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Abstract

In this paper we show how generalized matching tech-
nique for stabilization may be applied to the Routhian
associated with a low-dimensional nonholonomic sys-
tem. The theory is illustrated with a simple model—a
unicycle with rider.

1 Introduction

In this paper we apply the method of controlled La-
grangians to the problem of stabilization of steady state
motions of low-dimensional nonholonomic systems with
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symmetry. The controlled Lagrangian approach for sta-
bilization was introduced in Bloch, Leonard, and Mars-
den [3, 4] for underactuated holonomic systems with
the control force acting along the symmetry directions.
Initially the control forces were chosen to preserve sym-
metry. Later on (see Bloch, Leonard, and Marsden [5]
and Bloch, Chang, Leonard, and Marsden [7]) this ap-
proach was extended to handle certain types of system
with broken symmetry.

The method of Bloch, Leonard, and Marsden re-
quires that specific matching conditions are satisfied.
These conditions allow one to introduce a controlled
Lagrangian and to rewrite the equations for the con-
trolled (forced) system as the Euler-Lagrange equations
for this controlled Lagrangian. Further, the nonlinear
controlled inputs derived in this fashion thus become
globally defined.

Recently, Auckly, Kapitanski, and White [1] and
Hamberg [9] developed a version of this technique for
more general systems without symmetry. The match-
ing conditions given by these authors are less restric-
tive, but the control law is usually local and is harder
to obtain (it requires solving a system of PDE’s). As
in Bloch, Leonard, and Marsden, a control term emu-
lating dissipation is often added to the control input to
achieve asymptotic stabilization.

In this paper we consider a class of underactu-
ated nonholonomic systems with two dimensional shape
space, no curvature terms in the shape equations, and
whose momentum equation has the form of a parallel
transport equation. The control is imposed onto one of
the shape degrees of freedom and thus is not aligned
with the symmetry directions. We use the approach of
Auckly, Kapitanski, and White [1] and Hamberg [9] to-



gether with that of Bloch, Leonard and Marsden [6] to
obtain the control law and then use some of the recent
theory of nonholonomic mechanics to obtain stability
results. Our work here builds on the result of Zenkov,
Bloch, and Marsden [16, 17], where we showed that
a suitable control input with dissipation (which moves
the nonzero part of the spectrum of the linearized equa-
tions of motion into the left half plane) plus the use of
the so-called Lyapunov-Malkin theorem led to stability.

A key observation in the present paper is that the
steady states under consideration for each value of the
nonholonomic momentum are dynamically equivalent
to the equilibria of an auxiliary holonomic system whose
Lagrangian equals the restriction of the Routhian of the
original nonholonomic system onto an appropriate mo-
mentum level set. Applying holonomic matching tech-
niques to this auxiliary system, we obtain the auxil-
iary controlled Lagrangian, which is used to construct
the controlled Routhian for the nonholonomic system.
The equations of motion associated with this controlled
Routhian are equivalent to the original controlled equa-
tions and thus supply us with a nonlinear control law.
The method proposed here gives a systematic proce-
dure for control design in both the linear and the non-
linear settings. The theory is illustrated with a simple
model—a unicycle with rider.

We intend in a future publication to consider more
general nonholonomic systems, in particular with con-
trol inputs acting along some of the symmetry direc-
tions as well.

2 Overview of Nonholonomic Dynamics

In this section we give a brief exposition of nonholo-
nomic dynamics. We refer the reader to Bloch, Krish-
naprasad, Marsden, and Murray [2] and Zenkov, Bloch
and Marsden [15] for a complete exposition.

2.1 Equations of Motion of Nonholonomic Sys-
tems with Symmetry
Symmetries. Suppose we are given a nonholonomic sys-
tem specified by the Lagrangian L : TQ → R and a
(nonintegrable) constraint distribution D. We can then
look for a group G that acts on the configuration space
Q. It induces an action on the tangent bundle TQ and
so it makes sense to ask that the Lagrangian L and the
distribution D are invariant. If these properties hold,
we say that G is a symmetry group. In many examples
the symmetry group will be evident. For instance, for
the system considered here, the unicycle with rider, the
symmetry group is SO(2) × SE(2).
Reduced Equations. In this paper we assume that:
1. The shape space Q/G is a smooth two-dimensional
manifold.
2. The curvature of the nonholonomic connection is
zero.
3. The momentum equation is of the form of a parallel

transport equation.
The reduced equation of motion in this case are

d

dt

∂R
∂ṙ1

= ∇1R,
d

dt

∂R
∂ṙ2

= ∇2R + u, (1)

dpa

dt
= Db

aαpbṙ
α, a = 1, . . . ,m, (2)

where R is the Routhian, rα are the shape variables, pa

are the components of the nonholonomic momentum,
and the covariant derivatives in equation (1) are defined
by

∇α = ∂rα + Db
aαpb∂pa

. (3)

The term u in the shape equations (1) represents the
control input. The full dynamics is governed by equa-
tions (1) and (2) coupled with the reconstruction equa-
tion for the group variables. This reconstruction equa-
tion is not needed here as it does not affect the evolution
of the shape and the momentum variables, and thus is
not used in our stabilization analysis.
The Steady States. The equilibria

r = r0, p = p0 (4)

of equations (1) and (2) represent the steady state mo-
tions of system. These equilibria are distinguished by
the conditions

∇1R = 0, ∇2R = 0

and thus are labeled by the p0. We assume that equi-
libria (4) are unstable in the direction of unactuated
shape variable.

2.2 The Unicycle with Rider
An example of a nonholonomic system that satisfies

assumptions 1–3 is the unicycle with rider. We model
the rider on a unicycle in this paper by a pendulum
suspended on a rod attached to the center of a wheel,
the rod and the pendulum representing the body and
the limb of the rider. The wheel rolls without slipping
on a horizontal plane. The pendulum is free to move
in the plane orthogonal to the disk, while the rod stays
“vertical” in the disk’s plane. We view this as a sim-
plified model of a rider on a unicycle in which only the
sideways motion of the rider (such as the rider’s limbs)
is modeled, without pedaling control.
Configuration Space. The configuration space for the
unicycle with rider as described above, is Q = S1×S1×
S1 × SE(2), which we parameterize with coordinates
(θ,κ, ψ, φ, x, y). As in Figure 1, θ is the tilt of the
unicycle itself, κ is that of the limb, and ψ is the angular
position of the wheel of the unicycle. The variables
(φ, x, y), regarded as a point in SE(2), represent the
angular orientation and position of the point of contact
of the wheel with the ground.
The Symmetry Group. This mechanical system is
SO(2) × SE(2)-invariant; the group SO(2) represents



Figure 1: The configuration variables for the unicycle with
rider.

the symmetry of the wheel, that is, the symmetry in
the ψ variable, while the group SE(2) represents the
Euclidean symmetry of the overall system. The action
by the group element (α, β, a, b) on the configuration
space is given by (θ,κ, ψ, φ, x, y) �→ (θ,κ, ψ + α, φ +
β, x cosβ − y sinβ + a, x sinβ + y cosβ + b).
System Parameters. We will use the following nota-
tions:

M = the mass of the disk,
R = the radius of the disk,

A,B = the principal moments of inertia of the disk,
m = the rider mass,
r = the rod length,
l = the distance from the center of the disk

to the mass m,
µ = the limb mass,
ρ = the limb length.

Reduced Equations. The reduced dynamics of the uni-
cycle is governed by equations (1) and (2) with r1 = θ,
r2 = κ, and the Routhian specified below:

R =
1
2
(
g11θ̇

2 + 2g12θ̇κ̇ + g22κ̇
2 − Iabpapb

)
− U, (5)

where (p1, p2) is the nonholonomic momentum,

U = MgR cos θ +mg(R+ l) cos θ
+ µg [(R+ r) cos θ − ρ cos(κ − θ)] .

is the potential energy of the system,

g11 = MR2 +m(R+ l)2

+ µ
[
(R+ r)2 − 2(R+ r)ρ cos κ + ρ2

]
+A,

g12 = µ
[
(R+ r)ρ cos κ − ρ2

]
,

g22 = µρ2

are the components of the shape metric, and

I11 = A cos2 θ +B sin2 θ +m(R+ l)2 sin2 θ

MR2 sin2 θ + µ[(R+ r) sin θ + ρ sin(κ − θ)]2,

I12 = MR2 sin θ +mR(R+ l) sin θ
+ µR [(R+ r) sin θ + ρ sin(κ − θ)] +B sin θ,

I22 = MR2 +mR2 + µR2 +B

are the components of the locked inertia tensor. As
usual, Iab are the components of the inverse inertia ten-
sor. For the unicycle, p1 is the vertical component of
the momentum of the system while p2 is the component
of the disk’s momentum along the normal to the disk.
See Zenkov, Bloch, and Marsden [15] for details con-
cerning the nonholonomic momenta and the Routhian.

The shape equations for (r1, r2) describe the motion
of the rod and pendulum system, while the momentum
equations for (p1, p2) model the (coupled) wheel dy-
namics. The coefficients Db

aα in (3) for the unicycle
with rider are computed to be

Da
11 = I2a [A cos θ − B cos(κ − θ)] ,

Da
12 = I2aB cos(κ − θ),

Da
21 = −I1a [A cos θ − B cos(κ − θ)] ,

Da
22 = −I1aB cos(κ − θ).

In the above formulae,

A = MR2 +mR(R+ l) + µR(R+ r), B = µRρ.

See Zenkov, Bloch, and Marsden [15] for the details con-
cerning how one derives and organizes such equations.

3 Matching and Controlled Lagrangians

We follow the procedure of Hamberg [9] in our ex-
position of the generalized matching technique. In the
case of linear matching we make use of the work of
Bloch, Leonard and Marsden [5, 6].

Consider an underactuated system with the La-
grangian L : TQ → R. Suppose that the configura-
tion variables split into two groups (q1, . . . , qm) and
(qm+1, . . . , qn) in such a manner that only the equa-
tions corresponding to the second group1 are affected
by the control forces:

d

dt

∂L

∂q̇i
=

∂L

∂qi
+ ui, (6)

where ui represent the control inputs and ua = 0 for
a = 1, . . . ,m. The uncontrolled system has an unstable
equilibrium

q = q0, (7)

1One can think of this grouping of generalized coordinates
more intrinsically as assuming there is a bundle structure Q → B,
where the fibers of this bundle represent the control directions.



which we want to stabilize using the control inputs. The
controlled Lagrangian approach requires a new function
L̃, the controlled Lagrangian, to be constructed such
that the equations

d

dt

∂L̃

∂q̇i
=

∂L̃

∂qi
, (8)

are equivalent to (6). We assume that L and L̃ are of
the form

L =
1
2
gij q̇

iq̇j − U(q), L̃ =
1
2
g̃ij q̇

iq̇j − Ũ(q),

with gij , g̃ij , U , and Ũ representing the kinetic energy
metrics and the potential energies of the initial and the
controlled Lagrangians. Following Hamberg, we intro-
duce the tensors:

T i
jk = Γ̃i

jk − Γi
jk, hj

i = gikg̃
kj , h̃j

i = g̃ikg
kj (9)

where Γi
jk and Γ̃i

jk are the Christoffel symbols of the
metrics gij and g̃ij . The indices i, j, and k range from
1 to n, and a summation over repeated indices is un-
derstood.

The conditions for equivalence of (6) and (8) are
called the matching conditions. They generalize the
conditions in Bloch, Leonard, and Marsden [3, 4, 5, 6]
and are given in the following theorem:

Theorem 3.1. (Hamberg) Equations (6) and (8) are
equivalent iff the following two conditions hold for a =
1, . . . ,m:

galT
l
jk = 0, hj

a

∂Ũ

∂qj
=

∂U

∂qa
. (10)

The explicit formulae for the controls are

uα =
∂U

∂qα
− hj

α

∂Ũ

∂qj
− gαlT

l
jk q̇

j q̇k, (11)

α = m+ 1, . . . , n.

The following theorem gives sufficient conditions for
the controlled Lagrangian to exist:

Theorem 3.2. Consider an equilibrium of system (6)
with one unactuated degree of freedom (a = 1) and sup-
pose that the linearized system is controllable. Then
there exists a locally defined matching Lagrangian L̃
with controlled energy Ẽ having a local minimum at this
equilibrium.

The conclusion of this theorem follows from the exis-
tence of solution of the Cauchy problem for the sys-
tem of partial differential equations (10). The details
of a proof of a version of this theorem may be found in
Auckly, Kapitanski, and White [1].

Theorem 3.2 suggests the following method of con-
struction of the controlled Lagrangian: First, find the

solution of the linearized matching conditions that pro-
duces a controlled Lagrangian L for the linearized sys-
tem with positive definite controlled energy. One can
use the technique of Bloch, Chang, Leonard, and Mars-
den [7] for this linearized matching. Then, using L,
produce an initial condition along a noncharacteristic
surface of the system of partial differential equations
(10) passing through equilibrium (7). Finally, find the
(local) solution of (10) and determine the control law.
The energy associated to the controlled Lagrangian is
positive definite in the neighborhood of the equilibrium
(7). The control law (11) thus stabilizes the equilibrium
(7).

Of course, the controls provided by Theorem 3.1
cannot accomplish asymptotic stabilization, which can
be gained by adding dissipative terms to uα, i.e. by
controls of the form

uα =
∂U

∂qα
− hj

α

∂Ũ

∂qj
− gαlT

l
jkq̇

j q̇k − dαj q̇
j . (12)

For a two degree of freedom system, one can use the
following coefficients dαj :

d21 = dh̃2
1, d22 = dh̃2

2, d > 0. (13)

The general procedure of choice of dαj is discussed in
Hamberg [9].
Example. As an example, consider a rod and and a
pendulum system with the actuator placed on the top
of the rod. The Lagrangian of this system may be ob-
tained from (5) by setting p1 = p2 = 0. This system
is controllable for a generic choice of the system pa-
rameters. Therefore, the unstable upward equilibrium
of this system can be stabilized by the method of con-
trolled Lagrangians. One can also consider a more gen-
eral Lagrangian obtained from Routhian (5) by setting
p1 = 0. The Euler-Lagrange equations associated with
this Lagrangian coincide with equations (1), and the
corresponding linearized problem is controllable. Ac-
cording to theorem 3.2, the unstable equilibrium θ = 0,
κ = 0 of this system can be stabilized using the match-
ing technique described above. It would be interesting
to obtain the corresponding control law explicitly. This
issue will be addressed in a future publication.

4 Feedback stabilization

In this section we use matching techniques for the
stabilization of steady state motions of the nonholo-
nomic systems that were introduced in section 2. We
develop our approach for stabilization of of steady state
motions

r = r0, p = p0 (14)

that satisfy the following condition:

∇αR|p=p0 = ∂rαR|p=p0 . (15)



Our approach will work equally well if this condition
fails, but the exposition in this situation becomes more
sophisticated. The general case will be treated in a
forthcoming publication.
Controlled Routhian. In order to define the controlled
Routhian, we introduce an auxiliary holonomic system
whose Lagrangian is

Lp0 = R|p=p0 .

The steady state motion (14) is dynamically equiva-
lent to the equilibrium of the corresponding auxiliary
system. We then apply the holonomic matching tech-
nique and obtain the controlled Lagrangian L̃p0 . This
involves the new metric g̃αβ and the new potential en-
ergy, which we construct in the following form:

1
2
Iabp0

ap
0
b + Ũ(r).

Next, we “unfreeze” the nonholonomic momentum in
the above formula. This gives us the controlled amended
potential

Ũa =
1
2
Iabpapb + Ũ(r).

Finally, we define the controlled Routhian

R̃ =
1
2
g̃αβ ṙ

αṙβ − Ũa,

the controlled covariant derivatives

∇̃α =
∂

∂rα
+ D̃b

aαpb
∂

∂pa
,

and introduce the equations

d

dt

∂R̃
∂ṙα

= ∇̃αR̃, α = 1, 2. (16)

Observe that the linearization of the controlled equa-
tions at equilibrium (14) can be chosen, with appropri-
ate gains, to have pure imaginary spectrum; this follows
from theorem 3.2 and our construction.
Nonholonomic Matching. Our main result is the fol-
lowing theorem:

Theorem 4.1. The shape equations (16) associated
with the controlled Routhian R̃ and the controlled co-
variant derivatives ∇̃ coupled with the momentum equa-
tions (2) are equivalent to the original equations (1) and
(2) iff the following matching conditions hold:

g1γT
γ
αβ = 0, hα

1

∂Ũ

∂rα
=

∂U

∂r1
,

hα
1

[
1
2
∂Ibc

∂rα
+ D̃c

aαI
ab

]
=

1
2
∂Ibc

∂r1
+ Dc

a1I
ab. (17)

The control u is given by

u = ∇2U − g2β g̃
αβ∇̃αŨ − g2γT

γ
αβ ṙ

αṙβ . (18)

Proof. Note that the momentum equation was not
affected when we introduced the shape equations due
to R̃ and ∇̃. The shape equations due to R are

gαβ r̈
β + ġαβ =

1
2
∂gβγ

∂rα
ṙβ ṙγ − ∂U

∂rα

−
[
1
2
∂Ibc

∂rα
+ Dc

aαI
ab

]
pbpc + uα.

Solving these for r̈β leads to

r̈δ = gδα

[
1
2
∂gβγ

∂rα
ṙβ ṙγ − ġαβ − ∂U

∂rα

]
− gδα

[
1
2
∂Ibc

∂rα
+ Dc

aαI
ab

]
pbpc + gδαuα.

Similarly,

r̈δ = g̃δα

[
1
2
∂g̃βγ

∂rα
ṙβ ṙγ − ˙̃gαβ − ∂Ũ

∂rα

]

− g̃δα

[
1
2
∂Ibc

∂rα
+ D̃c

aαI
ab

]
pbpc.

These equations become equivalent iff we require that
(17) and (18) hold. �

Nonholonomic Stabilization. In order to stabilize the
steady state motion (14), we will use the results of
Zenkov, Bloch and Marsden [15] and in particular, the
Lyapunov-Malkin theorem (see the Appendix of [15]).
First, we choose the values of gains that produce the
controlled Routhian that places the four nonzero eigen-
values of the linearization at (14) on the imaginary axis.
The remaining m eigenvalues equal 0.

For the Lyapunov-Malkin theorem to be used, we
force all the nonzero eigenvalues to the left half plane.
We accomplish that by adding the dissipative control
terms (13) to (18):

u = ∇2U − g2β g̃
αβ∇̃αŨ − g2γT

γ
αβ ṙ

αṙβ − dh̃2
αṙ

α. (19)

By the Lyapunov-Malkin theorem, the constructed con-
trol stabilizes the steady state motion (14) along with
nearby steady states. For a “remote” unstable steady
state, we just repeat the above construction and obtain
a different feedback control law. One can pose the prob-
lem of optimal switching between these control laws.
This problem is not considered here.
Stabilization of the Unicycle with Rider. Here we apply
the above technique to the problem of stabilization of
slow vertical steady state motions of the unicycle with
rider. These motions are represented by the following
one-dimensional manifold of equilibria:

θ = 0, κ = 0, p1 = 0, p2 = c. (20)

The slow vertical motions, i.e. those with small val-
ues of c are known to be unstable (Zenkov, Bloch, and
Marsden [15, 16].



As we have mentioned before, property (15) holds
for the relative equilibria (20). We thus are able to
introduce an auxiliary holonomic system, which is the
rod and a pendulum system discussed at the end of
section 3. The equilibrium

θ = 0, κ = 0

of this system is unstable. The linearization at this
equilibrium is controllable. Therefore our results on
nonholonomic stabilization are applicable. The first
two groups of the matching conditions (17) are satis-
fied because of our choice of the controlled Routhian.
To satisfy the third group, we set.

D̃c
aα = −1

2
Iab

∂Ibc

∂rα
+ h̃γ

α

[
Dc

aγ − 1
2
Iab

∂Ibc

∂rγ

]
.

With this choice of R̃ and ∇̃α, the nonlinear control law
(19) stabilizes the slow vertical steady state motions of
the unicycle.

Appendix

Consider the system of differential equations

ẋ = Ax+X(x, y), ẏ = Y (x, y), (A)

where x ∈ R
m, y ∈ R

n, A is an m × m-matrix, and
X(x, y), Y (x, y) represent higher order nonlinear terms.

Theorem. (Lyapunov-Malkin) If all eigenvalues of
the matrix A have negative real parts, and X(x, y),
Y (x, y) vanish when x = 0, then the solution x = 0,
y = 0 of equations (A) is stable with respect to (x, y),
and asymptotically stable with respect to x. If a solu-
tion (x(t), y(t)) is close enough to the solution x = 0,
y = 0, then

lim
t→∞

x(t) = 0, lim
t→∞

y(t) = c.
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