
ABSTRACT - This paper presents an optimal algorithm
for solving the problem of simultaneous fanout optimiza-
tion and routing tree construction for an ordered set of
critical sinks. The algorithm, which is based on dynamic
programming, generates a rectilinear Steiner tree routing
solution containing appropriately sized and placed buff-
ers. The resulting solution, which inherits the topology of
LT-Trees and the detailed structure of P-Trees, maxi-
mizes the signal required time at the driver of the given
set of sinks. Experimental results on benchmark circuits
demonstrate the effectiveness of this simultaneous
approach compared to the sequential methods.

1. INTRODUCTION
The current deep-submicron (DSM) process technologies
have increased the contribution of the interconnect delay to
the total path delay in digital circuits. At the same time, the
existing design flows and tools have had limited, and only
marginal, success in incorporating interconnect planning and
optimization early in the design process. This situation has
forced IC designers to re-evaluate the existing computer-
aided design (CAD) methodologies and techniques.

To address the DSM design challenges, one can either
increase the lookahead capability of high-level tools or
develop new algorithms for solving larger portions of the
overall design problem simultaneously. This latter
unification-based approach is, in our view, more promising.
Indeed, the nature of IC design problems and the current
state of CAD solutions have reached a point where it is both
necessary and possible to combine some steps of the
synthesis and physical design processes. The unification-
based algorithms are capable of capturing existing
interactions among the ‘merged’ design steps and producing
higher-quality implementations by systematically searching
a much larger solution space (see [SLP98] and [LSP97]).

The algorithm proposed in this paper integrates two major
design steps: fanout optimization and routing tree
generation. Each of these two optimization steps has been
very effective in reducing the circuit delay, in one case by
boosting the transmitted signals via insertion of sized buffers

and in the other case by generating suitable wire structures.
The goal of this work is to optimally integrate these two
steps and thereby provide a uniform framework for
optimizing the nets of a placed circuit to achieve faster
implementations.

The proposed dynamic programming based algorithm
generates and propagates a set of buffered routing tree
structures in the form of two dimensional (required time
versus input load) solution curves. The resulting wiring
structure is guaranteed to inherit the topology of LT-Trees
[To90] and the detailed physical implementation of P-Trees
[LCLH96]. This algorithm takes a given order for the sinks
and, starting from the higher indexed sinks, combines them
into groups which are to be driven by buffers. For each
group, proper routing structures and buffer locations are
examined to generate a set of possible solutions for that
subset of ordered sinks. Only the solutions which are not
dominated by other solutions are kept. These two steps are
repeated in a dynamic programming fashion until the whole
set of sinks are combined together. Experimental results
reported in this paper demonstrate the effectiveness of this
method versus conventional flows that sequentially perform
routing tree generation and fanout optimization.

The remainder of the paper is organized as follows. In
section 2, background and motivation are given. Section 3
introduces the proposed algorithm. In sections 4 and 5, our
experimental results and concluding remarks are presented.

2. BACKGROUND AND MOTIVATION

2.1 Fanout Optimization
Fanout optimization, an operation performed in the logic
domain, addresses the problem of distributing a signal to a
set of sinks with known loads and required times so as to
maximize the required time at the signal driver. Interconnect
delay is not incorporated in this operation because the
locations of the buffers are not known at this stage. The
general fanout optimization problem is NP-hard [To90],
however its restriction to some special families of topologies
is known to have polynomial complexity.

Among the many existing works on fanout optimization
problem, we are interested in the algorithm proposed by
[To90]. That work introduces a special class of tree
topologies, called LT-Trees, for which the fanout problem is
solved with polynomial complexity. The LT-Tree of type-I
(in this paper referred to as LT-Tree) is a tree that permits at
most one internal node among the immediate children of
every internal node in the tree. Touati in [To90] proposed a
dynamic programming based algorithm for the fanout
optimization problem where the buffer structure is restricted
to the LT-Tree topology and sinks with larger required times

*This work was funded in part by SRC under contract no. 98-DJ-606 and by
a NSF PECASE award (contract no. MIP-9628999).

A Simultaneous Routing Tree Construction and
Fanout Optimization Algorithm*

Amir H. Salek, Jinan Lou, Massoud Pedram
Department of Electrical Engineering - Systems

University of Southern California
Los Angeles, CA 90089

{amir, jlou, massoud}@zugros.usc.edu

are placed further from the root of the tree. His algorithm
first sorts the sinks in non-decreasing required time order
and then starting from the least critical sink, it enumerates
all rightmost groupings of the sinks to be driven by a buffer.
Finally for each grouping, it enumerates all possible ways of
adding either zero or one buffer to drive the rightmost
subset of the sinks. Touati gives sufficient conditions for his
LT-Tree construction algorithm, LTTREE, to be optimal.

Lemma 1: LTTREE works optimally with respect to the
signal required time at the root (driver) if all the sinks have
equal load capacitances and are sorted in non-decreasing
required times [To90].

Lemma 2: LTTREE has O(n2) polynomial complexity
where n is the number of sink nodes [To90].

2.2 Routing Tree Generation
Performance-driven interconnect design, an operation
performed in the physical domain, addresses the problem of
connecting a source driver to a set of sinks with known
loads, required times and positions so as to maximize the
required time at the driver. The inherent complexity of this
problem has forced researchers to either solve it
heuristically or to impose constraints on the structure of the
resulting interconnect. For an overview of the existing
performance-driven interconnect design technique,
interested readers are referred to [CHKM96].

Lillis et al. in [LCLH96] proposed the Permutation-
Constrained Routing Tree or P-Tree structure as a solution
to the above mentioned problem. Their approach consists of
two major phases: Finding a proper ordering for the sinks,
and then generating the routing structure based on the
calculated ordering. The second phase of the algorithm,
called PTREE throughout this paper, is employed in the
present paper. Given an ordering of the sink nodes, PTREE
finds the optimal embedding of the net into the Hanan grid
(the set of points formed by the intersection of horizontal
and vertical lines through the terminals of a net [Ha66]) by a
dynamic programming approach. In PTREE, the
(intermediate) routing solutions are stored in the form of
two dimensional, non-dominated solution curves of total
area versus required time for every Hanan point.

The worst case complexity of PTREE is rather high, O(n5),
however, the runtime for practical purposes remains within
an acceptable range [LCLH96]. Furthermore, by applying
some techniques such as controlling the maximum number
of Hanan points, the complexity of PTREE is considerably
reduced without losing much in terms of quality.

Lemma 3: For a given order on the sinks and with the
restriction that the Steiner points lie on the Hanan Grid,
PTREE computes the set of all rectilinear Steiner trees with
non-dominated required time and total capacitance
[LCLH96].

Lemma 4: If the individual capacitive values are polynomi-
ally bounded integers or can be mapped to such with suffi-

cient precision, PTREE has O(n5) pseudo-polynomial
complexity where n is the number of sink nodes
[GJ79][LCLH96].

Note: Later in section 4, it would be helpful to know that
O(n2) portion of O(n5) complexity of PTREE is due to the
existance of n2 Hanan points.

2.3 Other Works
Okamoto and Cong in [OC96a] proposed a combination of
A-Tree routing generation [CLZ93] and van Ginneken’s
buffer insertion [Gi90] as a solution to the problem of
buffered Steiner tree construction. They later extended their
work in [OC96b] to include wire sizing as well. Their
algorithm takes the placement information of the source and
the sinks in addition to the signal required arrival times and
then heuristically generates a buffered routing structure such
that it maximizes the required time at the source of the net.
This technique consists of two phases: bottom up tree
construction with non-inferior solution computation and top
down buffer insertion. The non-inferior solution which
gives the maximum required time at the root is chosen, and
then it is traced back through the computations performed
during the first phase that led to this solution. During the
backtrace, the buffer positions are determined.

During the bottom up phase, the subtrees are combined
using a weighted addition function with a user specified
parameter to heuristically decide which two subtrees are to
be merged. Although this method employs the A-Tree
construction algorithm, it cannot guarantee that the resulting
structure remains an A-Tree. Furthermore, the fanout
optimization algorithm which is based on critical sink
isolation is ad-hoc. The overall algorithm has no guarantee
of optimality. In contrast, our proposed method produces a
buffered rectilinear Steiner tree which is optimal subject to
the given order of the sinks, the topology of LT-Trees and
the detailed structure of P-Trees.

3. THE FANROUT ALGORITHM
FANROUT, simultaneous fanout and routing tree
optimization algorithm, is a dynamic programming based
algorithm which constructs a buffered routing structure for a
given net, based on the available placement, loading, and
timing information. The goal is to maximize the required
time at the driver of the net.

3.1 Problem Formulation
A given net, N=(s,S), determines the set of sink nodes,
S={s1,s2,…,sn }, which are to be driven by the driver of the
net, called s. In addition to the input net, the following
information is required and used by FANROUT:

I. Position of the source s=(sx,sy), where sx and sy are the
horizontal and vertical coordinates of s.

II. Input data for each sink node si=(si
x,si

y,si
l,si

r) for 1≤i≤n,
where si

x and si
y are the horizontal and vertical

An internal node
(buffer)A sink node

Fig. 1: A simple LT-Tree Fig. 2: An output of P-Tree for “dcba” order

a

b

e

c

d

coordinates, si
l is the capacitive load, and si

r is the signal
required time at node si.

III. A library, L={b1 , b2 , … , bm }, containing m buffers
with different strengths.

IV. A linear ordering of the sinks.

3.2 Two Dimensional Solution Curves
Although the objective is to find an implementation with the
maximum required time at s, during every step of
FANROUT load versus required time curves are generated
and the solutions are compared and evaluated with respect
to these two parameters. Comparison of two sub-solutions
based on only the required time is an invalid comparison
and may result in dropping the optimal solution. This is due
to the fact that the loading imposed by a sub-solution on the
next level of the LT-Tree may cause a large increase in the
overall delay such that the difference between the required
times is more than that which was compensated for.
Therefore, both the required time and the input load are
needed to evaluate the effect of a sub-solution on the overall
structure.

Definition 1: Suppose σ1 and σ2 are two buffered routing
structures for a source and a set of sinks. σ2 is called inferior
to σ1, if load(σ1)≤load(σ2) and reqTime(σ2)≤reqTime(σ1).

3.3 Detailed Approach
FANROUT incorporates LT-Tree and P-Tree construction
techniques into a unified framework such that the resulting
routing structure is both an LT-Tree, in terms of the overall
topology, and a P-Tree, in terms of the detailed physical
structure. FANROUT requires an ordering of the sinks and
guarantees the optimality of the solution with respect to this
ordering only.

In line 1 of Fig. 3, FANROUT loads the subject net, N,
which includes a driver, s, and n sinks ordered in some
fashion (e.g. based on their placement locations, required
times, or a combination thereof). In line 2, it loads the
library of the buffers, L, consisting of m buffers with
different design parameters, including driving strength,
intrinsic delay, and input load. In line 3, HG(N) is loaded
with maximum n2 Hanan nodes which are formed by the
intersection of horizontal and vertical lines through the
terminals of net N; see Fig. 5.

At every step, z is the index showing that the n-z+1
rightmost sinks (in the ordered list of sinks) are being
combined into a group driven by a buffer; see Fig. 4. The
LT-Tree topology allows the use of an already processed
sub-group of last n-h+1 sinks where h is a number between
z and n. This guarantees that in the final solution, each
buffer drives directly at most one other buffer.

For every Hanan nodes and every index z, Γ(z,v) is a two-
dimensional solution curve including all the non-inferior
buffered routing structures each connecting sinks sz through
sn with its root located on v.

In line 4, these solution curves are initialized to the set of all
non-inferior buffered paths connecting v to sn. The code in
lines 5 through 16 is for calculating all the buffered routing
structures for Γ(z,v) using the solutions available in Γ(h,v)
as described next. Corresponding to group h, there exist n2

Γ’s each for a Hanan node. In line 7, all the Hanan nodes are

enumerated by a variable, v, and in line 8, all the solutions in
Γ(h, v) are retrieved one by one by a variable, γ . So, γ is a
routing structure connecting sh through sn with its root
driven by a buffer located at v. In line 9, PTREE is called on
the set of sink nodes (i.e. sz through sh-1) to be combined
with γ ; see Fig. 5. Note that for PTREE, γ acts like a sink
node with its corresponding required time and load (where
the load is equal to the input capacitance of the buffer
driving the routing structure of γ).

PTREE returns a collection of solution curves each
corresponding to a distinct Hanan node. The collection of
curves is stored in D by PTREE. Then in line 10, these
solution curves are selected one by one using a variable, ∆.
Recall that each ∆ corresponds uniquely to a Hanan node
which is referred to as u in line 11. Once a ∆ is in hand, its
encapsulated routing structures are retrieved one by one by
a variable, δ. For all these routing structures, all possible
buffers are tried in lines 13 through 16, and for each choice
the required time at the input of the buffer is calculated
using the specified delay model. In line 15, for every match
a solution, σ, is generated (while saving pointers to its sub-
solutions, for later use in the top-down traceback phase)
which corresponds to a routing structure (i.e., δ) and a
buffer (i.e., b). This solution is added to Γ(z, u) because the
root of σ is located at u . The solution curves Γ(z, v) are
calculated in this way; however, these curves may contain
inferior solutions which are pruned in line 16.

Finally, FANROUT builds the Γ(1, v) solution curves (for
every v) which contain buffered routing structures
connected to all the sink nodes. Then, for every v and for
every solution of Γ(1, v), the root of the buffered routing
structure is connected to the driver and the required time at
the input of the driver is calculated in line 18. The structure
which results in the largest required time is chosen and is

algorithm FANROUT {
1. read N = (s , S) where s is the source and

 S = { s1 , s2 , ... , sn } is an ordered list of sinks;
2. read L = { b1 , b2 , ... , bm }, the library of buffers;
3. set HG(N) = all the Hanan grid points of N ;
4. foreach v ∈ HG(N) set Γ(n , v) = { The set of all

non-inferior paths from v to sn };
5. for z = n to 1 {
6. for h = z to n
7. foreach v ∈ HG(N)
8. foreach γ ∈Γ(h , v) {
9. set D = PTREE(HG(N) , {v, sz , ... , sh-1}, γ) ;
10. foreach ∆ ∈D {
11. set u = Hanan node corresponding to ∆ ;
12. foreach δ ∈∆
13. foreach b ∈ L {
14. drive δ by b and calculate the required

time, r, at the input of b ;
15. set σ = (<inputLoad(b) , r> , δ , b) ;
16. add σ to Γ(z , u) ;

}
}

}
17. foreach v ∈ HG(N) prune Γ(z , v) ;

}
18. find (<l,r>, δ , b) ∈Γ(1 , v) which results in the largest required

time at the input of the driver, call it bestSolution;
19. retrieve fanroutTree by following the pointers starting

from the bestSolution ;
20. return fanroutTree ;
}

Fig. 3: Pseudo code of FANROUT

traced down through the stored pointers. The buffered
routing structure is retrieved and returned in lines 19 and 20.

Note that the operations performed in lines 10 through 16,
in fact, can be performed internally by a modified PTREE
with no increase in the worst case complexity of PTREE.
Therefore, in the following complexity analysis we do not
take into account the complexity of that part of the pseudo-
code.

4. DISCUSSION

4.1 Quality and Complexity of FANROUT
The proposed algorithm is an optimal polynomial algorithm
based on a set of assumptions. The following set of lemmas
and theorems formally prove these claims.

Theorem 1: The solution space of FANROUT is the
product of those of PTREE and LTTREE.

Proof: Any P-Tree structure with inserted buffers such that
no buffer immediately drives more than one other buffer can
be visited by FANROUT. Also, any LT-Tree such that the
output nets of its buffers are implemented using PTREE can
be visited by FANROUT.

Lemma 5: For any arbitrary routing with no buffer, ℜ,
which connects the source to the sinks, we have:
I. By decreasing the load of any sink, the capacitance

observed at the root of ℜ does not increase.
II. By increasing the required time of any sink, the required

time at the root of ℜ does not decrease.
Proof: For case I, decreasing the load of a sink decreases
the amount of charge needed to bring the voltage of ℜ to a
certain level. For case II, if that particular sink is on the
critical path, the statement is trivially true. Otherwise, the
required time of the driver is determined by the required

time of the other sinks and remains unchanged.

Lemma 6: PTREE is monotone with respect to the load and
the required time of the sinks.

Proof: Suppose ℜ is a routing structure generated by
PTREE. Reducing the capacitance and/or increasing the
required time of a sink while preserving ℜ results in the
decrease of the capacitance and increase of the required
time at the root of ℜ. Therefore, if PTREE is run after
changing the load and the required time of the sinks in this
way, the resulting structure is non-inferior with respect to ℜ
and PTREE would store it in the curve (c.f. Lemma 1).

Lemma 7: The use of the pruning operation by FANROUT
does not result in the loss of any non-inferior solution.

Proof: Assume that σ2 is inferior w.r.t. σ1. By induction, if
σ2 is the whole net and its input is directly connected to the
net driver, then the required time does not decrease and the
load does not increase by replacing σ2 with σ1. If σ2 is a
solution to a sub-problem, its input is driven by another
internal node, call it g. Due to the monotone behavior of
PTREE (c.f. Lemma 6), at g the required time and the input
load of the implementation including σ2 is guaranteed to be
no better than those of the implementation containing σ1. A
similar argument is then valid for g and the rest of the
internal nodes down to the leaf nodes.

Theorem 2: FANROUT is an optimal algorithm w.r.t.
required time, subject to a set of constraints.

Proof: An examination of the dynamic programming
structure of FANROUT shows that if no pruning is
performed, all the possible solutions would be considered.
Therefore, to prove the optimality of the algorithm it is
enough to prove that for an optimal solution, replacing a
non-inferior solution with an inferior solution cannot
improve the whole implementation; This, however, was
proved in Lemma 7.

Lemma 8: The number of solutions in any solution curve is
bounded by the number of the buffers in the library, L.

Proof: The load of any solution is equal to the input
capacitance of the driving buffer. However, the number of
distinct input capacitances of the buffers is bounded by the
total number of the available buffers in the library, L. For
each load value the solution with the maximum required
time is stored and the rest will be pruned out.

Theorem 3: FANROUT has O(n3) memory complexity.

Proof: There are n2 Hanan points and for each of them n
solution curves are stored. Each of the solution curves stores
no more than L solutions. Therefore, the claim is proved.

Theorem 4: FANROUT has O(n9) runtime complexity.

Proof: PTREE has O(n5) worst case runtime complexity
(c.f. Lemma 4). Lines 5 and 6 of the pseudo-code, each
introduce O(n) complexity and line 7 introduces another
O(n2) complexity. Therefore the overall worst case
complexity is O(n9).

4.2 Reducing the Complexity
Undoubtedly, the worst case complexity of FANROUT is

s5s4s3s2s1

z h
l

r

l

r

 Γ(h=4 , v)

 Γ(z=2 , v)

Fig. 3:
Fig. 4: Processing the nodes

s5

s4

s1

A H
an

an

Poin
t

A Sink

l

r

l

r

Fig. 5: Call PTREE on the current sink nodes

v
γ

Γ(4 , v)

s

s3

s2

too high for use in many practical cases. However, that
complexity can be considerably reduced by applying some
simple heuristics. In the following, a couple of heuristics are
introduced which are proved to be highly effective with
little compromise in terms of the quality of the final results.

I. Restrict the number of Hanan points: In the exact version
of FANROUT, there are n2 Hanan points which is a major
source of excessive runtime. We may, however, not allow
more than g Hanan points and change the complexity of line
7 to O(g) and the complexity of PTREE to O(gn3) (c.f. the
note given at the end of sub-section 2.2). Consequently, the
worst case complexity of FANROUT is changed to O(g2n5).

II. Bound the maximum number of fanouts driven by a
buffer: We may impose a practical upper bound on the
number of fanouts that a buffer drives. Using that value, say
l, we do not allow FANROUT to connect a buffer to more
than l fanouts. FANROUT can easily handle this case by
changing n in line 6 of the pseudo-code to z+l-1. In this case
the complexity introduced by lines 6 and 9 are changed to
O(l) and O(n2l3) (c.f. the note given at the end of sub-section
2.2), respectively. Consequently, the worst case complexity
of FANROUT is changed to O(l4n5).

III. Fast method: By applying both of the above technique
the complexity of FANROUT is changed to O(g2l4n) which
results in a linear worst-case complexity when g and l are
assumed to be independent of n.

5. EXPERIMENTAL RESULTS
In order to verify the effectiveness of FANROUT, a set of
experimental results are reported here. In the presented
conventional flows (below), we do not impose any
restrictions on the ordering for the sinks. In other words,
every fanout optimization and routing tree generation
methods are independently free to choose their own
appropriate ordering for the sinks (if any needed).

In Table 1, the results are presented for a set of nets taken
from a number of benchmarks where the sinks are placed
randomly. For these examples, two conventional flows are
compared against FANROUT where FANROUT has been
used for two different orderings:

I. Ordering with respect to the sink required times, REQ.

II. Ordering generated by solving the traveling salesman
problem on the set of sinks, TSP.

The first conventional flow setup, conv-I, uses SIS
[SSLM92] for fanout optimization, followed by using
PTREE for routing tree generation. For each net, different
fanout optimization methods available in SIS are used and
for each net only the best result in terms of the required time
is reported. The second conventional flow setup, conv-II,
uses PTREE for routing tree generation followed by using
the buffer insertion method introduced in [Gi90]. Note that
in Table 1, “total-area”, “req-time” and “w-length” stand for
the sum of the area of buffers, the required time at the input
of the driver and the total wire length, respectively.

Our next set of experiments (c.f. Table 2) compares the
performance of the conventional design flows against our
proposed simultaneous algorithm on a number of
benchmarks using a CASCADE standard cell library (0.5u
HP CMOS process). Gate and wire delays are calculated

using a 4-parameter delay equation (similar to that in
[LSP97]) and the Elmore delay model [El48], respectively.
Also, the fast FANROUT (c.f. sub-section 4.2.) has been run
with TSP orderings for the experiments reported in Table 2.
These experiments showed that the runtime of the fast
FANROUT is in the order of few minutes which is
comparable to the runtimes of the conventional flows. Note
that the area and delay reported in this table are total chip
area and delay after detail routing.

These experiments were run in the SIS environment on an
Ultra-2 Sun Sparc workstation (sahand.usc.edu) with
256MB memory.

6. CONCLUSIONS
This paper presents a novel algorithm, FANROUT, which
performs simultaneous routing and fanout optimization. It is
a dynamic-programming based algorithm which properly
uses LT-Tree and P-Tree construction algorithms in order to
generate buffer routing structures with maximum signal
required time. It computes load versus required time
solution curves for every point on the Hanan grid and
propagates them while grouping more sink according to the
given order. Merge and prune operations are defined on the
solution curves to propagate the solution curves through the
steps of the algorithm and drop the low quality solutions to
maintain the polynomial complexity. FANROUT is an
optimal algorithm for maximizing the required time
problem for a given order on the sinks. It also inherits all the
restrictions that LT-Tree and P-Tree construction algorithms
have. FANROUT is a polynomial algorithm as well. This
new unified design steps yields high quality circuits in terms
of post layout chip area and delay.

7. ACKNOWLEDGEMENTS
We would like to thank Dr. John Lillis of the University of
Illinois at Chicago for providing the implementation of the
PTREE algorithm and for helpful discussions about the
complexity of PTREE.

8. REFERENCES
[CHKM96] J. Cong, L. He, C. Koh, and P. Madden, “Performance optimi-

zation of VLSI interconnect layout,” In Integration, the VLSI Journal
21, pp. 1-94, 1996.

[CLZ93] J. Cong, K. Leung, and D. Zhou, “Performance-driven intercon-
nect design based on distributed RC delay model,” In Proceedings of
the 30th Design Automation Conference, pp. 606-611, 1993.

[El48] W. C. Elmore, “The transient response of damped linear network
with particular regard to wideband amplifiers,” In Journal of Applied
Physics 19, pp. 55-63, 1948.

[Gi90] L.P.P.P. van Ginneken, “Buffer placement in distributed RC-tree
networks for minimal Elmore delay,“ In Proceedings of International
Symposium on Circuits and Systems, pp. 865-868, 1990.

[GJ79] [M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W. H. Freeman, San Fran-
cisco, 1979.

[Ha66] M. Hanan, “On Steiner’s problem with rectilinear distance,” SIAM
Journal of Applied Mathematics, No. 14, pp. 255-265, 1966.

[LCLH96] J. Lillis, C. K. Cheng, T. Y. Lin, and C. Ho, “New performance
driven routing techniques with explicit area/delay tradeoff and simul-
taneous wire sizing,” In Proceedings of the 33th Design Automation
Conference, pp. 395-400, 1996.

[LSP97] J. Lou, A. H. Salek, and M. Pedram, ”An exact solution to simul-
taneous technology mapping and linear placement problem,” In Pro-
ceedings of International Conference on Computer-Aided Design,
pages 671-675, 1997.

[OC96a] T. Okamoto, and J. Cong, “Buffered Steiner tree construction with
wire sizing for interconnect layout optimization,” In Proceedings of

International Conference on Computer-Aided Design, pp. 44-49,
1996.

[OC96b] T. Okamoto, and J. Cong, “Interconnect layout optimization by
simultaneous Steiner tree construction and buffer insertion,” In Pro-
ceedings of the 5’th ACM/SIGDA physical Design Workshop, pp. 1-6,
1996.

[SLP98] A. H. Salek, J. Lou, and M. Pedram, “A DSM design flow: Putting
floorplanning, technology-mapping, and gate-placement together,” In
Proceedings of the 35’th Design Automation Conference, 1998.

[SSLM92] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai,

A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangio-
vanni-Vincentelli, ”SIS: A system for sequential circuit synthesis,”
Memorandum No. UCB/ERL M92/41, Electronics Research Labora-
tory, College of Engineering, University of California, Berkeley, CA
94720, May 1992.

[To90] H. Touati, “Performance-oriented technology mapping,” Ph.D. the-
sis, University of California, Berkeley, Technical Report UCB/ERL
M90/109, November 1990.

Conventional FANROUT

conv-I conv-II REQ TSP

nets # of sinks req-time area w-length req-time area w-length req-time area w-length req-time area w-length

C432 net1 6 35.23 219.12 83.07 21.52 149.93 63.15 21.83 165.66 63.41 17.08 165.66 55.49
net2 10 33.50 329.12 135.15 29.74 297.66 118.64 28.05 222.20 93.22 24.46 222.20 113.11

C1355 net3 8 36.23 329.12 101.28 25.12 297.66 87.09 32.14 195.47 98.44 29.46 195.47 96.57
net4 9 34.23 382.58 116.94 30.33 268.18 116.58 28.78 195.47 109.74 26.65 61.82 110.31

C3540 net5 35 38.70 457.49 119.17 38.20 1147.30 152.62 32.16 270.38 122.82 32.01 270.38 132.27
net6 73 59.44 836.99 535.58 59.78 836.99 549.36 54.75 649.88 549.30 54.69 649.88 583.05

C5315 net7 12 24.94 516.23 68.22 12.21 268.18 42.89 21.83 248.93 71.40 17.23 248.93 70.15
net8 21 33.10 542.96 195.17 35.59 533.50 254.74 32.61 409.31 206.01 25.32 409.31 200.46

C6288 net9 16 48.33 516.23 144.30 43.75 415.58 168.95 40.38 222.20 157.68 28.96 222.20 160.35
net10 20 62.49 436.04 146.61 95.96 238.70 175.93 51.67 222.20 136.42 42.86 222.20 145.90

C7552 net11 16 48.57 516.23 179.16 30.28 504.02 211.38 37.83 222.20 182.51 21.98 222.20 171.69
net12 23 41.68 245.85 185.45 54.88 503.69 261.70 33.00 272.58 157.30 31.62 272.58 189.66

Average Ratios: conv-I 0.84 0.63 0.95 0.71 0.61 0.98

conv-II 1.00 0.70 0.94 0.83 0.66 0.96

Table 1: FANROUT vs. conventional flows for single nets

Conventional FANROUT Ratios

conv-I conv-II TSP FANROUT/conv-I FANROUT/conv-II

Circuit Area Delay Area Delay Area Delay Area Delay Area Delay

C17 400.50 0.87 400.50 0.87 416.50 0.90 1.04 1.03 1.04 1.03

C1355 35539.54 10.39 35225.19 10.20 25215.25 7.49 0.71 0.72 0.72 0.73

C1908 51936.70 16.34 48694.77 18.54 43705.90 11.03 0.84 0.68 0.90 0.59

C432 21947.10 11.59 19179.60 13.54 22241.46 11.63 1.01 1.00 1.16 0.86

C499 29203.65 9.27 29208.99 8.99 31201.45 7.17 1.07 0.77 1.07 0.80

C5315 134504.94 19.31 127776.26 20.04 112800.15 10.88 0.84 0.56 0.88 0.54

C880 29786.25 10.53 28626.21 10.20 20811.15 10.01 0.70 0.95 0.73 0.98

alu2 30199.15 14.72 27942.48 17.23 23561.25 10.53 0.78 0.72 0.84 0.61

alu4 50985.15 21.60 46912.67 23.89 51801.75 17.34 1.02 0.80 1.10 0.73

apex6 44626.00 7.12 44514.75 6.67 39516.96 5.27 0.89 0.74 0.89 0.79

cm151a 2042.32 2.88 1753.01 3.21 1560.45 1.83 0.76 0.64 0.89 0.57

dalu 95323.54 23.65 53424.14 26.47 88595.86 23.92 0.93 1.01 1.66 0.90

misex1 4015.55 4.25 3166.56 5.27 3097.44 2.87 0.77 0.68 0.98 0.54

lal 5810.46 3.78 5931.42 4.10 4942.99 2.80 0.85 0.74 0.83 0.68

frg1 6319.74 3.61 6425.50 3.54 5467.56 2.69 0.87 0.75 0.85 0.76

pcle 4775.31 3.51 4644.03 3.53 4161.83 1.89 0.87 0.54 0.90 0.54

rd73 3519.67 3.62 3594.87 3.50 3676.39 3.67 1.04 1.01 1.02 1.05

vg2 5264.19 3.69 5334.03 3.62 5086.35 2.52 0.97 0.68 0.95 0.70

Average Ratios: 0.89 0.78 0.97 0.75

Table 2: FANROUT vs. conventional flows for a set of benchmarks

	CDROM Home Page
	ICCAD98
	Front Matter
	Table of Contents
	Session Index
	Author Index

