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Abstract|Due to the increasing use of portable comput-
ing and wireless communications systems, energy consump-
tion is of major concern in today's VLSI circuits. With
that in mind we present an energy conscious weighted ran-
dom pattern testing technique for Built-In-Self-Test (BIST)
applications. Energy consumption during BIST operation
can be minimized while achieving high fault coverage. Sim-
ple measures of observability and controllability of circuit
nodes are proposed based on primary input signal probabil-
ity (probability that a signal is logic ONE). Such measures
help determine the testability of a circuit. We developed a
tool, POWERTEST, which uses a genetic algorithm based
search to determine optimal weight sets (signal probabilities
or input signal distribution) at primary inputs to minimize
energy dissipations. The inputs conforming to the primary
input weight set can be generated using cellular automata
or LFSR (Linear Feedback Shift Register). We observed
that a single input distribution (or weights) may not be
su�cient for some random-pattern resistant circuits, while
multiple distributions consume larger area. As a trade-o�,
two distributions have been used in our analysis. Results
on ISCAS benchmark circuits show that energy reduction
of up to 97.82% can be achieved (compared to equi-probable
random-pattern testing with identical fault coverage) while
achieving high fault coverage.

Keywords|Testing, Random Testing, Weighted Random
Pattern Testing, Energy Conscious Testing.

I. Introduction

With the increasing use of portable computing and wire-
less communications, energy dissipation has been a major
concern in today's VLSI. For example, the cost constraints
of consumer electronic products typically require plastic
package, which imposes a strong limit on the energy dis-
sipation. The market acceptance of mobile applications
and notebook computers also depends on the operation
time per battery pack. Therefore, the reduction of the
electrical energy consumption has become one of the most
rapidly growing topics of interest in the electronics indus-
try and one of the most challenging areas of research in
this domain. In order to meet the energy and reliability
constraints of these products, an energy conscious Built-
In-Self-Test(BIST) technique is necessary. Since BIST is
generally used during regular operation of a circuit or dur-
ing power on, low-power BIST would enhance battery life.

CMOS technologies have very low power consumption
when signals are not switching. The majority of the en-
ergy dissipation in the current day technology is due to
charging and discharging of load capacitance of logic gates,
which occurs when logic gates undergo signal transitions.
Hence in order to reduce power consumptions in BIST, it
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Fig. 1. n-input AND gate and n-input OR gate

is desirable to reduce the switched capacitance during the
test mode.

Random pattern testing is very attractive in BIST be-
cause it does not require large memory overhead while
achieving high fault coverage with a limited number of in-
put vectors [5], [6], [1], [7], [8]. Energy consumption during
test is proportional to the product of the test length and the
average dynamic power. Therefore for random-pattern re-
sistant circuits, energy issues are especially important. For
such circuits, to assure high fault coverage, the required
test sequences can be long. To handle such problems, usu-
ally multiple sets of weights (signal probabilities or input
signal distributions) are used [1]. That requires extra sil-
icon area for the generation of such weights. Hence, it is
desirable to use a single weight set by globally optimizing
the weight set for acceptable performance [5]. Let us con-
sider the circuit shown in Figure 1, where an n-input AND
gate and an n-input OR gate are connected to the same
set of primary inputs. The optimal weight set with a sin-
gle distribution is the equiprobable set [1] (since AND and
NOR gates have conicting testability requirements), and
it requires prohibitively large numbers of equiprobable pat-
terns to achieve high fault coverage. In this paper, we use
two separate weight sets to trade-o� memory requirement
versus testability and energy dissipation.

Energy consumption during test is proportional to the
product of test length and average dynamic power.There
are two approaches to reduce energy: the �rst one is to
reduce the test length by �nding the optimal signal prob-
abilities such that the test length is minimum; the other
one is to reduce the dynamic power by reducing the sig-
nal activities (probabilities of signal switching). While the
test length depends on signal probabilities and activities,
our experience shows that it is not very sensitive to signal
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activities. Fault simulations show that the test length is
weakly sensitive (for same fault coverage) to the signal ac-
tivities in combinational circuits if we keep the same signal
probabilities. In this paper, we determine signal proba-
bilities and optimal activities of primary inputs to achieve
lowest energy during the self test mode. Such probabilities
and activities are then used to generate weighted random
patterns which can achieve high fault coverage while being
energy e�cient. The corresponding weighted random pat-
tern generator can be implemented using a one-dimensional
cellular automata or LFSR (Linear Feedback Shift Regis-
ter).
The rest of the paper is organized as follows: Section II

introduces the formal de�nitions of weight set, signal prob-
ability, signal activity and other related de�nitions. Sec-
tion III proposes a simple and e�cient technique to gen-
erate and evaluate the weight sets at the primary inputs.
Section IV describes a genetic algorithm based technique
to obtain weights optimized for high testability and low
energy dissipation. Experimental results for a number of
benchmark circuits are presented in Section VI. Finally,
Section VII gives the conclusions.

II. Preliminaries and De�nitions

De�nition 1 (Primary Input Weight Set) For a cir-
cuit with n primary inputs, a weight set SP assigned to its
inputs is a vector (p(1); p(2); ::::; p(n)), where p(i) 2[0,1]
is the probability that input i is a logic ONE. p(i) is also
called the weight assigned to primary input i.

De�nition 2 (Signal Probability) Signal probability
P (k) of a node k of a circuit is the probability that node
k is logical ONE if the circuit is stimulated by a random
sequence implementing weight set SP .

De�nition 3 (Signal Activity) The activity A(x) of a

signal x(t) is de�ned as lim�!1
nx(�)
�

, and equals to the

expected value of nx(�)
�

. The variable nx is the number
of switching of x(t) in the time interval (��=2; �=2]. The
normalized activity a(x) is de�ned as A(x) divided by the
clock frequency f , and is the probability for the signal to
switch within a clock period, and is given by:

a(x) = P (x(t� T )�x(t) + �x(t � T )x(t))

where x(t � T )�x(t) denotes a switching transition from 0
to 1 while �x(t�T )x(t) denotes a switching transition from
1 to 0 (T is the clock period). We assume, without loss of
generality, that the signal switches at the rising edge of the
clock cycle. Therefore, we have, 1� a(t) as the probability
that the signal does not switch, and is given by:

1� a(x) = P (�x(t� T )�x(t) + x(t� T )x(t))

In this paper, we assume the probability and activity of
signal x(t) do not change with time, hence, P (x(t)) and
a(x) are constants with respect to time.
The activity a(yj) at the output node yj of the module

is given by

a(yj) =
nX
i=1

P (
@yj
@xi

)a(xi) (1)

where @y=@x is the Boolean di�erence of function y with
respect to x and is de�ned by

@y

@x
= y jx=1 �y jx=0 = y(x) � y(�x) (2)

Given the primary input probabilities and activities, we
can use equation 1 to recursively calculate the switching
activities at the internal nodes [2], [17], [19], [18]. It should
be noted that for testing of combinational circuits, tempo-
ral correlations are not important. However, they do play a
role when we trade-o� test time versus energy dissipation.

De�nition 4 (Activity Set) For a circuit with n pri-
mary inputs, an activity set SA assigned to its inputs is
a vector (a(1); a(2); ::::; a(n)), were a(i) is the activity of
i-th primary input.

the average power for a CMOS circuit can be approxi-
mated by

Poweravg =
1

2
V 2
dd

X
j2all nodes

C(j) A(j) (3)

where Vdd is the supply voltage, C(j) is the node capaci-
tance, and A(j) is the activity at node j and is proportional
to the normalized activity a(j). The node capacitance C(j)
is approximately proportional to the fan-outs at node j. So
we can de�ne the normalized power dissipation measure �
as:

De�nition 5 (normalized power dissipation measure )

� =
X

j2all nodes

fanout(j) a(j) (4)

where fanout(j) is the number of fan-outs at node j.
De�nition 6 (Power Sensitivity) To measure the

change in average power due to the changes in the dis-
tributions of primary inputs, we de�ne power sensitivity to

primary input activity S
a(xi) as follows:

S
a(xi) = lim�a(xi)!0

�Poweravg
�a(xi)

=
@Poweravg

@a(xi)
(5)

where a(xi) is the activity of primary input xi.
De�nition 7 (Normalized Power Sensitivity) Since

Poweravg is proportional to normalized power dissipation

measure �, we can de�ne normalized power sensitivity to

primary input activity �a(xi) in terms of � as follows:

�a(xi) =
@�

@a(xi)
=

X
j2all nodes

fanout(j)
@a(j)

@a(xi)
(6)

where a(j) is the activity of each internal node or primary
output. The term @a(j)=@a(xi) can be referred as activity
sensitivity.

III. Determination of Weight Set

A. Estimation of the signal probabilities and activ-
ities

In this paper, we use the general algorithm proposed in
[2] [3] and adopt a data structure similar to [4] to estimate



2

signal probabilities and activities at the internal nodes of
the circuit.
It has been shown in [3] that the signal probability P (f),

can be expressed as a sum of primary input signal proba-

bility product terms
Pp

i=1 �i(
Qn

k=1P
mi;k(xk)), where n is

the number of the independent inputs to the circuit, and
�i is some integer. The exponent mi;k is either 1 or 0. The
sum has p product terms. This form will be referred to
as the sum of probability products of f , which is a form of
symbolic signal probability. Also for convenience, �P (xi) is
de�ned as P ( �xi) and equals 1�P (xi): Therefore, P (f) can
be expressed as

Pp

i=1�i(
Qn

k=1 P
mi;k(xk) �P

li;k(xk)); where
mi;k and li;k are either 1 or 0 but both cannot be 1 simul-
taneously. Since

P (xk) �P (xk) = P (xk)(1� P (xk)) = P (xk) � P 2(xk)

and equals 0 after exponent suppression [3], [4], the prod-
uct term Pmi;k(xk) �P li;k(xk) will be eliminated from P (f)
if mi;k = li;k = 1. We �rst �nd the independent inputs
of each Boolean function f . Then we can use the above
approach to calculate the symbolic probability. [2].
Signal activity estimation is shown in Section II and is

the same as described in [2].

B. Estimation of the Power Sensitivity

We use symbolic technique to obtain power sensitivities,
and the basic idea is to express the activity of each internal
node or primary output in terms of the probabilities and
activities of primary inputs. After we obtain the exact
expression for signal activity, we can easily compute power
sensitivities by equations 6.
Note that accurate calculation of power sensitivity de-

pends on whether we can accurately express the probabil-
ity and activity of each internal node and primary output
in terms of independent inputs. However, the size of sym-
bolic probability expression and activity expression grow
exponentially with respect to the number of independent
inputs. Consequently, we resort to circuit partitioning to
trade-o� accuracy versus computation time. The circuit
partitioning technique is similar to the one given in [21].

C. Measurement of Controllability and Observabil-
ity

Our primary aim is to determine the weights (signal
probabilities) at primary inputs which can achieve a high
fault coverage while being energy e�cient. To de�ne stuck-
at fault testability of a node, we de�ne controllability and
observability. The controllability measure of a node is de-
�ned as the relative di�culty of setting a node to logic
ONE or ZERO. For a node k, if P (k) is around 1:0 or 0:0,
then the node is either very di�cult to set to ZERO or
to ONE, and the controllability of that node is very low,
while P (k) = 0:5 implies that node k can be set to ZERO
or ONE with equal ease (hence, high controllability). The
observability measure of a node is de�ned as the relative
di�culty of propagating an error from the node to a pri-
mary output [11]. It is apparent that the observability and
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Fig. 2. observability of a node

controllability measures of a node determine if the node is
easily testable for stuck-at faults. For a node A, let us de-
note the di�culty of setting A to ONE or ZERO as C1(A)
or C0(A), respectively. Let the observability of node A be
O(A). Then we have (considering Figure 2),

O(B) = C1(A) +O(X)

O(C) = C0(A) + O(Y )

If P (A) is near 0:0, then not only the controllability of
A is low, but also the observability of B is low, since B is
very di�cult to be observed at X. If P (A) is near 1:0, then
both the controllability of A and observability of C are low.
On the other hand, if P (A) = 0:5, then the observabilities
of both B and C are average, while the controllability of A
is high. Since we want to optimize the controllability and
observability of the entire circuit, a signal probability of
0.5 is desirable for each node of the circuit from testability
point of view.
Now let us consider stuck-at fault testability using ran-

dom patterns. We need an optimization procedure which
determine an input weight set such that the internal node
signal probabilities are close to 0:5 to achieve high control-
lability and observability. We de�ne a cost function for
node k such that:
� The cost function is proportional to the di�culty of
controlling and observing node k.

� The cost function is maximum when P (k) = 0 or
P (k) = 1, since the controllability of the node is lowest
when P (k) = 0 or P (k) = 1.

� The cost function should distinguish the relative dif-
�culty between two possible probabilities of node k.
For example, if P1(k) = 0:01 and P2(k) = 0:001, or if
P3(k) = 0:99 and P4(k) = 0:999, the absolute di�er-
ences between P1(k) and P2(k) or between P3(k) and
P4(k) are small, but the controllability of node k is
much worse when P2(k) = 0:001 or P4(k) = 0:999 than
when P1(k) = 0:01 or P3(k) = 0:99. A possible solu-
tion to this problem is to take logarithm of the prob-
ability: �log(P1(k)) and �log(1:0 � P3(k)) are equal
to 2, and they are much smaller than �log(P2(k)) or
�log(1:0 � P4(k)), which are equal to 3. Hence by
taking logarithm, the cost function can distinguish the
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relative di�culty between two probabilities with abso-
lute value near 0:0 or 1:0.

In order to meet the above objectives, we de�ne the cost
function for testability as follows:

De�nition 8 (Cost Function for Testability)

cost(k) =

8>>>><
>>>>:

�log10Ptl : P (k) < Ptl
�log10P (k) : Ptl < P (k) < Pt1

0 : Pt1 < P (k) < Pt2
�log10(1� P (k)) : Pt2 < P (k) < Pth
�log10(1� Pth) : Pth < P (k)

COSTtest =
X

k2allnodes

cost(k)

In the cost function, Pt1, Pt2 , Ptl and Pth are de�ned
as testability thresholds, and will be explained in detail in
this section. It should be noted that the cost is a single
number and can mask the conicting nature of the inter-
nal nodes during optimization. Two nodes A and B can
be conicting in the sense that an optimization motivated
by this cost function improves the testability of A while
degrading B. There are instances where the testability of
a circuit is hindered by a relatively small number of hard-
to-detect faults. If B is a random-pattern resistant node,
while A is easily detectable, then B can dominate A for
determining the required test length. Node B may not
be optimized in the presence of node A if they are con-
icting. Hence, a lower weightage can be given to those
stuck-at faults which are \easy-to-detect". Our cost func-
tion neglects all easy-to-detect faults, and enhances the
probability of generating suitable patterns to expose the
pseudo-random-resistant faults, thus making it possible to
achieve high fault coverage with shorter test length.

De�nition 9 (Testability Threshold) The testability
thresholds Pt1 , Pt2, Ptl and Pth of an internal node are
de�ned as follows. For any internal node A, if

Pt1 < P (A) < Pt2

we say any stuck-at fault in node A is easily detectable
and can be neglected in the cost function. If P (A) < Ptl or
P (A) > Pth, we say the stuck-at faults in node A is hard
to detect, and the cost function for node A is heuristically
set to constants, namely, �log10Ptl and �log10(1 � Pth),
respectively.
For a test sequence containing several hundred vectors,

if a node has a signal probability between 0:1 and 0:9, then
the node will be driven to logic ONE or ZERO several
hundred times, and both s-a-0 or s-a-1 faults in the node
have very high chance of being detected. This node can
be categorized as an easy-to-detect node, and it must be
neglected in the cost function. Typical values for Pt1 and
Pt2 are set to 0.1 and 0.9, respectively, when we test the
circuit with several hundred vectors.
Due to the complex nature of the optimization problem,

the testability of some random-pattern resistant faults may
not be maximumeven when the global optimal point of the
cost function is obtained. There are situations where these

extremely random-resistant faults may interfere with the
testability of other nodes during the optimization process.
This can be better understood by considering a simple ex-
ample. Since the optimization algorithm will minimize the
cost function, it is possible that the signal probability of
a random resistant node A changes from 0:0000001( say
10�7) to 0:00001( say 10�5) during optimization. Then the
contribution of node A to the cost function will decrease
rapidly from 7 to 5, but the stuck-at-0 fault at node A may
remain undetectable if we test the circuit with several hun-
dred vectors. However, this rapid decrease of cost(A) may
sacri�ce the testability of some other nodes. This situation
should be avoided since it actually reduces the testability
of the circuit. Testability thresholds Ptl and Pth help mit-
igate the above problem. Ptl and Pth in the cost function
are de�ned as follows: for a node A, if P (A) < Ptl or
P (A) > Pth , we say the stuck-at faults at node A is hard
to detect, and the cost function of node A is heuristically
set to constants, namely,�log10Ptl and �log10(1�Pth), re-
spectively. For example, if we test the circuit with several
hundred vectors, the typical values of Ptl and Pth can be
Ptl = 0:001 and Pth = 0:999. Hence, if P (A) changes from
0:0000001(10�7) to 0:00001(10�5), the testability measure
of node A will remain unchanged during the optimization,
thereby this extremely-hard-to-detect fault will not be able
to interfere with the testability of other nodes.
Our testability measure is much simpler and more

straightforward than those based on fault-detection prob-
abilities [6], and can be e�ciently calculated from signal
probabilities.
It is worth noting that this cost function is only re-

lated to the signal probabilities, and temporal correlations
among signals are not important for the testability of com-
binational circuit. We also notice that the test length is
weakly dependent on signal activity (temporal correlation
among signal). Therefore, the optimization of testability
and power can be two separate processes: probabilities can
be optimized to achieve certain fault coverage with shortest
test length, while temporal correlations can be optimized
to achieve lowest energy with the same test length.

D. Estimation of Total Switched Capacitance

Since we want to optimize the activities for low power, we
need to estimate the dynamic power which is proportional
to the total switched capacitance. If the signal activity of
node k is a(k), then the average switched capacitance at
that node is equal to a(k)Ck, where Ck is the capacitance
associated with node k. Ck is approximately proportional
to the fanout at node k.
The summation of the switched capacitance over all

nodes of the circuit is proportional to the average dynamic
power dissipation and is given by:

X
k2allnodes

a(k)fanout(k) (7)

The energy dissipation during the test mode is propor-
tional to the product of the average switched capacitance
and test length, since the average switched capacitance
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is proportional to the dynamic power consumption dur-
ing each clock cycle, while test length indicates how many
clock cycles the test lasts.
When we optimize the probabilities of primary inputs

for testability, we assume temporal independence, then
for node k, the probability of signal switching equals to
2p(k)(1 � p(k))Ck. Let us denote this activity (without
temporal correlations) as �0(k), When we optimize the ac-
tivities of primary inputs separately to achieve minimum
energy, we should take the signal correlation into considera-
tion, and the activity of the internal nodes can be estimated
by our power estimation technique described in Section II
Equation 7 which gives the total switched capacitance

should be modi�ed when two weight sets are applied to
the primary inputs of the circuit. Two weight sets are
necessary when the circuit is random pattern resistant. Let
us denote the vectors generated by the �rst weight set as
U and the vector generated by the second weight set as
V . We merge the vectors of these two weight sets by using
the �rst weight set to generate the �rst n vectors, then the
second one for the second n vectors, and so on :

U1U2::::Un V1V2::::Vn ::::

Given two weight sets, let us denote the activities of node
k as a1(k) and a2(k), respectively. The average switched
capacitance is then given as:

X
k2allnodes

[a1(k) + a2(k)]fanout(k)=2

Power consumption is a function of primary input activi-
ties.
Given the dynamic power and requred test length, the

energy consumption can be determined as the product of
power and test length, To determine the energy consump-
tion during test mode, for each set of primary input activi-
ties, we use a fault simulator to determine the required test
length, and employ the power estimation tools described
in [2] to accurately calculate the corresponding dynamic
power. Minimum energy consumption can be achieved by
searching the best activities.

IV. Optimization of Probabilities

In order to optimize the primary input signal probabil-
ities to achieve high fault coverage, we need to globally
minimize the cost for testability. The temporal correla-
tions of primary inputs are neglected here because tem-
poral correlations are not important for the testability of
combinational circuits. The cost function for testability is
a function of signal probabilities, but it is independent of
temporal correlations. Genetic Algorithm (GA) [13] is em-
ployed to search the best primary input probabilities such
that the testability cost function is minimum. GA is well-
suited to this problem because of the complex nature of
the cost function.
For a circuit with n primary inputs, the opti-

mization problem requires a search for the n-tuple
(p(1); p(2); :::; p(n)). This n-tuple is encoded as single bi-
nary string of length nk, such that each p(i) is encoded as

a segment of length k. The population size is typically set
to 100. Each individual has an associated �tness, which
is the testability cost function. This will drive the genetic
algorithm to optimize the controllability and observability
of the circuit.

The population is �rst initialized with random strings.
The �tness function is then calculated based on the signal
probability of internal nodes. The evolutionary processes
include selection, 1-point crossover, 2-point crossover, uni-
form crossover, multi-point crossover, mutations and in-
versions. Mutation probability is set to 0.01, and crossover
probability is set to 0.25 [14].

V. Optimization of Activities

After the probabilities of primary inputs have been op-
timized for testability, we �x them to their optimal values.
The activities can be optimized subsequently to achieve
minimum energy for the same fault coverage. In this case,
the n-tuple to be optimized is (a1; a2; :::; an), where ai is
the activity of the i-th primary input (i = 1; 2; :::; n). The
optimization of activities is complex if we search each ai
individually. There are two approaches to simplify this op-
timization problem: the �rst one is to reduce the activities
of each primary input uniformly, and the second one re-
duces the activity of each primary input according to its
power sensitivity.

A. Uniformly Reducing Activities

Let us denote the activities without temporal correla-
tions as (�01 ; �02; :::; �0n). We multiply each activity by a
factor fact such that,

a1 = fact�01
a2 = fact�02

::::::

an = fact�0n

(8)

Hence each value of fact de�nes an activity set. We can
determine the optimal activity set by searching the optimal
value of fact which gives lowest energy consumption while
achieving the same stuck-at fault coverage. For each value
of fact (or activity set), we use a fault simulator to deter-
mine the required test length for the same fault coverage,
and employ power estimation tools described in [2] to accu-
rately calculate the corresponding dynamic power. Since
energy is proportional to the product of dynamic power
and test length, it is a function of fact. Consequently, an
optimal value can be determined for fact.

B. Reducing Activities According to Power Sensi-
tivities

We can also reduce the primary input activities accord-
ing to the power sensitivities. This optimization process
can be better understood with the help of power surface.
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Power surface can be constructed by plotting the rela-
tionship between average power and primary input activ-
ities(the primary input probabilities are �xed to their op-
timal values), and it is intrinsically (n + 1)�dimensional,
since n dimensions are required to represent the activities
of n primary inputs.
In the power surface plot, let us use A to denote the point

which represents the case without temporal correlations (
with primary input activities �01; �02; :::; �0n). Let O rep-
resent the origin. Our optimization process starts from
point A. If we draw a line AO between points A and O,
then uniformly reducing activities implies that we search
for the minimum energy along the line AO. This optimiza-
tion process, however, can be improved by using the infor-
mation of power sensitivities, which gives the direction of
the largest gradient on the power surface. Reducing activ-
ities according to power sensitivities means that we search
for the minimum energy on the power surface along the
direction of the largest gradient.

VI. Experimental Results

The tool POWERTEST to determine weight sets has
been implemented in C under the Berkeley SIS environ-
ment[15], [16]. We adopt a data structure similar to [4]
to estimate signal probabilities at the internal nodes of
the circuit. POWERTEST takes a circuit description
�le and a parameter numgeneration as inputs, where the
circuit description �le is of Berkeley BLIF format. The
parameter numgeneration will determine how many gener-
ations the genetic algorithm will evolve. The outputs of
POWERTEST are the two optimal weight sets.
After we �nd the optimal weight sets by POW-

ERTEST, we generate the random patterns conforming
to the optimal weight sets. Then we apply those random
patterns to a fault simulator. The fault simulator we used
is HITEC/PROOFS package from UIUC, which supports
gate types of AND, NAND, OR, NOR, INVERTER and
BUFFER [12], [20]. Consequently, all the benchmark cir-
cuits are technology mapped to circuits consisting of only
AND, NAND, OR, NOR, INVERTER and BUFFER.
The fault coverage and required test length are di�er-

ent if we optimize the weight set with di�erent testability
cost function. Table I shows the e�ect of the choice of
cost functions on the test length for ISCAS circuit C432.
The test length in the table is the required vector length
to detect 472 faults in C432. If the cost function contains
both easy-to-detect nodes and hard-to-detect nodes, then
the easy nodes become easier to detect, while the hard-to-
detect nodes become even more di�cult. The required test
length of the circuit increases, since it is determined by the
relatively small number of random-resistant nodes. The
second column of Table I is the test length when primary
inputs (PI) are equiprobable, the third column is the test
length for weighted random patterns with the cost func-
tion containing easy-to-detect nodes, the fourth column is
for the case when the cost function neglects those easy-to-
detect nodes while only considering hard-to-detect nodes,
the �fth column represents the test length with optimized

activities for low energy consumption. We can see that the
test length can be larger if we include the easy-to-detect
nodes in the cost function.

After the optimal primary input probabilities have been
determined by POWERTEST, we can optimize the sig-
nal activities of each primary input while keeping the sig-
nal probabilities unchanged. The �rst method to simplify
this optimization problem is to reduce each activity uni-
formly by a multiplying factor fact and the second method
is to search on the power surface along the direction of the
largest gradient. We can search for lowest energy consump-
tion while �xing the required fault coverage to a certain
value. The energy dissipation is proportional to the prod-
uct of dynamic power and test length, where test length is
determined by the fault simulator, and the power is calcu-
lated by the power estimation tools. The value of primary
input activities are optimal when energy reaches minimum.

The summary of energy reduction of ISCAS benchmark
circuits is given in Table II. The second column of Ta-
ble II refers to the number of faults we want to detect
by either equiprobable or weighted random sequences, the
third and fourth columns show the results for equi-probable
case. Column �ve through seven present the results of re-
ducing activities according to power sensitivities, and col-
umn eight through eleven present the results of uniformly
reducing primary input activities. The column \length"
and \power" represents required test length and dynamic
power, respectively, and column \energy reduction" shows
the energy reduction compared to the equi-probable case,

VII. Conclusions

Low power BIST is important for battery operated sys-
tems. In this paper we have shown that proper selection
of weights to the primary inputs of a combinational logic
can be e�ective in reducing the energy consumption while
achieving high fault coverage. The weights can be gen-
erated using LFSR (Linear Feedback Shift Register) or
one dimensional cellular automata. Our results on ISCAS
benchmark circuits show that an energy reduction of up to
97.82% can be achieved, compared to equiprobable random
pattern testing.
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