
Electronic Books for Programming Education: 
A Review and Future Prospects  

R. Martínez-Unanue, 
M. Paredes-Velasco 

Escuela Superior 
de CC. Experimentales y Tecnología 

Universidad Rey Juan Carlos, Spain 

r.martinez@escet.urjc.es 
m.paredes@escet.urjc.es 

C. Pareja-Flores 
Escuela Univ. de Estadística 

Depto. de Sistemas Informáticos y 
Programación 

Univ. Complutense de Madrid, Spain 

cpareja@sip.ucm.es 

J. Urquiza-Fuentes and 
J. Á. Velázquez-Iturbide 

Escuela Superior 
de CC. Experimentales y Tecnología 

Universidad Rey Juan Carlos, Spain 

j.urquiza@escet.urjc.es 
a.velazquez@escet.urjc.es 

 
 

ABSTRACT 
Programming is a suitable field to design electronic books with a 
laboratory component, where the programming task is exercised 
in the theoretical context provided by the book. The goal of the 
paper is to make a review of current electronic books for 
programming education and identify future lines of research. First, 
we review a number of software tools and electronic books for 
programming education in order to give a broad vision of 
technological opportunities in programming education. Later, a 
comparative analysis of such electronic books is made. Finally, 
based on this overview and analysis, we identify aspects that 
either are currently poorly supported or are a subject of active 
research, thus constituting potential areas for future improvement.  

Categories and Subject Descriptors 
H.5.1 [Information Interfaces and Presentation]: Multimedia 
Information Systems. H.5.4 [Information Interfaces and 
Presentation]: Hypertext/Hypermedia. K.3.2 [Computers and 
Education]: Computer and Information Science Education – 
computer science education. 

General Terms: Algorithms, Documentation, Design, 
Human Factors. 

Keywords: Electronic books, programming education, 
programming tools, algorithm animation, exercises. 

1. INTRODUCTION 
Different good definitions of the concept of electronic book can 
be found in the literature. The following one [6] is a good 
representative: “An electronic book is an information system 
capable to make users available a set of pages, conceptually 

organized as a paper book, and amenable to interact with”. The 
definition is very broad, and can be implemented as a multimedia 
application, CD-ROM, Web site, help system, etc. All of them can 
be based on the book metaphor and share a concern to be 
computer-based, use hypermedia, and include structured 
information where text plays an important role. 

Last years, there have been dramatic achievements and 
improvements in the design and development of electronic books. 
A number of fields have contributed to such a development: 
digital typography, multimedia and Web technologies, mark-up 
languages, user interfaces, etc. 

However, adoption of electronic books for education is far from 
being the rule. Although they exhibit many advantages with 
respect to paper books, also there are drawbacks: 

• Lower quality (resolution) of text and graphics. 

• Necessity of an electronic device (a computer or an e-book 
reader). 

• The less comfortable, vertical position of the head required 
for reading in a PC. 

• Less friendly user interface for handling and reading. 

Much work is necessary to overcome the user interface provided 
by paper books, a result of centuries of innovation and 
improvement. As the designer Yves Zimmerman says, “it is as 
well conceived as a knife”. 

Electronic books have only succeeded in a few fields, such as 
encyclopedias, dictionaries, and textbooks. The later class can be 
enriched, among others, with facilities for problem solving and 
assessment. In particular, problem solving is especially important 
in scientific, technical and engineering disciplines, where 
electronic books can assist by means of “virtual laboratories”. 

We are concerned with the development of electronic books for 
the engineering discipline of computer programming. The “virtual 
laboratory” necessary for computer programming consists in the 
virtual activity par excellence: the development of programs. 
These “laboratories” should provide the tools common in 
programming environments (at least, editor, processor, debugger 
and support for mundane activities, such as file management). 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
ITiCSE’02, June 24-26, 2002, Aarhus, Denmark. 
Copyright 2002 ACM 1-58113-499-1/02/0006…$5.00. 
 

34



In this paper, we analyze past efforts to produce electronic books 
for programming, identify their merits and demerits, and outline 
future lines of work and research. In the following section, we 
briefly review a number of tools for programming education, in 
order to give a broad vision of technological opportunities for 
programming education. The third section contains an overview 
and comparative analysis of existing electronic books for 
programming education. Section 4 outlines prospects for future 
research. Finally, we summarize our conclusions. 

2. TECHNOLOGIES TO SUPPORT 
PROGRAMMING EDUCATION 
Current programming environments are integrated programming 
environments with comprehensive facilities for the professional 
programmer: editor, language processor, debugger, profiler, 
configuration manager, etc. However, from an educational point 
of view, they often are not that good. Thus, they neither provide a 
mental model of programming consistent with that taught at 
programming courses (they are based on the language 
implementation), nor assist students in building programming 
knowledge on previous knowledge (they are for programming 
experts). Explanation of errors, satisfactory for professional 
programmers, is typically too cryptic for novices: just a line 
number and a short message are given, but they are not further 
explained. Finally, they rarely give educational facilities, such as 
assessment of exercises, program visualization and animation, etc. 

Last years, many efforts have been made to develop programming 
environments and tools [15] to assist in educational activities of 
different users (teachers, students or both). We enumerate several 
kinds of tools with high educational impact, although for the sake 
of space we cannot give an exhaustive list of references: 

• Programming tools that support partial programming 
languages or incomplete programs. In some cases, they allow 
working with parts of the language or the language is divided 
into levels of difficulty for progressive teaching, whereas in 
other cases only a part of the program is required. 

• Software visualization and animation. There are a large 
number of visualization or animation systems (e.g. read 
[18]), most of them designed for the imperative paradigm. In 
last years, efforts are being made to measure quantitatively 
and to improve their pedagogical effectiveness [2]. As a 
consequence, they are being enhanced by considering 
specific features with educational impact: integrating 
animations with explanations, into programming 
environments or with grading systems, allowing students to 
choose input data, or making “stop-and-think” questions. 

• Aids for program analysis. Some tools assist in generating 
data input and output and in gathering performance data, 
while others analyze the programming style. 

• Administration, generation and assessment of assignments. 
Many tools have been developed to assist in the many tasks 
related to assignments assessment, including generation, 
administration, automatic grading, and plagiarism detection. 

• Collections of exercises. Large structured repositories of 
exercises are a valuable resource to reuse high quality 

materials elaborated by faculty. They can often be considered 
electronic books on exercises (e.g. eXercita [8]). 

There are no definitive experimental results on whether the use of 
these tools improves programming education. However, there is a 
consensus on the importance of measuring their educational 
impact and about the fact that these tools, independently from 
their efficacy, increase students motivation. 

3. A REVIEW OF ELECTRONIC BOOKS 
FOR PROGRAMMING EDUCATION  
In this section, we review existing electronic books for 
programming education. We begin with a description of the most 
representative ones (up to our knowledge), and then we analyze 
them from two points of view: features of multimedia 
applications, and tools for programming education. 

3.1 Electronic Books for Programming 
Education  
Based on the broad definition of electronic books given in Section 
1, we have chosen several representative electronic books. 

Notice that we have filtered many related applications. In 
particular, we do not consider commercial multimedia 
applications with limited features, multimedia applications that do 
not fit the definition of electronic book, or direct dumps of 
textbooks to hypertext. We have also studied electronic books on 
related fields, such as theoretical computer science (e.g. 
hypertextbooks [3]). However, we do not include them here for 
the sake of space and because our conclusions are similar. 

Algorithms in Action [19]. It is a multimedia tool for teaching 
algorithms. It is a Java application to be used with a browser, 
showing 3 separate windows with pseudocode, explanations, and 
animations. Based on the methodology of stepwise refinement, it 
allows the user expanding and contracting pseudocode of given 
algorithms; explanations and animations are correspondingly 
updated in the other two windows. It provides 4 learning modes, 
based on: explanations (the default mode), demonstrations 
(predefined animations), self-evaluation (with quizzes), and 
exploration (allowing the user to input test data). Some design 
guidelines were tested or derived after feedback from students. 

CAT and JCAT [4]. JCAT (Java Collaborative Active 
Textbooks) is a Web-based algorithm animation system designed 
to be used in electronic classrooms. It consists of Web pages and 
algorithm animations, generated by a sophisticated algorithm 
animator that supports multiple views (updated simultaneously as 
the program runs), allows entering input data and includes a 
control panel and a speed control. The teacher controls the 
animation, and students can browse and customize their views. 

HalVis [12]. HalVis (Hypermedia Algorithm Visualizations) is a 
hypermedia application to teach algorithms. Lessons correspond 
to different algorithms. For each lesson, it imposes a reading 
structure based on pedagogical considerations: motivation, 
explanation in detail, and global view. The three parts make an 
extensive use of animations. Detailed explanations are the most 
complex, including several synchronized windows with different 
aspects of an algorithm (e.g. an animation, pseudocode, values of 
variables, etc.). The user can control replay, speed, granularity of 
the animation steps, and enter input data. It includes quizzes, 

35



some of them optional and others mandatory. Finally, it contains a 
fundamentals module, devoted to explain common elements in 
programming, which is accessible by links integrated in 
pseudocode. Its success has been validated with five experiments. 

“Curso interactivo de programación en Pascal” [17]. It is a 
Web-based CD-ROM for teaching Pascal. Lessons are organized 
lineally. It contains navigation facilities by means of controls and 
indices. It includes a number of quizzes per lesson (123 in total) 
that can be used to generate “exams”, that the book will grade. It 
allows interacting with an external editor, thus running 
simultaneously a programming environment such as Turbo Pascal. 

ELM-ART [20]. It is an adaptive and interactive textbook to 
support learning programming in Lisp. It integrates an enhanced 
evaluator that allows modifying and evaluating examples. It 
assesses the reader’s solutions by testing. When the user makes an 
error, explanations, counterexamples, and even hints to help 
fixing it are given. 

Exploring Computer Science Concepts with Scheme [11]. It is a 
multimedia tool to accompany the author’s book on computer 
science [10]. Lessons are organized lineally. It contains several 
tools for navigation: navigation controls, a sophisticated search 
facility on the main text, and user-defined bookmarks. It includes 
animations on the internal working of several functions in 
Scheme. A personal notebook is also included for self-study. It 
allows running simultaneously the Scheme interpreter. 

KBS-Hyperbook Introduction to Java Programming [13]. The 
KBS-Hyperbook system permits to model and build adaptive, 
open hypermedia systems on the Web, such as the Introduction to 
Java Programming hyperbook. Student specify their learning 
goals by means of knowledge items, and they are given a course 
composed of several lectures consisting in a sequence of text 
units. Visual hints for navigation are provided, e.g. labeling links 
with semaphore lights. Each course is related to projects, and is 
assessed by means of portfolios. 

ProgramLive [9]. It is a commercial multimedia application for 
teaching object-oriented programming and Java. It is a very 
comprehensive electronic book that includes a lessons book, 
animations, and quizzes. The book is divided into short lessons, 
complemented with expositions, i.e. short narrated explanations 
on specific concepts, sometimes relating animations to code. 
Navigation is supported by navigation controls over pages, several 
kinds of indices, a search facility, and user-defined bookmarks. 
Footnotes allow the reader obtaining additional information on 
lessons. Self-evaluation quizzes are filled in by drag-and-drop. 
Finally, it includes open problems and projects. 

WWW-Based C++ Course [14]. It is a Web site devoted to the 
teaching of C++. It is structured in 3 layers: lessons, reference, 
and pragmatics, being the lessons layer the main one. There are a 
variety of resources to navigate (navigation controls, indices, 
formatting rules for links, and visual cues). The contents are 
structured in blocks that guarantee that scrolling is not necessary. 
Exercises are provided for each lesson, as well as the possibility 
of compiling and running programs in batch mode at the server. 

3.2 Comparative Analysis  
The main differences of the former electronic books are 
summarized in Table 1. Rows contain the given electronic books; 

columns are labeled with some relevant aspects of hypermedia 
applications and with educational and programming aspects. Each 
cell contains a brief description of the main features provided by 
an electronic book with respect to the corresponding aspect. 

The common features we have found follow: 

• Main media. Most of them are mainly based on text. 
Algorithm animations are also common. In fact, these 
electronic books fit two categories. The first three ones are 
hypermedia applications on algorithms, where the central 
element are animations; the remaining six resemble 
traditional books on programming, strongly based on textual 
explanations. 

• Lessons structure. Programming books follow a traditional 
lineal structure. It is also common the existence of short 
lessons, complemented with additional information or 
algorithm animations. In some cases, structure is further 
refined, either by defining different layers of discourse or by 
substructuring explanations. On the other hand, books on 
algorithms consist of a set of independent lessons. 

• Navigation and control facilities. Systems based on text 
exhibit a sophisticated navigation system, based on different 
techniques: navigation controls, search facilities, and user-
defined bookmarks. On the other hand, systems based on 
algorithm animators include animation controls. 

• Annotation tools. Two of them allow writing annotations, but 
only one of them includes a personal notebook. 

• Evaluation tools. Most of them include a fixed set of solved 
quizzes or exercises. More advanced facilities can be found 
in a few cases: using a portfolio or assessing exercises by 
means of program testing. 

• Programming tools. Some of them do not include any tools; 
others contain some tool, typically an independent interpreter 
or programming environment or an algorithm animator. Only 
in one case, a high-level evaluator is integrated in the book. 

In summary, electronic books based on traditional books make an 
extensive use of text and exhibit a lineal structure. Electronic 
books based on algorithm animation contain independent lessons, 
and have sophisticated hypermedia features. All of them use with 
advantage computing facilities for either navigation or animation 
control. Other potential facilities, such as annotation and exercises 
are more modest. Finally, programming tools are seldom provided 
or they are given as independent applications. 

4. FUTURE PROSPECTS 
Based on the previous two sections, we identify here aspects of 
electronic books on programming that currently either are poorly 
supported or are a subject of active research, thus constituting 
potential areas for future improvement in these electronic books. 

Our first conclusions are straightforward. In the first place, future 
books should provide, at least, currently established standards 
with respect to lessons structure and navigation. In addition, 
opportunities for improvement can be found in other hypermedia 
features and in their annotation features. 

36



Although electronic books based on paper books seem to be 
adequate as a main reference for programming courses, an 
electronic version often requires different features [5]. Future 
books will make less use of text and more of other media, and will 
provide different paths for reading, often intended for different 
learning styles. 

In order to obtain insight on future directions for electronic books 
on programming, we have also compared their educational and 
programming facilities with their counterparts in other educational 
programming applications (read Section 2). Thus, we find very 
different degrees of sophistication in several aspects: 

• Algorithm animations. Enhancements to couple animations 
with other elements, such as explanations and exercises, have 
been very successful. We can even find taxonomies of 
animators with respect to their educational facilities [1, 7]. 

A limitation of algorithm animations is that they are usually 
constraint to a fixed set of (high-quality) predefined 
animations. Constructing other animations either is forbidden 
or is costly; in any case, they cannot be generated 
automatically for any algorithm, since they are high-level 
animations that exploit knowledge of the algorithm. 
However, generality can be provided if we lower the 
abstraction level [18]. In this case, we have program 
visualizations, which are not so impressive, but can display 
relevant elements of program execution (e.g. read [16] on 
visualizing the evaluation of functional expressions). 

We still have not found electronic books on programming 
where automatic program visualizations are generated. This 
would augment their dynamism by allowing users to really 
experiment with open, virtual laboratories. The main obstacle 

Table 1.  Summary of aspects of electronic books on programming 

 Main media Lessons 
structure 

Navigation/control 
facilities 

Annotation 
tools 

Evaluation 
tools 

Programming 
tools 

Algorithms in 
action 

Text. 
Animations 

Independent 
lessons.  

Hierarchical 
substructure 

Expansion/contraction. 
Animation control 

— Quizzes — 

CAT and JCAT Text. 
Animations 

Independent 
lessons. 

Multiple views 

Animation control. 
Different controls for 
teacher and students 

— — — 

HalVis Text. 
Animations. 

Audio 

Independent 
lessons. 

3 sequential 
parts per lesson. 
4 synchronized 

windows 

Control of animation 
granularity. 

Animation control 

— Several classes 
of simple 
questions 

— 

“Curso interactivo 
de programación 

en Pascal” 

Text Lineal structure Navigation controls. 
Several kinds of indices 

— Quizzes Independent 
program editor 

ELM-ART Text Independent 
lessons. 

Hierarchical 
substructure 

Adaptive navigation by 
annotating links 

Annotations 
with HTML-

forms 

Program 
testing 

Syntax-directed 
editor. 

Evaluator and 
pretty-printing. 
Explanation of 

errors 
Exploring 

Computer Science 
Concepts with 

Scheme 

Text. 
Animations 

Lineal structure Navigation controls. 
Search facility on main 

text. 
User bookmarks 

Notebook — Independent 
language 

interpreter 

KBS- Hyperbook 
Introduction to 

Java 
Programming 

Text. 
Images 

Lessons 
composed of 
sequences of 

text units 

Indices to information 
units. 

Hints for navigation. 
Navigation controls. 

User bookmarks 

Annotations 
with HTML-

forms 

Portfolios — 

ProgramLive Text. 
Animations. 

Audio 

Lineal structure. 
Short lessons 

with 
expositions. 
Additional 
information 

Navigation controls. 
Several kinds of indices. 

Search facility. 
User bookmarks 

— Drag-and-drop 
quizzes 

— 

WWW-Based C++ 
Course 

Text Lineal structure. 
3 layers 

Navigation controls. 
Several kinds of indices. 

Visual cues 

— Program 
testing 

Server-side 
compiling and 

running 

37



here is the technical complexity of incorporating language 
processing and program visualization. 

• Programming tools. It is the most deficient aspect of current 
electronic books. Tools are typically provided in electronic 
books as independent applications, or they are simulations of 
actual tools. Compare this lack of support with facilities 
provided by educational programming environments for, at 
least, program execution and program analysis. 

Another way of understanding the consequences of this 
limitation is examining electronic books for other fields. For 
instance, electronic books on automata theory (e.g. [3]) allow 
the user to enter any grammar or finite state automata. 
Limiting the user to only experiment with  given grammars 
or automata would be considered unacceptable. 

A consistent integration of tools in electronic books (as in 
programming environments) would be a qualitative shift (this 
problem has been dealt elsewhere [7] in relation to formal 
grammars). It is not a simple task: the complexity of the 
whole application increases substantially, since such tools 
are not trivial: language processors, sophisticated editors, etc. 
In addition, the user interface must be redesigned in order to 
integrate, in a consistent manner, facilities of both electronic 
books and programming tools. 

However, it is worth making such an effort if dynamism of 
electronic books for programming is to be improved. In other 
fields, there are electronic books where simulations (of 
music, physics, etc.) are a central part of their design and 
educational experience. Computer programming should not 
be constraint to the static experience provided today. 

5. CONCLUSIONS 
Different efforts have been made to produce electronic books for 
programming education. We have summarized the main features 
of the most relevant ones (up to our knowledge). We have made a 
comparative analysis of them based on features of hypermedia and 
educational applications, identifying common patterns and 
opportunities for improvement. 

We have also compared their functionality with other tools for 
programming education. As a consequence, we claim that more 
efforts should be made to provide a dynamic experience to 
students. In particular, we have argued for better support to 
algorithm animation, and programming tools. 

6. ACKNOWLEDGMENTS 
This work is supported by the Spanish Research Agency CICYT 
under contract TIC2000-1413. 

7. REFERENCES 
[1] Anderson, J.M. and Naps, T.L. A context for the assessment 

of algorithm animation systems as pedagogical tools. In Proc. 
First Program Visualization Workshop (2001), University of 
Joensuu, 121-130. 

[2] Ben-Ari, M. Program visualization in theory and practice. 
Informatik/Informatique, 2 (April 2001): 8-11. 

[3] Boroni, C.M. et al. Engaging students with active learning 
resources: hypertextbooks for the Web. In Proc. 32nd 
SIGCSE Technical Symp. (2001), ACM Press, 65-69. 

[4] Brown, M.H. and Raisamo, R. JCAT: Colaborative active 
textbooks using Java. Computer Networks and ISDN 
Systems, 29 (1997): 1577-1586. 

[5] Caumanns, J., Apostopoulos, N. and Geukes, A. Computers 
are not books. In Proc. ED-MEDIA’99, AACE, 236-241. 

[6] Díaz, P., Catenazzi, N. and Aedo, I. De la multimedia a la 
hipermedia. Ra-Ma, 1996 (in Spanish). 

[7] Diehl, S. and Kerren, A. Levels of exploration. In Proc. 32nd 
SIGCSE Technical Symp. (2001), ACM Press, 60-64. 

[8] Gregorio-Rodríguez, C. et al. EXercita: Automatic Web 
publishing of programming exercises. In Proc. ITiCSE 2001, 
ACM Press, 161-164. 

[9] Gries, D. and Gries, P. ProgramLive. 
http://www.datadesk.com/ProgramLive 

[10] Grillmeyer, O. Exploring Computer Science with Scheme. 
Springer-Verlag, 1998. 

[11] Grillmeyer, O. An interactive multimedia textbook for 
introductory computer science. In Proc. 30th SIGCSE 
Technical Symp. (1999), ACM Press, 286-290. 

[12] Hansen, S., Schrimpsher, D. and Narayanan, N.H. From 
algorithm animations to animation-embedded hypermedia 
visualizations. In Proc. ED-MEDIA’99, AACE, 1032-1037. 

[13] Henze, N. and Nejdl, W. Extendible adaptive hypermedia 
courseware: Integrating different courses and Web material. 
In Brusilovsky, P., Stock, O., and Strapparava, C. (eds.), 
Adaptive Hypermedia and Adaptive Web-Based Systems, 
LNCS 1892, Springer-Verlag, 2000, 109-120. 

[14] Hiltz, M. and Kögeler, S. Teaching C++ on the WWW. In 
Proc. ITiCSE’97, ACM Press, 11-13. 

[15] Jiménez-Peris, R. et al. Towards truly educational 
programming environments. In T. Greening (ed.), Computer 
Science Education in the 21st Century, Springer-Verlag, 
2000, 81-112. 

[16] Naharro-Berrocal, F., Pareja-Flores, C. and Velázquez-
Iturbide, J.Á. Foundations for the automatic construction of 
animations and their application to functional programs. In 
Proc. First Program Visualization Workshop (2001), 
University of Joensuu, 29-40. 

[17] Sommaruga, L. et al. Curso interactivo de programación en 
Pascal. McGraw-Hill, 1997 (in Spanish). 

[18] Stasko, J. et al. (eds.) Software Visualization. MIT Press, 
1998. 

[19] Stern, L., Sondergaard, H. and Naish, L. A strategy for 
managing content complexity in algorithm animation. In 
Proc. ITiCSE’99, ACM Press, 127-130. 

[20] Schwarz, E., Brusilovsky, P. and Weber, G. World-wide 
intelligent textbooks. In Proc. ED-TELECOM’96 (1996), 
AACE, 302-307. 

 

 

38


