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Abstract

A probabilistic framework is presented for assessing the uncertainties in simula-
tion predictions that arise from model parameters derived from uncertain measure-
ments. A probabilistic network facilitates both conceptualizing and computationally
implementing an analysis of a large number of experiments in terms of many intrin-
sic models in a logically consistent manner. This approach permits one to improve
one’s knowledge about the underlying models at every level of the hierarchy of
validation experiments.
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1 Introduction

Simulation codes are everywhere. They are used to design things like automo-
biles, airplanes, bridges, chemical plants, and computers. Simulation codes are
the basis for predicting the evolution of large-scale natural phenomena such
as the weather, ocean currents, and climate. With the increasing reliance on
simulation codes, it is becoming critically important to determine how well
they predict actual physical phenomena. Uncertainty in simulation code pre-
dictions has many sources, including the lack of knowledge of the underlying
physics models, the variability of the initial geometry and materials, and the
degree of variability in the physical phenomenon itself. In this paper I will con-
centrate on the first issue by presenting a framework within which to handle
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uncertainties in the parameters associated with the physics models on which
a simulation code is based. The goal is to determine how these uncertainties
affect our ability to predict the behavior of a physical system. This framework
may accommodate the other degradations to predictability and may provide a
worthwhile foundation for the verification and validation (V&V) of simulation
codes [1,2]. Validation is the process of determining how well the physics equa-
tions describe physical reality and verification is the process of determining
whether the simulation code accurately evaluates those equations.

I will focus on complex simulation codes that rely on a number of basic physics
models, each of which specifies a specific physical behavior. For example, these
physics models may model the equation of state, a stress-strain relationship,
or strength characteristics of each material included in the physical system
being simulated. A physics model may provide a set of dynamical equations
that approximate more fundamental relationships. The focus here is on the
uncertainties in these physics models and how they propagate into uncertain-
ties in the predictions made by the simulation code that uses them. I will
ignore calculational errors arising from coding mistakes or inadequacies of the
resolution of the calculation. These fall under the category of code verification,
which must go hand in hand with the overall validation effort [1,2].

The process of validation of a simulation code for an intended purpose should
be based on a hierarchy of experiments. There should be experiments that are
designed to characterize the basic physics models. Such experiments, which
optimally require only one physics model to analyze, can be called basic ex-
periments. Often, these do not even require the full simulation code for their
analysis. Whereas basic experiments involve only a single physics model, inte-
grated experiments require two or more physics models. Ideally the hierarchy
of experiments should include some with various degrees of integration, up to
fully integrated experiments that involve all relevant physics models. Clearly
the experiments should span the range of physical conditions relevant to the
target application.

This paper starts with a description of a general approach to analyzing indi-
vidual experiments with an emphasis on uncertainty analysis. A Monte Carlo
method is presented for propagating uncertainties in underlying physics mod-
els into uncertainties in simulation predictions. A probabilistic network is pro-
posed for conceptualizing the process of analyzing a large number of exper-
iments. It also provides the basis for a logically consistent, complete, and
comprehensive implementation, as explained below.

While several ways to implement this approach are described, the best choice
for the uncertainty assessment of any specific simulation code will depend on
many factors, including the computational complexity of the simulation, the
number of experiments, the number of parameters, and the complexity of the
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Fig. 1. Data-flow diagram showing the general scheme for analyzing the measure-
ments Y from a single experiment. The simulation code uses the parameters α to
predict the time-dependent behavior of a physical system. A measurement system
model describes the connection between the physical system and the experimental
measurements. The parameters are estimated by minimizing the difference between
the measurements predicted by the simulation code Y* and the actual Y, as quan-
tified by the minus-log-likelihood.

experimental analysis.

2 Analysis of individual experiments

Figure 1 schematically outlines the conceptual steps taken to analyze any ex-
periment. The basic idea is that one tries to account for the measurements,
represented by the vector Y, obtained in an experiment by analyzing them
in terms of a model of the experimental situation. The preparation of the
physical system is shown as a time-dependent state Ψ(t). This representa-
tion is perhaps more general than required for some experiments, but may be
needed to analyze integrated experiments. The physical system believed to be
observed is transformed into a set of predicted measurements Y∗ by a model
of the measurement system. This model should include all known effects in
measurement process, for example, the effects of finite time or spatial resolu-
tion, sensitivity curve for the sensors used, etc. The predicted measurements
Y∗ are a function of the parameters imbedded in the physics model α, which
are to be determined from the analysis. Figure 1 is meant to imply a point
evaluation of the quantities shown, that is, the state of the system and the
predicted measurements are evaluated for each parameter vector α specified.

The typical approach taken to determine the model parameters α is to find
the parameters that minimize the mean square difference between Y∗ and Y,
which, when normalized to the variance in the measurement uncertainty σ2, is
what physicists call chi-squared: χ2 =

∑
i(Yi−Y ∗

i )
2/σ2

i . This general approach
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is referred to by physicists as fitting a model to data, and by statisticians as
regression. The rationale for this approach and the accompanying uncertainty
analysis is outlined in the next section.

In integrated experiments, where more than one physics model is required to
simulate the experiment, the data-flow diagram in Fig. 1 still applies, except
that the model box feeding the simulation is replaced by several model boxes.

The quality of experimental measurements is crucially important since they
form the basis for inference about the physics models. All the usual care must
be exercised in conducting these experiments. The experimentalist and analyst
must pay particular attention to correlations between uncertainties. Correla-
tions often exist between the uncertainties associated with different measure-
ments. Furthermore, the process of analyzing a data set in terms of several
parameters almost always results in correlations between the uncertainties in
those parameters. It is crucially important to the final inference process that
correlations be understood and included in each step of the analysis. A related
issue is that of systematic uncertainties, which are uncertainties in an experi-
ment that affect many (or all) measurements [3]. All means should be taken to
reduce systematic uncertainties as much as possible and then to include them
in the uncertainty analysis.

An underlying issue in solving the minimization problem implied by Fig. 1 is
how to efficiently find the minimum, particularly when there are many param-
eters to be found and the simulation calculation takes a long time. Under the
right circumstances, when there are many parameters to optimize, it is very
beneficial to use gradient-based optimization methods. The gradient of the ob-
jective function with respect to the parameters of interest may be calculated
in a time comparable to the forward simulation time using the technique of
adjoint differentiation [4]. In principle, adjoint differentiation can be imple-
mented for any computational code for which the outputs are differentiable
with respect to the variables in the problem. Giering [5] has developed a useful
compiler for forward codes written in FORTRAN to automatically create the
code necessary to calculate the desired gradients [6].

Experience with several kinds of simulation codes [7–11] reinforces my con-
viction that adjoint differentiation is an enabling technique for problems of
this sort. In this paper I will mention the areas where it might be of benefit.
However, the overall framework presented here does not rely on using adjoint
differentiation.

The data-flow diagram shown in Fig. 1 may be employed not only as a de-
scription of the analysis, but also as a basis for implementing the calculation.
In the well-known image-processing application Khoros [12], the course of the
calculation may be laid out using a graphically programmed data-flow dia-
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gram. In the Bayes Inference Engine (BIE) [7], which we have developed at
Los Alamos for radiographic modeling, the forward modeling process is graph-
ically specified by an analyst in terms of a diagram very similar to that shown
in Fig. 1 and the BIE solves the inverse problem, i.e., finds the parameters that
minimize χ2, for example. This close connection between a graphical represen-
tation of a conceptual approach and the actual implementation of the solution
will be suggested as a viable means to assess the uncertainties in simulation
codes.

2.1 Uncertainty analysis

In the past the traditional process of analyzing the measurements from physics
experiments and estimating the uncertainties in the derived model parameters
has been called error analysis [13,14,3]. In common usage, the term ‘error’ of-
ten connotes an identifiable mistake, which is potentially correctable. It seems
that this process might be better called uncertainty analysis. Furthermore,
this phrase implies what we really intend, a statement of what we know (or
do not know) about the parameters that we have tried to measure.

In a probabilistic approach to uncertainty analysis, uncertainties are expressed
in terms of a probability density function (PDF) defined on the parameters
[15–17]. As in the previous section, let’s assume that an experiment is per-
formed and the measurements, represented by the vector Y, are obtained. A
model M with associated parameters θ, is used to analyze the experimental
results. (I use θ here to represent generic parameters.) The PDF describing
the uncertainty the parameters is p(θ|Y,M). This so-called posterior is given
by the fundamental rule of probability, Bayes law, as

p(θ|Y,M) ∝ p(Y|θ,M) p(θ|M) , (1)

where p(Y|θ,M), is the likelihood of the measurements and p(θ|M) is the
prior on the parameters.

The likelihood comes from comparing the actual measurements to the measure-
ments predicted on the basis of the model of the physical system. The predicted
measurements are generated using a model for how the measurements are re-
lated to the physical system, which we call the measurement system model.
Under the assumption that the measurements are stochastically degraded by
uncorrelated and additive Gaussian noise, the likelihood is proportional to the
exponential of −1

2
χ2. The prior in (1) can supply knowledge coming from pre-

vious measurements, specific information regarding the object itself, or simply
general knowledge about the parameters, e.g., that they are nonnegative.

In terms of this nomenclature, we see that the approach described in the
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previous section amounts to finding the parameters that maximize the pos-
terior under the assumption of a Gaussian distribution for the measurement
uncertainties and in the absence of prior information, i.e., a flat prior. The ap-
proach of estimating the parameters by maximizing the posterior is referred
to as maximum a posteriori (MAP) estimation. Although not important for
the present discussion, it should be noted that other types of estimators can
be argued to be more appropriate in some circumstances.

It is often more convenient to work with logarithms of probabilities rather
than with the probabilities themselves. Then Bayes law (1) becomes additive
instead of multiplicative:

ϕ = − log[ p(θ|Y,M)] = − log[ p(Y|θ,M)]− log[ p(θ|M)] + C(M) . (2)

The condition for minimizing ϕ, to obtain the MAP parameter estimate, is
that its gradient with respect to the parameters is zero: �θ ϕ = 0.

As the posterior describes our state of knowledge about the parameters, pa-
rameter uncertainties are estimated by characterizing the width or spread of
the posterior. The most often used means of summarizing uncertainties is in
terms of root mean-square deviation. Another often relevant characterization
is in terms of confidence interval, e.g., stating the probability that the true
value of a parameter is within a specified interval. The point is that the pos-
terior can be used to determine any characterization of the uncertainties that
one wishes to use.

One of the potential difficulties in probabilistic analysis is handling nuisance
parameters, that is, parameters that are necessary to describe the model of
the physical situation, but are ultimately of no interest. For example, if the
initial state of the simulation of an experiment is uncertain, it would be im-
portant to include that uncertainty in the analysis of the data because it will
degrade the uncertainty in the desired model parameters. However, the esti-
mated initial state is immaterial, as far as model inference is concerned. The
posterior will typically be a joint probability distribution in all the parame-
ters, those of interest, as well as the nuisance parameters. The appropriate way
to handle nuisance parameters is to integrate the joint distribution over the
useless parameters, a process called marginalization. If there are a lot of nui-
sance parameters, this marginalization can be difficult, even computationally
intractable.

A subtle, but real, source of uncertainty in simulation predictions is the uncer-
tainty associated with the form of the incorporated physics models. Often the
form used to represent a physical relationship is heuristically chosen. Even if
the form is chosen on the basis of physical reasoning, it may still be incorrect.
Uncertainties in the form of the models, also called structural uncertainties
[18,19], obviously must be taken into account in assessing simulation uncer-
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tainties. The general approach to estimating structural uncertainties is to con-
sider alternative suitable models and determine how well they are rejected by
experimental data.

There is a close connection between these structural uncertainties and the issue
of the operating range of the underlying independent physical variables that
have been measured by the experiments. When it is necessary to extrapolate
beyond range probed by the available experiments, structural uncertainties
will lead to rapid growth in the uncertainties in the model behavior.

2.2 Gaussian approximation

It is often the case, or at least often assumed, that uncertainties follow a Gaus-
sian distribution, which means that the minus-log-posterior ϕ is quadratic:

ϕ = ϕ0 + (θ − θ0)
TK (θ − θ0) , (3)

where θ0 is the parameter vector at the minimum in ϕ and K is the curvature
matrix of ϕ,

K = �2
θ ϕ . (4)

This matrix is also called the Hessian. It is fundamentally important in uncer-
tainty analysis because of the the well-know relationship that the covariance
matrix of a multi-dimensional Gaussian is given by C = K−1.

The covariance matrix is the second moment of the posterior about its mean:
[C]ij =< (θi − θ̄i)(θj − θ̄j) >, where the angle brackets indicate an expec-
tation over the posterior distribution. It completely summarizes the second-
order statistics of a Gaussian posterior, including its width and correlations
between the uncertainties in different parameters through its off-diagonal el-
ements. Under the assumption of Gaussian distributions and using ϕ = 1

2
χ2,

the calculation of the covariance matrix described above is equivalent to stan-
dard uncertainty analysis [13]. Marginalization is taken into account in the
covariance matrix C in the sense that one can simply ignore the elements of
C corresponding to the nuisance parameters.

For Gaussian prior and likelihood distributions, characterized by their Hes-
sians Kin and Kexp, and by their mean positions, θin and θexp, respectively,
Bayes law, in its logarithmic form, yields the simple result for the posterior

Kout =Kexp +Kin (5)

θout =K−1
out [Kexpθexp +Kinθin] , (6)
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where Kout is the Hessian and θout the mean position of the posterior. One
obtains the usual rule for combining the covariance and the mean for the
product of two Gaussian distributions [14] by replacing the Hessians in (5)
and (6) with the inverse of the corresponding covariance matrices.

A novel method of estimating uncertainties for Gaussian distributions is to
probe the model stiffness [20]. This method amounts to minimizing ϕ in the
presence of a force applied to the model. The displacement of the parameters
away from their MAP solution is given by ∆θ = Cf , where f is the applied
force, specified in the space of the parameters. This method provides correla-
tions between every parameter and the probing force vector.

2.3 Markov chain Monte Carlo

TheMarkov chain Monte Carlo (MCMC)technique provides a way to generate
a sequence of random parameter vectors drawn from an arbitrary target PDF.
The usefulness of MCMC in probabilistic analysis is well established [21–24].
The simplest approach is to use the Metropolis algorithm [25], in which one
tries to move from the current position in parameter space by randomly se-
lecting a trial displacement from a symmetric probability distribution. Each
trial step is either accepted or rejected on the basis of the probability at the
new position relative to that at the previous one. This algorithm is widely
employed because of its simplicity. In the data-flow diagram shown in Fig. 1,
MCMC would take the place of the optimizer, allowing it to change the pa-
rameters and observe the corresponding minus-log-posterior. The covariance
matrix C may be obtained using MCMC by directly computing the second
moments of the MCMC sequence.

One of the advantages of MCMC is that it can handle most arbitrary dis-
tributions, alleviating the need to approximate the posterior by a Gaussian
distribution. As such, MCMC provides a generally usable means to determine
the extent of a posterior and thus to assess uncertainties. Another advantage
of MCMC is that it automatically accomplishes marginalization over nuisance
parameters. By sampling the full joint probability distribution, as MCMC
does, when one determines the distribution of a subset of parameters, the
remaining parameters are automatically integrated out.

The inefficiency of MCMC is a potential problem. The steps for the Metropo-
lis algorithm are often chosen independently for each parameter. However,
most posterior distributions possess some degree of correlation between the
parameters. By not taking these correlations into account, the independent
step distribution can lead to substantial calculational inefficiency. This in-
efficiency results in correlation between successive samples taken from the
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Fig. 2. Data-flow diagram showing how the uncertainties in a simulation prediction
arising from parameter uncertainties can be estimated by running the simulation
code for a set of plausible parameters {αα}. The resulting set of plausible predictions
represents the uncertainty distribution of the prediction.

MCMC sequence, which means that a reduced number of samples can ade-
quately represent the full sequence. A number of schemes for improving the
efficiency of MCMC exist [26–30], most of which are adaptive, and many of
which require the gradient of ϕ with respect to the parameters. Therefore,
adjoint differentiation can be very helpful in making MCMC more efficient.

3 Uncertainty in simulation-code predictions

The goal of the present work is to determine the uncertainties in simulating a
new situation, which are produced by the uncertainties in the physics models.
A conceptually simple Monte Carlo approach to obtaining these uncertainties
is shown in Fig. 2. The process amounts to drawing random parameter vec-
tors from their posterior distribution, which can be thought of as comprising a
plausible set of parameter vectors. Running the simulation code separately for
each random parameter vector results in a set of corresponding plausible sim-
ulation predictions, which can be used to characterize the uncertainty in the
prediction in whatever way appropriate. This process produces the posterior
predictive distribution [22], as it is known in statistics.

The same technique can be employed if one is working directly with the Hes-
sian or covariance matrices to describe the posterior. Then matrix techniques
can be used to directly generate a sequence of random draws from the poste-
rior, approximated by a Gaussian. One needs to calculate the square root of
the covariance matrix C

1
2 by singular-value decomposition [31]. Random pa-

rameter vectors with the correct covariance are then obtained by multiplying
random vectors drawn from an independent, univariate Gaussian distribution
by C

1
2 .
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Fig. 3. A sequential analysis involving two experiments. Interpreted as a proba-
bilistic network, each bubble represents the use of Bayes law by combining the
likelihood PDF from the measurements with the PDF inputs from the left for the
prior information to obtain the output PDF on the right, the posterior.

A virtue of most Monte Carlo calculations is that new sources of stochas-
tic behavior are easily incorporated. For example, uncertainties in the initial
state of a physical system may be included in the above process by randomly
drawing initial states from the probability distribution associated with those
uncertainties each time the simulation is run with a new random parameter
vector.

Other approaches to estimating the uncertainty in a simulation prediction may
potentially be useful, including extensions to a posteriori error analysis [32],
which can effectively propagate the error through the simulation. However,
because this technique requires an auxiliary forward code that solves another
set of differential equations, it may not be easy to implement.

4 Analysis of many experiments

Consider the sequential analysis of two experiments, as depicted by the bubble
diagram shown in Fig. 3. Experiment 1 is a basic experiment since it only in-
volves a single model, associated with α. Using the type of analysis described
in Sect. 2.1, starting with a flat prior p(α), the analysis of this experiment
results in improved knowledge about the parameter vector α, as summarized
by the posterior p(α|Y1). The second experiment requires the model associ-
ated with α, as well as another model associated with β, to analyze. It is an
integrated experiment. One approach might be to consider α to be completely
determined by Experiment 1 and keep it fixed in the second analysis. How-
ever, it seems desirable to use Experiment 2 to learn something further about
α. The implication is that both α and β should be varied in analyzing the
second experiment.

4.1 Probabilistic network
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Fig. 4. A probabilistic network for analyzing five experiments results in the joint
posterior in the parameters for all models involved, i.e., α, β, γ, and δ.

A full probabilistic analysis of the two experiments yields the posterior in α
and β, given the experimental measurements from both experiments. Using
the rules of probability:

p(α,β|Y1,Y2)∝ p(Y1,Y2|α,β) p(α,β) (7)

= p(Y1|α) p(Y2|α,β) p(α) p(β) . (8)

In going from (7) to (8), it is necessary to invoke statistical independence of
the priors on α and β and of the measurements from the two experiments.
Taking the minus logarithm of Eq. (8), we obtain

− log[ p(α,β|Y1,Y2)] =− log[ p(Y1|α)]− log[ p(α)]

− log[ p(Y2|α,β)]− log[ p(β)] . (9)

Comparison of Eq. (9) with Fig. 3 shows that the effective action of each
bubble is to add its inputs, consisting of minus-log-priors, to the minus-log-
likelihood of its experimental measurements to get the minus-log-posterior.
Each bubble implements Bayes law in its logarithmic form (2). Equation (9)
illustrates the cumulative property of Bayes law; by using the posterior of one
analysis as the prior of the next, the result is the same as if both likelihoods
were simultaneously used in a single grand analysis. We see that Fig. 3 actually
represents a probabilistic network.

Note that the output of each bubble is a PDF over the parameters shown
next to the output. A consequence of this approach is that the joint PDF
involves increasingly more parameters as one moves up the hierarchy from
basic experiments up to fully integrated ones.

The crucial requirement for the simplicity of the additive rule is that the
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experimental measurements be independent. If they are not independent, that
can be taken into account in the algebra associated with the bubbles.

A more elaborate probabilistic network involving five experiments is shown in
Fig. 4. It is clear from the diagram that Experiments 1, 3, and 4 are basic
experiments. Experiment 2 involves a low level of integration since it provides
information about two models. Experiment 5 is fully integrated since it incor-
porates all the models. The output of the last bubble is a joint PDF in all the
model parameters.

This kind of bubble diagram has clear benefits for describing a sequence of
analyses. I will explain in the next section how such a probabilistic network
forms a useful basis for a computational approach to keeping track of a com-
plicated series of analyses. The bubble diagrams shown in Figs. 3 and 4 are
similar to other forms of probabilistic networks [33] or Bayesian networks [34].

4.2 Implementation considerations

Validation of complex simulation codes that employ many physics models
will typically require numerous experiments, performed over a wide range
of levels of integration. The task of comprehending which experiments have
been conducted and how their results influence the final configuration of the
simulation code is potentially overwhelming. It is natural to consider using the
bubble diagram described in the preceding section as a means for graphically
depicting the flow of the analysis. The corresponding probabilistic network
provides the means to quantitatively summarize our knowledge about the
models.

The validation process would greatly benefit by implementation of the prob-
abilistic network using an object-oriented (OO) design. The graphical display
of the full analysis sequence would help visualize the logic of the analysis. One
would have the ability to check intermediate results in the analysis sequence,
which may be important when it comes to model checking (see next section).
Since each bubble represents an experiment and its related data analysis, the
information associated the probabilistic network really forms a database for
the validation process. The logic of the graph may be checked automatically,
e.g., by checking dependencies of final results on each experiment to make sure
a single experiment is not counted more than once.

Operationally, the output of each bubble represents a PDF defined over a cer-
tain set of parameters. In a Gaussian approximation, this joint PDF is defined
in terms of a mean vector and covariance matrix. Because of the simplicity
of using minus-log-probabilities already mentioned, it is proposed to use the
curvature matrix (or Hessian), instead of the covariance matrix, to represent
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the width of the Gaussian. Of course, as one moves through the sequence
of analyses, the number of parameters steadily increases. This varying data
structure is easy to handle in an OO design. Because of the additive nature
of the logarithmic form of Bayes law (9), updates of the parameter mean and
the Hessian affect only the parameter components over which they are defined.
When new parameters are included, they do not mix with the old parameters
except through the likelihood of a new experiment. Whenever the covariance
describing the uncertainties in the parameters is desired, it is necessary to
invert the Hessian.

Critical to the proper functioning of the probabilistic network is the quality
of the information employed in each bubble. A bubble must supply a prob-
abilistic description of the likelihood in terms of the model parameters used
to analyze the experimental measurements. Thus, a full uncertainty analysis
must be carried out, taking into account the details described above, e.g.,
marginalization over nuisance parameters, such as uncertainties in the exper-
imental initial conditions. It is perhaps simplest to think of that process in
terms of using MCMC to sample the likelihood, computing the mean vector
and covariance matrix of the relevant parameters, and taking the inverse of
the covariance matrix to obtain the Hessian.

As mentioned above, one must be careful to not count the contribution from
any given likelihood twice. Therefore, the output of each bubble is not really
just the sum of its input minus-log-priors and internal minus-log-likelihood.
There is a need to check dependencies at each point where the accumulated
posterior is desired. One way to handle this is to have each accumulating
bubble broadcast backwards through the graph a request for contributions. As
each bubble connected to it through the backward path responds, duplicated
contributions can be flagged and avoided in the summation process.

Finally, it is possible to translate an instantiated probabilistic network into a
computer script, which effectively summarizes the network. This script can be
used to archive the analysis or to translate it into text for a written summary.

4.3 Model checking

Model checking is an essential aspect of any effort to build and understand
models [22]. Model checking amounts to looking for inconsistencies between
experimental measurements and the models. This process ideally takes place
at every level of analysis, from analyzing separate data runs in a single exper-
iment, to the analysis of the experiment in terms of a model, all the way up to
the comparison between several experiments. Since in the scheme suggested
here, all parameters are subject to change as new experiments are added to
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the comprehensive analysis, one must be able to revisit previous analyses and
resolve discrepancies. All disagreements should be diagnosed to determine the
source of problem, namely, are the experimental results suspect, or plainly
wrong, or does the physics model need to be altered.

It may be helpful to try to identify model shortcomings using sensitivity anal-
ysis. One of the most potent uses of adjoint differentiation, when viewed in
terms of the elemental representation of a model, is to recognize how the
structure of that model needs to be changed to accommodate the data [9].

Model-based approaches to dealing with discrepant data, or outliers, will be
useful in model checking. One approach is to assign to each experimental result
a probability that it is acceptable, or similarly, a multiplicative deweighting
factor [35]. In combining several experiments, the weight of each one is ef-
fected by how well it agrees with the others. Another approach is to treat the
likelihood function of each experiment, not as a Gaussian, but as a long-tailed
distribution, such as the Cauchy distribution [36], which effectively invokes a
principle of majority rule when several results are combined.

5 Discussion

I have presented a framework for tackling one of the basic tasks needed for
validating simulation codes, that of assessing the uncertainties in predictions
that arise from uncertainties in the underlying models. Many details regarding
implementation need to be resolved. How these are best handled will depend
on the specifics of simulation code and the kind of measurements available.
The suggested implementation is consistent with the notion that the valida-
tion should be viewed as an ongoing process [2]. Its dynamic and interactive
nature permits one to link experimental results to a progressively changing
simulation code, determine weak spots in the models, and design and conduct
new experiments for reducing the uncertainty in predictions.

Acknowledgements

Many have helped me understand various aspects of simulation codes and
uncertainty estimation in a Bayesian context including Julian Besag, Anges
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