
The positive integers other than 1 may be divided into two classes,
prime numbers (such as 2, 3, 5, 7) which do not admit of resolution
into smaller factors, and composite numbers (such as 4, 6, 8, 9) which
do. The prime numbers derive their peculiar importance from the
‘fundamental theorem of arithmetic’ that a composite number can
be expressed in one and only one way as a product of prime factors.
A problem which presents itself at the very threshold of mathematics
is the question of the distribution of the primes among the integers.
Although the series of prime numbers exhibits great irregularities of
detail, the general distribution is found to possess certain features
of regularity which can be formulated in precise terms and made the
subject of mathematical investigation.

The Distribution of Prime Numbers
A. E. Ingham



DEFINITION: A composite number is a positive integer n ≥ 2 that
can be factored as a product of two positive integers

n = ab where a < n and b < n.

A prime number is a positive integer p ≥ 2 that cannot be factored
as a product of two positive integers both of which are less than p.

Examples:

15 = (3)(5) is composite, 17 = (?)(?) is prime.

99 = (9)(11) is composite, 101 = (?)(?) is prime.

The first 200 prime numbers are:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,

71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139,

149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223,

227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293,

307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383,

389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463,

467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569,

571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647,

653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743,

751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839,

853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941,

947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031,

1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097,

1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187,

1193, 1201, 1213, 1217, 1223



A list of consecutive primes beginning with the 1,000,000,000th
prime:

22801763489, 22801763513, 22801763527, 22801763531,

22801763549, 22801763557, 22801763563, 22801763573,

22801763581, 22801763641, 22801763707, 22801763711,

22801763717, 22801763729, 22801763731, 22801763753,

22801763767, 22801763773, 22801763783, 22801763833,

22801763837, 22801763867, 22801763891, 22801763899,

22801763923, 22801763951, 22801763953, 22801763987,

22801764001, 22801764059, 22801764061, 22801764113,

22801764119, 22801764137, 22801764157, 22801764179,

22801764187, 22801764229, 22801764259, 22801764281,

22801764299, 22801764319, 22801764353, 22801764361,

22801764367, 22801764371, 22801764421, 22801764457,

22801764467, 22801764487, 22801764497, 22801764509,

22801764527, 22801764553, 22801764563, 22801764577,

22801764589, 22801764593, 22801764613, 22801764619,

22801764631, 22801764637, 22801764677, 22801764703,

22801764719, 22801764761, 22801764767, 22801764809,

22801764829, 22801764833, 22801764907, 22801764911



Lemma. Every integer n ≥ 2 can be written as a product of prime
numbers.

Proof. Suppose that there exist integers n ≥ 2 which cannot be
written as a product of prime numbers. Then there exists a smallest
positive integer N that cannot be written as a product of prime
numbers. Plainly N cannot be a prime number. Therefore N can
be written as

N = ab

where a and b are positive integers, a < N and b < N . Because N is
the smallest integer which cannot be written as a product of prime
numbers, it follows that both a and b can be written as a product
of prime numbers. Write

a = p1p2 · · · pL and b = q1q2 · · · qM ,

where p1, p2, . . . pL, q1, q2, . . . qM are prime numbers. But then

N = ab = p1p2 · · · pLq1q2 · · · qM

can be written as a product of prime numbers. This contradicts our
assumption and proves that N does not exist.

Theorem. (Proposition 20, Book IX, Euclid’s Elements) There are
infinitely many prime numbers.

Proof. Suppose that p1, p2, p3, . . . pN is a complete list of all prime
numbers. Consider the positive integer

Q = p1p2p3 · · · pN + 1.

The number Q is not divisible by any of the primes from the list
p1, p2, p3, . . . pN . However, the previous lemma asserts that Q is
divisible by primes. Thus p1, p2, p3, . . . pN cannot be a complete list
of all primes. We have shown that there are infinitely many primes.



Theorem. (Proposition 14, Book IX, Euclid’s Elements) Every in-
teger n ≥ 2 can be written as a product of distinct prime numbers
to positive integer powers:

n = pe1
1 pe2

2 pe3
3 · · · peM

M .

If we arrange the prime numbers so that

p1 < p2 < p3 < · · · < pM

then this factorization of n is unique.

Example: for which positive integers N is there a solution in integers
to the equation

x2 + y2 = N?

Consider the case

N = 9434516543457490382976

= (27)(34)(133)(232)(61)(972)(1364161).

The primes 3 and 23 are congruent to 3 modulo 4 and occur in the
prime factorization to even powers. The remaining odd primes are
congruent to 1 modulo 4. Hence there exists a solution:

11171955602 + 971250143762 = 9434516543457490382976.



Factorizations of some random 40 digit odd numbers

6745361009838572658711240095786483534093 =

(11)(13)(36037)(2644528949)(494962395873395882409227)

4890336472118759447609025497813340687565 =

(5)(1851085537253293259)(528374985779988873307)

7122439681436658709008712092833427694087 =

(13)(547879975495127593000670160987186745699)

1376984620976357254477698887145677120943 =

(32)(79)(739)(2620686374327182653560612161006867)

2239857340097561206835547760281439788563 =

(7)(17)(31)(6709)(835609)(108305572483365877360111207)

8870316472658671128566490971476091026583 =

(1283161736324741807)(6912859245682632111769)

7638709128564768562498876391028472565789 =

(157)(919421)(8958617510299)(5906971927125005263)



Factorizations of some non-random 40 digit odd numbers

1111111111111111111111111111111111111111 =

(11)(41)(73)(101)(137)(271)(3541)(9091)(27961)

(1676321)(5964848081)

1000000000000000000000000000000000000001 =

(7)(11)(132)(157)(859)(6397)(216451)(1058313049)

(388847808493)

4333333333333333333333333333333333333333 =

(7)(443)(2741)(509813458079196226533335545139413)

5555555555555555555599999999999999999999 =

(11)(41)(101)(271)(3541)(9091)(27961)

(500000000000000000009)

4444444444444444444455555555555555555555 =

(3)(5)(11)(41)(101)(149)(271)(3541)(9091)

(27961)(413087)(16046383667)

8888888888888888888888888888888888888887 =

(1013)(65025411611)(134944417265323481201339809)



Problems about prime numbers

1. In a letter from Christian Goldbach to Euler dated June 7, 1742,
he states:
“Es scheinet ... dass eine jede Zahl, die grösser als 2, ein aggre-

gatum trium numerorum primorum sei.”
(It seems that every number larger than 2 is a sum of three prime

numbers.)
On June 30, 1742, Euler replied to Goldbach stating that:
“Dass ... ein jeder numerus par eine summa duorum primorum

sey, halte ich für ein ganz gewisses theorema, ungeachtet ich dasselbe
necht demonstriren kann.”

(... every even integer is a sum of two primes. I regard this as a
completely certain theorem, although I cannot prove it.)

2. The twin prime problem: do there exist infinitely many primes p
such that p + 2 is also a prime? Two of the largest known twin
primes are

(697, 053, 813)216352 − 1 and (697, 053, 813)216352 + 1.

3. Do there exist infinitely many primes of the form N2 + 1, where
N is an integer?

4. Define π(x) to be the number of primes less than or equal to the
positive real number x. Is there a “formula” for π(x) in terms of
simpler functions? What is a good approximation to π(x)?



Great Moments in Prime Number Theory:
L. Euler (1707–1783)

In this definition s is a real variable. If 1 < s then Euler discov-
ered that the convergent infinite series

1 +
1
2s

+
1
3s

+
1
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+
1
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+
1
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+
1
7s

+
1
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· · · ,

is equal to the convergent infinite product over prime numbers
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Alternatively:

∞∑
n=1

1
ns

=
∏
p

(
1− 1

ps

)−1

if 1 < s.

Euler used this identity to show that

∑

p prime

1
p

= ∞.

It follows that there are infinitely many prime numbers.



Great Moments in Prime Number Theory:
A. M. Legendre (1752–1833) and C. F. Gauss (1777–1855)

In a paper of 1808 Legendre claimed that π(x) was approximately
equal to

x

log x−B

where B is a numerical constant. Using tables of primes up to about
x = 400, 000 he suggested the value B = 1.08366.

As early as 1792 or 1793 Gauss recorded in a book of tables that
the logarithmic integral

li(x) = lim
ε→0+

{∫ 1−ε

0

+
∫ x

1+ε

} 1
log t

dt

was a good approximation to π(x). However, Gauss only reported
his observations in 1849 in a letter to the astronomer Encke.

Evidently both Legendre and Gauss believed that

π(x)
li(x)

→ 1, or
π(x) log x

x
→ 1, as x →∞.

It turns out that li(x) is a much better approximation to π(x) in
the sense that

π(x)− li(x)

is relative small when x is large.



Great Moments in Prime Number Theory:
G. L. Dirichlet (1805–1859)

Let 1 ≤ a < q be relatively prime integers and consider the
arithmetic progression

A(a, q) = {a, q + a, 2q + a, 3q + a, 4q + a, . . . }.

For example, we have

A(3, 7) = {3, 10, 17, 24, 31, 38, 45, 52, 59, . . . }.

In 1837 Dirichlet proved that such an arithmetic progression con-
tains infinitely many prime numbers. He made use of identities of
the form

L(s, χ) =
∞∑

n=1

χ(n)
ns

=
∏
p

(
1− χ(p)

ps

)−1

where 1 < s.

By considering the behavior of these functions as s → 1+, Dirichlet
was able to prove that

∑
p∈A(a,q)
p prime

1
p

= ∞.



Great Moments in Prime Number Theory:
P. L. Chebyshev (1821–1894)

Instead of working directly with the prime counting function

π(x) =
∑

p≤x

1,

Chebyshev introduced a weighted prime counting function

ψ(x) =
∑

pm≤x

log p,

where the sum is over prime powers. For example,

ψ(30) = log 2 + log 3 + log 2 + log 5 + log 7

+ log 2 + log 3 + log 11 + log 13

+ log 2 + log 17 + log 19 + log 23

+ log 5 + log 3 + log 29

= 28.4765 . . . .

Chebyshev observed that

π(x) ≈ li(x) if and only if ψ(x) ≈ x.



The function ψ(x) satisfies the fundamental identity

∑

1≤m≤x

ψ(x/m) =
∑

1≤n≤x

log n

for all positive real numbers x. Using this identity Chebyshev proved
that

(0.921)x ≤ ψ(x) ≤ (1.105)x for all large x,

and from this he obtained the estimate

(0.89) li(x) ≤ π(x) ≤ (1.11) li(x) for all large x.

Chebyshev also proved that if the limit

lim
x→∞

π(x)
li(x)

exits,

then the value of the limit is 1.



A Very Great Moment in Prime Number Theory:
B. Riemann (1826–1866)

Riemann wrote one paper of 8 pages on number theory, Ueber
die Anzahl der Primzahlen unter einer gegebenen Grösse, published
in 1859. In this paper he considered the function

ζ(s) =
∞∑

n=1

1
ns

=
∏
p

(
1− 1

ps

)−1

,

but now Riemann assumed that s = σ + it is a complex variable and
observed that the series and product converge to the same analytic
function in the half plane 1 < σ. In his paper Riemann briefly
sketched proofs of his new discoveries about the function ζ(s):

1. The function ζ(s) has an analytic continuation to the complex
plane with a simple pole at s = 1.

2. The function ζ(s) satisfies a functional equation that relates its
value at s with its value at 1− s.

3. The function ζ(s) has trivial zeros at s = −2,−4,−6, . . . and
infinitely many nontrivial zeros in the critical strip:

{s = σ + it : 0 ≤ σ ≤ 1}.

He also gave an estimate for the number of nontrivial zeros ρ =
β + iγ which satisfy 0 < γ ≤ T . If this number is denoted by
N(T ) then Riemann asserted that

N(T ) ≈
T

2π
log

( T

2π

)
− T

2π
.



4. Riemann defined a weighted prime counting function

Π(x) =
∑

pm≤x

1
m

where 1 < x,

and asserted that Π(x) has the following explicit formula:

Π(x) = li(x)−
∑

ρ

li(xρ)− log 2 +
∫ ∞

x

dx

(x2 − 1)x log x
.

A complete proof was given by H. von Mangoldt in 1895. A
simpler explicit formula is

ψ(x) = x−
∑

ρ

xρ

ρ
− log 2π − 1

2
log(1− x−2).

In both formulas the summation is over the set of nontrivial zeros
ρ = β + iγ of ζ(s).

5. Riemann then considers the number of real zeros of ζ(1/2 + it)
and writes:
Man findet nun in der That etwa so viel reelle Wurzeln innerhalb

dieser Grenzen, und es ist sehr wahrscheinlich, dass alle Wurzeln
reell sind. Hiervon wäre allerdings ein strenger Beweis zu wünschen;
ich habe indess die Aufsuchung desselben nach einigen flüchtigen
vergeblichen Versuchen vorläufig bei Seite gelassen, da er für den
nächsten Zweck meiner Untersuchung entbehrlich schien.

(One finds in fact about this many real zeros within these bounds,
and it is very probable, that all zeros are real. One would certainly
like to have a rigorous proof of this, but I have set aside the search
for such a proof after a few hasty attempts, because it is not required
for the current objective of my investigation.)



The first 20 zeros of the Riemann zeta-function:

1
2 + i(14.134725142 . . . )
1
2 + i(21.022039639 . . . )
1
2 + i(25.010857580 . . . )
1
2 + i(30.424876126 . . . )
1
2 + i(32.935061588 . . . )
1
2 + i(37.586178159 . . . )
1
2 + i(40.918719012 . . . )
1
2 + i(43.327073281 . . . )
1
2 + i(48.005150881 . . . )
1
2 + i(49.773832478 . . . )
1
2 + i(52.970321478 . . . )
1
2 + i(56.446247697 . . . )
1
2 + i(59.347044003 . . . )
1
2 + i(60.831778525 . . . )
1
2 + i(65.112544048 . . . )
1
2 + i(67.079810529 . . . )
1
2 + i(69.546401711 . . . )
1
2 + i(72.067157674 . . . )
1
2 + i(75.704690699 . . . )
1
2 + i(77.144840069 . . . )



Zeros of the Riemann zeta-function,
number 1012 + 1 through number 1012 + 20:

1
2 + i(267, 653, 395, 648.8475231278 . . . )
1
2 + i(267, 653, 395, 649.3623669687 . . . )
1
2 + i(267, 653, 395, 649.6816309165 . . . )
1
2 + i(267, 653, 395, 649.8619899438 . . . )
1
2 + i(267, 653, 395, 650.1576654790 . . . )
1
2 + i(267, 653, 395, 650.4342666839 . . . )
1
2 + i(267, 653, 395, 650.5808912999 . . . )
1
2 + i(267, 653, 395, 650.8344795320 . . . )
1
2 + i(267, 653, 395, 651.0584820011 . . . )
1
2 + i(267, 653, 395, 651.3570661334 . . . )
1
2 + i(267, 653, 395, 651.7017825037 . . . )
1
2 + i(267, 653, 395, 651.9049020916 . . . )
1
2 + i(267, 653, 395, 652.0387527712 . . . )
1
2 + i(267, 653, 395, 652.3029254562 . . . )
1
2 + i(267, 653, 395, 652.7891109498 . . . )
1
2 + i(267, 653, 395, 652.9646206541 . . . )
1
2 + i(267, 653, 395, 653.1790233335 . . . )
1
2 + i(267, 653, 395, 653.2277635657 . . . )
1
2 + i(267, 653, 395, 653.5120490433 . . . )
1
2 + i(267, 653, 395, 653.8376801741 . . . )
1
2 + i(267, 653, 395, 654.0654230031 . . . )



Zeros of the Riemann zeta-function,
number 1022 + 1 through number 1022 + 20:

1
2 + i(1, 370, 919, 909, 931, 995, 308, 226.68016095 . . . )
1
2 + i(1, 370, 919, 909, 931, 995, 308, 226.77659152 . . . )
1
2 + i(1, 370, 919, 909, 931, 995, 308, 226.94593324 . . . )
1
2 + i(1, 370, 919, 909, 931, 995, 308, 227.16707942 . . . )
1
2 + i(1, 370, 919, 909, 931, 995, 308, 227.28945453 . . . )
1
2 + i(1, 370, 919, 909, 931, 995, 308, 227.45742387 . . . )
1
2 + i(1, 370, 919, 909, 931, 995, 308, 227.55600131 . . . )
1
2 + i(1, 370, 919, 909, 931, 995, 308, 227.71882545 . . . )
1
2 + i(1, 370, 919, 909, 931, 995, 308, 227.80388039 . . . )
1
2 + i(1, 370, 919, 909, 931, 995, 308, 227.98526449 . . . )
1
2 + i(1, 370, 919, 909, 931, 995, 308, 228.12614756 . . . )
1
2 + i(1, 370, 919, 909, 931, 995, 308, 228.25881586 . . . )
1
2 + i(1, 370, 919, 909, 931, 995, 308, 228.38744704 . . . )
1
2 + i(1, 370, 919, 909, 931, 995, 308, 228.53069105 . . . )
1
2 + i(1, 370, 919, 909, 931, 995, 308, 228.72920315 . . . )
1
2 + i(1, 370, 919, 909, 931, 995, 308, 228.82462962 . . . )
1
2 + i(1, 370, 919, 909, 931, 995, 308, 228.94497148 . . . )
1
2 + i(1, 370, 919, 909, 931, 995, 308, 229.12603661 . . . )
1
2 + i(1, 370, 919, 909, 931, 995, 308, 229.25487358 . . . )
1
2 + i(1, 370, 919, 909, 931, 995, 308, 229.31039517 . . . )



Statements equivalent to the Riemann Hypothesis

1. All nontrivial zeros ρ = β + iγ of the function ζ(s) have β = 1/2.

2. For every ε > 0 there is a positive constant C(ε) such that

| li(x)− π(x)| ≤ C(ε)x1/2+ε.

3. For every ε > 0 there is a positive constant C(ε) such that

|x− ψ(x)| ≤ C(ε)x1/2+ε.

4. Define the Möbius function µ(n) for positive integers n by

µ(n) =
{

(−1)m if n is a product of m distinct primes
0 if n is divisible by the square of a prime.

Then the infinite series

lim
N→∞

N∑
n=1

µ(n)
nσ

converges for all σ > 1/2.



Great Moments in Prime Number Theory:

In 1896, working independently, Jacques Hadamard (1865–1963)
and Charles-Jean de la Vallée Poussin (1866–1962) established the
crucial fact that

ζ(1 + it) 6= 0 for all real numbers t.

From this they obtained a proof of the Prime Number Theorem:

lim
x→∞

π(x)
li(x)

= 1.

In 1914 J. E. Littlewood (1885–1977) proved that the difference

li(x)− π(x)

is both positive and negative for arbitrarily large values of x. In
1955 S. Skews showed that the first change of sign in li(x) − π(x)
occurs for a value of x that is smaller than

1010101000

.

Using more information about the zeros of ζ(s) we now know that
the first sign change occurs for a value of x that is smaller than

10371.



Great Moments in Prime Number Theory:

In 1942 A. Selberg (1917– ) proved that a positive proportion
of the nontrivial zeros of the Riemann zeta-function have real part
equal to 1/2. More precisely, if N(T ) is the number of zeros ρ =
β + iγ with 0 < γ ≤ T and N0(T ) is number of zeros ρ = 1/2 + iγ
with 0 < γ ≤ T , then Selberg proved that there exists a positive
constant c such that

cN(T ) ≤ N0(T ) for all large values of T.

In 1948 A. Selberg and Paul Erdös (1913–1996) found elementary
proofs of the Prime Number Theorem. Their arguments do not use
the Riemann zeta-function, complex analysis or Fourier analysis.

In 1970 H. L. Montgomery showed that if the Riemann Hypothe-
sis is true, then the imaginary parts of the nontrivial zeros of the Rie-
mann zeta-function have (in a certain restricted sense) the same pair
correlation function as the eigenvalues of a random complex Her-
mitian or a random unitary matrix. Montgomery also formulated a
conjecture, called the pair correlation conjecture, which would sig-
nificantly strengthen his result. This conjecture is consistent with
the view that the nontrivial zeros of ζ(1/2 + it) are the eigenvalues
of an unbounded linear operator–as yet undiscovered–acting on a
certain Hilbert space.


