
A new range reduction algorithm

David Defour Peter Kornerup Jean-Michel Muller
Nathalie Revol

September 26, 2001

Abstract
Range reduction is a key point for getting accurate elementary func-

tion routines. We introduce a new algorithm that is fast for input argu-
ments belonging to the most common domains, yet accurate over the
full double precision range.

1 Introduction

The algorithms used for evaluating elementary functions only give correct
results if the argument is within a given small interval, usually centered at
zero. To evaluate an elementary function f(x) for any x, it is necessary to
find some “transformation” that makes it possible to deduce f(x) from some
value g(x∗), where

• x∗, called the reduced argument, is deduced from x;

• x∗ belongs to the convergence domain of the algorithm implemented
for the evaluation of g.

In practice, range reduction needs care for the trigonometric functions. With
these functions, x∗ is equal to x− kC, where k is an integer and C an integer
multiple of π/4).

A poor range reduction method may lead to catastrophic accuracy prob-
lems when the input arguments are large or close to an integer multiple of C.
It is easy to understand why a bad range reduction algorithm gives inaccu-
rate results. The naive method consists of performing the computations

k =
⌊
x

C

⌋
x∗ = x− kC

1

using the machine precision. When kC is close to x, almost all the accuracy,
if not all, is lost when performing the subtraction x−kC. For instance, if C =
π/2 and x = 584664.53 the correct value of x∗ is −0.0000000016757474710 · · ·,
and the corresponding value of k is 372209. Directly computing x − kπ/2
on a calculator with 8-digit arithmetic (assuming rounding to the nearest,
and replacing π/2 by the nearest exactly-representable number), then one
gets −.027247600. Hence, such a poor range reduction would lead to a com-
puted value of cos(x) equal to −0.027244229, whereas the correct value is
0.0000000016757474710155235 . . .

A first solution to overcome the problem consists of using multiple preci-
sion arithmetic, but this may make the computation much slower. Moreover,
it is not that easy to predict the precision with which the computation should
be performed.

Most common input arguments to the trigonometric functions are small
(say, less than 8), or sometimes medium (say, between 8 and approximately
260). They are rarely huge (say, greater than 260). We want to design methods
that are fast for the frequent cases, and accurate for all cases.

First we describe Payne and Hanek’s method [5] which provides an accu-
rate range reduction, but has the drawback of being fairly expensive in term
of operations. After a short overview for computing the worst case, in the
second section we present our algorithm dedicated for small and medium
size argument. In the third section we compare our method with some other
available methods, which justifies the use of our algorithm for small and
medium size argument.

1.1 The Payne and Hanek Reduction Algorithm

We assume in the following that we want to perform range reduction for the
trigonometric functions, with C = π/4, and that the convergence domain of
the algorithm used for evaluating the functions contains I = [0, π/4]. An
adaptation to other cases is straightforward.

From an input argument x, we want to find the reduced argument x∗ and
an integer k, that satisfy:

k =
⌊

4
π
x

⌋
x∗ =

π

4

(
4
π
x− k

) (1)

2

Once x∗ is known, it suffices to know k mod 8 to calculate sin(x) or cos(x)
from x∗. If x is large, or if x is very close to a multiple of π/4, the direct
use of (1) to determine x∗ may require the knowledge of 4/π with very large
precision, and a cost-expensive multiple precision computation if we wish
the range reduction to be accurate.

Now let us present Payne and Hanek’s reduction method [5, 6]. Assume
an n-bit mantissa, radix 2 floating point format (the number of bits n includes
the possible hidden bit; for instance, with an IEEE double-precision format,
n = 53). Let x be the floating-point argument to be reduced and let e be its
unbiased exponent, so

x = X × 2e−n+1

where X is an n-bit integer satisfying 2n−1 ≤ X < 2n. We can assume e ≥ −1
(since if e < −1, no reduction is necessary). Let

α0 · α−1α−2α−3α−4α−5 · · ·

be the infinite binary expansion of α = 4/π, and define an integer parameter
p, used to specify the required accuracy of the range reduction. Then rewrite
α = 4/π as

Left(e, p)× 2n−e+2 + (Medium(e, p) + Right(e, p))× 2−n−e−1−p,

where
Left(e, p) = α0α−1 · · ·αn−e+2

Medium(e, p) = αn−e+1αn−e · · ·α−n−e−1−p
Right(e, p) = 0.α−n−e−2−pα−n−e−3−pα−n−e−4−pα−n−e−5−p · · · .

Figure 1 shows this splitting of the binary expansion of α.

Left(e,p)︷ ︸︸ ︷
α0.α−1 · · ·αn−e+2

Medium(e,p)︷ ︸︸ ︷
αn−e+1 · · ·α−n−e−1−p

Right(e,p)︷ ︸︸ ︷
α−n−e−2−pα−n−e−3−p · · ·

Figure 1: The splitting of the digits of 4/π in Payne and Hanek’s reduction method.

The basic idea of the Payne-Hanek reduction method is to notice that, if p
is large enough, Medium(e, p) contains the only digits of α = 4/π that matter
for the range reduction. Since

4
π
x = Left(e, p)×X × 8 + Medium(e, p)×X × 2−2n−p

+Right(e, p)×X × 2−2n−p,

3

the number Left(e, p) × X × 8 is a multiple of 8, so that once multiplied by
π/4 (see Eq. (1)), it will have no influence on the trigonometric functions.
Right(e, p)×X × 2−2n−p is less than 2−n−p; therefore it can be made as small
as desired by adequately choosing p.

1.2 How Can We Find Worst Cases for Range Reduction ?

Performing an error analysis for a range reduction algorithm requires the
knowledge of the smallest possible reduced argument for all possible inputs
in a given format. Computing this value is rather easy, using an algorithm
due to Kahan (a C program that implements the method can be found at
http://http.cs.berkeley.edu/ ∼wkahan . A Maple program is given
in [3]). The algorithm uses the continued fraction theory. For instance, a
few minutes of calculation suffice to find that the double precision number
greater than 8, and less than 263 − 1 which is closest to a multiple of π/2 is

Γ = 6411027962775774× 2−48.

The distance between Γ and the closest multiple of π/2 is

ε ≈ 3.9405531196482× 10−19 > 2−62.

So if we apply a range reduction from [8, 263 − 1] to [−π/4, π/4] in double
precision arithmetic, we loose at most 61 bits of accuracy.

2 High-radix modular reduction method: New method

As said in the introduction, our general philosophy is that we must give re-
sults:

1. always correct, even for rare cases;

2. as quickly as possible for frequent cases.

A way to deal with that is to build a fast algorithm for input arguments with
a small exponent, and to use a slower yet still accurate algorithm for input
argument with a large exponent.

To do so, in the following we focus on input arguments with a “reason-
ably small” exponent. More precisely, we assume that the double precision
input argument x has absolute value less than 263− 1. We assume that Payne
and Hanek’s method will be used for larger arguments. For straightforward
symmetry reasons, we can assume that x is positive. We also assume that x
is larger than or equal to 8. We then proceed as follows:

4

1. We define I(x) as x rounded to the nearest integer, and F (x) as x−I(x).
Note that F (x) is exactly representable in double precision, and that for
x ≥ 252, we have F (x) = 0 and I(x) = x. Also, since x ≥ 8, the last
mantissa bit of F (x) has weight greater than or equal to 2−49;

2. I(x) is split into eight 8-bit parts:

I0(x) contains bits 0 to 7 of I(x)
I1(x) contains bits 8 to 15 of I(x)
I2(x) contains bits 16 to 23 of I(x)
I3(x) contains bits 24 to 31 of I(x)
I4(x) contains bits 32 to 39 of I(x)
I5(x) contains bits 40 to 47 of I(x)
I6(x) contains bits 48 to 55 of I(x)
I7(x) contains bits 56 to 63 of I(x)

so that

I(x) = I0(x) + 28I1(x) + 216I2(x) + . . .+ 256I7(x).

Note that in general there may be an integer j < 7 such that Ii(x) = 0
for all i ≥ j.
As mentioned above, our goal is to always provide correct results even
for the worst case for which we lose 61 bits of accuracy. Then we need
to store (Ii(x) mod∗ π/2) 1 with at least

61(leading zeros) + 53(non-zero significant bits) + p(extra guard bits)
= 114 + p bits.

To reach that precision, all the numbers (Ii(x) mod∗ π/2), which belong
to [−1/2,+1/2], are stored in tables as the sum of three double precision
numbers:
Thi(i, w) contains bits of weight 2−1 to 2−49 of ((28iw) mod∗ π/2)
Tmed(i, w) contains bits of weight 2−50 to 2−98 of ((28iw) mod∗ π/2)
Tlo(i, w) contains bits of weight 2−99 to 2−147 of ((28iw) mod∗ π/2)

wherew is an 8-bit integer. Note that Thi(i, w) = Tmed(i, w) = Tlo(i, w) =
0 for w = 0. The three tables Thi, Tmed and Tlo need 11 address bits. The

1defined such that −π/4 ≤ (X mod∗ π/2) < π/4

5

total amount of memory required by these tables is 3·211 ·8 = 48 Kbytes.
The largest possible value of∣∣∣∣∣

(
7∑
i=0

(Ii(x) mod∗ π/2)

)
+ F (x)

∣∣∣∣∣
is bounded by 2π + 1

2 , which is less than 8. From this we deduce that
Shi(x) =

(∑7
i=0 Thi(i, Ii(x))

)
+ F (x) is a multiple of 2−49 and has ab-

solute value less than 8. Shi is therefore exactly representable in double-
precision floating-point arithmetic (it is even representable with 52 bits
only). Therefore, with a correctly rounded arithmetic (such as the one
provided on any system that follows the IEEE-754 standard for floating-
point arithmetic), it will be exactly computed.

3. We compute
Shi(x) =

(∑7
i=0 Thi(i, Ii(x))

)
+ F (x)

Smed(x) =
∑7
i=0 Tmed(i, Ii(x))

Slo(x) =
∑7
i=0 Tlo(i, Ii(x))

These three sums are computed exactly in double precision arithmetic,
without any rounding error. Observe that these summations can be
terminated when starting from i = 0 and it is known from some j that
Ii(x) = 0 for i ≥ j.
The number S(x) = Shi(x) +Smed(x) +Slo(x) is equal to x minus an in-
teger multiple of π/2 plus a small error (bounded by 8×2−148 = 2−145),
due to the fact that the values (28iw) mod∗ π/2 are rounded to the bit
of weight 2−147. And yet, S(x) is not the final reduced argument, since
its absolute value may be significantly larger than π/4. We therefore
may have to add or subtract a multiple of π/2 from S(x) to get the fi-
nal result. Define Chi(k), for k = 1, 2, 3, 4, as the multiple of 2−49 that
is closest to kπ/2. Chi(k) is exactly representable as a double preci-
sion number. Define Cmed(k) as the multiple of 2−98 that is closest to
kπ/2−Chi(k) and Clo(k) as the double precision number that is closest
to kπ/2− Chi(k)− Cmed(k).

4. We now proceed as follows:

• If |Shi(x)| ≤ π/4 then we define

Rhi(x) = Shi(x)
Rmed(x) = Smed(x)
Rlo(x) = Slo(x)

6

• Else, let kx be such that Chi(kx) is closest to |Shi(x)|. We succes-
sively compute:

– If Shi(x) > 0

Rhi(x) = Shi(x)− Chi(kx)
Rmed(x) = Smed(x)− Cmed(kx)
Rlo(x) = Slo(x)− Clo(kx)

– Else,
Rhi(x) = Shi(x) + Chi(kx)
Rmed(x) = Smed(x) + Cmed(kx)
Rlo(x) = Slo(x) + Clo(kx)

Again,Rhi(x) andRmed(x) are exactly representable in double pre-
cision arithmetic, and, hence, they are exactly computed (for in-
stance, Rmed(x) has an absolute value less than 2−46 + 2−49, and is
a multiple of 2−98). The value Rlo(x) is computed with error less
than or equal to 2−149.

The number R(x) = Rhi(x) + Rmed(x) + Rlo(x) is equal to x minus an
integer multiple of π/2 plus an error bounded by 2−145 + 2−148.

This step is also used (alone, without the previous steps) to reduce small
input arguments, less than 8. This allows our algorithm to perform
range reduction for both kind of arguments, small and medium size.
The reduced argument is now stored as the sum of tree double preci-
sion numbers. We now want the reduced argument as the sum of two
double precision numbers. To do that, we use the following result:

Theorem 1 (Fast2sum algorithm) [2, page 221, Thm. C] Let a and b be
floating-point numbers, with |a| ≥ |b|. Assume the used floating-point arith-
metic provides correctly rounded results with rounding to the nearest. The
following algorithm

fast2sum(a,b):
s := a + b
z := s - a
r := b - z

computes two floating-point numbers s and r that satisfy:

• r + s = a+ b exactly;

• s is the floating-point number which is closest to a+ b.

7

5. We will get the final result of the range reduction as follows. Let p be
the integer parameter that is used to define the required accuracy.

• If Rhi(x) > 1/2p, then we compute

(yhi, ylo) = fast2sum(Rhi(x), Rmed(x)).

The 2 floating-point numbers yhi and ylo contain the reduced argu-
ment with relative error less than 2−96+p + 2−99+p;

• If Rhi(x) = 0, then we compute

(yhi, ylo) = fast2sum(Rmed(x), Rlo(x)).

Since the smallest possible value of the reduced argument is larger
than 2−62, the 2 floating-point numbers yhi and ylo contain the re-
duced argument with relative error less than

2−145 + 2−148

2−62
≈ 2−82

• If 0 < Rhi(x) ≤ 1/2p, then we successively compute (yhi, temp1) =
fast2sum(Rhi(x), Rmed(x)) and ylo = Rlo(x)+temp1. The 2 floating-
point numbers yhi and ylo contain the reduced argument with ab-
solute error less than 2−98.

8

2.1 The algorithm

We can now sketch the complete algorithm as follows:

Algorithm 1 (Range Reduction)
Stimulus: A double precision floating point number x > 0 and an integer p > 0

specifying the required precision in bits.

Response: A number y given as the sum of two double precision floating point
numbers yhi and ylo, such that −π/4 ≤ y < π/4 and y = x − k π2 + ε
for some integer k, with absolute error |ε| < 2−98 for 0 < |y| ≤ 2−p,
and relative error

∣∣∣ εy ∣∣∣ < 2−95+p otherwise.

Method: if x ≥ 263 − 1 then
{Apply the method of Payne and Hanek.}

else if x ≤ 8 then
Shi ← x; Smed ← 0; Slow ← 0;

else
I ← round(x); F ← x− I ;
Shi ← F ; Smed ← 0; Slow ← 0;
i← 0;
while I 6= 0 do

w ← I mod 28;
Shi ← Shi + Thi(i, w);
Smed ← Smed + Tmed(i, w);
Slow ← Slow + Tlow(i, w);
I ← I div 28; i← i+ 1;

if |Shi| ≥ π/4 then
k ← Reduce(|Shi|)
Shi ← Shi + (−1)sign(Shi)Chi(k);
Smed ← Smed + (−1)sign(Shi)Cmed(k);
Slow ← Slow + (−1)sign(Shi)Clow(k);

if |Shi| > 2−p then
(yhi, ylo)← fast2sum(Shi, Smed);

else if Shi = 0 then
(yhi, ylo)← fast2sum(Smed, Slow);

else
(yhi, temp)← fast2sum(Shi, Smed);
ylo ← temp+ Slow;

Where: The function Reduce(|Shi|) chooses the appropriate multiple k of π/2,
represented as the triple (Chi(k), Cmed(k), Clow(k)).

9

3 Cost of the algorithm

Counting the numberN of double precision floating point operations we find
for |x| < 263, that N = 10 + 3dlog256 xe, i.e., 13 ≤ N ≤ 34, and the number of
table look-ups is 3dlog256 xe.

A variant of our algorithm consists in first computing Shi, Smed and Rhi,
Rmed only. Then, during the fifth step of the algorithm, if the accuracy does
not suffice, compute Tlow and Rlow. This slight modification can reduce the
number of elementary operations in the (most frequent) cases where no extra
accuracy is needed. We can also reduce the table size by 8 Kbytes by storing
the Tlow values in single precision only, instead of using double precision.

In this section we compare our method to other algorithms on the same
input range [8, 263 − 1]: Payne and Hanek’s methods (see Section (1.1)) and
the modular range reduction method described in [1]. Concerning Payne and
Hanek’s method we used the version of the algorithm used by Sun Microsys-
tems [4]. We chose as criteria for the evaluation of the algorithms the table
size, the number of table access and the number of floating-point multiplica-
tions, divisions and additions.

Elementary # Table Table size
operations accesses in Kbytes

Our algorithm 13/34 3/24 48(40)
Payne & Hanek 55/103 1 0.14
Modular
range reduction 150 53 2

The table shows the potential advantages of our algorithm for medium-
sized input argument. Payne and Hanek’s method over that range doesn’t
need much memory, but roughly requires three times as many operations.
The Modular range reduction has the same characteristics as Payne and Hanek’s
method concerning the table size needed and the number of elementary op-
eration involved, but requiring more table accesses. Our algorithm is then
a good compromise between size table and number of operations for range
reduction of medium size argument.

10

4 Conclusions

We have presented an algorithm for accurate range reduction of input ar-
guments with absolute value less than 263 − 1. This table-based algorithm
gives accurate results for the most frequent cases. In order to cover the whole
double precision domain for input arguments, we suggest to use Payne and
Hanek’s algorithm for huge arguments. A major drawback of our method
lies in the table size needed, thus a future effort will be to reduce the table
size, while keeping a good tradeoff between speed and accuracy.

References

[1] M. Daumas, C. Mazenc, X. Merrheim, and J. M. Muller. Modular range
reduction: A new algorithm for fast and accurate computation of the el-
ementary functions. Journal of Universal Computer Science, 1(3):162–175,
March 1995.

[2] D. Knuth. The Art of Computer Programming, volume 2. Addison Wesley,
Reading, MA, 1973.

[3] J. M. Muller. Elementary Functions, Algorithms and Implementation.
Birkhauser, Boston, 1997.

[4] K. C. Ng. Argument reduction for huge arguments: Good to
the last bit (can be obtained by sending an e-mail to the author:
kwok.ng@eng.sun.com). Technical report, SunPro, 1992.

[5] M. Payne and R. Hanek. Radian reduction for trigonometric functions.
SIGNUM Newsletter, 18:19–24, 1983.

[6] R. A. Smith. A continued-fraction analysis of trigonometric argument
reduction. IEEE Transactions on Computers, 44(11):1348–1351, November
1995.

11

