; 

uint32 dwData; // 32-bit data

} DListItem;

Members:

Comments:

None

See Also:
None 

Return to the List of data structures.

wID ID of the dialog list item.

wTextID Resource ID of the text string.

wIconID Resource ID of the Icon.

pad Reserved

dwData Data that is sent with the event when the item is selected. 
717



Data Structures  
FileAttrib

Description:

FileAttrib specifies the type of a file.

Definition:
typedef enum 

{ 

_FA_NORMAL=0,

_FA_HIDDEN=0x0001,

_FA_DIR=0x0002,

_FA_READONLY=0x0004,

_FA_SYSTEM=0x0008

} FileAttrib;

Members:

Comments:

None

See Also:
None 

Return to the List of data structures.

_FA_NORMAL  File is normal file

_FA_HIDDEN  File is a hidden file (reserved)

_FA_DIR  File is directory (reserved)

_FA_READONLY  File is read only file

_FA_SYSTEM  File is system file
718



Data Structures  
FileInfo

Description:

FileInfo is used to contain information associated with a file.

Definition:
typedef struct _FileInfo

{

FileAttrib attrib;

uint32 dwCreationDate;

uint32 dwSize;

char szName[MAX_FILE_NAME];

} FileInfo;

Members:

Comments:

None

See Also:
FileAttrib

Return to the List of data structures.

attrib  File attributes specified by FileAttrib.

dwCreationDate  File creation date. The reference time is Jan 6. 1980. The unit of 

time measured is seconds,

dwSize  File size

szName  File name
719



Data Structures  
FileSeekType

Description:

FileSeekType is used to specify the origin of seek operation when setting the current file pointer position 

using the IFILE_Seek().

Definition:
typedef enum 

{ 

_SEEK_START,

_SEEK_END,

_SEEK_CURRENT

} FileSeekType;

Members:

Comments:

None

See Also:
None 

Return to the List of data structures.

_SEEK_START  Start seek from the start of the file

_SEEK_END  Start seek from the end of the file

_SEEK_CURRENT  Start seek from current file pointer position
720



Data Structures  
IDISPLAY Flags

Description:

These constants are used to build the flags (dwFlags parameter) in the IDISPLAY_DrawRect() and 

IDISPLAY_DrawText() functions.

Definition:

Flags for the Rectangle

NOTE: IDF_RECT_INVERT overrides the other IDF_RECT flags.

Flags for Horizontal alignment of text

NOTE: These flags are mutually exclusive: 

IDF_RECT_NONE No Rectangle, used in IDISPLAY_DrawText() 

IDF_RECT_FRAME Draw rectangular frame. 

IDF_RECT_FILL Draw filled rectangle.

IDF_RECT_INVERT Invert the text and background colors.

IDF_RECT_MASK Mask to isolate IDF_RECT flags.

IDF_ALIGN_NONE No alignment specified. 

IDF_ALIGN_LEFT Left justified.

IDF_ALIGN_CENTER Centered. 

IDF_ALIGN_RIGHT Right justified.

IDF_ALIGN_FILL Fill the rectangle width (specified with IDISPLAY_DrawText()) 

with the text.

IDF_ALIGNHORZ_MASK Mask to isolate ALIGN(horizontal) flags Vertical alignment 

flags for text

IDF_ALIGN_TOP Align text with top of rectangle specified.

IDF_ALIGN_MIDDLE Place text in the middle of the specified rectangle.

IDF_ALIGN_BOTTOM Align text with the bottom of the rectangle specified.

IDF_ALIGN_SPREAD Spread the text over the height of the rectangle.
721



Data Structures  
Flags for Text Formats 

Members:

None

Comments:

None

See Also:
None 

Return to the List of data structures.

IDF_ALIGNVERT_MASK Mask to isolate ALIGN(vertical) flags.

IDF_ALIGN_MASK (IDF_ALIGNHORZ_MASK|IDF_ALIGNVERT_MASK) 

IDF_TEXT_UNDERLINE Underline text

IDF_TEXT_INVERTED Inverted text (highlights)

IDF_TEXT_TRANSPARENT Background is preserved

IDF_TEXT_FORMAT_OEM Text is OEM_RAW_TEXT format (byte * )
722



Data Structures  
IGRAPHICS Flags

Description:

The bitmap flags to control the behavior of a number of IGraphics functions.

Definition:

Members:

None

Comments:

None

See Also:
IGRAPHICS_SetClip().

Return to the List of data structures.

AEE_GRAPHICS_NONE Default to no flags

AEE_GRAPHICS_FRAME if this flag is set, the frame of the geometric primitive is drawn

AEE_GRAPHICS_CLEAR If this flag is set, the interior is cleared to the background 

color

AEE_GRAPHICS_FILL If this flag is set, the interior is filled.
723



Data Structures  
ITField

Description:

Field in the time control. There are three fields in each time control, shown as following.

Definition:
typedef enum {ITF_HOUR, ITF_MIN, ITF_SEC} ITField;

Members:

Comments:

None

See Also:
None 

Return to the List of data structures.

ITF_HOUR The hour field of the time control

ITF_MIN The minute field of the time control

ITF_SEC The second field of the time control
724



Data Structures  
JulianType

Description:

This structure contains Julian date information.

Definition:
typedef struct

{

uint16 wYear;

uint16 wMonth;

uint16 wDay;

uint16 wHour;

uint16 wMinute;

uint16 wSecond;

uint16 wWeekDay;

} JulianType;

Members:

Comments:

None

See Also:
None 
Return to the List of data structures

wYear  4-digit year

wMonth  Month 0-11(January=0, December=11)

wDay  Day 1-31

wHour  Hour 0-23

wMinute  Minute 0-59

wSecond  Seconds 0-59

wWeekDay  Day of the week 0-6 (0=Sunday, 6=Saturday)
725



Data Structures  
NetSocket

Description:

NetSocket is an enumeration of the types of sockets that can be created with INetMgr Interface. A 

NetSocket value is passed to INETMGR_OpenSocket().

Definition:
typedef enum

{

AEE_SOCK_STREAM=0,

AEE_SOCK_DGRAM

} NetSocket;

Members:

Comments:

None

See Also:
None 
Return to the List of data structures

AEE_SOCK_STREAM  TCP: streaming socket

AEE_SOCK_DGRAM  UDP: datagram socket 
726



Data Structures  
NetState

Description:

NetState is an enumeration of the states of the handset's PPP connection to the Internet. A NetState 

value is returned by the INETMGR_NetStatus() call. 

Definition:
typedef enum

{

NET_INVALID_STATE,

NET_PPP_OPENING,

NET_PPP_OPEN,

NET_PPP_CLOSING,

NET_PPP_CLOSED

} NetState;

Members:

Comments:

None

See Also:
None 
Return to the List of data structures.

NET_INVALID_STATE  Not an actual state; this value will not be returned by 

INETMGR_NetStatus()

NET_PPP_OPENING  The PPP connection is being established

NET_PPP_OPEN  The PPP connection is active

NET_PPP_CLOSING  The PPP connection is closing

NET_PPP_CLOSED  The PPP connection is inactive
727



Data Structures  
OpenFileMode

Description:

OpenFileMode is used to specify file opening mode when opening a file using the 

IFILEMGR_OpenFile(). 

Definition:
typedef enum 

{ 

_OFM_READ=0x0001,

_OFM_READWRITE=0x0002,

_OFM_CREATE=0x0004,

_OFM_APPEND=0x0008,

_OFM_NO_BUFFER=0x8000

} OpenFileMode;

Members:

Comments:

Option _OFM_NO_BUFFER doesn't do anything on the BREW Emulator.

See Also:
None

List of data structures.

_OFM_READ  Open file in read only mode

_OFM_READWRITE  Open file in read/write mode

_OFM_CREATE  Open file in create mode

_OFM_APPEND  Open file in append mode

_OFM_NO_BUFFER  Disable data buffering
728



Data Structures  
PFNAEEEVENT

Description:

PFNAEEEVENT specifies the type of the event callback passed to IDIALOG_SetEventHandler().

Definition:
typedef boolean ( * PFNAEEEVENT)

(

void * pUser, 

AEEEvent evt, 

uint16 w, 

uint32 dw

);

Members:

Comments:

None.

See Also:
IDIALOG_SetEventHandler() 
Return to the List of data structures

pUser  User Data 

evt  Event code

w  16-bit event-specific parameter

dw  32-bit event-specific parameter
729



Data Structures  
PFNCONNECTCB

Description:

PFNCONNECTCB specifies the type of the callback function passed to ISOCKET_Connect().

Definition:
typedef void (*PFNCONNECTCB)

(

   void * pUser,

   int nError

);

Members:

Comments:

None.

See Also:
ISOCKET_Connect()

Return to the List of data structures

pUser  User Data

nError Error Code
730



Data Structures  
PFNIMAGEINFO

Description:

PFNIMAGEINFO specifies the type of the callback function passed to IIMAGE_Notify().

Definition:
typedef void ( * PFNIMAGEINFO)

(

void * pUser, 

IImage * pIImage, 

AEEImageInfo * pi,

int nErr

);

Members:

Comments:

None.

See Also:
IIMAGE_Notify()
AEEImageInfo

Return to the List of data structures

pUser User Data 

pIImage Pointer to IIMage interface object 

pi Pointer to image information

nErr Error Code
731



Data Structures  
PFNPOSITIONCB

Description:

PFNPOSITIONCB specifies the type of the callback function passed to ISHELL_GetPosition().

Definition:
typedef void ( * PFNPOSITIONCB)

(

void * pUser, 

AEEPositionInfo * pli, 

int nErr

);

Members:

Comments:

None.

See Also:
ISHELL_GetPosition()

Return to the List of data structures.

pUser  User Data 

pli  Position Location Information

nErr  Error Code
732



Data Structures  
PFNSOUNDPLAYERSTATUS

Description:

PFNSOUNDPLAYERSTATUS is the type specification for the ISoundPlayer callback function that 

application must register with ISoundPlayer. ISoundPlayer sends all the events and data to application 

via the registered callback function.

Definition:
typedef void ( * PFNSOUNDPLAYERSTATUS)

(

void * pUser, 

AEESoundPlayerCmd eCBType,

AEESoundPlayerStatus eSPStatus,

uint32 dwParam

);

Members:

Comments:

None

See Also:
AEESoundPlayerCmd, 

AEESoundPlayerStatus
Return to the List of data structures.

pUser  Application specified data pointer

eCBType  Type of callback

eSPStatus  Status within the callback type

dwParam  Pointer to AEESoundPlayerCmdData, if any. NULL otherwise.
733



Data Structures  
PFNSOUNDSTATUS

Description:

PFNSOUNDSTATUS is the type definition of the ISound callback function that applications must register 

with ISound. ISound sends all the events and data to the applications via the registered callback 

function.

Definition:
typedef void ( * PFNSOUNDSTATUS)

(

void * pUser, 

AEESoundCmd eCBType,

AEESoundStatus eSPStatus,

uint32 dwParam

);

Members:

Comments:

None

See Also:
AEESoundCmd, 

AEESoundPlayerStatus
AEESoundCmdData

Return to the List of data structures.

pUser  Application specified data pointer

eCBType  Type of callback

eSPStatus  Status within the callback type

dwParam  Pointer to AEESoundCmdData, if any. NULL otherwise.
734



Data Structures  
ResType

Description:

This ENUM specifies the resource type to identify resources in a Resource file.

Definition:
typedef enum 

{

RESTYPE_STRING=1,

RESTYPE_IMAGE=6,

RESTYPE_DIALOG=0x2000,

RESTYPE_CONTROL=0x2001,

RESTYPE_LISTITEM=0x2002,

RESTYPE_BINARY=0x5000

} ResType;

Members:

Comments:

None

See Also:
None 
Return to the List of data structures.

RESTYPE_STRING  String resource, made of UNICODE or ISOLATIN strings

RESTYPE_IMAGE  Image resource, made of .BMP, PNG, or GIF images

RESTYPE_DIALOG  Dialog resource, made up of one or more dialog controls

RESTYPE_CONTROL  Control resource

RESTYPE_LISTITEM  List Item Type resource

RESTYPE_BINARY  Binary data resource
735



Data Structures  
RGBVAL

Description:

The RGB value for a color is defined using this data type. The eight-bit values for red, green, blue are 

stored in 32-bits as follows:

Definition:

typedef uint32 RGBVAL

Members:

None

Comments:

The user can create their own colors using the MAKE_RGB macro with their values for red, green and 

blue to get the corresponding RGBVAL.

See Also:
None 

Return to the List of data structures.

Red Green Blue Reserved

0 ----------- 8 ---------- 16 --------- 24 ----------- 32
736



Data Structures  
SockIOBlock

Description:

A single structure describes an individual block of memory from which data is read or to which data is 

written. 

Arrays of SockIOBlock structures are used in calls to ISOCKET_ReadV() and ISOCKET_WriteV() to 

describe data that can be sent/received as a continuous stream even when, in memory, it is scattered 

among several blocks.

Definition:
typedef struct

{

byte * pbBuffer;

uint16 wLen;

} SockIOBlock;

Members:

Comments:

None

See Also:
None 

Return to the List of data structures.

pbBuffer  Data Buffer

wLen  Length of Buffer
737



Data Structures  
TChType

Description:

TChType is an enumeration used to return the type of the wide character by the GETCHTYPE() 

function.

Definition:
typedef enum 

{

SC_UNKNOWN,

SC_ALPHA,

SC_DIGIT,

SC_WHITESPACE

} TChType;

Members:

Comments:

None

See Also:
None 
Return to the List of data structures.

SC_UNKNOWN  Unknown type

SC_ALPHA  Alphabet type

SC_DIGIT  Numeric type (0-9)

SC_WHITESPACE  White Space
738


	Introducing the BREW API Reference
	IApplet Interface
	List of functions
	IAPPLET_AddRef()
	IAPPLET_HandleEvent()
	IAPPLET_Release()

	IAStream Interface
	List of functions
	IASTREAM_AddRef()
	IASTREAM_Cancel()
	IASTREAM_Read()
	IASTREAM_Readable()
	IASTREAM_Release()

	IBase Interface
	List of functions
	IBASE_AddRef()
	IBASE_Release()

	IControl Interface
	List of functions
	ICONTROL_AddRef()
	ICONTROL_GetProperties()
	ICONTROL_GetRect()
	ICONTROL_HandleEvent()
	ICONTROL_IsActive()
	ICONTROL_Redraw()
	ICONTROL_Release()
	ICONTROL_Reset()
	ICONTROL_SetActive()
	ICONTROL_SetProperties()
	ICONTROL_SetRect()

	IDatabase Interface
	List of functions
	IDATABASE_AddRef()
	IDATABASE_CreateRecord()
	IDATABASE_GetNextRecord()
	IDATABASE_GetRecordByID()
	IDATABASE_GetRecordCount()
	IDATABASE_Release()
	IDATABASE_Reset()

	IDateCtl Interface
	List of functions
	IDATECTL_AddRef()
	IDATECTL_EnableCommand()
	IDATECTL_GetDate()
	IDATECTL_GetDateString()
	IDATECTL_GetDayOfWeek()
	IDATECTL_GetDayString()
	IDATECTL_GetJulianDay()
	IDATECTL_GetMonthString()
	IDATECTL_GetProperties()
	IDATECTL_GetRect()
	IDATECTL_HandleEvent()
	IDATECTL_IsActive()
	IDATECTL_Redraw()
	IDATECTL_Release()
	IDATECTL_Reset()
	IDATECTL_SetActive()
	IDATECTL_SetActiveDayMask()
	IDATECTL_SetDate()
	IDATECTL_SetJulianDay()
	IDATECTL_SetProperties()
	IDATECTL_SetRect()
	IDATECTL_SetTitle()

	IDBMgr Interface
	List of functions
	IDBMGR_AddRef()
	IDBMGR_OpenDatabase()
	IDBMGR_OpenDatabaseEx()
	IDBMGR_Remove()
	IDBMGR_Release()

	IDBRecord Interface
	List of functions
	IDBRECORD_AddRef()
	IDBRECORD_GetField()
	IDBRECORD_GetFieldDWord()
	IDBRECORD_GetFieldString()
	IDBRECORD_GetFieldWord()
	IDBRECORD_GetID()
	IDBRECORD_NextField()
	IDBRECORD_Release()
	IDBRECORD_Remove()
	IDBRECORD_Reset()
	IDBRECORD_Update()

	IDialog Interface
	List of functions
	IDIALOG_AddRef()
	IDIALOG_GetControl()
	IDIALOG_Release()
	IDIALOG_SetEventHandler()
	IDIALOG_SetFocus()

	IDisplay Interface
	List of functions
	IDISPLAY_AddRef()
	IDISPLAY_Backlight()
	IDISPLAY_BitBlt()
	IDISPLAY_ClearScreen()
	IDISPLAY_DrawFrame()
	IDISPLAY_DrawHLine()
	IDISPLAY_DrawRect()
	IDISPLAY_DrawText()
	IDISPLAY_DrawVLine()
	IDISPLAY_EraseRect()
	IDISPLAY_EraseRgn()
	IDISPLAY_FillRect()
	IDISPLAY_FrameButton()
	IDISPLAY_FrameRect()
	IDISPLAY_FrameSolidRect()
	IDISPLAY_GetFontMetrics()
	IDISPLAY_GetSymbol()
	IDISPLAY_InvertRect()
	IDISPLAY_MeasureText()
	IDISPLAY_MeasureTextEx()
	IDISPLAY_Release()
	IDISPLAY_SetAnnunciators()
	IDISPLAY_SetColor()
	IDISPLAY_Update()
	IDISPLAY_UpdateEx()

	IFile Interface
	List of functions
	IFILE_AddRef()
	IFILE_Cancel()
	IFILE_GetInfo()
	IFILE_Read()
	IFILE_Readable()
	IFILE_Release()
	IFILE_Seek()
	IFILE_Truncate()
	IFILE_Write()

	IFileMgr Interface
	List of functions
	IFILEMGR_AddRef()
	IFILEMGR_EnumInit()
	IFILEMGR_EnumNext()
	IFILEMGR_GetFreeSpace()
	IFILEMGR_GetInfo()
	IFILEMGR_GetLastError()
	IFILEMGR_MkDir()
	IFILEMGR_OpenFile()
	IFILEMGR_Release()
	IFILEMGR_Remove()
	IFILEMGR_Rename()
	IFILEMGR_RmDir()
	IFILEMGR_Test()

	IGraphics Interface
	List of functions
	IGRAPHICS_AddRef()
	IGRAPHICS_ClearRect()
	IGRAPHICS_ClearViewport()
	IGRAPHICS_DrawArc()
	IGRAPHICS_DrawCircle()
	IGRAPHICS_DrawEllipse()
	IGRAPHICS_DrawLine()
	IGRAPHICS_DrawPie()
	IGRAPHICS_DrawPoint()
	IGRAPHICS_DrawPolygon()
	IGRAPHICS_DrawPolyline()
	IGRAPHICS_DrawRect()
	IGRAPHICS_DrawTriangle()
	IGRAPHICS_EnableDoubleBuffer()
	IGRAPHICS_GetBackground()
	IGRAPHICS_GetClip()
	IGRAPHICS_GetColor()
	IGRAPHICS_GetColorDepth()
	IGRAPHICS_GetFillColor()
	IGRAPHICS_GetFillMode()
	IGRAPHICS_GetPaintMode()
	IGRAPHICS_GetPointSize()
	IGRAPHICS_GetViewport()
	IGRAPHICS_Pan()
	IGRAPHICS_Release()
	IGRAPHICS_SetBackground()
	IGRAPHICS_SetClip()
	IGRAPHICS_SetColor()
	IGRAPHICS_SetFillColor()
	IGRAPHICS_SetFillMode()
	IGRAPHICS_SetPaintMode()
	IGRAPHICS_SetPointSize()
	IGRAPHICS_SetViewport()
	IGRAPHICS_Translate()
	IGRAPHICS_Update()

	IHeap Interface
	List of functions
	IHEAP_AddRef()
	IHEAP_CheckAvail()
	IHEAP_Free()
	IHEAP_GetMemStats()
	IHEAP_Malloc()
	IHEAP_MallocRec()
	IHEAP_Realloc()
	IHEAP_Release()
	IHEAP_StrDup()

	IImage Interface
	List of functions
	IIMAGE_AddRef()
	IIMAGE_Draw()
	IIMAGE_DrawFrame()
	IIMAGE_GetInfo()
	IIMAGE_HandleEvent()
	IIMAGE_Notify()
	IIMAGE_Release()
	IIMAGE_SetParm()
	IIMAGE_SetStream()
	IIMAGE_Start()
	IIMAGE_Stop()

	IMemAStream Interface
	List of functions
	IMEMASTREAM_AddRef()
	IMEMASTREAM_Cancel()
	IMEMASTREAM_Read()
	IMEMASTREAM_Readable()
	IMEMASTREAM_Release()
	IMEMASTREAM_Set()

	IMenuCtl Interface
	List of functions
	IMENUCTL_AddRef()
	IMENUCTL_AddItem()
	IMENUCTL_AddItemEx()
	IMENUCTL_DeleteAll()
	IMENUCTL_DeleteItem()
	IMENUCTL_EnableCommand()
	IMENUCTL_GetItemData()
	IMENUCTL_GetItemTime()
	IMENUCTL_GetProperties()
	IMENUCTL_GetRect()
	IMENUCTL_GetSel()
	IMENUCTL_HandleEvent()
	IMENUCTL_IsActive()
	IMENUCTL_Redraw()
	IMENUCTL_Release()
	IMENUCTL_Reset()
	IMENUCTL_SetActive()
	IMENUCTL_SetColors()
	IMENUCTL_SetItemText()
	IMENUCTL_SetItemTime()
	IMENUCTL_SetProperties()
	IMENUCTL_SetRect()
	IMENUCTL_SetSel()
	IMENUCTL_SetStyle
	IMENUCTL_SetTitle()

	IModule Interface
	List of functions
	IMODULE_AddRef()
	IMODULE_CreateInstance()
	IMODULE_FreeResources()
	IMODULE_Release()

	INetMgr Interface
	List of functions
	INETMGR_AddRef()
	INETMGR_GetHostByName()
	INETMGR_GetLastError()
	INETMGR_GetMyIPAddr()
	INETMGR_NetStatus()
	INETMGR_OnEvent()
	INETMGR_OpenSocket()
	INETMGR_Release()
	INETMGR_SetLinger()

	INotifier Interface
	List of functions
	INOTIFIER_AddRef()
	INOTIFIER_Release()
	INOTIFIER_SetMask()

	IShell Interface
	List of functions
	ISHELL_ActiveApplet()
	ISHELL_AddRef()
	ISHELL_AlarmsActive()
	ISHELL_Beep()
	ISHELL_BrowseFile()
	ISHELL_BrowseURL()
	ISHELL_Busy()
	ISHELL_CancelAlarm()
	ISHELL_CancelTimer()
	ISHELL_CanStartApplet()
	ISHELL_CheckPrivLevel()
	ISHELL_CloseApplet()
	ISHELL_CreateDialog()
	ISHELL_CreateInstance()
	ISHELL_EndDialog()
	ISHELL_EnumAppletInit()
	ISHELL_EnumNextApplet()
	ISHELL_ForceExit()
	ISHELL_FreeResData()
	ISHELL_GetActiveDialog()
	ISHELL_GetDeviceInfo()
	ISHELL_GetHandler()
	ISHELL_GetItemStyle()
	ISHELL_GetPosition()
	ISHELL_GetPrefs()
	ISHELL_GetTimerExpiration()
	ISHELL_HandleEvent()
	ISHELL_IsValidResource()
	ISHELL_LoadImage()
	ISHELL_LoadResData()
	ISHELL_LoadResImage()
	ISHELL_LoadResObject()
	ISHELL_LoadResSound()
	ISHELL_LoadResString()
	ISHELL_LoadSound()
	ISHELL_MessageBox()
	ISHELL_MessageBoxText()
	ISHELL_Notify()
	ISHELL_PostEvent()
	ISHELL_Prompt()
	ISHELL_QueryClass()
	ISHELL_RegisterHandler()
	ISHELL_RegisterNotify()
	ISHELL_Release()
	ISHELL_Resume()
	ISHELL_SendEvent()
	ISHELL_SetAlarm()
	ISHELL_SetPrefs()
	ISHELL_SetTimer()
	ISHELL_ShowCopyright()
	ISHELL_StartApplet()

	ISocket Interface
	List of functions
	ISOCKET_AddRef()
	ISOCKET_Bind()
	ISOCKET_Cancel()
	ISOCKET_Connect()
	ISOCKET_GetLastError()
	ISOCKET_GetPeerName()
	ISOCKET_IOCtl()
	ISOCKET_Read()
	ISOCKET_Readable()
	ISOCKET_ReadV()
	ISOCKET_RecvFrom()
	ISOCKET_Release()
	ISOCKET_SendTo()
	ISOCKET_Writeable()
	ISOCKET_Write()
	ISOCKET_WriteV()

	ISound Interface
	List of functions
	ISOUND_AddRef()
	ISOUND_Get()
	ISOUND_GetVolume()
	ISOUND_PlayFreqTone()
	ISOUND_PlayTone()
	ISOUND_PlayToneList()
	ISOUND_RegisterNotify()
	ISOUND_Release()
	ISOUND_Set()
	ISOUND_SetDevice()
	ISOUND_SetVolume()
	ISOUND_StopTone()
	ISOUND_StopVibrate()
	ISOUND_Vibrate()

	ISoundPlayer Interface
	List of functions
	ISOUNDPLAYER_AddRef()
	ISOUNDPLAYER_FastForward()
	ISOUNDPLAYER_GetTotalTime()
	ISOUNDPLAYER_GetVolume
	ISOUNDPLAYER_Pause()
	ISOUNDPLAYER_Play()
	ISOUNDPLAYER_RegisterNotify()
	ISOUNDPLAYER_Release()
	ISOUNDPLAYER_Resume()
	ISOUNDPLAYER_Rewind()
	ISOUNDPLAYER_Set()
	ISOUNDPLAYER_SetSoundDevice()
	ISOUNDPLAYER_SetStream()
	ISOUNDPLAYER_SetTempo()
	ISOUNDPLAYER_SetTune()
	ISOUNDPLAYER_SetVolume()
	ISOUNDPLAYER_Stop()

	IStatic Interface
	List of functions
	ISTATIC_AddRef()
	ISTATIC_GetProperties()
	ISTATIC_GetRect()
	ISTATIC_HandleEvent()
	ISTATIC_Redraw()
	ISTATIC_Release()
	ISTATIC_Reset()
	ISTATIC_SetProperties()
	ISTATIC_SetRect()
	ISTATIC_SetText()

	ITAPI Interface
	List of functions
	ITAPI_AddRef()
	ITAPI_ExtractSMSText()
	ITAPI_GetCallerID()
	ITAPI_GetStatus()
	ITAPI_MakeVoiceCall()
	ITAPI_Release()

	ITextCtl Interface
	List of functions
	ITEXTCTL_AddRef()
	ITEXTCTL_EnableCommand()
	ITEXTCTL_GetProperties()
	ITEXTCTL_GetRect()
	ITEXTCTL_GetText()
	ITEXTCTL_GetTextPtr()
	ITEXTCTL_HandleEvent()
	ITEXTCTL_IsActive()
	ITEXTCTL_Redraw()
	ITEXTCTL_Release()
	ITEXTCTL_Reset()
	ITEXTCTL_SetActive()
	ITEXTCTL_SetInputMode()
	ITEXTCTL_SetMaxSize()
	ITEXTCTL_SetProperties()
	ITEXTCTL_SetRect()
	ITEXTCTL_SetSoftKeyMenu()
	ITEXTCTL_SetText()
	ITEXTCTL_SetTitle()

	ITimeCtl Interface
	List of functions
	ITIMECTL_AddRef()
	ITIMECTL_EnableCommand()
	ITIMECTL_GetProperties()
	ITIMECTL_GetRect()
	ITIMECTL_GetTime()
	ITIMECTL_GetTimeString()
	ITIMECTL_HandleEvent()
	ITIMECTL_IsActive()
	ITIMECTL_Redraw()
	ITIMECTL_Release()
	ITIMECTL_Reset()
	ITIMECTL_SetActive()
	ITIMECTL_SetEditField()
	ITIMECTL_SetIncrement()
	ITIMECTL_SetProperties()
	ITIMECTL_SetRect()
	ITIMECTL_SetTime()
	ITIMECTL_SetTimeEx()

	IViewer Interface
	List of functions

	Helper Functions
	List of functions
	ATOI()
	CALLBACK_Cancel()
	CALLBACK_Init()
	CALLBACK_IsQueued()
	CONVERTBMP()
	CREATEOBJ()
	DBGPRINTF()
	FADD()
	FCMP_E()
	FCMP_G()
	FCMP_GE()
	FCMP_L()
	FCMP_LE()
	FDIV()
	FLOAT_TO_WSTR()
	FMUL()
	FREE()
	FREEOBJ()
	FSUB()
	GETAEEVERSION()
	GET_APP_INSTANCE()
	GETCHTYPE()
	GET_JULIANDATE()
	GET_NOTIFIER_MASK()
	GET_NOTIFIER_VAL()
	GET_RAND()
	GET_SECONDS()
	GET_TIMEMS()
	GET_UPTIMEMS()
	LOCALTIMEOFFSET()
	MALLOC()
	MEMCPY()
	MEMSET()
	OEMSTRLEN()
	OEMSTRSIZE()
	REALLOC()
	SETAEERECT()
	SPRINTF()
	STR_TO_WSTR()
	STRCAT()
	STRCHR()
	STRCMP()
	STRCPY()
	STRLEN()
	STRNCPY()
	STRRCHR()
	STRTOUL()
	SYSFREE()
	UTF8_TO_WSTR()
	WSPRINTF()
	WSTR_TO_FLOAT()
	WSTR_TO_STR()
	WSTR_TO_UTF8()
	WSTRCAT()
	WSTRCHR()
	WSTRCMP()
	WSTRCOMPRESS()
	WSTRCPY()
	WSTRDUP()
	WSTRLEN()
	WSTRLOWER()
	WSTRNCOPYN()
	WSTRRCHR()
	WSTRSIZE()
	WSTRUPPER()
	WWRITELONGEX()

	Data Structures
	List of data structures
	AEE Applet Flags
	AEE Events
	AEE IImage Parameters
	AEE IMenuCtl Properties
	AEE ITextCtl Properties
	AEE ITimeCtl Properties
	AEE Privilege Levels
	AEE Standard Control Properties
	AEEAppInfo
	AEEAppStart
	AEEArc
	AEECallback
	AEECircle
	AEEClip
	AEEClipShape
	AEEClrItem
	AEEDBField
	AEEDBFieldName
	AEEDBFieldType
	AEEDeviceInfo
	AEEDNSResult
	AEEEllipse
	AEEFrameType
	AEEFont
	AEEHandlerType
	AEEImageInfo
	AEEItemStyle
	AEEItemType
	AEELine
	AEEMenuColors
	AEEMenuColorsMask
	AEENetStats
	AEENotify
	AEENotifyStatus
	AEEPaintMode
	AEEPie
	AEEPoint
	AEEPolygon
	AEEPolyline
	AEEPosAccuracy
	AEEPositionInfo
	AEEPromptInfo
	AEERasterOp
	AEERect
	AEESoundAPath
	AEESoundCmd
	AEESoundCmdData
	AEESoundDevice
	AEESoundInfo
	AEESoundMethod
	AEESoundMuteCtl
	AEESoundPlayerAudioSpec
	AEESoundPlayerCmd
	AEESoundPlayerCmdData
	AEESoundPlayerFile
	AEESoundPlayerInput
	AEESoundPlayerMIDISpec
	AEESoundPlayerMP3BitRate
	AEESoundPlayerMP3Channel
	AEESoundPlayerMP3Emphasis
	AEESoundPlayerMP3Extension
	AEESoundPlayerMP3Layer
	AEESoundPlayerMP3SampleRate
	AEESoundPlayerMP3Spec
	AEESoundPlayerMP3Version
	AEESoundPlayerSource
	AEESoundPlayerStatus
	AEESoundStatus
	AEESoundTone
	AEESoundToneData
	AEESymbol
	AEETextInputMode
	AEETriangle
	AEEVoicePrompt
	BeepType
	CtlAddItem
	DialogInfo
	DialogInfoHead
	DialogItem
	DialogItemHead
	DListItem
	FileAttrib
	FileInfo
	FileSeekType
	IDISPLAY Flags
	IGRAPHICS Flags
	ITField
	JulianType
	NetSocket
	NetState
	OpenFileMode
	PFNAEEEVENT
	PFNCONNECTCB
	PFNIMAGEINFO
	PFNPOSITIONCB
	PFNSOUNDPLAYERSTATUS
	PFNSOUNDSTATUS
	ResType
	RGBVAL
	SockIOBlock
	TChType


