
The Influence of Communication on the Performance of
Co-Allocation

A.I.D. Bucur D.H.J. Epema

Parallel and Distributed Systems Group
Faculty of Information Technology and Systems

Delft University of Technology, P.O. Box 356, 2600 AJ Delft, The Netherlands
anca@pds.twi.tudelft.nl epema@pds.twi.tudelft.nl

Abstract

In systems consisting of multiple clusters
of processors interconnected by relatively slow
connections such as our Distributed ASCI1

Supercomputer (DAS), jobs may request co-
allocation, i.e., the simultaneous allocation of
processors in different clusters. The perfor-
mance of coallocation may be severely impacted
by the slow intercluster connections, and by the
types of job requests. We distinguish different
job request types ranging from ordered requests
that specify the numbers of processors needed
in each of the clusters, to flexible requests that
only specify a total. We simulate multiclus-
ter systems with the FCFS policy—and with
two policies for placing a flexible request, one
tries to balance cluster loads and one tries to fill
clusters completely—to determine the response
times under workloads consisting of a single or
of different request types for different commu-
nication speeds across the inter-cluster connec-
tions. In addition to a synthetic workload, we
also consider a workload derived from measure-
ments of a real application on the DAS. We find
that the communication speed difference has a
severe impact on response times, that a relatively
small amount of capacity is lost due to commu-
nication, and that for a mix of request types, the
performance is determined not only by the sepa-
rate behaviours of the different types of requets,
but also by the way in which they interact.

1 Introduction

Over the last decade, most of the research
on scheduling in parallel computer systems has
been dedicated to homogeneous multiprocessors and
single-cluster systems. Much less attention has been

1In this paper, ASCI refers to the Advanced School for Com-
puting and Imaging in The Netherlands, which came into existence
before, and is unrelated to, the US Accelerated Strategic Comput-
ing Initiative.

devoted to multicluster systems consisting of single
clusters with fast internal communication intercon-
nected by relatively very slow links, although many
such systems are in use. One such system is the
Distributed ASCI Supercomputer (DAS) [7], which
was designed and deployed by the Dutch Advanced
School for Computing and Imaging (ASCI) in The
Netherlands. In such systems, jobs may ask for, or,
due to the numbers of processors in the separate clus-
ters and the number of processors requested, need co-
allocation, i.e., the simultaneous allocation of proces-
sors in more than one cluster simultaneously. In this
paper, we assess the performance of co-allocation in
a model of multicluster systems based on the DAS,
with a special emphasis on the effect of the differ-
ences in communication speeds between intra-cluster
and inter-cluster links, for different (combinations of)
job structures, and for a workload based on actual
measurements on the DAS.

Because of the potentially large computational
power they offer at a low cost, multiclusters are an
attactive option. Possibly widely distributed groups
of users, each with exclusive access to their own clus-
ters of processors, may join forces in order to share
the multicluster consisting of the total of the original
single clusters. However, together with this advantage
of a more powerful system at a lower cost, this solu-
tion also has the potential disadvantage of increased
execution times of jobs co-allocated across multiple
clusters, and a decreased system utilization as a con-
sequence, due to the slow communication among the
clusters.

The possibility of creating multiclusters fits in with
the recent interest in computational and data GRIDs
[12, 17], in which it is envisioned that applications
can access resources—hardware resources such as
processors, memory, and special instruments, but also
data resources—in many different locations at the
same time to accomplish their goal. In addition to
many other problems that need to be solved in order



to realize this vision, such as security issues and re-
source discovery, these GRIDs need schedulers that
work across the boundaries of the domains governed
by single resource managers to achieve co-allocation.
Such schedulers have been called metaschedulers and
superschedulers. Globus [13] is one of the software
systems incorporating a co-allocation component.

In our model we have to specify the structure of
the jobs, and the way jobs communicate this struc-
ture to the scheduler. Many scheduling strategies have
been developed for parallel systems in an attempt to
improve their performance, such as gang scheduling
and dynamic jobs. However, a simple and yet often
used and very practical strategy is to allow only rigid
jobs, scheduled by pure space sharing, which means
that jobs require fixed numbers of processors, and are
executed on them exclusively until their completion.
Therefore, we also only consider rigid jobs scheduled
by pure space sharing. However, we do allow differ-
ent request types in that jobs have the option to spec-
ify only the total number of processors they need, or
also the numbers of processors in each of the clus-
ters in the multicluster system. We assess the perfor-
mance of FCFS scheduling depending on the amount
of communication and on the ratio between the speeds
of intra-cluster and inter-cluster links, for workloads
consisting of a single or of a mix of different request
types. The performance is evaluated in terms of the
average response time as a function of the utilization.

This paper is a follow-up to our previous paper
[19], in which we focused on different scheduling
policies—in addition to FCFS we also considered
some forms of backfilling—and on the system capac-
ity lost due to none of the (first few) jobs in the queue
fitting on the processors left idle by the jobs in execu-
tion; communication was not considered. Here we do
include communication, we also perform simulations
based on actual measurements of a real application on
the DAS, we include a new type of requests—flexible
requests which the scheduler is allowed to split up in
any way across the clusters—and two different ways
of scheduling these, we also consider workloads con-
sisting of a mix of request types, and we assume a
more realistic distribution of the sizes of jobs.

2 The Model

In this section we describe our model of multiclus-
ter systems. This model is based on the Distributed
ASCI Supercomputer, the performance of which we
intend to evaluate depending on the structure of the
jobs, on the amount and pattern of communication,
and on the scheduling decisions.

2.1 The Distributed ASCI Supercom-
puter

The DAS [6, 7] is a wide-area distributed computer
system consisting of four clusters of workstations lo-
cated at four Dutch universities, amongst which Delft.
One of the clusters contains 128 nodes, the other three
contain 24 nodes each. All the nodes are identi-
cal Pentium Pro processors. The clusters are inter-
connected by ATM links for wide-area communica-
tions, while for local communication inside the clus-
ters Myrinet LANs are used. The operating system
employed is RedHat Linux. The system was designed
by the Advanced School for Computing and Imaging
(ASCI, in the Netherlands) and is used for research
on parallel and distributed computing. On single DAS
clusters a local scheduler called prun is used; it allows
users to request a number of processors bounded by
the cluster’s size, for a time interval which does not
exceed an imposed limit.

We have created an interface between prun and
Globus, and we have installed the Globus toolkit [13]
on the DAS system. However, there is also a way
around using Globus for submitting multicluster jobs
to the DAS, which was used for the measurements
in Section 4. So far, co-allocation has not been used
enough on the DAS to let us obtain statistics on the
sizes of the jobs’ components.

2.2 The structure of the system

We model a multicluster distributed system con-
sisting of C clusters of processors, cluster i having
Ni processors, i � �� � � � � C. We assume that all pro-
cessors have the same service rate. As to the com-
munnication and the communication network, we as-
sume that any two processors can communicate with
each other, and that the communication between the
tasks of a parallel application is synchronous, so that
a task doing a send operation can only continue when
it knows the receiving task has received the message.
All intra-cluster communication links are assumed to
be of the same capacity, as are all the inter-cluster
links. Since LAN links are faster than WAN links,
we assume the speed of intra-cluster links to be sig-
nificantly higher than the speed of inter-cluster links.
This implies that the amount of time needed for send-
ing a message between two processors within a clus-
ter is smaller than the time required to send the same
message between two processors from different clus-
ters. The two parameters related to communication in
our model are the total time needed to complete a sin-
gle synchronous send operation between processors
in the same and in different clusters.

By a job we understand a parallel application re-
quiring some number of processors. A job can simul-
taneously ask for processors in more than one clus-
ter (co-allocation). We will call a task the part of



an application that runs on a single processor. Tasks
can communicate by exchanging messages over the
network. Jobs are rigid, meaning that the numbers
of processors requested by and allocated to a job are
fixed, and cannot be changed during their execution.
Job requests can have different degrees of flexibility
in the way they allow their components to be spread
over the clusters (see 2.3). All tasks of a job start
and end at the same time, which implies that all the
processors allocated to a job are being simultaneously
occupied and released. We also assume that jobs only
request processors and we do not include in the model
other types of resources.

The system has a single central scheduler, with one
global queue. For both interarrival times and service
times we use exponential distributions.

In our simulations we make the simplification that
all the clusters have an equal number N of proces-
sors. In order to assess the performance loss due to
the wide-area links, we also compare the performance
of a multicluster system withC clusters with a single-
cluster system with CN processors.

2.3 The structure of job requests

Jobs that require co-allocation have to specify the
number and the sizes of their components, i.e., of the
sets of tasks that have to go to the separate clusters.
The distribution D we use for the sizes of these job
components is defined as follows: D takes values on
some interval �n�� n��, with � � n� � n� � N ,
and the probability of having job component size i
is pi � qi�Q if i is not a power of 2 and pi � �qi�Q
if i is a power of 2, with Q such that the sum of the
probabilities equals �. This distribution favours small
sizes, and sizes that are powers of two, which has been
found to be a realistic choice [8].

We will consider four cases for the structure of
jobs, which are differentiated by the flexibility of their
requests:

1. An ordered request is represented by a tuple ofC
values �r�� r�� � � � � rC�, each generated from dis-
tributionD. The positions of the request compo-
nents in the tuple specify the clusters from which
the processors must be allocated. This is the
most restrictive of the request types considered.

2. An unordered request is again specified by a tu-
ple of C values �r�� r�� � � � � rC�, each of them
obtained from D, but now by these values, the
job only specifies the numbers nodes it needs
in separate clusters, and not the precise clusters
where the nodes must be allocated. Because it
leaves the scheduler the freedom to choose the
clusters on which to place each of the C compo-
nents, this request type is more flexible than the
previous one.

3. A flexible request is represented by a single num-
ber obtained as a sum ofC values r�� r�� � � � � rC,
each of them obtained from the distribution D.
With this request the job specifies only the total
number of processors it requires; it leaves to the
scheduler the decision about how to spread the
tasks over the clusters.

4. For total requests, there is a single cluster with
size CN , and a request only specifies the single
number of processors it requires. An instance
of this case is characterized by a cluster number
C. The distributionof the numbers of processors
required by jobs is again the sum of C copies of
the distributionD. We include this case in order
to compare the multicluster cases above with a
single-cluster case in which the total job sizes
have the same distribution.

As long as we do not take into account the charac-
teristics of the applications (e.g., the amount of com-
munication between processors), the case of total re-
quests amounts to the same as the case of flexible
requests in multiclusters. The speed difference be-
tween inter-cluster and intra-cluster links makes the
two cases distinct also from the performance point of
view. The way we determine the job component sizes
in ordered and unordered requests and the total job
sizes for flexible and total requests, makes the the re-
sults for the four cases comparable.

Ordered requests are used in practice when a user
has enough information about the complete system to
take full advantage of the characteristics of the dif-
ferent clusters. For example, the data available at
the different clusters may dictate a specific way of
splitting up an application. Unordered requests (es-
pecially when grouping request components on the
same cluster would be allowed) are modelled by ap-
plications like FFT, where tasks in the same job com-
ponent share data and need intensive communication,
while tasks from different components exchange lit-
tle or no information. The flexible requests are the
best from the system’s point of view because their
lack of restrictions concerning the placement of their
tasks gives the scheduler the possibility to improve
the overall performance of the system.

2.4 The communication pattern

The communication between the tasks of single
jobs is an important part of our model, one of our
aims being to study the influence of the amount of
communication on the performance of the system for
the different request types, and its sensitivity to the ra-
tio between the inter-cluster and intra-cluster speeds.
As a model for the structure of jobs we consider a
general parallel application that can be solved by an
iterative method (it can be anything from a Poisson



problem to an implementation of surface rendering
using the Marching Cubes technique). Such appli-
cations have in common that the space of the prob-
lem is divided among the processes making up the
application, with each of them performing the algo-
rithm on its subdomain, alternating computation and
communication steps. The communication is neces-
sary for example to exchange border information or
to compute a global error as a stopping criterion. The
communication steps realize also the synchronization
between the processes.

For the simulations in Section 3, we will assume
that each task does a fixed number of iterations. Each
iteration consists of a communication step in which
a message of a fixed size is sent to every other task,
and a computation step. We assume that a task sends
its messages successively and synchronously, which
means that it waits until its first message has been re-
ceived before it sends the second, etc., and that in the
mean time, it receives all messages sent to it by the
other tasks. When all these messages have been sent
and received, the tasks do their computation step. Al-
though the sizes of the messages are equal, the time
costs will not be the same, depending on whether the
sender and the receiver are in the same cluster or not.
Since we assume that jobs release all their processors
at once, the slowest task will determine the job dura-
tion.

The simulations in Section 4.2 are based on mea-
surements of the execution of a real application on
the DAS. This application has a structure that deviates
somewhat from the general structure outlined above.
Details on this application can be found in Section
4.1.

2.5 The scheduling decisions

In all our simulations the First Come First Served
(FCFS) policy is used. FCFS is the simplest schedul-
ing scheme, processors being allocated to the job at
the head of the queue. When this job does not fit, the
scheduler is not allowed to choose another job fur-
ther down in the queue. This restriction has a negative
influence on the maximal processor utilization, since
processors may have to stay idle even when one or
more jobs in the queue do fit. For ordered and total
requests it is clear when a job fits or not, and there is
basically only one way of allocating processors.

In order to determine whether an unordered re-
quest fits, one can first order the job component sizes,
and then try to schedule the components in decreas-
ing order of their sizes. Whatever way of placement
is used, if placing the job components in this order
does not succeed, no other order will. Possible ways
of placement include First Fit (fix an order of the clus-
ters and pick the first one on which a job component
fits), Best Fit (pick the cluster with the smallest num-

ber of idle processors on which the component fits),
or Worst Fit (pick the cluster with largest number of
idle processors). In our simulations, we employ Worst
Fit. If we consider the influence each placement has
on the jobs following in the queue, Worst Fit can be
expected to give better results than the other place-
ment methods when combined with the FCFS policy,
because it leaves in each cluster as much room as pos-
sible for subsequent jobs.

For flexible requests the scheduling algorithm first
determines whether there are enough idle processors
in the whole system to serve the job at the head of
the queue. If so, the clusters on which the job will
be scheduled is again decided in a Worst Fit man-
ner by taking the smallest set of clusters with enough
idle processors. (One can simply order the clusters
according to their numbers of idle processors, in de-
creasing order, and add a cluster at a time until enough
idle processors are obtained.) The reason for this se-
lection of clusters is that because of the higher cost of
inter-cluster communication it is preferable to sched-
ule the job on as few clusters as possible. The only
decision still to be taken is how to spread the request
over the selected clusters. We implemented two ways
of doing so, both starting to use clusters in the de-
creasing order of their number of idle processors. The
first method, called cluster-filling, completely fills the
least loaded clusters until all the tasks are distributed;
the second, load-balancing, distributes the request
over the clusters in such a way as to balance the load.

Cluster-filling has the potential advantage of a
smaller number of inter-cluster links among the tasks
in a job, and so of a smaller communication over-
head, while load-balancing potentially improves the
performance of the system when the workload in-
cludes more types of requests. As an example, con-
sider a flexible request of 18 processors coming in an
empty system consisting of four clusters with 8 pro-
cessors each. When load-balancing is used, there are
216 inter-cluster messages in a single all-pairs mes-
sage exchange among the job’s tasks, and only 192 for
cluster-filling (see Figure 3). When all the requests
in the system are flexible, balancing the load does
not change the maximal utilization, but when com-
bined with ordered requests for example, the advan-
tage of having comparable loads and avoiding com-
pletely filling some clusters while leaving some others
emptier is obvious. Using cluster-filling for flexible
requests would be very obstructionist towards both
ordered and unordered requests, and would result in
a higher capacity loss.

3 Co-allocation in the presence of com-
munication

In order to estimate the performance of multiclus-
ter systems such as the DAS, for different types of



requests in the presence of communication, we mod-
elled the corresponding queuing systems and stud-
ied their behaviour using simulations. The simulation
programs were implemented using the CSIM simu-
lation package [5]. Simulations were performed for
a single-cluster system with 32 processors and for a
multicluster system with 4 clusters of 8 nodes each.
The job component sizes were generated from the dis-
tribution presented in Section 2.3. The sizes of the to-
tal requests in the single-cluster system with 32 pro-
cessors we use for comparison, are the sum of 4 num-
bers obtained from the same distribution. In Section
3.4.2 we also use for the job components a uniform
distribution on the interval ��� 	�.

In all the simulations reported in this section, the
mean of the service time is equal to �, and the inter-
arrival time is varied in order to determine the re-
sponse time as a function of the utilization of the sys-
tem. We consider the performance to be better when
either for the same utilization, the average response
time is smaller, or when the maximum utilization is
larger. The simulations for this section were done for
tasks performing only a single iteration consisting of a
communication step followed by a computation step,
because it is the ratio of communication to computa-
tion that matters. The (deterministic) amount of time
needed for the synchronous communication between
two tasks in the same cluster is set to �����.

3.1 The influence of the ratio between
inter-cluster and intra-cluster com-
munication speed

Even more than the total amount of communica-
tion, the ratio between the speeds of inter-cluster and
intra-cluster links, included in our model as the ratio
between the time intervals necessary for sending the
same message inside a cluster and between two pro-
cessors from different clusters, is an interesting factor
to consider because of its different influence on each
of the distinct types of requests. Below we evalu-
ate the influence of this ratio on the performance of
our model for the different types of requests. Fig-
ure 1 compares the average response time for the four
types of requests, for communication ratios of 10, 50,
and 100. It turns out that for ordered, unordered and
flexible requests, the increase of the ratio between
inter-cluster and intra-cluster communication deteri-
orates the performance, increasing the response time
and decreasing the maximal utilization. The perfor-
mance seems to be affected more for ordered and un-
ordered requests than for flexible ones. This shows
that in those cases the average amount of inter-cluster
communication per job is higher. The variation of the
communication ratio does not affect the results for to-
tal requests since in single clusters there is only intra-
cluster communication and it can be used as a refer-

ence in the graphs.
In Figure 2 we show the same results (except for

total requests), but ordered in a different way: now
we depict the performance per request type for differ-
ent communication speed ratios in the same graph. It
can be noticed that the change in performance is sig-
nificant for all utilizations. For low utilizations, where
in the absence of communication all the request types
have similar response times, taking as a reference the
curve of total requests, now we can see a large in-
crease of the average response time for all the other
request types. The results indicate that the communi-
cation ratio decreases the maximal utilization as well,
but the deterioration is smaller than in the case of the
response time. An approximation for the extra capac-
ity loss due to communication is presented in the fol-
lowing section.

3.2 The extra capacity loss due to com-
munication

In both single-cluster and multicluster systems, it
may of course happen that some processors are idle
while there are waiting jobs in the queue. For single
clusters this happens only when the number of idle
processors is smaller than the number of processors
requested by the job at the head of the queue. The
same is true for jobs with flexible requests in multiple
clusters. For the more restrictive types of requests this
phenomenon occurs more often, and a larger fraction
of the processors may stay idle because even if the
total number of idle processors covers the number of
processors requested by the job, it may happen that
their division over the clusters does not satisfy the re-
quirements of the job. If �m is the average utilization
of the system such that the system is unstable at uti-
lizations � with � � �m and stable for � � �m, we
have �m � �. The quantity L � � � �m is called
the capacity loss of the system. Capacity loss and the
utilizationof high-performance computer systems has
been a major concern [14]. In [19], we presented an
approximation of capacity loss in single clusters, and
some simulations for capacity loss in multiclusters, in
the absence of communication.

In the presence of communication there is an ad-
ditional component Lc of the capacity loss, which
is due to the fact that jobs are not preempted during
communication steps. If the queue is not empty dur-
ing such a step, one or more jobs at the head of the
queue might have fit on the system if we did preempt
jobs when they start communicating. Such jobs might
have taken part or all of the processors freed by the
preempted job, in which case we talk about internal
capacity loss, denoted by Li. There is also an exter-
nal capacity loss Le resulting from the fact that if the
processors would be released during communication,
another job at the head of the queue could be sched-



uled, which would take the processors freed by the
communicating job, but also some other processors
which are idle otherwise. The idle processses which
would be occupied if the job involved in communi-
cation gave up its processors generate this additional
external component to the capacity loss.

Table 1 contains the estimated values for the capac-
ity loss due to communication Lc for different com-
munication ratios and for all four types of requests.
They are obtained by substracting the maximal uti-
lization in the presence of communication from the
maximal utilization for a system without communica-
tion. We can conclude that the capacity loss increases
with the ratio between inter-cluster and intra-cluster
communication speed and it is higher for the job re-
quest types which generate more communication (a
larger number of inter-cluster messages). For total
requests in single clusters the extra capacity loss is
small since all the communication is fast intra-cluster
one.

request communication ratio
type 10 50 100
ord. 0.00553 0.02075 0.03100
unord. 0.00393 0.01581 0.02415
flex. 0.00013 0.00034 0.00050
total 0.00006 0.00006 0.00006

Table 1: The extra capacity loss due to communica-
tion for the four request types.

3.3 A comparison between balancing the
load and filling the clusters

As we stated before, both ways of dealing with
flexible requests choose the minimal number of clus-
ters on which the request can be scheduled using
Worst Fit. They differ however in the way the jobs
are spread over this minimal number of clusters.

The placement which fills the least loaded clusters
is aiming to reduce the number of inter-cluster mes-
sages taking into account that this type of communi-
cation is more costly than the intra-cluster one. The
placement which balances the load accepts to have a
larger number of inter-cluster messages but leaves as
much room as possible in the clusters for other jobs.
If there are only flexible requests in the system, fill-
ing the clusters does not affect the performance and
there is no benefit from balancing the load, but if
besides flexible requests the system also schedules
more restrictive ones, such as ordered or unordered
requests, keeping an equilibrium between the loads of
the cluster becomes essential. Ordered and unordered
requests specify the number of processors they need
in distinct clusters and if one of those clusters is full

such a job will not be scheduled even if the total num-
ber of free processors in the system is large enough.
This would determine an extra capacity loss that can
be avoided by an even loading of the clusters.

In our case, since jobs are rigid, even when only
flexible requests are present in the system, load-
balancing brings a better performance then cluster-
filling. Figure 4 shows the evolution of the response
time function of the utilization of the system for both
techniques, for communication speed ratios of 
� and
���. Although in the system are only flexible re-
quests, for both ratios load-balancing proves to be bet-
ter. This can be explained by the fact that in the case
of rigid jobs it is not the average duration of tasks
which matters but the longest task because a job will
only finish when its last task ends. Although cluster-
filling has a smaller average for the communication
time, having fewer inter-cluster messages per job, this
communication time is not evenly spread between the
tasks. This is why, on average, cluster-filling gener-
ates jobs with a higher time average spent with com-
munication.

As an example, consider that an empty system with
four clusters of eight processors each receives a flexi-
ble request asking for 18 processors. Figure 3 shows
the decisions for each technique. The average com-
munication time is in favour of cluster-filling with
only 192 inter-cluster messages which gives an aver-
age of 10.7 inter-cluster messages per task compared
to 12 for load-balancing. However, if we look at the
longest task in both cases, which sets the amount of
time spent with communication by the job, it has only
12 inter-cluster messages when using load-balancing,
compared to 16 inter-cluster messages in the other
case.

3.4 Performance evaluation for a mix of
job request types

Real systems have to be able to schedule multiple
request types and not just a single type. The over-
all performance of the system is determined by the
way the scheduler deals with all types of requests, in
such a way as to give acceptable performance to all of
them and to improve the total performance. It is a fact
that the different request types in the system influence
each other. Results obtained for a system with just
one type of job requests are not always valid also for
a system where more types of requests are being sub-
mitted. In order to obtain a more general model we
study a multicluster system where both flexible and
ordered requests are present. In order two show how
much the scheduling decisions for jobs with one type
of request can influence the results for jobs with other
requirements we compare the performance of the sys-
tem when for flexible requests is chosen the way of
placement which equalizes the load to the one when



tasks are distributed to the clusters in such a way as to
completely fill the least loaded ones.

We study the performance of the system for dif-
ferent ratios between flexible and ordered jobs. The
communication ratio in all the simulations in this sec-
tion is 
�.

3.4.1 The influence of the ratio between ordered
and flexible requests

Figure 5 shows the average response time as a func-
tion of the utilization of the system for different ratios
of ordered and flexible requests. In the first graph the
flexible requests were spread over the clusters in such
a way as to fill the clusters, in the second one the load
was balanced. The results show that the average re-
sponse time grows with the increase in the percentage
of ordered jobs, indifferent of the manner in which the
flexible jobs are spread over the clusters. The maxi-
mal utilization of the system decreases when there is
a higher percentage of ordered jobs.

At low utilizations the increase of the response
time with the percentage of ordered jobs is low but
it gradually increases when the utilization becomes
larger. For less than ��� ordered jobs, the load is
still dominated by the flexible jobs and that is why
the deterioration of the performance is small. When
the percentage of ordered and flexible requests is the
same, the average response time is already signifi-
cantly larger than for a system with just flexible re-
quests, especially at high utilizations. When ��� or
more of the job requests are ordered, in both cases the
performance is determined by the ordered requests.

3.4.2 Loadbalancing versus cluster-filling for
flexible requests

In this section we evaluate the two ways of placement
used for flexible requests in the more general case of
a system with mixed requests. As figure 5 indicates,
for up to 
�� ordered jobs the system behaves bet-
ter when flexible requests are placed in such a way
as to balance the load. This better performance is
due mostly to the better response time obtained by
the flexible jobs. Because the jobs are large enough
not to permit in average the presence in the system of
more than two jobs simultaneously, there is little or
no benefit for the ordered jobs from the fact that the
load is balanced.

There can be noticed more factors which can in-
fluence the performance of the system. Both types of
placement for flexible requests tend to deteriorate the
performance of ordered requests by the fact that they
look for the minimum number of clusters where such
a job fits. The maximal utilization and the response
time would be improved by trying to spread the flex-
ible jobs over all the clusters. However, that change

will determine a deterioration of the performance for
flexible requests by increasing the cost of communi-
cation. For smaller jobs using the placement method
that balances the load can improve the performance of
the system by leaving more room for ordered jobs and
allowing them to obtain the needed resources sooner.
Figure 6 depicts the variation of the response time for
a job mix of 
�� ordered requests and 
�� flexible
requests, where the components of the job requests
are obtained from a uniform distribution on the inter-
val ��� 	�. In this case the performance is visibly better
when the flexible requests are spread in such a way as
to balance the load. The scheduling decisions must be
a compromise convenient for all types of jobs present
in the system.

4 Simulations based on a real applica-
tion

We extracted a more complex communication pat-
tern from an application implementing a parallel iter-
ative algorithm to solve the Poisson equation with a
red-black Gauss-Seidel scheme. We run the applica-
tion on the DAS system and measured the durations
of the different steps of the algorithm, subsequently
placing these values in our simulation model for or-
dered requests and assessing the performance of the
system in terms of average response time as a func-
tion of the utilization, for this specific application.

4.1 Description of the application

Our application searches for a solution is searched
in two dimensions; the computational domain is the
unit square, split into a grid of points with a constant
step. The number of points in the grid constitute the
size of the grid. At each iteration (computation step)
each grid point has its value updated as a function of
its previous value and the values of its neighbours.
The grid is split into "black" and "red" points, and
first all points of one colour are visited followed by
the ones of the other colour. With such an approach
the values of the grid points are updated only twice
during a sweep over all points.

The domain of the problem is split into rectan-
gles among the participating processes. Each pro-
cess gets a contiguous part of the domain containing a
number of grid points and does its own computation.
However, processes must communicate in order ot ex-
change the values of the grid points on the borders and
to compute a global stopping criterion. The amount of
communication, so also the communication time, is
influenced by the way processes split up the domain,
the number of participating processors, the size of the
grid, and the initial data. In our example we chose
to maintain constant the grid size and the initial data.
When running the application on a multicluster sys-
tem, the way processes are distributed over clusters



influences the communication time, since sending an
inter-cluster message takes significantly longer than
sending an intracluster one. For the same grid size
and the same initial data, we ran the application on
the DAS, for different numbers of processes and for
different divisions on lines and columns.

1. 8 processes - 4X2, 8X1

2. 16 processes - 2X8, 4X4

All the rules for rigid jobs and pure space sharing are
obeyed: each process is scheduled on a distinct pro-
cessor where it runs until completion, and all the pro-
cessors granted to the application are simultaneously
released. Since the domain is evenly split among the
participating processes, the amount of computation,
communication, and the number of iterations are de-
pendent on the number of processors used to perform
the algorithm. The application is implemented in MPI
and has the following structure:

if (proc_index == 0)
{
read the initial data;
/* number of points in the data
domain, number of nodes, sources */

broadcast data to all the processes;
}

/* start computation */
do

{
update half of the points

(e.g. black points);
update the other half of the

points (e.g. red points);
exchange borders with the

neighbours;
compute local-error;
distribute local-error;
compute global-error;

}
until global-error <= limit;

write results;

We ran the application on a single cluster for all the
cases mentioned above, and determined the duration
of the job and the number of iterations needed to reach
convergence. The results are presented in Table 2.

For the cases 4X2 and 4X4, we also ran the ap-
plication on four clusters of the DAS, scheduling an
equal number of processes on each cluster. More de-
tailed measurements for the different steps of the al-
gorithm were done, to be used in simulations: the du-
ration of the computation steps, the time needed for

exchanging borders in both single cluster and multi-
cluster cases, and the time cost of diffusing local er-
rors and computing the global error. The two update
steps were measured together and considered as a sin-
gle computation step. Being a single comparison in-
struction, the compute local-error step was ignored.
The last two steps were also measured together, being
performed as a single MPI routine. Comparing the
results from the multicluster with the single cluster
case we can notice as expected that the communica-
tion time is larger when messages are sent over the
intercluster links. Since the duration of the communi-
cation in general is influenced also by the way the job
is spread over the clusters, and there are many other
ways of spreading the processes, we do not assume
that the data extracted concerning the communication
steps is valid also in other configurations. However,
the duration of the computation steps does not depend
on the way processes are distributed over nodes, but
only on the size of the problem domain, the num-
ber of the participating nodes and the way they di-
vide the problem domain. Since the exchange of bor-
ders produces an important part of the communication
amount, and intercluster communication takes longer,
we can expect that the extra-time due to communica-
tion increases with the number of borders shared by
processors from different clusters.

4.2 Simulation results

The way of co-allocation provided on the DAS cor-
responds to the case of ordered requests from our sim-
ulations. We used this application structure and the
data collected from the DAS in the simulations, re-
placing the distributionD of job component sizes cho-
sen before with the two job sizes considered above:
(2,2,2,2) and (4,4,4,4) and assessed the performance
of the system (response time as a function of the sys-
tem utilization) for ordered requests. Because the job
components are equal, identical performance results
would be obtained for unordered requests. The re-
sults of the simulation are presented in Figure 7. Only
the main loop of the algorithm was simulated, the ini-
tialization and the I/O part of the algorithm being ig-
nored. It can be noticed that the chosen algorithm has
a very regular and localized communication structure
(each process communicates with all his neighbours
and just with them) and requires strong synchroniza-
tion. Its structure is typical for parallel iterative algo-
rithms. It is very suited to be submitted as a flexible
request being advantageous to schedule such a job on
the smallest number of clusters possible and minimiz-
ing the number of intercluster borders (borders shared
by processors from different clusters). Because of its
synchrony, the performance of a job performing such
an algorithm is determined by its slowest task.



Config Nr Iterations Elapsed Time
Update (ms)

Exchange Bor-
ders Single-
Cluster (ms)

Exchange Bor-
ders Multicluster
(ms)

4X2 2436 0.953-0.972 0.408-0.450 5.9-7.3
8X1 2418 0.970-0.994 0.260-0.315 –
4X4 2132 0.480-0.515 0.350-0.425 6.3-7.7
8X2 2466 0.470-0.525 0.337-0.487 –

Table 2: Results of the measurements

5 Related work

The problem of scheduling rigid jobs by pure space
sharing in a multiprocessor system has been studied
extensively; for instance, see [1]. Whereas we ap-
proach the problem of the maximal utilization from a
more theoretical perspective, in [14] a study of the uti-
lizations as observed in existing supercomputing in-
stallations is presented. Experience with a large range
of machines over more than a decade shows that em-
ploying FCFS results in a 	���
�� utilization, that
more sophisticated policies such as backfilling give
an improvement of about �
 percentage points, and
that reducing the maximal job size allowed increases
utilization.

In [4], the influence of splitting the processors of
multiprogrammed, shared-memory NUMA multipro-
cessors into groups on the performance of the system
is studied. It is assumed that a job starts as a single
process, and that it may grow by creating additional
processes. The best strategy for initial placement was
found to be Worst Fit, because it leaves the largest
room for the growth of jobs inside a pool. In [18],
a general discussion of some problems occurring in
designing meta-schedulers is presented, along with a
performance comparison of two such designs. In the
first, parts of the systems making up the metacomput-
ing system are dedicated to metajobs, i.e., jobs that
need resources under the control of different sched-
ulers. In the second, no resources are dedicated to
metajobs, and reservations for such jobs are only
made when they are submitted. Overall, the latter
design yields better results, for instance, in terms of
utilization. In [2], an algorithm for co-allocating a
fixed set of applications is simulated. All applica-
tions together are represented by a single DAG that
includes the precedence constraints and resource con-
flicts among all of their tasks. The aim is to find a
co-allocation yielding the minimum makespan.

In [16], two multidimensional bin-packing algo-
rithms, in which both bins and items are represented
by d-dimensional vectors, are studied using simula-
tions. This problem resembles the scheduling prob-
lem studied in this paper for ordered jobs without
communication. An important element in the algo-
rithms is the extensive search of the list of items for a

suitable candidate to place next, which is not realistic
in our setting as we don’t want to deviate too much
from FCFS.

Finally, let us briefly mention some of the other
research that is being performed in the context of
the DAS project, a general overview of which can
be found in [7]. Whereas the research presented
in this paper is at the operating systems level, the
other research on the DAS is done at the level of
the run-time system [15] and of the applications [3].
In [15], a library is presented with ’wide-area opti-
mal’ versions of the collective communication prim-
itives of MPICH, a widely used version of MPI.
It was shown that substantial performance improve-
ments over MPICH are obtained for communication
in wide-area systems. In [3], several techniques for
optimizing algorithms on a multilevel communication
structure (LAN clusters connected by a WAN, such as
the DAS) were implemented and analyzed. The opti-
mizations either reduced intercluster traffic or masked
the effect of intercluster communications and caused
a significant performance improvement. The authors
concluded that many medium-grain parallel applica-
tions can be optimized to run well on a multilevel,
wide-area system.

6 Conclusions

We modeled multicluster systems such as our DAS
system, where rigid jobs are scheduled by pure space
sharing, and studied its performance in the presence
of communication in terms of the average response
time as a function of the utilization. We distinguished
four types of requests: total, flexible, unordered and
ordered, and simulated workloads consisting of only
a single type of requests, and of mixes of flexible and
ordered requests. For flexible requests we compared
the results for two ways of placement on the clusters
for the case when only flexible requests are present in
the system, and also for the case when they are com-
bined with ordered requests.

Our results show that the performance of multi-
cluster systems deteriorates with the increase of the
ratio of the speeds of inter-cluster and intra-cluster
communication. In addition, it turns out that the per-
formance for flexible requests is much closer to that



for total requests than to that of either ordered or un-
ordered requests. In both single-cluster and multi-
cluster systems, communication introduces some ex-
tra capacity loss. This capacity loss is larger for mul-
ticluster systems and also grows with the increase of
the communication speed ratio. It is also dependent
on the total amount of communication, being larger
for ordered and unordered requests where more inter-
cluster messages are sent, than for flexible requests.
Reducing the amount of inter-cluster communication
may help provided that the number of inter-cluster
messages is evenly spread among the jobs. If the al-
gorithm is modified in such a way as to have a lower
average for the communication time, but some tasks
of the job communicate more than before, the per-
formance is decreased instead of improved. Under a
workload consisting of a mix of requests types, the
performance is determined not only by the separate
behaviours of the different types of jobs, but also by
the way in which they interact. The scheduling de-
cisions for each of them must be taken considering
also the effects they have on other job types, and are a
compromise between the requirements of the distinct
request types.

Future work will include simulations and measure-
ments using traces from the DAS instead of theoreti-
cal distributions. It may also be interesting to look at
different communication patterns from real applica-
tions. The model with mixed requests can also be de-
tailed in the hope to find scheduling decisions which
can better satisfy the different request types.

References

[1] K.Aida, H.Kasahara and S.Narita. Job Scheduling
Scheme for Pure Space Sharing Among Rigid Jobs.
In Job Scheduling Strategies for Parallel Processing,
Lecture Notes in Computer Science 1459, pages 98-
121. Springer-Verlag, 1998.

[2] A.H. Alhusaini, V.K. Prasanna, and C.S. Raghaven-
dra, A Framework for Mapping with Resource
Co-Allocation in Heterogeneous Computing Sys-
tems, Proc. 9th Heterogeneous Computing Workshop
(HCW2000), C.S. Raghavendra (ed.), pp. 273-286,
2000.

[3] H.E.Bal, A.Plaat, M.G.Bakker, P.Dozy and
R.F.H.Hofman. Optimizing Parallel Applica-
tions for Wide-Area Clusters. In Proceedings of the
12th International Parallel Processing Symposium
(IPPS’98), pages 784-790, Orlando, Fl., April 1998

[4] T.B.Brecht. An Experimental Evaluation of Processor
Pool-Based Scheduling for Shared-Memory NUMA
multiprocessors. In Job Scheduling Strategies for Par-
allel Processing, Lecture Notes in Computer Science
1291, pages 139-165. Springer-Verlag, 1997.

[5] The CSIM18 Simulation Engine, User’s Guide.
Mesquite Software, Inc.

[6] The Distributed ASCI Supercomputer;
http://www.cs.vu.nl/das/.

[7] H.E. Bal et al. The Distributed ASCI Supercomputer
Project. ACM Operating Systems Review, Vol. 34(4),
pages 76-96, 2000.

[8] D.G.Feitelson and L.Rudolph. Toward Convergence
in Job Schedulers for Parallel Supercomputers. In Job
Scheduling Strategies for Parallel Processing, Lec-
ture Notes in Computer Science 1162, pages 1-26.
Springer-Verlag, 1996.

[9] D.G.Feitelson and L.Rudolph. Theory and Practice in
Parallel Job Scheduling. In Job Scheduling Strategies
for Parallel Processing, Lecture Notes in Computer
Science 1291, pages 1-34. Springer-Verlag, 1997

[10] D.G.Feitelson and M.A.Jette. Improved Utilization
and Responsiveness with Gang Scheduling. In Job
Scheduling Strategies for Parallel Processing, Lec-
ture Notes in Computer Science 1291, pages 238-261.
Springer-Verlag, 1997.

[11] D.G.Feitelson. Packing Schemes for Gang Schedul-
ing. In Job Scheduling Strategies for Parallel Process-
ing, Lecture Notes in Computer Science 1162, pages
89-110. Springer-Verlag, 1996.

[12] The Global Grid Forum; http://www.gridforum.org.

[13] Globus; http://www.globus.org.

[14] J.Patton Jones and B.Nitzberg. Scheduling for Par-
allel Supercomputing: A Historical Perspective of
Achievable Utilization. In Job Scheduling Strategies
for Parallel Processing, Lecture Notes in Computer
Science 1659, pages 1-16. Springer-Verlag, 1999.

[15] T.Kielmann, R.F.H.Hofman, H.E.Bal, A.Plaat and
R.A.F.Bhoedjang. MagPIe: MPI’s Collective Com-
munication Operations for Clustered Wide Area Sys-
tems. In ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP’99),
pages 131-140, Atlanta, Ga., May 1999.

[16] W. Leinberger, G. Karypis, and V. Kumar, Milti-
Capacity Bin Packing Algorithms with Applications
to Job Scheduling under Multiple Constraints, Proc.
1999 Int’l Conference on Parallel Processing, D.
Panda and N. Shiratori (eds), pp. 404-412, 1999.

[17] I. Foster and C. Kesselman (eds), The Grid: Blueprint
for a New Computing Infrastructure, Morgan Kauf-
mann, 1999.

[18] Q. Snell, M. Clement, D. Jackson, and C. Gregory,
The Performance Impact of Advance Reservation
Meta-Scheduling, In Job Scheduling Strategies for
Parallel Processing, Lecture Notes in Computer Sci-
ence 1911, pages 137-153. Springer-Verlag, 2000.

[19] A.I.D. Bucur and D.H.J. Epema, The Influence of the
Structure and Sizes of Jobs on the Performance of Co-
Allocation. In Job Scheduling Strategies for Parallel
Processing, Lecture Notes in Computer Science 1911,
pages 154-173. Springer-Verlag, 2000.



0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Utilization

sc
flex

unord
ord

0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Utilization

sc
flex

unord
ord

0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Utilization

sc
flex

unord
ord

Figure 1: The average response time as a function of
the utilization for the four request types and for com-
munication speed ratios of 10 (top), 50 (middle), 100
(bottom).

0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Utilization

10
50

100

0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Utilization

10
50

100

0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Utilization

10
50

100

Figure 2: The average response time as a function
of the utilization for three communication speed ra-
tios, for flexible (top), unordered (middle) and or-
dered (bottom) requests.



6 6 6

2

88

a) Placement which balances the load

b) Placement which fills the clusters

Figure 3: A numerical example comparing load-
balancing and cluster-filling.

0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Utilization

bal
fill

0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Utilization

bal
fill

Figure 4: Performance comparison between load-
balancing and and cluster-filling for flexible requests,
for communication ratios of 
� (top) and ��� (bot-
tom).



0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Utilization

0%
10%
50%
90%

0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Utilization

0%
10%
50%
90%

Figure 5: The performance of a system with mixed
requests for different percentages of flexible and or-
dered requests, with load-balancing (top) and cluster-
filling (bottom)

0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Utilization

bal
fill

Figure 6: The performance of a system with mixed
requests for equal percentages of flexible and ordered
request, with components obtained from an uniform
distribution on ��� 	�.

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Utilization

Figure 7: The average response time as a function of
the utilization for ordered requests with data obtained
from an application implementing a parallel iterative
algorithm


