
To appear in Journal of Computer Science Education 11(1), 2001.

Experience with Work-Product Oriented
Software Development Projects

Jürgen Börstler
Department of Computing Science

Umeå University, Sweden

jubo@cs.umu.se
http://www.cs.umu.se/~jubo

Abstract
In this paper, we describe our experiences with student team projects in object-
oriented software development. Object-oriented development processes are not
as straightforward as, for example, traditional waterfall-like models. In object-
oriented development, there is no clear border between analysis, design, and
implementation. Students therefore have difficulties deciding on what to do
next, how to do it, and why to do it.

A work-product oriented development process provides a framework
for structuring and managing object-oriented development. Development can
be defined in terms of interrelated work products. Each work product is
defined by its purpose and contents, the inputs needed, and the techniques used
to produce it. The definition of a development process and the production of a
single work product are therefore more straightforward.

Our experiences show that such an approach is very suitable for student
team projects.

Key words: Team Projects, Work Products, Object-Orientation, Experiences.

1. Introduction
Object-oriented approaches are now widely accepted and practised in industry. Many
software development companies and organisations have already made the transition to
object technology. There are therefore increasing demands for individuals educated in object-
oriented development. Industry needs people who are able to join their ongoing object-
oriented projects without the necessity of extensive retraining ([GeMa 96]).

Object-oriented development is not just a matter of changing to another programming
language. It requires a new way of thinking ([Guzd 95]). Object-oriented education should
therefore cover all aspects of object-oriented development. To enable students to join “real-
life” object-oriented projects realistic case studies and hands-on experiences are needed. In
our course entitled Object-Oriented Software Engineering (OOSE), we try to simulate a real
software development project as closely as possible. This means that students work in teams
to develop a non-trivial software system. The teams start with informal project proposals and
develop running prototypes for the proposed systems.

However, simply going through all the development phases is not enough to prepare the
students for industrial projects. There are many tasks beyond those of core development,
where the students need some training, as for example, project management and inter- and
intra-team communication. These aspects are treated in detail in [BiTh 98] and [Leth 98].
During the OOSE course, we set up the following conditions.

• Customers and/ or users are involved in the project.
• The project must meet a tight schedule.
• Industrially significant tools are used.
• Subcontractors develop parts of the code.
• Formal project team meetings have to be attended.
• Weekly reports have to be send to “upper management.”
• Tight deliverables are evaluated on a regular basis.
• The resulting product is evaluated by competitors.

The reader should note that the OOSE course is not taught as a stand-alone project course.
We require basic knowledge in Software Engineering as a prerequisite. Our department has a
strong profile towards Software Engineering and software engineering topics are treated
explicitly in many courses.

Already in their first Computer Science course students are introduced to systematic
program development. From the very beginning, we require each assignment to be delivered
together with a report. These reports have to comprise at least a problem description, a
solution description, the source code and the test results. The first-year courses emphasise the
principles of data abstraction, information hiding, and modularization.

During their second year students take (among others) courses in systems programming,

human-computer interaction, and software engineering. The Software Engineering course
introduces the core concepts of Software Engineering and is oriented towards structured
methodologies. The course is built around a small project, where students are exposed to non-
trivial team structures.

All of our first- and most of our second-year courses are compulsory. After their second
year students are free to select courses from our profiles in Software Engineering, Cognitive
Science, Parallel Computing, and Scientific Computing.

The OOSE course is a central course in the Software Engineering profile. The other
courses in the profile deal with the study of well-known application domains (compilers,
databases, and operating systems) and software development theory (algorithm analysis,
formal specifications, and semantics). Furthermore, we offer students a “conference” to
gather experiences in research, technical writing, and oral presentations. The Software
Engineering profile is described in more detail in [Börs 97].

The reminder of the paper is organised as follows. In Section 2 we discuss the advantages of
a work-product oriented development process for the teaching of object-oriented
development. Section 3 gives an overview over the structure and contents of the OOSE
course. This section is followed by a short discussion of appropriate project types. In Section
5, we describe some problems that arose in the course and how we solved them. Section 6
summarises our experiences with this and similar courses. Section 7 concludes the paper and
discusses some future work.

2. Advantages of a Work-Product Oriented Process
Typically object-oriented development processes are iterative and incremental see figure 1).
The same languages or notations are usually used during analysis and design. This leads to a
development approach that is sometimes described as “analyse a little, design a little, code a
little” ([Booch 94]). The process descriptions give very little help to decide when to stop or
continue one of these activities. Furthermore are these activities not unambiguously
associated with specific documents. Editing a class diagram can for example be on analysis,
design, or even coding level.

Initial planning Delivery

Plan
increment

Assess
quality

Execute
plan

Figure 1: Iterative and incremental development.

Traditional waterfall-like development processes, on the other hand, have well

distinguished development phases. In each development phase specific methods, languages,
and tools are used to produce specific outcomes, associated with this phase only. Compared
to traditional waterfall-like development processes, iterative and incremental processes seem
therefore very fuzzy.

Table 1: Phases, Activities, and Work Products.

Project
Management

Requirements
Gathering

After initial project planning,
define development activities and
allocate resources to the
activities. Allocate requirements
to releases and manage project
schedule and issues.

Group functional requirements
(into use cases) and prioritise
them.

Object-Oriented
Analysis &
Design

UI Design

Analysis: Identify objects, their
attributes, behaviours, and
interrelationships. Develop
solutions to system usage
scenarios in terms of active
objects that group related tasks
and communicate with other
objects in order to complete
them.

Document how users will interact
with the application.

Implementation

Testing

Design: Plan a solution to the
problem examined during
analysis in terms of interacting
objects, within the constraints
specified by the nonfunctional
requirements.

Systematically code the classes as
specified in the class descriptions
so that they can be built and
installed on the target platforms.

Insure that the application meets
the requirements set forth in the
problem statement and
requirements gathering work
products.

An organised list of work products that are expected
to comprise the project workbook.

Project Workbook
Outline
Resource Plan Analysis of the resources required for the successful

completion of the project.

Schedule A task time line showing dates, milestones, critical
path, etc.

Risk/Option
Management Plan

Lists development options and describes the plan for
minimising project risks.

Test Plan Outlines the project’s plan for testing the application.

Issues A list of outstanding issues, questions, and concerns
that are reviewed on a regular basis.

Description of the problem to be solved in non-
technical terms.

Problem Statement

Use Cases An OO formalisation of functional requirements
describing the usage of the system by external agents.

Requirements that do not belong to user function, such
as performance, platform, and quality.

Nonfunctional
Requirements

Prioritized
Requirements

Defines the relative priorities of functional and
nonfunctional system requirements.

Records the details of the analysis and design
approach being followed.

Guidelines

Describes the user interface guidelines and standards.Guidelines

Screen Flows Documents user navigation through the application’s
user interface.

Screen Layouts Documents details of all screens.

UI Prototype A prototype built to show users the ”look and feel.”

Description of the high-level components/structures of
the system and the design principles guiding the
implementation.

System Architecture

Object Model A consolidated model describing the classes of a
system together with their responsibilities and static
interrelationships.

Scenarios Descriptions of required systems behaviour. Scenarios
refine use cases and are formalised in OIDs.

A working out of a scenario, showing the interactions
between objects to accomplish (the implementation
of) a task.

OIDs (Object
Interaction Diagrams)

Show the life cycle of an object, i.e. its possible states
and state transitions.

State Models

Class Descriptions Detailed descriptions of all classes.

A description of the coding guidelines and standards.Coding Guidelines
The actual implementation of the product.Source Code

User Support
Materials

Documentation delivered in various forms, which
support the customer’s use of the product.

The testing work products.Test Cases

File Structure The files and their structure as required by the system.

Traceability Matrix A cross-reference table that relates design elements to
requirements.

A work-product oriented development process helps to structure and manage object-oriented
development. A work product is “any planned, concrete result of the development process;
either a final deliverable or an intermediate one” ([OOTC 97], 77). All work products are
held and managed in a central depository, the project workbook. We use a WWW-based
version of a workbook. All groups have their current work products on-line. This strategy
supports inter- and intra-group communication as well as project tracking and control. The
list of work products used in our course is adapted from IBM’s OOTC (Object-Oriented
Technology Center, see [OOTC 97]) and listed in Tables 1 and 2. Figure 4 in the appendix
gives an example of the structure of a group’s workbook from our Fall 1998 offering of the
course.

Table 2: Further work products not bound to particular phases.

Meeting Minutes The minutes of all project meetings.

Miscellaneous Definitions and terminology.Glossary

Back-level work products.Historical Work
Products

Document miscellaneous activities
in appendices and add them to the
project workbook.

... ...

Subcontract An agreement stating that another team
produces a certain piece of software for
your team.

Course
organisation

A presentation of your team and the
members of the team.

Team Description

A short description of a software product,
where your team is the customer.

Project Proposal

There are some special documents
to support course organization.

Prototype Evaluation An evaluation of another team’s prototype.

Weekly Reports Short reports with up-to-date project
information (send to “upper management”).

Final Report A complete document set.

The development process is defined in terms of work products and their interdependencies.
Each work product is defined in detail by, among others, its purpose, alternative methods/
techniques for its construction, how its correctness can be verified, and how it is related to
other work products. Furthermore, examples are given for most of the work products and
guidelines for their development. The techniques used to construct work products can be
grouped into phases according to Tables 1 and 2. This approach has several advantages.

• It is language independent.
• It is method independent.
• It makes the contents and purposes of work products explicit.

• It becomes easier to decide what to do, since methods and techniques are related to
work products.

• It becomes easier to decide what to do next, since work product interrelationships are
clearly defined.

The situation described above is somewhat oversimplified, since there are a few cyclic
dependencies between work products. However work product orientation allows a much
more structured description of the development process.

3. Related Approaches
Since we adopted the work-product oriented approach in 1997 several other approaches have
been described that share some similarities with the one described in above, like the OPEN
Process ([GHJ 97]), the Unified Software Development Process ([JBR 99]), the Rational
Unified Process (RUP, [Kru 99]), or eXtreme Programming (XP, [Beck 00]). From a
pedagogical point of view, a process applicable to student team projects should fulfil the
following basic requirements:

• Comprehensibility. The process must be described in a form that makes it easy to
understand. Our experiences show that students prefer a description in terms of the
things that have to be produced.

• Accessibility. The information must be organised in a way that makes it possible to
determine what should be done next and how.

• Scalability. The process must be easily adaptable to small teams and small projects.
• Instructive. The process must teach approaches that can be (and are) applied in

industry.
The OPEN and the Unified processes are on too general a level to fulfil those requirements.
Their purpose is rather to define a framework for (object-oriented) development processes.
To actually use them they need to be instantiated to a concrete environment.

The RUP is an instance of the Unified Software Development Process. It describes
development in terms of workers (whereas we use specialist roles), workflows (phases),
activities, and artefacts (work products). The RUP is not defined around a workbook, but
otherwise quite similar to our approach. The RUP has the advantage that it is quite popular in
industry (especially in Sweden, where it probably will replace Objectory, a very popular
predecessor of the RUP). Furthermore, it is available as an on-line product including process,
methods and tools guidance, as well as document templates, promising very high
accessibility. A great disadvantage is that its paper version does not include any descriptions
of methods or techniques to construct the various artefacts. Its on-line version on the other
hand is neither method nor tool independent. Many companies are now developing own
instances of the Unified Software Development Process. Some of these developments are
quite close to both the RUP and our approach (see for example WoW (Ways of Working,

[Sonn 00]).
XP is a “lightweight methodology” ([Beck 00]) differing considerably from the

approaches described so far. XP fulfils all applicability requirements stated above, but would
require extensive changes to our course. Almost all roles, phases, activities, and work
products need to be reconsidered. In XP, all developers participate in all activities, which
makes it appealing for student team projects. On the other hand is analysis and design done
“on the fly” instead of up-front, which requires experienced developers. Further XP practices
like simple design guided by metaphors, teamwork and pair programming, early and
continuos testing, and collective code ownership seem difficult to handle by a team of
students without project experience. XP is less mechanical than “traditional” approaches
giving developers more creative freedom. How to handle this freedom though is very difficult
to teach. XP demands on-site customers on the teams, which would be difficult to handle in
student team projects.

4. Course Outline
The OOSE course focuses on object-oriented analysis and design and has our basic Software
Engineering course as its main prerequisite. It is a team project-oriented course and is
strongly oriented towards the work products the student teams have to produce. The course
runs over 10 weeks with a workload of 20 hours per week. Table 3 gives an overview over
the schedule of the course.

Table 3: Schedule of the Object-Oriented Software Engineering (OOSE) course.

Week lecture topics project deliverables due
1 L1: Project organisation; Object-oriented

development
L2: Phases, Activities, and Work Products;

Object-oriented analysis
Team Descriptions

2 Project Proposals; Project Workbook Outline

Oral presentations of teams and proposals
L3: Introduction to UML (Unified Modelling

Language) and Rational Rose
Initial Project Plans

3 L4: More object-oriented analysis

4 L5: Object-oriented design; An example Requirements Documents; Final Project Plans; GUI
Design

5 L6: Subtyping vs. inheritance; Another
example

Object-Oriented Analysis & Design (version 1)

6 L7: More inheritance; Frameworks

7 L8: Design heuristics Object-Oriented Analysis & Design (version 2);
Test Plans; Subcontract

Oral presentations of projects' analysis and designs

8 L9: More design heuristics; Patterns

9 Prototype Demonstrations

Prototype User Manuals

10 Prototype Evaluations; Final reports

Weekly Status Reports

Each student is expected to work about 200 hours on the project. A team of 5 to 7 students
can therefore manage projects of sizes 6-8 person months. Each team runs a complete project
from the planning stage to the presentation of a running prototype. Each team member fulfils
the roles of one or more specialists for example team manager, requirements specialist, and
so on. Each role is associated with the responsibilities for one or more work products and/ or
presentations. Together with peer evaluations and self-evaluations, this allows us to estimate
the contributions of an individual student to a project.

During the course, each team is involved in several projects, while adopting the roles of
a customer, a contractor, a subcontractor, and an evaluator.

A customer publishes a project proposal that can be selected by one or more contractors
for development. Teams are not allowed to contract their own project proposals. The reasons
for that are explained in more detail in Section 5. Since Fall 1996, teams have also been able
to contract proposals by external customers (colleagues, other departments, and local firms).

During the project, each team must subcontract another team for a small part of the
prototype implementation. To do this each team designates a well-defined part of its design
and provides it with black-box test cases. These parts have then to be subcontracted by
another team for implementation. The subcontracts can be freely negotiated with the other
teams, but teams must not subcontract two by two. Subcontracting confronts the teams with
the necessity of fixed and clear interfaces. Furthermore, it constitutes a good case study for a
risk analysis. Since the teams are allowed to choose development platform, programming
language, and tools/ libraries, they must be very careful in defining their subcontracts. If a
team fails in finding a subcontractor, we engage in the subcontracting process. In rare cases,
we have allowed teams to subcontract themselves.

Finally, we require that each team evaluate another team’s prototype to motivate the
production of a user manual and to assist the course instructor in project evaluation. Figure 2
summarises the project participants, their roles, and interrelationships.

Figure 2: Project participants, roles, and interrelationships.

5. Types of Projects
Over the years we have had a wide range of projects in this and similar courses. Up to now
we gained experiences with the following kinds of projects: Editors, inventory systems,
accounting systems, games, and simulations. It turned out that not all types of projects are
equally well suited for object-oriented development.

Usually inventory and accounting systems are proposed as typical and useful student
projects. Our experiences show that such systems are not an optimal choice for experiencing
object-oriented development. The architectures of inventory and accounting systems usually
have two basic components. First, there is a simple database that holds some kinds of stocks
or states of accounts. The other component is a user-driven interface to the database. Very
often, such projects develop a form-based interface to a database without any real processing
logic. That means that object behaviour modelling is not an issue in these projects, since there
are no objects with non-trivial behaviour.

Modelling object behaviour is a very important aspect in all object-oriented approaches.
There exists a wide range of techniques to model behaviour that cannot be taught adequately
in simple inventory and accounting systems. Non-trivial interaction diagrams, state machines,
etc. are usually not needed to understand the behaviour of such systems. The students try to
avoid the usage of these techniques, since they seem to add complexity to the problem and
development process instead of simplifying them. The potential of these techniques will
therefore not be experienced.

Editors, games, and simulations typically offer many opportunities for behaviour
modelling. They all have active processing components, such as a formatter in an editor, the
rule base in a typical game, and the objects in a simulation that model real-world entities.
Such systems are furthermore quite sensitive to changes in the requirements. It is therefore
much easier for the students to experience the importance of design and the planning for
change.

Examples of successful projects have been different versions of a Game of Life, where
interacting life forms can be simulated. The simulation can be instantiated with different
types of life forms. One team developed even a 3-dimensional graphics interface. Another
team developed an on-line version of the Personal Software Process ([Hum 95]). For our Fall
1999 offering, we had a collaboration with local industry, where three teams competed in
developing a browser for a PalmPilot handheld computer in Java.

Further examples of actual project proposals are available from the “Projects” Section on
the course home pages at http://www.cs.umu.se/kurser/TDBC18/Ht00.

6. Problems and Course Evolution
The OOSE course evolved from the idea of integrating a traditional Software Engineering
course (lectures, exercises, and assignments) with a practical course organised around a
single non-trivial team project (no lectures, but student teams lead by mentors). We realised
quickly that there was too much material for one course. However, we did not want to give
up the idea of a team project in either of the courses. Thus, we ended up with a compulsory
basic Software Engineering course and the elective OOSE course. The basic Software
Engineering course combines a traditional track comprising lectures, exercises, and
assignments with a small team project. The students who take the OOSE course are therefore
well prepared for a more advanced team project.

When we started in Spring 1994, the structure of the course was simpler than described
in Section 3. In the remainder of this section, we will discuss some of our problems and
experiences and how these effected the course's design.

6.1. Poor Requirements Documents
Students usually have serious problems documenting the requirements for projects that they
themselves have proposed. Requirements documents are usually incomplete and difficult to
understand by others, since obvious or “crystal clear” requirements are ignored. They argue
that these things need not be written down, because all team members know what the result
will be like. Since there are no users of the requirements documents, other than the teams
themselves, it seems to be a waste of time to produce such a document. It is therefore difficult
to give them an idea of some of the problems than can arise when requirements have to be
gathered from “real” customers.

It was interesting to see that the teams performed much better on projects that were

proposed by others. For games, for example, the teams produced extensive and detailed
descriptions of the functional requirements and the user interface, which could be derived
from the rules of the games. For their own proposals, the emphasis often was on the non-
functional requirements. It is therefore very important to make clear that the teams do not
write the requirements documents for their own pleasure, but that they are part of their
contract with the customer.

Since we introduced the rule that no team must choose its own proposal, we observed a
significant improvement in the quality of the requirements documents. A side-effect of this
rule has been that the students now realise that requirements are not “invented” by
developers, but must be gathered and evaluated in collaboration with customers.

6.2. Process Fuzziness
As described in Section 2, object-oriented development processes are not prescribed step-by-
step procedures. Object-oriented analysis and design (OOA&D) is comprised of several
techniques, for example use case analysis, scenario modelling, state modelling, etc. Several
of these techniques can be used in the analysis and the design phases as well. It can therefore
be very difficult to decide what to do next, especially when the border between analysis and
design is not well defined. Most textbooks on OOA&D implicitly assume that some form of
requirements engineering precedes OOA&D. Examples often start with a short problem
statement and requirements are presented and evaluated “on-the-fly,” during object-oriented
analysis. This gives the misleading impression that object-oriented analysis is the first phase
in a development project.

We have reacted to this problem in two ways. First we emphasise that object-oriented
analysis cannot replace traditional requirements engineering completely. The definition of a
separate requirements gathering phase, that precedes object-oriented analysis, helps to clarify
their differences. Second we require a requirements document to be produced, which is then
used as the input to OOA&D. This prevents student teams from delving into OOA&D before
the requirements are clearly defined.

6.3. Structure and Contents of Deliverables
From the beginning, we gave only vague descriptions plus a few recommendations on the
formats and contents of the required deliverables. We did this for two reasons. First, students
should think about the purpose of each deliverable and find a suitable structure and format.
Second, we hoped to get students interested in standards. This worked quite well, but had the
disadvantage that students tended to spend too much time on these issues. When the concept
of work products was introduced in addition to deliverables, we decided to provide more
detailed descriptions, so that students could concentrate on the important aspects of the
course.

We therefore reworked our original list of deliverables and defined the purposes and

contents of all deliverables in more detail. All descriptions are available on-line (see Figure 5
in the appendix for an example). All deliverables are comprised by sets of work products and
relationships between work products are made explicit (see Figure 3).

Figure 3: Work product interrelationships.

6.4. Teamwork
Teamwork, communication, and management skills are demanded by industry ([Leth 96]), so
they need to be addressed in project courses. Our course syllabus therefore prescribes
deliverables, oral presentations, and informal meetings. In the beginning, we experienced
some problems with teams that strictly distributed their work among team according to their
specialist roles. Synchronisation was done just before a presentation and for the final report.
This had the advantage that team members could work independently, but made it very
difficult for the team managers to keep track of the project’s progress. Some problems, such
as very uneven workloads and unsynchronised documents of very different formats, were
much more common in such teams than in more collaborative teams. Strict distribution
together with missing intra-team communication can also jeopardise whole projects, since
team members who do not fulfil their duties are first detected when the next one will take
over or a deadline has passed.

A negative side-effect of the strict distribution strategy from the educational point of
view was that it was possible to pass the course with only superficial knowledge of the
techniques used in OOA&D (except for the specialists responsible for OOA&D).

To avoid these problems we first introduced a second review for the project plan, since
the initial project schedules tended to be too superficial. This allows us to check the
assignment of the team members to tasks in more detail. Furthermore, we now require that all
meeting minutes be archived and a list of issues is kept. Third we require weekly reports on
the status of the project and opened/ closed issues. These actions had the effect that students
now take planning and communication more seriously.

Since Fall 1995, each team has to set up WWW-pages with information on the team and
its project(s). For the Fall 1997 offering, we extended this requirement to a complete on-line
project workbook with up-to-date versions of all work products of a project. Some teams use
their WWW-pages to support team communication. See Figure 4 in the appendix for an
example page showing the workbook main page and communication facilities (on top, below
the header).

6.5. Subcontracting
Students do not like subcontracting. As described in Section 3, the problems are mainly due
to the freedom we give students in their choice of development platforms, programming
languages, and the usage of libraries and tools. In most course evaluations students actually
suggested skipping the subcontracts, since they are seen as a waste of time and energy.
Nevertheless, we are convinced that there is an important lesson to learn for the students. In
industry, it is quite common that different teams work together in the same project. Students
need to be aware of problems associated with inter-team work. Subcontracts are useful case
studies to clarify the importance of clearly understood interfaces.

A further factor that contributes to the subcontracting problem is that students do not like
to give away control over their projects. They are not comfortable with being dependent on
others, and they do not trust the work done by their subcontractors (“not invented here”
syndrome). Some teams actually reimplemented their subcontracts.

In Fall 1997 we introduced formal contracts that must be signed by the contractor and
the subcontractor. Each team must then evaluate its contractor and subcontractor and include
this evaluation into the final project report. Furthermore, we highlighted the different roles of
a team and the fact that several teams contribute to the success of a project.

After some start-up difficulties, the situation has improved considerably since Fall 1998.

6.6. Grading
Course grading is on an individual basis. The grade is determined by means of team grading
forms (see figure 6 in the appendix). The forms are used to keep track of the status and
quality of all group performances. The entries in the grading forms can be traced to
individuals by means of their specialist roles. Each team must furthermore evaluate the
performance of the team as a whole, as well as the relative performance of its team members.
These self-evaluations are delivered as part of the final report.

It is important to note that the final prototype is only a small part of the project and
contributes as such to the final grade. The main goal of the course is to run a project properly,
not to code a fancy product.

From the very beginning (spring 1993), all team members received the same grade
(passed or not passed). This made grading easy, but had several disadvantages.

• No motivation to do more than “just enough” to pass the course.

• No rewards for teams or individuals performing especially well.
• Very difficult to “catch” passive team members.

Since teams’ as well as individuals’ performances varied widely, we introduced a levelled
grading scheme for the Fall 1999. However, individual grading still depends to a high degree
on team performance. To make grading as objective (and open) as possible we have
developed a kind of credit/ penalty system.

Each team earns or looses “credits” depending on its performance. All work products
and presentations are subject to this system. Criteria for evaluation include timeliness,
completeness, comprehensibility, consistency, etc. At the end of the course, each team can
freely distribute all credits earned among its team members. Individual grades are then
computed from the individual’s number of credits. We give immediate feedback after each
performance evaluation; i.e. the teams can calculate preliminary grades at any point in time.

The results so far were quite impressive. The course results have improved considerably.
Details about the current grading scheme are available from the course’s web pages
(http://www.cs.umu.se/kurser/TDBC18/local/Grading.html).

7. Experiences from Object-Oriented Team Project Courses
Our experiences with the OOSE and similar courses are very positive. Some
recommendations for a successful object-oriented development course are summarised below
(see [BaBö 97] for more details):

• Select the project carefully. As described in Section 4, the projects should be
complex enough that students can experience the whole spectrum of object-oriented
techniques, but also so simple that a reasonable prototype can be developed in time.

• Produce a traditional requirements document first. In our experience, the biggest
single obstacle in object-oriented development is identifying the objects. Once an
object or a class is brought up, it is easy to convince students of its usefulness.
However, how objects are discovered seems to be a kind of magic to them.

As described in the section above, we solve this problem by first developing a
traditional requirements document, which is used as input for object-oriented analysis.
Checklists and linguistic analysis work quite well in most cases to detect objects and
classes, their properties, and relationships.

• Define a clear process. Beginners need a well-defined process to organise their work.
We recommend following a work-product oriented process, as described in Section 2.

• Apply design heuristics and patterns. We have developed a series of examples to
explore alternative designs. These examples are used to explain the differences
between (multiple) inheritance and aggregation, and to motivate some design
guidelines.

In the Fall 1996 offering we successfully introduced design heuristics ([Riel 96])

and patterns ([Gam+ 95]). Students find this form of concrete advice much more
useful than abstract guidelines.

• Provide mentors. Mentoring ([Laza 95], [Lilly 96]) is a very effective way of
providing the right information at the right time. We use students who took this
course in previous years as coaches for student teams. The coaches keep themselves
up-to-date on the status and progress of a project and evaluate the work products.
They must not actively participate in the development process to avoid conflicts in
interest. Reviewing work products and giving timely feed-back is quite time
consuming and no mentor can manage coaching more than three teams. The mentors
do not get any educational credits for their work, but are employed as teaching
assistants by the department.

• Do not use hybrid languages. Hybrid languages like Turbo Pascal and C++ do not
enforce encapsulation, and allow for functionally decomposed solutions in object-
oriented disguise. If students are not forced to apply the new paradigm, they might be
reluctant to do so ([GrBi 93]).

Since Fall 1997, many of our teams have used Java very successfully.

8. Conclusions and Future Work
During Fall 1999, the course was given for its 7th time. Up to now 38 student teams
completed 34 of 38 projects successfully and on time. The remaining four projects were
finished successfully after giving the students some extra time.

Although the course lasts only 10 weeks, students are able to implement prototypes of
significant size. Our experiences show that a work-product oriented approach helps students
to organise and carry out their work.

The course evaluations show that students like the course. The design of the course gives
worthwhile insights into many new aspects of their future work. Many students comment that
teamwork was more difficult than they assumed, but that this was an important lesson to
learn. Students often complain about the heavy workload and the amount of programming
involved in the project, but we think that a prototype must be built to validate analysis and
design.

For future courses we have planned for the following changes:
• Offer more “real” projects with external customers. Since our Fall 1997 offering,

we offered occasional project proposals from outside the department. The students
appreciate this and it is our goal to increase the number of external projects.

• Allocate more time. We are currently planning to extend the time scale of the project
to 20 weeks to be able to include an iteration in the project.

• Rearrange subcontracting. When more time is allocated to the OOSE course, it
overlaps partly with our basic Software Engineering course. This would allow for a
new way of subcontracting. Teams from the basic Software Engineering course could
then act as subcontractors for the teams of the OOSE course.

• Provide more freedom in project planning. Currently, all deliverables have fixed
dates common for all projects. This can be a problem for teams with many team
members who have to do some other work during parts of the project. We have
planned to allow for some rescheduling that has to be “signed off” by “upper
management” (the supervisor and/ or customer).

• Track working time. Currently students do not track their time. It is therefore very
difficult to determine the current status of a project and to reschedule tasks if
necessary in a fair way, so that the workload is distributed equitably.

Time tracking would also be a useful tool for the supervisors to detect critical
projects/ tasks early, and take action if necessary.

Most students are already familiar with the Software Process (PSPSM, [Hum 95])
from the preceding Software Engineering course. Time tracking could therefore be
introduced without high start-up costs.

• Collect metrics. Metrics are an important tool to control the progress of a project.
Apart from effort (time, see above) it would be very useful to collect size and quality
metrics to be able to evaluate and compare projects.

References
[BaBö 97] V. Bacvanski, J. Börstler: Doing Your First Project—Discussion Paper,

Educator's Symposium of OOPSLA'97, Atlanta, GA, Oct, 1997.

[Beck 00] K. Beck: eXtreme Programming eXplained, Addison-Wesley, 2000.

[BiTh 98] S. Biffl, G. Thomas: Preparing students for industrial teamwork: a seasoned
software engineering curriculum, IEE Proceedings Software 145 (1), Feb 1998,
1-11.

[Booch 94] G. Booch, Object-Oriented Analysis and Design, with Applications, 2nd ed.,
Benjamin/ Cummings, 1994.

[Börs 97] J. Börstler: The Software Engineering Profile at Umeå University, Proceedings
of the International Symposium on Software Engineering in Universities
(ISSEU'97), Rovaniemi, Finland, Mar 1997, 60-69.

[Gam+ 95] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns: Elements of
Object-Oriented Architecture, Addison-Wesley, 1995.

[GeMa 96] E. F. Gehringer, M. L. Manns: OOA/ OOD/ OOP: What programmers and
managers believe we should teach, Journal of Object-Oriented Programming
9(6), Oct 1996, 52-60.

[GHJ 97] I. Graham, B. Henderson-Sellers, H. Younessi: The OPEN Process
Specification, Addison-Wesley, 1997.

[GrBi 93] T. Grechenig, S. Biffl: The Challenge of Introducing the Object-Oriented
Paradigm, An Empirical Investigation of a Software-Engineering Course,
Structured Programming 14(4), 1993, 187-198.

[Guzd 95] M. Guzdial: Centralized Mindset: A Student Problem with Object-Oriented
Programming, Proceedings of the 26th Conference on Computer Science
Education (SIGCSE'95), USA, Mar 1995, 182-185.

[Hum 95] W. Humphrey: A Discipline for Software Engineering, Addison-Wesley, 1995.

[JBR 99] I. Jacobson, G. Booch, J. Rumbaugh: The Unified Software Development
Process, Addison-Wesley, 1999.

[Kru 99] P. Kruchten: The Rational Unified Process: An Introduction, Addison-Wesley,
1999.

[Laza 95] E. Lazarus: Toward object-oriented mentoring methodology, Journal of Object-
Oriented Programming 8 (6), Oct 1995, 64-69, 72.

[Leth 96] T.C. Lethbridge: The Relevance of Software Education: A Survey and Some
Recommendations, Annals of Software Engineering 6, 1998.

[Lilly 96] S. Lilly: Case Studies in the Classroom, Object Magazine 6 (8), Oct 1996, 81-
83.

[OOTC 97] Object-Oriented Technology Center (IBM): Developing Object-Oriented
Software, Prentice Hall, 1997.

[Riel 96] A. Riel: Object-Oriented Design Heuristics, Addison-Wesley, 1996.

[Sonn 00] T. Sonning: WoW, Ways of Working, A Software Development Process,
Revision 1.0, Report EPL/T/D 99:039, Ericsson Erisoft AB, Umeå, Sweden,
2000.

Rational Rose is a trademark of Rational Software Corporation.
PSPSM is a service mark of Carnegie Mellon University.

Appendix

Figure 4: Example of a student team’s workbook.

Figure 5: Excerpt from the Description of Deliverables for the course.

Team (#members): Project: E-mail: URL:

status quality status quality status quality status quality status quality status quality status quality status quality status quality status quality
Deliverables

Team Description
Project Proposal

Workbook Outline
Project Plan

Requirements Document
GUI Design

OOA&D
Test Plan

Subcontract
Prototype User Manual

Implementation
Prototype Evaluation

Weekly Reports
Final Report

WWW pages

Presentations
Teams and Proposals

Status Report (OOA&D)

Prototype Demo

Comments

week 36 week 37 week 38 week 39 week 44 week 45week 40 week 41 week 42 week 43

Figure 6: Grading form.

